Mediterranean outflow pump: An alternative mechanism for the Lago-mare and the end of the Messinian Salinity Crisis

Alice Marzocchi1,*, Rachel Flecker1, Christiaan G.C. van Baak2, Daniel J. Lunt1, and Wout Krijgsman2
1School of Geographical Sciences and Cabot Institute, University of Bristol, Bristol BS8 1SS, UK
2Paleomagnetic Laboratory Fort Hoofddijk, Department of Earth Sciences, Utrecht University, 3508 TC Utrecht, Netherlands

ABSTRACT
The final stage of the Messinian salinity crisis (MSC) was characterized by brackish-water “Lago-mare” conditions in the intermediate and marginal basins of the Mediterranean Sea. The presence of Paratethyan (former Black Sea) fauna in these deposits has fueled long-lasting controversies over the connectivity between the Mediterranean and Paratethys and contemporary sea-level drops in both basins. Here, we use the results of sub-precessional climate simulations to calculate the freshwater budget of the Mediterranean and Paratethys in the Messinian. We show that, during the MSC, the freshwater budget of Paratethys was positive, while the Mediterranean was negative. Using these numerical constraints, we propose a Mediterranean outflow pump as an alternative scenario for the two most dramatic hydrological changes in the MSC: (1) the Halite–Lago-mare transition and (2) the Pliocene reestablishment of marine conditions. Following the maximum MSC lowstand during halite formation, progressive Mediterranean sea-level rise resulting from African river runoff and overspill from both the Atlantic and Paratethys eventually reached the level of the Paratethys sill. A density contrast at this gateway caused dense Mediterranean waters to flow into the Paratethys, driving a compensatory return flow. This “pump” mechanism significantly enhanced Paratethyan inflow to the Mediterranean, creating suitable conditions for the Lago-mare fauna to migrate and thrive. When the Mediterranean sea level finally reached the height of the Gibraltar sill, Mediterranean outflow restarted there and enhanced exchange with the Atlantic Ocean. During this reorganization of the circulation, brackish and hypersaline waters were pumped out of the Mediterranean, and open-marine conditions were reestablished without major flooding of the basin at the Miocene-Pliocene boundary.

INTRODUCTION
Catastrophic events are commonly invoked to explain major changes in Earth’s history, and they dominate both the scientific and popular literature. In many cases, however, interpretation of the evidence is controversial, resulting in enduring debates. A key example is the MSC (5.971–5.33 Ma; Roveri et al., 2014, and references therein), where hypersaline and brackish-water deposits are thought to have precipitated in a 1500-m-deep desiccated Mediterranean basin (e.g., Hsü et al., 1973). The initial hypothesis to explain the brackish “Lago-mare” conditions toward the end of the MSC is that shallow lakes existed both at the bottom of the desiccated Mediterranean and all around its perched margins (e.g., Orszag-Sperber, 2006). The hypothesized basinwide lowstand is still subject to debate (e.g., Roveri et al., 2014; Lugli et al., 2015; Popescu et al., 2015), and an alternative scenario suggests that the Mediterranean Sea became a deep, low-salinity lake comparable to the present-day Caspian Sea (McCulloch and De Deckker, 2008; Grossi et al., 2008). In both scenarios, the presence of a brackish-water environment in the Mediterranean Sea is commonly explained by either freshwater capture from Paratethys, the precursor lake that encompassed both the Black and Caspian Seas (Fig. 1), or enhanced precipitation and runoff (e.g., Hsü et al., 1973; Orszag-Sperber, 2006). The occurrence of Paratethyan ostracods, molluscs, and dinoflagellates in the Lago-mare deposits indicates freshwater input from the Black Sea (e.g., Gliozzi et al., 2007; Stoica et al., 2016), but the sediments also contain marine fish, suggesting coeval influx of Atlantic water (e.g., Carnevale et al., 2006).

Repercussions of the Mediterranean MSC scenario have also been extended to the Paratethys basins, with latest Miocene sea-level drops of more than 1000 m inferred for the Black and Caspian Seas (e.g., Hsü and Giovanoli, 1979; Jones and Simmons, 1996). Alternative scenarios where the Paratethyan basins were full and overspilling have also been suggested.

*Current address: Department of the Geophysical Sciences, The University of Chicago, Chicago, Illinois 60637, USA

Figure 1. A: Drainage basins for Black (red) and Caspian (green) Seas. Mediterranean Sea drainage basins are defined as in Gladstone et al. (2007) and schematically here. Area outlined by dashed gray line is reduced Paratethys surface area used for Messinian hydrologic calculations. B: Freshwater budget for Paratethys, Mediterranean, Caspian, and Black Seas, and connected Mediterranean and Paratethys. Right panel: Freshwater budget values (Sv) discussed in text. Bottom panel: 22 climate simulations and corresponding age.
10^{-14} \text{ L yr}^{-1})$, indicating that it was a significant source of freshwater input for the Mediterranean in the Messinian.

Despite significant freshwater input from North African rivers, the Mediterranean Sea’s freshwater budget is strongly negative (mean of $\sim -1.9 \times 10^{15} \text{ L yr}^{-1}$) throughout the simulated precession cycle (Fig. 1) as a result of latitudinally driven net evaporative loss, even with the additional contribution from the Paratethys (Fig. 1). This indicates that Atlantic inflow is required to prevent the Mediterranean sea level from falling, which is equivalent to the estimates obtained by Ryan (2008). Today, the freshwater deficit over the Mediterranean Sea is $\sim 0.04 \text{ Sv}$ (Sverdrup) ($1 \text{ Sv} = 10^6 \text{ m}^3 \text{s}^{-1}$; e.g., Bryden et al., 1994), and it is balanced by inflow from the Atlantic Ocean through the Straits of Gibraltar.

In the Messinian, assuming the Mediterranean was receiving the excess freshwater from the Paratethys (0.02 Sv), it had a similar freshwater deficit as today (mean of 0.04 Sv through the simulated precession cycle; Fig. 1). For Mediterranean sea level to have fallen during the MSC, Atlantic inflow must have been less than 0.04 Sv. The consequences of the resulting sea-level drop would have been erosion of the margins (Messinian Erosional Surface [MES]; Loft et al., 2005; Fig. 2) and, once the Mediterranean was below the level of the sill, cessation of outflow and associated rising brine concentration, which ultimately reached halite saturation (Krijgsman and Meijer, 2008). By contrast, for the Mediterranean to be full, Atlantic inflow...

![Figure 2. A: Partially desiccated Mediterranean basin during Halite stage (inset of B); exact height of base-level fall is unknown. MSC—Messinian salinity crisis. B–D: Proposed scenarios following partial desiccation and halite precipitation for stage 3.1 of MSC (B), Lago-mare phase with active overflow pump mechanism (C), and reestablishment of marine conditions at the Miocene-Pliocene boundary (D).](www.gspubs.org/...)

METHODS

During the Messinian, river runoff to the Mediterranean Sea was dominated by monsoonal rainfall from North Africa, which was strongly modulated by orbital forcing, mainly precession (Marzocchi et al., 2015). We therefore performed the hydrologic calculations presented here on the results of 22 climate simulations through a Messinian precessional cycle. The experiments were carried out with a global general circulation model (HadCM3L [Hadley Centre Coupled Model, version 4.5]); a description of the late Miocene model configuration can be found in Bradshaw et al. (2012), and the full Messinian sub-precessional experimental design was detailed by Marzocchi et al. (2015). In this orbital ensemble, simulations are spaced by 1000 yr and forced with orbital parameters from a real precession cycle at 6.56–6.58 Ma. This cycle has significant but not extreme amplitude and can, therefore, be considered representative of the average sub-precessional variations throughout the Messinian period. A pre-MSC cycle was used in order to compare model output with astro-nomically tuned faunal data for this time slice; this is not possible during the MSC itself because paleoclimatological proxy records and independent biozones are absent, due to the extreme environmental conditions.

Here, for each simulation from the orbital ensemble, we calculated precipitation and evaporation for the Mediterranean and Paratethys catchments. The area was divided into drainage basins (Fig. 1) following Gladstone et al. (2007). We also included the Amu Darya catchment and considered the Black Sea and Caspian Sea both separately and connected as a single Paratethyan lake. We calculated the net hydrologic fluxes and the resulting freshwater budget in each basin, following the same methodology of Gladstone et al. (2007).

The late Miocene paleogeography used in the numerical simulations of Marzocchi et al. (2015) is representative of the Paratethys configuration during the early Messinian. Reconstructions based on the analysis of Paratethyan faeces and biogeographic records of marine and terrestrial biota suggest that during the MSC, both the Black and Caspian Seas had smaller surface areas (e.g., Popov et al., 2006). We therefore performed our hydrologic calculations over a reduced surface area for the Paratethys (Fig. 1).

SUB-PRECESSITIONAL HYDROLOGIC CHANGES

A clear precessional signal dominates the simulated Mediterranean freshwater budget, while Paratethys shows no evident orbital variations (Fig. 1). This suggests that the regular alternations observed in the Messinian geological record of the Black Sea, which have previously been linked to precessional cyclicity (e.g., van Baak et al., 2015, and references therein), are probably a transferred signal driven by exchange with the Mediterranean Sea.

Our hydrologic calculations indicate that throughout the simulated precession cycle, the annual freshwater budget of both the Black and Caspian Seas remained positive (means of $\sim 3.1 \times 10^{14} \text{ L yr}^{-1}$ and $3.4 \times 10^{14} \text{ L yr}^{-1}$, respectively). The hypothesized 1–2 km sea-level fall in the Caspian Sea (e.g., Jones and Simmons, 1996) and Black Sea (e.g., Hsü and Giovannoli, 1979) during the Messinian is not compatible with these calculated positive freshwater budgets. The freshwater budget of Paratethys as a whole is strongly positive in our calculations (mean of $\sim 6.5 \times 10^{14} \text{ L yr}^{-1}$).
must be ≥0.04 Sv. Atlantic inflow today (0.7–0.8 Sv; e.g., Bryden et al., 1994) is an order of magnitude larger than the inflow required to compensate for the freshwater deficit, because it also replaces the substantial volume of water flowing out of the Mediterranean. It is not possible to constrain past Mediterranean outflow from our climate simulations, but some inferences about Mediterranean-Atlantic exchange during the last phase of the MSC can be drawn by combining our simulated climatic constraints with the Messinian geological record.

AN ALTERNATIVE SCENARIO FOR THE FINAL STAGE OF THE MESSINIAN SALINITY CRISIS

The current stratigraphic model describes two distinct phases during the last stage of the MSC (stage 3; Roveri et al., 2014, and references therein). Immediately above the Halite (stage 2), there are the Upper Evaporites (stage 3.1; 5.55–5.42 Ma), which typically consist of gypsum-marl alternations (e.g., Sicily; Manzi et al., 2009), while the top layer (stage 3.2; 5.42–5.33 Ma) is characterized by highly variable sediments, including both evaporites and fossil-bearing clastics (Lago-mare; e.g., McCulloch and De Deckker, 1989). Where found, both in deep and marginal settings, faunal assemblages are generally dominated by a small number of ostracods that tolerate a wide range of salinities, mainly Cyprideis and Loxoconcha genera, but toward the very top of the succession, the biodiversity increases (Gliozzi et al., 2007) and closely resembles the brackish-water Paratethyan fauna of the Black Sea margin (Stoica et al., 2016, and references therein).

It has been calculated that in order to precipitate the thick (>1 km) halite deposits from MSC stage 2, a reduced but continuous inflow from the Atlantic Ocean would have been required in combination with blocked outflow (Krijgsman and Meijer, 2008). On the basis of the numerical constraints provided by the model, we suggest that during stage 2, Atlantic inflow was <0.04 Sv, resulting in a Mediterranean sea level significantly below the height of the connection with the Atlantic (Fig. 2A), which led to halite precipitation in the deep basins (Roveri et al., 2014, and references therein). A significant sea-level drop (the extent is unknown and largely debated; e.g., Christeiteit et al., 2015, and references therein) in the Mediterranean Sea during the Halite phase fits our hydrologic calculations, and it is envisaged up to and including this stage. However, the presence of a basinwide connecting water body is necessary to justify the occurrence of Black Sea ostracods in the Spanish marginal basins during the Lago-mare stage, which are not merely related to Paratethyan forms, but belong to the same species (Stoica et al., 2016).

Messinian Salinity Crisis Stage 3.1

At the beginning of the final stage of the MSC, Mediterranean sea level was still below the Atlantic connection, and inflow was therefore slightly below 0.04 Sv (Fig. 2B). Atlantic inflow may have increased gradually through this period, perhaps as a result of headward erosion of the Alboran-Atlantic connection (e.g., Loget et al., 2005). However, even if this was not the case, given the reduced surface area of the partially desiccated Mediterranean, an Atlantic inflow slightly below 0.04 Sv would have caused progressive refilling of the basin. The Atlantic inflow envisaged is equivalent to a large marine river equivalent in scale to ~1/5 of the Amazon (mean annual discharge of ~200,000 m³ s⁻¹) flowing through the Alboran Basin, where there is some evidence that marine conditions persisted during the MSC (e.g., Melilla section; Cornée et al., 2002). Additional overspill from Paratethys (0.02 Sv) and precessationally enhanced input from North African rivers (Fig. 1) contributed low-salinity water to form a stratified layer above the halite brine. At this stage, the resulting salinity was still too high to support normal marine- or brackish-water faunal assemblages, but it allowed opportunistic ostracod taxa like Cyprideis, which tolerate much higher salinities (~2–120 g kg⁻¹; e.g., Gitter et al., 2015, and references therein), to thrive Mediterranean-wide from Messinian salinity crisis stage 3.1. As a consequence, these species have been recovered in deposits from both deep and marginal settings (e.g., Stoica et al., 2016, and references therein).

Lago-mare

When rising Mediterranean sea level reached the height of the Paratethys sill, Mediterranean outflow to Paratethys would have been initiated as a result of the density contrast between the two basins, increasing the inflow from Paratethys above 0.02 Sv (Fig. 2C). It is not clear how much Paratethyan water might have flowed into the Mediterranean via this mechanism, but a maximum estimate is the total volume of the present-day Black and Caspian Seas, which, if spread across the Mediterranean Sea’s surface area, would result in a freshwater layer ~250 m thick. This freshwater pulse, combined with enhanced North African river runoff during insolation maxima, could have resulted in a Mediterranean-wide hydrological reconfiguration (e.g., Roveri et al., 2014). The resulting strongly stratified water column (Fig. 2C) would have ranged from deep-water brines, through intermediate-marine waters fed by Atlantic inflow, to shallow-water brackish conditions suitable for the migration of diverse faunal assemblages from the Paratethys (Stoica et al., 2016). In some deep settings where salinities were too high, sharp transitions from evaporitic sediments to normal marine sediments, and lack of Lago-mare deposits, are also possible.

This scenario explains the synchronous presence of marine indicators (e.g., Atlantic fish, Carnevale et al., 2006; small foraminifera, Jacarino et al., 2008) in the Lago-mare deposits, and the widespread occurrence of brackish-water Paratethyan fauna in the Mediterranean’s marginal basins (e.g., Malaga, Nijar, Viera, Spain, Stoica et al., 2016, and references therein; Apennines, Italy, Cosentino et al., 2012; Crete, Cyprus, Grossi et al., 2008). The location and dimensions of the Mediterranean-Paratethys sill during the MSC are unknown, but for this mechanism to account for the widespread occurrence of Paratethyan fauna in the Mediterranean marginal basins, the sea level must have been high enough for the Mediterranean Sea to be close to full, but still lower than the Mediterranean-Atlantic sill (Fig. 2C).

Miocene-Pliocene Boundary

In this scenario, the switch to marine conditions in the Mediterranean at 5.33 Ma would not have been the result of a quick flooding event (e.g., McKenzie, 1999), but rather the result of progressive refilling of the basin (e.g., Cornée et al., 2016; Loget et al., 2005). The abrupt environmental transition at the Miocene-Pliocene boundary could have been achieved by Mediterranean sea level reaching the height of the Atlantic sill, triggering Mediterranean outflow into the Atlantic and driving a dramatic (up to an order of magnitude) rise in Atlantic inflow. This was likely enough to break down Mediterranean water-column stratification and initiate overturning circulation in the basin, eventually restoring normal marine conditions (Fig. 2D).

Rapid changes in the patterns of gateway exchange as envisaged here are not improbable. Today, transitions from two- to three-layer flow in the Bab el Mandeb Strait, which links the Red Sea and the Gulf of Aden, occur on seasonal time scales (e.g., Smeed, 2004). However, a critical test of the Mediterranean-Paratethys outflow pump hypothesis for the Lago-mare is the Paratethyan geological record for this interval. Deep Sea Drilling Project (DSDP) Site 380/380A holes in the Black Sea basin bear evidence of a sea-level rise at ca. 5.4 Ma (van Baak et al., 2015), and the sedimentary successions of the Dacian basin also show a coeval transgression (Stoica et al., 2013). A high-resolution salinity proxy record is required to establish in detail how Paratethys environments would have changed as a result of the outflow pump mechanism. Evidence for the onset of Mediterranean outflow to the Atlantic at the Miocene-Pliocene boundary is more conclusive and can be observed in both seismic profiles and drill-core records (Integrated Ocean Drilling Program [IODP] Expedition 339; van der Schee et al., 2016).
In conclusion, we suggest that the abrupt, high-amplitude changes in environmental conditions during the final stage of the MSC were driven by a Mediterranean outflow pump mechanism. This significantly enhanced the overspill of Paratethyan water during the Lago-mare stage and of Atlantic inflow during the Pliocene into the Mediterranean basin. Consequently, we argue that the end of the MSC was not caused by catastrophic flooding at the Miocene-Pliocene boundary, but by the reorganization of circulation patterns and the establishment of Mediterranean-Atlantic exchange similar to today.

ACKNOWLEDGMENTS
We thank Dirk Simon and Paul Meijer for useful discussions, and Mike Rogerson and Malte Jansen for suggestions on Figure 2. This work was funded by the People Programme of the European Union’s 7th Framework Programme FP7/2007–2013/ under REA grant agreement no. 290201 MEDGATE, and the Netherlands Geosciences Foundation (ALW) with support from the Netherlands Organization for Scientific Research (NWO) through the VICI grant of Krijgsman.

REFERENCES CITED