Magnetostratigraphy and paleoecology of the hominid-bearing locality Corakyerler, Tuğlu Formation (Çankiri Basin, Central Anatolia)

Ferhat Kaya, Nuretdin Kaymakçi, Faysal Bibi, Jussi T. Eronen, Cesur Pehlevan, Ahmet C. Erkman, Cor G. Langereis & Mikael Fortelius

To cite this article: Ferhat Kaya, Nuretdin Kaymakçi, Faysal Bibi, Jussi T. Eronen, Cesur Pehlevan, Ahmet C. Erkman, Cor G. Langereis & Mikael Fortelius (2016): Magnetostratigraphy and paleoecology of the hominid-bearing locality Corakyerler, Tuğlu Formation (Çankiri Basin, Central Anatolia), Journal of Vertebrate Paleontology, DOI: 10.1080/02724634.2015.1071710

To link to this article: http://dx.doi.org/10.1080/02724634.2015.1071710

Published online: 06 Feb 2016.

Submit your article to this journal

Article views: 45

View related articles

View Crossmark data
MAGNETOSTRATIGRAPHY AND PALEOECOLOGY OF THE HOMINID-BEARING LOCALITY ÇORAKYERLER, TUGLU FORMATION (ÇANKIRI BASIN, CENTRAL ANATOLIA)

FERHAT KAYA, NURETDIN KAYMAÇI, FAYSAL BIBI, JUSSI T. ERONEN, CESUR PEHLDEVAN, AHMET C. ERKMAN, COR G. LANGEERIS, and MIKAEL FORTELUS

Department of Geosciences and Geography, University of Helsinki, P.O. Box 64 (Gustaf Hällström katu 2a), 00014 Helsinki, Finland, ferhat.kaya@helsinki.fi;
Department of Geological Engineering, Middle East Technical University, Dumlupnar Bulvari 1, 06800-Ankara, Turkey, kaymakci@metu.edu.tr;
Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, Berlin 10115, Germany, faysal.bibi@mf-n-berlin.de;
Senckenberg Research Institute and Natural History Museum, Biodiversity and Climate Research, Centre LOEWE BiK-F, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany, jussi.t.eronen@helsinki.fi;
Yüzüncü Yıl University, Faculty of Literature, Department of Anthropology, Zevе Campus, 6500 Van, Turkey, cesur_pehlevan@yahoo.com;
Ahi Evran University, Faculty of Science-Literature, Department of Anthropology, Bağbaşı Yerleşkesi, 40100 Kırşehir, Turkey, acerkman@ahievran.edu.tr;
Paleomagnetic Laboratory ‘Fort Hoofddijk,’ Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands, langer@geo.uu.nl;
Institute of Vertebrate Palaeontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China, mikael.fortelius@helsinki.fi

ABSTRACT—Ouranopithecus turkae, from the late Miocene of Çorakycler in Central Anatolia, is considered one of the last known occurrences of great ape in the eastern Mediterranean. The Çorakycler fauna has previously been correlated with MN 11 to early MN 12 on the basis of biochronology, and its faunal composition has been found to contrast with those from contemporaneous sites. In this paper, we present the magnetostratigraphy of the Çorakycler site and an expanded interpretation of its paleobiogeographical and paleoecological contexts. The paleomagnetic results reveal two intervals of normal polarity and an intervening interval of reversed polarity in the main fossiliferous section. Of the three likely age correlations spanning 8.13–7.15 Ma (MN 11–MN 12), we favor correlation with chron 4n, with a possible age range of the fossiliferous deposit between 8.11 and 7.64 Ma (late MN 11). The geographic distribution of genus-level faunal similarity and mean hypsodonty show that Çorakycler is a typical representative of the Pikermian chronofauna with a wide range of faunal similarity, including late Miocene localities from the eastern Mediterranean, eastern Asia, and eastern Africa. Lithological and sedimentological characteristics of the fossiliferous horizon, however, indicate a lacustrine depositional environment and relatively humid local conditions within the more arid regional context. This special setting could explain the unexpected occurrence of a hominid primate at Çorakycler.

INTRODUCTION

Four different fossil hominid taxa have been discovered in the Miocene of Anatolia since 1955: Griphopithecus alpani from Paşalar (14–15 Ma; Alpagut et al., 1990; Casanovas-Vilar et al., 2011) and Çandır (13.1–14.1 Ma; Tekkaya, 1974; Begun et al., 2003a; Krijsman, 2003; Casanovas-Vilar et al., 2011), Kenyapithecus kizil from Paşalar (14–15 Ma; Kelley et al., 2008), Ankarapithecus meteai from the Sinap Formation (Yassıören localities, 10 Ma; Ozanson, 1955, 1965; Andrews and Tekkaya, 1980; Şen, 1991; Alpagut et al., 1996; Begun et al., 2003b; Kappelman et al., 2003a), and Ouranopithecus turkae from Çorakycler (Fig. 1; Sevim et al., 2001; Güleç et al., 2007). Griphopithecus (from Çandır and Paşalar) and Kenyapithecus (from Paşalar) are among the earliest hominids found outside of Africa after Engelswies (Germany), with Ankarapithecus from Sinap believed to be closely related to pongines (Begun et al., 2003b). Aside from Ouranopithecus, the latest records of hominids in western Eurasia during the late Miocene include Graecopithecus freybergi (nomen vanum) from Pyrgos in Greece (Koufos, 2006), ?Udabnopithecus garedziensis from Georgia (Gabunia et al., 2001), and the western Eurasian endemic ape Oreopithecus bambolii from Tuscany and Sardinia in Italy (Casanovas-Vilar et al., 2011; Rook et al., 2011). Hominids disappeared by the end of the Vallesian (around 9 Ma) in mainland Europe, but managed to survive into the middle Turolian (until almost 7 Ma) in the eastern Mediterranean (Casanovas-Vilar et al., 2011; Begun et al., 2012; Alba, 2012). In accordance with biochronological correlations to...
We then place the Çorakyerler fauna in the biogeographic context of contemporaneous sites of the Pikermian paleobiome, which at its greatest extent includes most of the middle latitudes of Eurasian and parts of (at least) North Africa (Bennor, 1983, 1984; Eronen et al., 2009; Kostopoulos, 2009; Solounias et al., 2013).

GEOLOGIC SETTING

The Çorakyerler fossil locality is located in north-central Anatolia, in the Çağırı Formation of the Çankırı Basin (Fig. 1) (Kaymakçı, 2000; Kaymakçı et al., 2001; Mazzini et al., 2013). This Tertiary basin is one of the largest in Turkey, straddling the İzmir-Ankara–Erzincan Suture Zone and demarcating the former position of the northern Neotethys Ocean (Sengör and Yilmaz, 1981; Kaymakçı, 2000; Kaymakçı et al., 2000). It comprises more than 4 km of regressive marine to continental successions, intercalated with widely spread and thick evaporites that mobilized into salt domes during the Eocene to late Miocene. The middle Miocene of the basin is locally characterized by fluviallacustrine sequences, more than 500 m thick, known as the Çandır Formation (Kocyiğit et al., 1995; Kaymakçı et al., 2000, 2001, 2003; Kriegsmann, 2003). The deposition of the Çandır Formation is associated with normal growth faults, mainly located in the western margin and central part of the Çankırı Basin (Figs. 1 and 2), where the Çandır Formation reaches its maximum thickness. Unconformably overlying the Çandır Formation are the Tuğlu, Sileymanh, and Bozkır formations (Fig. 3). At its lower levels, the Tuğlu Formation at Çorakyerler (Fig. 4) is characterized by red to pink nodular limestone and siltstone, marl alternations with sparse freshwater mollusks (Gastropoda, Bivalvia), and some vertebrate bones. This is succeeded by an approximately 6-m-thick white to pinkish clayey limestone intercalated with thin red mudstone lenses that are rich in vertebrate bones, including hominid fossils. The fossil-bearing horizon appears to reflect a distal alluvial fan to floodplain environment. The presence of freshwater mollusks, together with an alternation of gypsum, marls, laminated claystones, and shales, in the various levels of the section indicates lacustrine deposition with fluctuating lake levels. Organic-rich levels may indicate swampy areas at the periphery of the lake (cf. Walker and James, 1992; Talbot and Allen, 1996), whereas lenses of sandstones with conglomerates indicate fluvial settings, which probably drained the lake. Eastward thinning conglomerates, with subangular to subrounded pebbles and sandstone wedges intercalated with red mudstones and clayey limestones, indicate the presence of an alluvial fan that would have been temporarily inundated by the lake in the distal parts to the east (see also Kaymakçı et al., 2001). This is overlain by a dark brown to brick red moderately sheared mudstone, then by alternating red to green sandstone, siltstone, and mudstone, with very thin intercalations of conglomerate. Mesoscopic oblique-slip faults with centimeter to meter scale offset traverse the section.

METHODS

Magnetostratigraphy—The Çorakyerler section is covered by a 1-m-thick layer of colluvium, and the sampled section had to be exposed using a backhoe provided by the Çankırı Municipality. A large building complex has been constructed next to the base of the sampled section, and the upper 30 m of clastics, below a thick capping gypsum layer, could not be sampled due to steep slopes and thick soil cover. The thick capping gypsum, alternating with buff to yellowish-gray marls, in places extending more than 200 m, was not sampled. In total, 40 paleomagnetic samples were collected from 18 stratigraphic levels (at least two...
samples per level) with a portable standard drill. Sample measurements were made at the Fort Hoofddijk Paleomagnetic Laboratory (Utrecht University, The Netherlands) using a horizontally mounted Cryogenic Squid magnetometer. The samples were sequentially heated to 580°C at 30°C intervals until the signal was almost completely diminished. Samples from 10 out of 18 levels yielded reliable polarities covering the central portion of the sampled section (Fig. 4). The remaining eight sampled levels come from the lowest and highest parts of the section and produced inconclusive results.

Paleoecology and Paleobiogeography— Numerous publications describe mammalian fossils from Çorakyerler, including Heissig (1975), Sickenberg et al. (1975), Gaziry (1976), Köhler (1987), Sen et al. (1998), Gerada and Güleç (1999), Pehlevan (2005), Unay et al. (2006), Güleç et al. (2007), and Gerada (2013). Additionally, the Çorakyerler excavation team annually presents (in Turkish) the results of each excavation season at the Excavation Results Conferences held by the Turkish Ministry of Culture and Tourism (Sevim and Kiper, 2000, 2001, 2002; Sevim and Pehlevan, 2003, 2004; Sevim et al., 2005, 2006, 2007; Sevim Erol and Yiğit, 2009, 2010, 2011; Sevim Erol, 2011a; Sevim Erol et al., 2013, 2014). The current excavation project was initiated in 1997 and continues up to the present. The project is supported by the Turkish Ministry of Culture and Tourism and has yielded more than 3000 fossil specimens (mostly mammals) (Sevim Erol, 2011a).

In this study, we rely mainly on the Çorakyerler faunal list assembled by Gerada (2013), with reference also to the bovid list of Bibi and Savaş Güleç (2008). Although Gerada’s (2013) report includes the description of the material collected between 1998 to 2001, in addition to his report, we take into account expanded material announced in the latest excavation reports by the project team (cited above). For other localities, we use data from the NOW database (Fortelius, 2015).

Hypsodonty comparisons relied only on the large mammals (orders: Artiodactyla, Perissodactyla, Proboscidea, and Primates) from sites encompassing MN 7/8 to MN 13 (12.5–4.9 Ma) (Agusti et al., 2001). All NOW localities from Eurasia and Africa were included in the study. The age of the African localities follows Werdelin (2010) and was matched to MN biochronological units (Agusti et al., 2001) according to age range. We calculated the genus-level Raup-Crick faunal resemblance index (GFRI) (Raup and Crick, 1979) between Çorakyerler and all available localities using PAST (Hammer et al., 2001). We followed the procedure of Eronen et al. (2009), (including only localities with a minimum of seven large mammals identified to at least genus rank. The GFRI analyses reveal the extent of and large-scale similarity patterns within computational chronofaunas as well as their changes over time. They are used here as a heuristic tool to reveal Çorakyerler’s paleobiogeographic position on the chronofaunal scale.

We also calculated the mean ordinated crown height for each locality following Fortelius et al. (2002) for lists with at least two species with a hypsodonty value. Mean ordinated crown height is a robust proxy for humidity and productivity at the regional scale (Fortelius et al., 2002; Eronen et al., 2010a, 2010b; Liu et al., 2012). We plotted the results onto present-day maps and interpolated between the localities using MapInfo 11.5. For the interpolations, thematic mapping and grid interpolation was used, with the following settings: 20 km grid size; 800 km search radius; 800 grid borders. The interpolation method employed an inverse distance-weighted algorithm (IDW).

Abbreviations—ELMA, European land mammal ages; GFRI, genus-level Raup-Crick faunal resemblance index; MN, European Neogene land mammal units; NOW, New and Old World database of fossil mammals (Fortelius, 2015); PMAS, IMAS, DMAS, FMAS, primary, intermediary, dominant, and final mammal assemblages of Samos (Koufos et al., 2011).

RESULTS

Paleomagnetic Results

The 10 sampled levels yielded results indicating that the central portion of the sampled Çorakyerler section covers two normal and one reversed polarity intervals (Fig. 4). Based on biostratigraphic correlations assigning the age of the Çorakyerler fauna to MN 11, or early MN 12, we propose three possible paleomagnetic correlations (Fig. 5). The first spans 7.30–7.15 Ma (middle chron 3B) with a possible age of the fossiliferous level of 7.29 Ma, the second spans 7.64–7.47 Ma (late chron 4n) with a possible age for the fossiliferous level of 7.64 Ma, and the third spans 8.13–7.55 Ma (early chron 4n) with a possible age for the fossiliferous level of 8.11 Ma. The first possible correlation (as well as an intermediate possibility at 7.50–7.22 Ma) is not supported given that the reversed polarity interval sampled at Çorakyerler is much thinner than the normal polarity interval below it (Fig. 5). We base this on the fact that there are no major changes in the mode of deposition throughout this part of the section (i.e., mainly fine clastics and carbonates), and mean sedimentation rates did not vary greatly. A long normal interval followed by a short reversed interval is a better fit with the second and third possible correlations, constraining the sampled sequence ranges to at least 8.13–7.47 Ma (Fig. 5). We therefore favor a possible age for Çorakyerler ranging between.
8.11 and 7.64 Ma based on the stratigraphic position of the fossiliferous level in the sampled sequence (Figs. 4 and 5), whereas the magnetic polarity ages of the second and third correlations range between 8.13 and 7.47 Ma. This also fits better with the Çorakyerler faunal assemblage, which is a closer match to MN 11 than MN 12 (below).

Mammal Biochronology

Artiodactyls, perissodactyls, carnivorans, primates, and proboscideans constitute the majority of the Çorakyerler faunal list (Table 1). The chronostratigraphic ranges of mammalian species from Çorakyerler are compared with those from other Late Miocene localities in Greece, Bulgaria, Anatolia, and Iran in Figure 6. Overall, the faunal composition of Çorakyerler matches those of Greco-Iranian sites of MN 11 and MN 12 ages. In particular, taxa such as *Majoreas woodwardi, Oioceros rothii, Plesiaddax inundatus, Chilotherium kowalevskii*, and *Byzantia* favor a late MN 11 or early MN 12 age. Unay et al. (2006) favored a correlation to MN 11 based on the occurrence of *Hansdebruijnia, Byzantina*, and *Pseudomeriones*. The Çorakyerler *Hansdebruijnia* species displays a constellation of primitive and derived characteristics between *Hansdebruijnia perpusilla* (from middle Baodean or MN 11/12 of Baogedawulla, China) and *Hansdebruijnia pusillus* (from MN 13 of Ertemte 2, Inner Mongolia) (Unay et al., 2006). However, *Hansdebruijnia neutrum* from Piki (Greece) and *Hansdebruijnia amasyaeensis* from Amasya (Turkey) are more advanced than the Çorakyerler species in terms of occlusal morphology.

The relative taxonomic abundance of the Çorakyerler bovids is somewhat unusual. The abundance of *Majoreas* in particular distinguishes Çorakyerler from most contemporaneous Greco-Iranian sites, which are often rich in *Tragopornax, Prostrepisceros,* and *Gazella*. In this regard, Çorakyerler strongly resembles Kemikli tepe D (Bouvrain, 1994; Bibi and Savaş Güleç, 2008; Geraads, 2013; Kostopoulos and Karakútuk, 2013). The giraffids *Bohlinia cf. attica, Palaeotragus cf. rouenii,* and *Palaeotragus cf. quadricornis* are recorded at Çorakyerler according to Geraads (2013). *Bohlinia attica* is known from the early part of the late Vallesian to end of the late Miocene in the eastern Mediterranean, and has been reported from the Vallesian localities of Sinap Formation in Turkey and Ravin de la Pluie, Nikiti 1, and Piki in Greece, Maragheh in Iran, and Jabel Hamrin in Iraq (de Mequenem, 1924–1925; Thomas et al., 1980; Koufos, 2003). *Bohlinia* survived until end of the Turolian, and its last appearance is reported from Dytiko 1 and 2 (MN 13) in Greece (de Bonis et al., 1992; Koufos, 2003).

The Çorakyerler rhinocerotid collection is characterized by a high number of specimens of *Chilotherium kowalevskii*, which differentiates it from Akkaşağı, Upper Kavakdere, and some other localities dominated by *Ceratotherium neumayri*. The material of *Ceratotherium neumayri* from Çorakyerler shows similarities to the same species from Düzayla, Mahmutgazi, Samos, Maragheh, Piki, Pentalophos 1, Akkaşağı, and Kemikli tepe A-B-D. *Chilotherium kowalevskii* is known from MN 10-MN 12 of the eastern Mediterranean (Pehlevan, 2005; Geraads, 2013); Turkey (Garkun, Upper Kavakdere, and Karaca-hasan), Greece (Samos), Moldova (Poksheshy and Respo-peny), Bulgaria (Kalimantsi-Hadjidimovo) and Ukraine (Grebensiki). The proboscidean material from Çorakyerler strongly resembles *Choerolophodon pentelicus* from Akkaşağı, while appearing more derived than Kemikli tepe D in terms of size and morphology (Şahin, 2005; Geraads, 2013). The Çorakyerler suid material is ascribed to *Microstonyx major*, because it resembles the material of this species from Akkaşağı and Piki (Liu et al., 2005; Geraads, 2013; Van der Made...
Some dental characteristics of this species, such as a relatively long muzzle and medium-sized molars, are slightly more derived than those found at Pikermi and Grebeniki (Sevim Erol and Yiğit, 2011). Geraads (2013) suggested a middle Turolian age for the site considering the morphological characteristics of Çorakyerler sued material.

The Çorakyerler carnivoran collection includes mustelids, hyaenids, and felids (Sevim Erol and Yiğit, 2010). One significant discovery from Çorakyerler is the most complete skull known to date in Turkey of a lion-sized machairodontini (Sevim and Yiğit, 2008; Sevim Erol, 2011b, 2013). It appears that the skull is relatively well preserved, and its morphology resembles *Amphimachairodus giganteus* from Batallones 1 (Spain) (Antón et al., 2004), but merits more precise systematic description.

Paleobiogeography

Table 2 presents the genus-level faunal resemblance index (GFRI) for selected Eurasian and African large-mammal faunas compared with the Çorakyerler large-mammal fauna. Twenty-three genera that Çorakyerler shares with selected localities, ordered most common to rarest, are Hipparion, Gazella, Palaeotragus, Tragopan, Microstonyx, Chiloitherium, Miotragocerus, Chorolophodon, Ictitherium, Ceratherium, Prostrepsiceros, Protoryx, Acerorhinus, Amphimachairodus, Oioceros, Bohlinia, Protragelaphus, Pliocervus, Criotherium, Nisidorcas, Plesiadax, Ouranopithecus, and Majoreas. Table 2, together with faunal resemblance maps (Fig. 7), shows that Çorakyerler firmly belongs to the Pikermian paleobiome (sensu Eronen et al., 2009).

Faunal resemblance maps (Fig. 7) indicate that localities with high similarity during MN 7/8 (12.5–9.7 Ma) were situated in present-day Turkey, Georgia, central Asia, and northeast China. At that time, there was no indication of similarity to sites in western, eastern, and central Europe and south Asia. During MN 9 (11.1–9.7 Ma), similarity to Çorakyerler became more prominent in the eastern Mediterranean and northeast China, with a lower resemblance occurring in

Figure 4. Log of Çorakyerler section and magnetostratigraphic results. Black areas are normal polarities, white areas are reversed polarities, and gray areas indicate levels with no results. Letters on the left section indicate the sampled levels, and triangles indicate the sampled levels with polarity results.
northwest and eastern Africa, the Balkans, and southwestern Europe (Fig. 7). In eastern Africa, India, northeastern China, central Asia, the Balkans, and the eastern Mediterranean, faunal similarity greatly increased in MN 10 (9.7–8.7 Ma), but similarity to central and western Europe remained low. During MN 11 (8.7–7.9/7.5 Ma) and MN 12 (7.9/7.5–6.8 Ma), faunal similarity to Çorakyerler peaked in a wide area including the Balkans, the eastern Mediterranean, the Middle East, North Africa, Arabian Peninsula, Afghanistan, Pakistan, and northeastern China. In contrast, there was only intermediate similarity to central and western Europe during MN 11 (Fig. 7). This pattern reflects maximum development of the late Miocene Pikermian paleobiome (sensu Eronen et al., 2009), which extended eastwards across the Greco-Iranian region, through central Asia, to northeastern China, was taxonomically distinct from European areas just to the west, and reached its peak development during MN 11–12. Towards the end of the Miocene (MN 13, 6.8–4.9 Ma), similarity to the Çorakyerler fauna becomes concentrated in the eastern Mediterranean, central Asia, and northeast China, with a slightly lower presence in the Iberian Peninsula and North Africa. Central and eastern Europe, sub-Saharan Africa, and south Asia show a low similarity value by the end of the Miocene (Fig. 7).

Paleoenvironment

The Çorakyerler large-mammal assemblage suggests approximately equal proportions of browsers, grazers, and mixed feeders (35%, 30%, and 35%, respectively). In terms of hypsodonty, the Çorakyerler fauna is dominated by mesodont forms, followed by brachydont and hypsodont species.

The hypsodonty maps (Fig. 8) reveal that molar crown height begins to increase in Anatolia during MN 7/8, a trend that continues through the late Miocene, driven by the expansion of the Pikermian paleobiome and the radiation of open-adapted ungulate clades, especially bovids and hipparionine equids. In the late Miocene (MN 9–MN 13), Anatolia was occupied by an increasingly hypsodont fauna. Similar hypsodonty trends were seen in central Asia and northeast China. More humid areas with low or intermediate hypsodonty values persisted north of the Paratethys, in eastern Africa, and continental Europe (save the fauna from southern France during MN 11). By the end of the Miocene, mean hypsodonty indicates more arid conditions in central Anatolia, Inner Mongolia, southwest of the Tibetan Plateau, and northwestern Africa. Although humid patches persisted in

TABLE 1. Fauna list of Çorakyerler locality.

<table>
<thead>
<tr>
<th>ARTIODACTYLA</th>
<th>PERISSODACTYLA</th>
<th>RODENTIA*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miotragocerus sp.1</td>
<td>Ceratherium neumayri³</td>
<td>Protoallactaga major</td>
</tr>
<tr>
<td>cf. Tragopornarchæiformis³</td>
<td>Chilotherium kowalevskii³</td>
<td>Keramidoms indet.</td>
</tr>
<tr>
<td>Majoreas cf. woodwardi³</td>
<td>Acerorhinus, n. sp.¹</td>
<td>Myomimus indet.</td>
</tr>
<tr>
<td>cf. Nisidorcas sp.²</td>
<td>Hipparion sp.</td>
<td>Allocrictes ayalasevinae</td>
</tr>
<tr>
<td>Otoceros rothi¹</td>
<td>Hipparion cf. prostylum¹</td>
<td>Byantina hellenica</td>
</tr>
<tr>
<td>Gazella sp.¹</td>
<td>PROBOSCIDEA</td>
<td>Byzantina pikermiensis</td>
</tr>
<tr>
<td>Protragelaphus cf. skouzesi²</td>
<td>CARNIVORA</td>
<td>Hansdebruijnias erksinae</td>
</tr>
<tr>
<td>cf. Prostrepsiceros sp.¹</td>
<td>Amphimachairodus giganteus</td>
<td>Hansdebruijnias neum</td>
</tr>
<tr>
<td>Plesiaddax inundatus³</td>
<td>Choerolophodon pentelicus³</td>
<td>Pliohippalax indet.</td>
</tr>
<tr>
<td>cf. Criotherium sp.³</td>
<td>CARNIVORA</td>
<td>Rhinocerodera indet.</td>
</tr>
<tr>
<td>Protoryx sp.</td>
<td>Amphimachairodus giganteus</td>
<td>Pseudomontees latidens</td>
</tr>
<tr>
<td>Pliohippocerus sp.¹</td>
<td>Ictitherium indet.⁵</td>
<td>Muridae indet.</td>
</tr>
<tr>
<td>Bohlinia cf. attica¹</td>
<td>Mustelidae indet.⁵</td>
<td>EULIPOTYPHLA**</td>
</tr>
<tr>
<td>Palaeotragus cf. roueni²</td>
<td>PRIMATES</td>
<td>Soricidae indet.</td>
</tr>
<tr>
<td>Palaeotragus cf. quadricornis¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microtus sp.¹</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹Geraads, 2013; ²Bibi and Güleç, 2008; ³Pehlevan, 2005; ⁴Sevin Erol and Yigit, 2010; ⁵Güleç et al., 2007.
*Description based on our preliminary interpretations considering Sevim and Yigit, 2008.
**Çorakyerler’s Rodentia and Eulipotyphla specimens described by Ünay et al., 2006.
FIGURE 6. Stratigraphical and spatial distributions of selected mammalian species from Çorakyerler with correlation to the other reference localities from the late Miocene of Greece, Bulgaria, Anatolia, and Iran. In Mytilini Basin, I: PMAS, II: IMAS, III: DMAS, and IV: FMAS levels. MN boundaries according to Agusti et al. (2001), and the geomagnetic polarity time scale is adopted from Hilgen et al. (2012). Anatolian zones from Unay et al. (2003).
TABLE 2. List of selected eastern Mediterranean and other localities used in this study.

<table>
<thead>
<tr>
<th>Locality name</th>
<th>Present-day location</th>
<th>Age (Ma)</th>
<th>N</th>
<th>Raup-Crick FRI</th>
<th>Mean hypsodonty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samos FMAS</td>
<td>Greece</td>
<td>6.9–6.7</td>
<td>19</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Azmaka 1–4</td>
<td>Bulgaria</td>
<td>7</td>
<td>24</td>
<td>1</td>
<td>1.6</td>
</tr>
<tr>
<td>Akkaşdaği</td>
<td>Turkey</td>
<td>7.1</td>
<td>28</td>
<td>1</td>
<td>1.7</td>
</tr>
<tr>
<td>Samos DMAS</td>
<td>Greece</td>
<td>7.2–6.9</td>
<td>33</td>
<td>0.9995</td>
<td>1.8</td>
</tr>
<tr>
<td>Pikermi</td>
<td>Greece</td>
<td>7.2</td>
<td>40</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>Samos IMAS</td>
<td>Greece</td>
<td>7.4–7.2</td>
<td>23</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Vathyakkos 2</td>
<td>Greece</td>
<td>±7.5</td>
<td>13</td>
<td>1</td>
<td>1.6</td>
</tr>
<tr>
<td>Samos PMAS</td>
<td>Greece</td>
<td>7.8–7.4</td>
<td>22</td>
<td>1</td>
<td>1.8</td>
</tr>
<tr>
<td>Corakyerler</td>
<td>Turkey</td>
<td>8.11–7.64</td>
<td>25</td>
<td>1</td>
<td>1.9</td>
</tr>
<tr>
<td>Middle Maragheh</td>
<td>Iran</td>
<td>8.2–7.1</td>
<td>39</td>
<td>1</td>
<td>1.9</td>
</tr>
<tr>
<td>Nikiti 1</td>
<td>Greece</td>
<td>9.3–8.7</td>
<td>12</td>
<td>1</td>
<td>1.7</td>
</tr>
<tr>
<td>Sinap 12</td>
<td>Turkey</td>
<td>9.735</td>
<td>23</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Kemiklitepe D</td>
<td>Turkey</td>
<td>±7.6</td>
<td>11</td>
<td>0.9995</td>
<td>2</td>
</tr>
<tr>
<td>Udabno I</td>
<td>Georgia</td>
<td>8.8–8.5</td>
<td>11</td>
<td>0.9975</td>
<td>1.5</td>
</tr>
<tr>
<td>Xirochori 1</td>
<td>Greece</td>
<td>9.4</td>
<td>10</td>
<td>0.9895</td>
<td>1.8</td>
</tr>
<tr>
<td>Yushe</td>
<td>China</td>
<td>8–9</td>
<td>43</td>
<td>0.997</td>
<td>1.3</td>
</tr>
<tr>
<td>Baynunah</td>
<td>United Arab Emirates</td>
<td>8.2–7.1</td>
<td>15</td>
<td>0.9955</td>
<td>1.6</td>
</tr>
<tr>
<td>Wudu-Longjiagou</td>
<td>China</td>
<td>8–7</td>
<td>30</td>
<td>0.978</td>
<td>1.7</td>
</tr>
<tr>
<td>Ravin de la Pluie</td>
<td>Greece</td>
<td>9.1</td>
<td>20</td>
<td>0.9815</td>
<td>1.7</td>
</tr>
<tr>
<td>Nakali</td>
<td>Kenya</td>
<td>9.9–9.8</td>
<td>15</td>
<td>0.9565</td>
<td>1.6</td>
</tr>
<tr>
<td>Samburu Hills (Namurungule)</td>
<td>Kenya</td>
<td>9–9.5</td>
<td>16</td>
<td>0.9515</td>
<td>1.7</td>
</tr>
</tbody>
</table>

*References for ages of localities: Çorakyerler (this study); Pikermi (Solounias et al., 2013); Akkaşdaği (Şen et al., 2005); Nikiti 1, Ravin de la Pluie, and Xirochori 1 (Koufos, 2006); Udabno I (Gabunia et al., 2001); Azmaka 1–4 (Spassov et al., 2012); Vathyakkos 2 (Koufos et al., 2004); Middle Maragheh (Ataabadi et al., 2013); Kemiklitepe D (Şen et al., 1994); Samos (PMAS, DMAS, IMAS, and FMAS) (Koufos et al., 2011); Sinap 12 (Kappelman et al., 2003b); Baynunah (Bibi et al., 2013); Yushe (Opdyke et al., 2013); Wudu-Longjiagou (Xue et al., 2006); Nakali (Kumimatsu et al., 2007); and Samburu Hills (Sawada et al., 1998).

northern parts of Europe, northern India, and central eastern Africa, intermediate hypsodonty values indicate a less arid environment in Iberia and the Balkans, northern, central, and eastern Africa, Saudi Arabia, western central Asia, and northeastern China by the end of the late Miocene.

DISCUSSION AND CONCLUSIONS

Ouranopithecus turkae at Çorakyerler has been considered one of the last occurrences of a hominid from the eastern Mediterranean, but the age of this find has never been well constrained. Our magnetostratigraphic age correlation brackets the Çorakyerler fauna between 8.11 and 7.64 Ma. This is based primarily on the relative thicknesses of the sampled normal and reversed polarity intervals, and on a preference for a late MN 11 age from certain faunal elements.

Similarity analyses indicate that the Çorakyerler large-mammal fauna is similar to localities from MN 10–MN 13 in the eastern Mediterranean, central Asia, and northeast China (Table 2; Fig. 7). Maximum faunal similarity to Çorakyerler occurs during MN 12 with an average FRI of 0.92 and is followed by MN 11 (FRI = 0.88), MN 10 (FRI = 0.81), MN 13 (FRI = 0.66), MN 9 (FRI = 0.56), and MN 7/8 (FRI = 0.3) (Fig. 7). Pikermi, Akkaşdağ, Maragheh, Kemiklitepe D, and Samos represent the highest similarity values to the Çorakyerler fauna, and the changes in the similarity index values from MN 7–8 to MN 13 follows the general trend of Pikermian chromo fauna (Eronen et al., 2009).

Faunal similarity between the eastern Mediterranean and east Asian large mammals first appears from MN 9 and continues with an increasing ratio until the end of the Miocene (Fig. 7). Interestingly, the late Miocene fauna of Yushe Basin in east Asia shows a particularly high similarity to Çorakyerler. The mean hypsodonty value for the Yushe fauna indicates the presence of more humid conditions compared with the Pikermian and Bao-dean faunas (cf. Kurtén, 1952), suggesting the possibility that the faunal resemblance between Yushe and Çorakyerler might be related to taxonomic effects of local rather than regional humidity.

A high faunal similarity was observed between Çorakyerler and Baynunah (United Arab Emirates) localities during MN 12. Our FRI analyses at the genus level reveal that Baynunah shows high similarity to Pikermian, south Asian, and eastern African faunas, probably because of its location at the contact of the three paleobiogeographic provinces (Bibi et al., 2013).

In eastern Africa, the early late Miocene (MN 9 equivalent) hominoid-bearing Samburu Hills (Namurungule) and Ngorora show intermediate similarity to Çorakyerler. The slightly younger (MN 10 equivalent) Nakali (9.9–9.8 Ma) shows higher similarity, and the Nakali hominid itself, *Nakalipithecus nakayamai*, also shows strong similarities to *Ouranopithecus turkae* in size and some morphological characteristics (Kumimatsu et al., 2007). The hominoid locality Chorora (Ethiopia)

![FIGURE 7. Raup-Crick genus-level faunal similarity maps to Çorakyerler. High similarity indicated by blue and low similarity by white.](https://example.com/figure7.png)
also shows high similarity to Çorakyerler. Mean ordinated hypsodonty map patterns indicate that Samburu Hills and Çorakyerler large-mammal faunas occupied drier, probably more open areas than those of Nakalı and Chorora, which is in accord with previous paleoenvironmental reconstructions (Kunimatsu et al., 2007; Suwa et al., 2015). Çorakyerler has the highest taxonomic similarity to localities with lower mean hypsodonty rates such as Nakalı.

A high similarity value was also observed between Çorakyerler and the Georgian MN 11-equivalent locality Udabno I, which has yielded the hominid *Udabnopithecus garedziensis*. Once again, the hypsodonty value of Udabno I suggests more humid environmental conditions than the *Ouranopithecus*-bearing localities.

Çorakyerler fauna shows high faunal resemblance similarity with European *Ouranopithecus*-bearing localities, including Nikiti 1, Ravin de la Pluie, Xirochori 1, and possibly Azmaka 1–4 (Table 2). Investigations at these sites (Nikiti 1 [MN 10], Xirochori 1 [MN 10], and Ravin de la Pluie [MN 10] in Greece and Azmaka [MN 12] in Bulgaria) indicate that *Ouranopithecus* may have occupied a range of relatively dry habitats, from woodlands to open areas with some trees, bushes, and thick grass (de Bonis et al., 1992; Spassov et al., 2012; de Bonis and Koufos, 2014). Reconstructions of *Ouranopithecus* as a possible terrestrial hominin specialized for abrasive diet (Ungar, 1996; Merceron et al., 2005; de Bonis and Koufos, 2014; DeMiguel et al., 2014) fit such a range of relatively dry, non-forest habitats.

Geraads and Gülşe (1999) have suggested that sites such as Çorakyerler might reflect a period of increased provincial endemism in central Anatolia during the late Vallesian to early Turolian. Kostopoulos and Bernor (2011) noted that conditions toward the center of the sub-Paratethyan province may have been different from those at the eastern and western edges. According to the mean hypsodonty proxy, central Anatolia was a more arid region throughout the late Miocene than was eastern Europe (Fortelius et al., 2014) and would have offered even more challenging living conditions for hominin primates. The Çorakyerler large-mammal fauna shows the highest similarity (GFRI = 1.0) to localities from MN 11 and MN 12 that have significantly lower mean hypsodonty than that of Çorakyerler (P = 0.016 for MN 11 localities; P = 0.0009 for MN 12 localities).

We have shown here that the lacustrine deposits at Çorakyerler contrast strongly with the mostly fluvial or alluvial fan deposits at other Turolian localities in the Greco-Iranian region. Sedimentological and faunal differences both suggest that the fossil assemblage of Çorakyerler represents habitats at an ancient lake shore. The evidence supports the view that its community is somehow ‘more humid’ than expected from its mean hypsodonty, reflecting a locally humid setting in a more arid regional context. Çorakyerler therefore shows local taxonomic and paleoenvironmental differences from the regional average, as a typical Pikermian fauna and environment with a local twist favorable to hominids.

ACKNOWLEDGMENTS

We would like to thank all the people who have dedicated their efforts to this excavation project and the magnetostratigraphic sampling of the section. F.K., C.P, and A.C.E. are grateful to A. S. Erol, project leader of the Çorakyerler excavation, for allowing them to work long years under hard conditions at Çorakyerler, and to E. S. Gülşe, who played a key role in the initiation of the first Çorakyerler excavations and who provided the back-hoe for magnetostratigraphic sampling. For their valuable suggestions, we would like to thank the reviewers of this article. We thank A. H. Kaya and C. TenWolde for editing the language of the article. This work was supported by the NSF–RHÖI ‘Anatolian Upper Miocene Project’ (grant no.: 0321893) and by a grant from the Academy of Finland to M. Fortelius.

LITERATURE CITED

Kaya et al.—Magnetostratigraphy and paleoecology of Çorakyerler, Turkey (e1071710-12)

Submitted March 27, 2015; revisions received June 26, 2015; accepted July 1, 2015.

Handling editor: Thomas Martin.