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Seismic tomography is providing mounting evidence for large scale compositional
heterogeneity deep in Earth’s mantle, and also the diverse geochemical and isotopic
signatures observed in oceanic basalts suggest that the mantle is not chemically ho-
mogeneous. Isotopic studies on Archean rocks indicate that mantle inhomogeneity
may have existed for most of the Earth’s history. One important component may be
recycled oceanic crust, residing at the base of the mantle. We investigate, by numeri-
cal modeling, if such reservoirs may have been formed in the early Earth, before plate
tectonics (and subduction) were possible, and how they have survived – and evolved
– since then. During Earth’s early evolution, thick basaltic crust may have sunk
episodically into the mantle in short but vigorous diapiric resurfacing events. These
sections of crust may have resided at the base of the mantle for very long times.
Entrainment of material from the enriched reservoirs thus produced may account
for EM and HIMU signatures in oceanic basalts, whereas deep subduction events
may have shaped and replenished deep mantle reservoirs. Our modeling shows that
(1) convective instabilities and resurfacing may have produced deep enriched mantle
reservoirs prior to the era of plate tectonics, that (2) such formation is qualitatively
consistent with the geochemical record showing multiple distinct OIB sources, and
that (3) reservoirs thus produced may be stable for billions of years.

1 INTRODUCTION

Understanding mantle convection and the relationships with plate tectonic motion at Earth’s surface
and heat loss from Earth’s deep interior remains one of the most challenging objectives in global
geophysics. For many decades the discussions centered on canonical end-member models of strict
layering or unhindered whole mantle flow, but over the past decade cross-disciplinary research has
gradually shifted the paradigm toward a class of hybrid models that combine certain aspects of the
classical models. Reconciling constraints from different research disciplines remains difficult, however.

Geochemical analysis of mid-ocean ridge basalts (MORB) and ocean island basalts (OIBs) have
been used to argue for the long term survival of compositionally distinct domains in Earth’s mantle.
The arguments have been reviewed extensively elsewhere [e.g. Hofmann, 1997; Davies, 2002; Albarède
and Van der Hilst , 2002; Anderson, 2002b; Harrison and Ballentine, 2005, this volume]; here we
mention only a few observations. Sampling issues aside, the surprisingly uniform trace element
composition of MORBs suggests their derivation from a well-mixed source (typically referred to as
the depleted MORB mantle or DMM). In contrast, OIB analyses have revealed a markedly more
diverse pattern, resulting in a rich nomenclature that includes enriched mantle 1 and 2 (EM-1 and
EM-2) and HIMU, which has high-µ = 238U/204Pb (see Table 1) and the postulation of several distinct
geochemical reservoirs [e.g. Zindler and Hart , 1986; Hofmann, 1997; Harrison and Ballentine, 2005,
this volume]. The longevity of some of these reservoirs (apparent age up to 2.5 billion years), and,
thus, their relative stability against re-mixing, was inferred from lead isotope dating [Chase, 1978;
Tatsumoto, 1978; Allègre and Lewin, 1995]. ‘Primitive’ He ratios observed in OIBs may suggest
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input from an undifferentiated mantle source, but this interpretation has been questioned [Porcelli
and Halliday , 2001; Meibom et al., 2003]. Furthermore, the energy balance between heat production,
heat loss, and planetary cooling, is often used to argue for ‘hidden’ reservoirs of enhanced heat
production [e.g. Kellogg et al., 1999, and references therein], although there is some uncertainty
about the heat flux out of the core.

The presence of distinct mantle reservoirs is consistent with cosmogenic arguments and heteroge-
neous accretion models of Earth’s formation [e.g. Anderson, 2002a; Righter , 2005, this volume] and
with mounting evidence for compositional heterogeneity in the deep mantle from seismic tomography
[Creager and Jordan, 1986; Van der Hilst and Kárason, 1999; Masters et al., 2000; Saltzer et al.,
2001, 2004; Trampert et al., 2004; Trampert and Van der Hilst , 2005, this volume]. Collectively, this
evidence suggests that instead of whole mantle convection a kind of layered or zoned convection is
more realistic.

Traditional layered convection models assumed that the 660 km discontinuity between upper and
lower mantle formed such a reservoir boundary. However, seismic tomography shows subducting
slabs crossing the 660 km discontinuity and sinking into the deeper mantle beneath several conver-
gent margins, which suggests that the boundary between the different chemical reservoirs cannot be
this discontinuity [Van der Hilst et al., 1997]. In an attempt to break away from canonical – and
unsuccessful – end-member models of unhindered whole mantle convection or strict stratification at
660 km depth, Van der Hilst and Kárason [1999] and Kellogg et al. [1999] postulated the existence of
compositional layering in the deep lower mantle and explored its gravitational stability. Their results
show that a deep layer with a relative chemical density contrast of 4% is stable, although significant
topography may develop. The effective density contrast may approach zero, however, because of
the higher internal temperature of the layer due to enhanced internal heating. Numerical models by
Hansen and Yuen [1988, 2000], with the latter using a larger aspect ratio of their model domain,
advecting heat sources, and strongly temperature and pressure dependent viscosity, and by Tackley
[2002] (using a 3D model), as well as the analog experiments by Davaille [1999] also show the devel-
opment of the deep dense layer with significant topography. Numerical experiments by Samuel and
Farnetani [2003] and Samuel and Farnetani [2005](this volume), which include trace element frac-
tionation and degassing leading to distinct helium signatures, show that a chemical density excess of
only 2.4% may be sufficient to stabilize a deep layer.

Absent strong seismological evidence for a well defined layer, several alternative configurations of
these main reservoirs have been proposed [see e.g. Tackley , 2002, for a review], with the part of
the deep mantle that contains more primitive material capped by enriched recycled crust [Hofmann,
1997; Coltice and Ricard , 1999, and references therein], the enriched crustal reservoir residing at the
core-mantle boundary with a layer or mounds of primitive mantle on top [Christensen and Hofmann,
1994; Hansen and Yuen, 2000; Tackley , 2000], a layer of enriched crustal material at the CMB with
pockets of primitive mantle residing throughout the mantle [Becker et al., 1999], and an unstratified
but heterogeneous mantle in which depleted mantle and subducted lithosphere are continuously mixed
[Allègre and Turcotte, 1986; Helffrich and Wood , 2001]. Recognizing the lack of evidence for global
seismic interfaces anywhere between 660 km and the top of the so called D′′ layer, Albarède and
Van der Hilst [2002] proposed zoned mantle convection, a modification of the model by Kellogg and
co-workers, in which variable depth subduction sets up a radial gradient in mantle mixing and which
may leave the lowermost mantle largely exempt from convective overturn.

In addition to demonstrating conclusively its existence, its nature, and volume, there are two
fundamental questions regarding our understanding of deep mantle heterogeneity. First, when and
how was it formed? Second, how did it evolve over long periods of geological time?

Several origins of compositional heterogeneity in Earth’s deep mantle have been proposed. Inter-
action of liquid iron from the outer core with silicates in the lowermost mantle may produce a heavy
phase in the lowermost mantle [Knittle and Jeanloz , 1991; Guyot et al., 1997]. However, the effect
on major element composition of present-day core-mantle interaction is likely to be confined to a
relatively small region above the core mantle boundary and cannot explain the seismically observed
compositional heterogeneity in the bottom 1000 km of the mantle [Van der Hilst and Kárason, 1999;
Trampert et al., 2004; Trampert and Van der Hilst , 2005, this volume]. According to Scherstén et al.
[2004], tungsten isotopes in OIBs rule out a core contribution to their source, but their conclusion
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is somewhat controversial [see Jellinek and Manga, 2004], and evidence to the contrary has been re-
ported also [Humayun et al., 2004]. The formation of a deep reservoir by perovskite fractionation in
a magma ocean, suggested by Agee and Walker [1988], is not compatible with geochemical evidence
[Halliday et al., 1995; Blichert-Toft and Albarède, 1997]. The sinking of subducted slabs of former
oceanic lithosphere into the lower mantle may add enriched crustal material to a hypothetical reser-
voir somewhere in the lower mantle. Christensen and Hofmann [1994] showed by numerical modeling
that this could produce the range of isotopic ratios found in oceanic basalts. Albarède and Van der
Hilst [2002] suggested that in a zoned mantle an enriched reservoir, possibly of early origin, could be
replenished and maintained by selective deep subduction of enriched, eclogitic oceanic plateau crust.

While plate tectonics is unlikely to have been important in a hot early Earth [Sleep and Windley ,
1982; Vlaar , 1985; Vlaar and Van den Berg , 1991; Van Thienen et al., 2004c], there are geochemical
indications of the existence of distinct reservoirs in the early Earth. It is most likely that the earliest
Archean rocks found on Earth have been derived from an already depleted mantle [e.g. Hamilton et al.,
1983; Patchett , 1983; Vervoort et al., 1996; Blichert-Toft et al., 1999]. The age of this differentiation
has been found from Lu-Hf data to be at least 4.08 Gyr before present [Amelin et al., 2000]. Sm-Nd
data indicate an even older mean age of differentiation: 4.460 +

− 0.115 Ga [Caro et al., 2003]. Hf
isotopes in carbonatites and kimberlites from Greenland and North America of up to 3 Gyr of age
indicate derivation of these rocks from an enriched mantle source with an unradiogenic Hf signature
[low 176Hf/177Hf, Bizzarro et al., 2002]. Van Thienen et al. [2004b] proposed that prior to plate
tectonics the necessary fluxes could have taken place in the form of the episodic rapid sinking of
complete segments of crust (> 1000 km long) into the mantle.

In this paper, we describe and model two dynamic regimes, representative for the early and present-
day Earth, that we think are important for producing and maintaining deep mantle heterogeneity.
In this paper we do not attempt to study the transition between these regimes. Building on previous
work [Van Thienen et al., 2004b], we investigate the possibility of an early Earth formation of a deep
enriched mantle reservoir by convective instabilities (diapirism). Subsequently, we use numerical
convection experiments to investigate the long-term dynamical behaviour and stability of such a
reservoir and to evaluate the geochemical characteristics. We remark that in the context of our
experiments the term ‘stability’ is used to indicate that the deep layer survives on a time scale of
billions or years. Processes are studied in the context of a transient mantle dynamic regime, and
predictions from our models are compared with geochemical constraints.

2 NUMERICAL MODELS: GENERAL METHODOLOGY

In separate numerical experiments we investigate the formation of enriched deep mantle reservoirs
under thermal conditions representative of the early Earth and the long-term evolution and stability
of such deep mantle reservoirs. Before discussing Experiments I and II in more detail we here describe
the general numerical elements.

We use a mantle convection code based on the finite element package SEPRAN [Segal and Praag-
man, 2000; Van den Berg et al., 1993] to solve the energy, Stokes, and continuity equations in the
extended Boussinesq approximation [e.g. Steinbach et al., 1989]:

ρcp

(
∂T

∂t
+ uj∂jT

)
− αT

dp

dt
=

τij∂jui + ∂j(k∂jT ) + ρ0H +
∆S

cp

dF

dt
T +

∑
k

γkδρkT

ρ2
0cp

dΓk

dt
, (1)

∂jτij − ∂i∆p + ∆ρgi = 0, (2)

∂juj = 0. (3)
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For symbol definitions, see Tables 2 and 3.

For numerical purposes, equations (1)-(3) are transformed into their non-dimensional equivalents
using the following scaling:

T = ∆T · T ′, xi = h · x′i, t =
h2

κ
· t′, ui =

κ

h
· u′i, p =

η0κ

h2
· p′, τ =

η0κ

h2
τ ′ (4)

with the parameters as listed in Table 2 and the primes indicating dimensionless parameters.

Flow is driven by density perturbations, which are related to variations of temperature, composition,
and phase, and are described by the equation of state:

∆ρ = ρ0

{
−α(T − Tref ) +

∑
k

Γk
δρk

ρ0
+

δρ

ρ0
F

}
(5)

The second term inside the braces of equation (5) describes the effect of solid state phase transitions
of mantle peridotite around 670 km (in experiments I and II) and 400 km (experiment I) depth. This
term also includes the effects of solid state phase transitions of basaltic material, see below. The last
term in brackets describes the effect of chemical depletion due to partial melting, see below.

3 EXPERIMENT I: EARLY FORMATION OF DEEP MANTLE RESERVOIRS

In this section we investigate by geodynamical modeling Earth’s early differentiation and the forma-
tion of a deep reservoir enriched in incompatible trace elements by downward transport and deep
storage of oceanic crust. Because of resolution requirements we limit the computational domain to
a depth of 1200 km, thus focusing on the processes of crust production and recycling that take place
at the surface and in the relatively shallow mantle.

3.1 Numerical Aspects of Experiment I

3.1.1 Model description

In Experiment I (see Table 4) deformation is controlled by a composite rheology [Van den Berg et al.,
1993], which includes diffusion creep, dislocation creep, and a stress limiter mechanism [Van den
Berg et al., 1993; Van Hunen et al., 2002]. We also consider partial melting and melt segregation
and their effects on diffusion and dislocation creep. Following Van Thienen et al. [2003], the effect
of partial melting is controlled by a parameter called the degree of depletion F, which indicates the
mass fraction of melt removed from a control volume of mantle rock. The parameter values used in
Experiment I are given in Table 5.

Diffusion and dislocation creep are described by an Arrhenius relation [Karato and Wu, 1993; Van
den Berg and Yuen, 1998]:

ηi = f(F )Bi exp

[
Ei + PVi

RT

]
τ1−ni , (6)

with proportionality factor f(F ) representing the effect of partial melting (see below). A stress
limiter mechanism is included to approximate brittle failure of the lithosphere. It is implemented
according to Van Hunen et al. [2002]:
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ηy = τy ε̇−1/ny
y ε̇(1/ny)−1, (7)

where the normal yield strength τy is approximated in Byerlee’s law with the lithostatic pressure
[e.g. Moresi and Solomatov , 1998]:

τy = C0 + µρgz. (8)

To simulate the effect on viscosity of dehydration during partial melting of mantle material (model
run I-a, Table 4), f(F ) in equation 6 is varied linearly between 1 and 10 for values of the F between
0.005 and 0.05 [Karato, 1986; Hirth and Kohlstedt , 1996; Mei and Kohlstedt , 2000a, b]. We set f to
a constant value of 1 for F < 0.005 and to 10 for F > 0.05. For eclogite we use f = 0.1 because of
the lower flow strength of omphacite [Piepenbreier and Stöckhert , 2001]. For the partial melting of
basaltic crust (model run I-b, Table 4) we apply the solidus and liquidus of a hydrated tholeiite using
data from Green [1982].

In our numerical experiments partial melting occurs when the equilibrium degree of depletion F
corresponding to the local pressure and temperature conditions is higher than the actual local degree
of depletion. We assume complete melt extraction but we do not account for compaction of the
residual rock. Upon melt extraction an equivalent amount of basaltic material is added at the top
boundary of the model (inflow boundary condition) directly above the region of partial melting, where
it is assumed to be hydrated.

Upon partial melting, the local incompatible trace element concentration is adjusted according to a
batch melting model with a bulk partition coefficient of 10−2, comparable to that of K and somewhat
greater than that of U and Th [Henderson, 1982; Beattie, 1993]. This results in a concentration of
trace elements in the basaltic crust. The local rate of radiogenic heat production is proportional to
the incompatible trace element concentration.

In our models, the basaltic crustal material produced by partial melting of mantle peridotite un-
dergoes solid state phase transitions at 30 km depth (transformation to eclogite, with a relaxation
time of 1.25 Myr) and 400 km depth. The latter transition corresponds to the decomposition of om-
phacite which results in an increase of the garnet content[see Irifune and Ringwood , 1993; Okamoto
and Maruyama, 2004], and to the transformation of coesite into stishovite [see Aoki and Takahashi ,
2004]. In our model these transitions are combined and assumed to occur instantaneously. Although
the actual depth of the basalt to eclogite phase transition is closer to 40 km [1.2 GPa, Hacker , 1996],
garnet starts to be formed from about 0.7 to 0.8 GPa [Green and Ringwood , 1967; Ito and Kennedy ,
1971; Hacker , 1996], raising the density of the assemblage above that of basalt. We note, however,
that an increase of ten km in transformation depth results in similar model dynamics and would
therefore not effect the conclusions of the research reported here. We prescribe an excess density
of eclogite relative to undepleted peridotite of 200 kgm−3, similar to that used in earlier numerical
studies [Dupeyrat and Sotin, 1995; Van Hunen et al., 2002]. A lower excess density would result in a
stretching of the time scale of the resurfacing process, whereas a higher excess density would speed
it up.

The density inversion between eclogite and peridotite below 670 km depth [e.g. Ringwood and
Irifune, 1988; Irifune and Ringwood , 1993] is not taken into account. Numerical experiments by
[Christensen, 1988] suggest that no long-term trapping of eclogite in this zone is expected. New
petrological data by Hirose et al. [1999] show that the inferred density inversion zone is narrower
than reported earlier (with the lower boundary at 720 rather than 800 km depth), and the positive
Clapeyron slope of the lower bounding transition would cause a further narrowing for cool subducting
material. On the basis of these results, Hirose et al. [1999] also expect no significant trapping of
basaltic material in this zone.
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3.1.2 Model domain and initial and boundary conditions

Approximately 5100 quadratic elements were used to discretize the domain, measuring 1200x1200
km, for solving the energy and momentum equations (1)-(3). The chemical evolution was evaluated
by means of approximately 350000 active particle tracers.

An initial condition was obtained by the internal heating (extreme rate of 250 · 10−12Wkg−1) of a
pristine subsolidus mantle to high temperatures, whereby a crust was formed by partial melting of
the convecting mantle. The composition and temperature field at the time a 30 km crust had been
produced was taken as the initial condition for the main numerical experiment (see Plate 1a), with
the internal heating reduced to 15 · 10−12Wkg−1, scaled by the local trace element concentration
and decaying with time (see Table 2). This internal heating rate corresponds to Bulk Silicate Earth
values around 3.5-4.0 Gyr before present [Van Schmus, 1995]. Note that the layered convection in
the initial situation is produced by the model and not prescribed explicitly.

The vertical boundaries have a periodic boundary condition. The top boundary has a prescribed
temperature of 0oC, a tangential stress-free condition, and a prescribed inflow velocity corresponding
to the amount of basaltic crust being produced by partial melting of the underlying mantle. The
lower boundary has a free-slip condition and is thermally insulated. This latter point results in an
absence of plumes from the deep lower mantle. However, deep mantle plumes can be expected to
affect the positioning of sinking crust rather than its rate of accumulation. Therefore we do not
expect this to significantly influence our results. It will affect the stability of the deep dense layer
once it has been formed. This will be the subject of investigation in the second series of experiments.

3.2 Large Scale Resurfacing in Earth’s Early Evolution

Results of numerical experiment I-a (Table 4) are presented in Plate 1. The column on the left
shows the composition field at six different times. The color scale indicates the degree of depletion of
mantle peridotite, ranging from fertile (blue) to depleted (orange). Black tracers are used to monitor
the basaltic material, and red tracers represent eclogite. White arrows illustrate the instantaneous
flow field. The corresponding temperature field is shown on the right; the color scale indicates local
temperature and the contours depict regions of partial melting.

Plate 1b shows that in the first 70 million yr of model evolution small-scale delamination of the
lower crust results in the mixing of small amounts of eclogitic lower crust into the upper mantle [see
Van Thienen et al., 2004b].

Around 170 Myr (Plate 1c), a locally thickened section of crust, largely transformed into eclogite,
starts to sink into the mantle; in doing so it pulls thinner neighboring crust along with it, which
initiates a resurfacing event. New crust is being produced near the sinking crustal section by partial
melting of complementary upwelling mantle material (see melting contour in temperature plot). The
resurfacing process continues until the sinking crust breaks off, at which time – and in this model
run – some 1500 km of crust has been pulled into the mantle.

Plate 1d shows the crustal material sinking into the lower mantle, forcing lower mantle material into
the upper mantle. The subsequent frames show the eclogite body settling on the bottom boundary.
Because of its high content of radiogenic trace elements, it heats up relatively quickly (Plate 1f).

3.3 Trace Element Evolution

The secular evolution of the distribution of a (hypothetical) incompatible trace element (partition
coefficient 10−2) is illustrated in Plate 2. The data shown are corrected for radioactive decay, such
that only the effects of fractionation are visible in this figure. The panels show snapshots of the
entire computational domain. Yellow regions are depleted relative to the initial uniform composition,
and grey/blue regions depicting enrichment. Red and green curves indicate the location of the phase
boundaries for peridotite (red) and basalt (green) at 10% (dashed), 50% (solid), and 90% (dashed)
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of the transition.

After ∼ 120 million yr of model evolution, the upper mantle is somewhat depleted by the extrac-
tion of an enriched basaltic crust, with the highest degree of trace element depletion occurring in
the shallow upper mantle; the lower mantle, which at this early stage in model evolution convects
separately from the upper mantle, is still pristine. Continued partial melting gradually depletes the
upper mantle, some exchange of material between the upper and lower mantle takes place, including
small blobs of delaminated eclogite (grey).

The resurfacing event which is illustrated in Plate 1 is clearly visible around 170 Myr. During the
50 million years that follow, the old, enriched crust slowly sinks to the bottom of the model mantle,
where it remains stable.

The final situation in terms of incompatible trace elements shows: (a) an enriched basaltic crust;
(b) a highly depleted shallow mantle; (c) a moderately depleted deep upper mantle and lower mantle,
in which small blobs of enriched eclogite (grey spots) are present; (d) an enriched reservoir at the
bottom boundary of the mantle.

3.4 The Effect of Continental Crust Production

Using the instantaneous composition and temperature field of model I-a at the onset of the resurfacing
event, between (b) and (c) of Plate 1, model I-b was computed at a higher resolution in a 600x600
km domain [upper right quarter of model I-a, see Van Thienen et al., 2004a, for more details]. In this
model, partial melting of the basaltic crust was included. The purpose of this numerical experiment
is to investigate the effect of this additional melting process on the trace element geochemistry of the
material which eventually forms the deep dense layer. Note that the reduction of the Rayleigh number
by the reduction of the domain size (see Table 4) does not significantly affect the resurfacing event.
The resulting model development is illustrated in Plate 3. Plate 3a-c show only (meta-) basaltic and
felsic material. Felsic material, indicated in green, is produced by the partial melting of hydrous
(meta-) basalt. This results in depletion of the source rock (purple). Undifferentiated (meta-) basalt
is indicated in black. The major part of the sinking crust consists of undepleted metabasalt, but
significant amounts of felsic material and depleted metabasalt are also present. The corresponding
trace element concentration plots (Plate 3d-f) show that both undepleted and felsic material are
enriched in incompatible trace elements relative to undifferentiated mantle peridotite. (Meta-) basalt
which has undergone partial melting shows depletion.

4 EXPERIMENT II: LONG TERM STABILITY OF DEEP MANTLE RESER-
VOIRS

In numerical experiment II (see Table 4 for parameter settings of the different model runs) we consider
the long-term behavior of compositionally distinct deep mantle domains. We assume that at the start
of the model calculations such domains had already been formed, for instance by the mechanism
discussed above. Because the formation process is not modeled, we need less resolution than in the
previous numerical experiments and can include the entire depth of the mantle.

4.1 Numerical Aspects of Experiment II

4.1.1 Model description

In contrast to Experiment I, partial melting and fractionation of trace elements are not included in
Experiment II. Since dislocation creep is predominant at relatively low pressures only [Karato and
Li , 1992; Van den Berg and Yuen, 1996] we ignore this deformation mechanism in our study of the
long term dynamic behavior of intrinsically dense domains in the lower mantle. Instead, we include
a pressure and temperature dependent Newtonian viscosity:
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η(T, z) = 100η0 exp
[
− ln(20) · T + ln(100) · z

]
(9)

An endothermic phase transition around 660 km is defined using a negative Clapeyron slope of
γ = dp/dT = −2.5 · 106PaK−1. Since this is believed to be the main obstacle for material exchange
between the upper and lower mantle and since here we do not aim to produce a detailed picture of
the transition zone dynamics, no phase transitions other than at 660 km have been modeled.

The deep mantle reservoir has a variable excess intrinsic density (see Table 4). Table 4 also lists the
various distributions of the internal heating rate between the deep reservoir and the overlying material
(Henr and Hdepl respectively). In all numerical experiments, the heat productivity integrated over
the total mantle volume has the same value. This value was chosen such that the volume averaged
heat productivity has the chondritic value of 5.0 · 10−12Wkg−1 after a 4.5 Gyr period of radioactive
decay (half-life time = 2.5 Gyr). Then it was scaled with a factor 0.629 to correct for an exaggerated
heat production that would result from an overestimation of the mantle volume due to the 2-D,
Cartesian geometry of the model (as its mantle is much shallower, this effect is not so important in
experiment I). We note that the thermal expansivity α decreases with a factor 5 over the depth range
of the model (see Table 2 and Table 3).

4.1.2 Model domain and initial and boundary conditions

Our Cartesian box model scales to having a depth of 2900 km. An aspect ratio of 2.5 is applied. The
numerical mesh contains 250,000 tracers that were initially placed at random locations over a total
of 11,000 finite elements.

Free-slip conditions exist on all model boundaries. A temperature of 0oC is prescribed at the
surface. On the vertical boundaries, reflecting temperature boundary conditions exist. At the bottom
boundary, which represents the CMB, a thermal coupling with the core is implemented by prescribing
the time dependent core-mantle boundary temperature TCMB(t) equal to the temperature of an
isothermal heat reservoir, which is cooled by the CMB heat flux, calculated from the finite element
mantle model. The heat capacity of the core heat reservoir is set to a fraction X = 0.8 of the mantle
heat capacity.

The initial model conditions were chosen in order to simulate a hot early Earth where chemical
layering in the lowermost mantle is already present. A deep mantle reservoir is prescribed as a flat
layer that occupies the lower 20% of the mantle volume.

Initially, the temperature field represents a uniform hot mantle of 4000oC, which has been cooled
for 60 Myr from the top boundary in order to prevent undesirable large temperature variations. A
positive and negative temperature perturbation were added in the upper right and left corners of the
domain, inducing convective circulation.

4.2 Evolution and Stability of Compositional Layering

4.2.1 Evolving flow regimes

We use Model II-e to describe the most important characteristics of the models examined. The
calculated composition, temperature, stream function contours, and viscosity field are given in the
snapshots at five different times in the model evolution in Plate 4. Figure 1 shows time series of
the temperature, viscosity, flow velocity, heat flow, and entrainment rate (defined as the amount of
primitive material that resides above the chemical interface relative to the total amount of primitive
material present).

During the first 2 Gyr model time, convection is strictly layered at the 660 km phase transition,
preventing material exchange between the upper and lower mantle (see Plate 4b). At these early
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times, the vigour of convection in the mid-mantle (the part of the lower mantle above the deep
mantle reservoir) is too small to cause significant topography on the deep mantle reservoir.

Upon further cooling of the upper mantle (Figure 1a,d) the mantle downwellings grow larger and
stronger (Plate 4b, Figure 1c,f), and some of them are now able to break through the phase transition
and penetrate the lower mantle (Plate 4c). The inferred breakdown of layered mantle convection is in
accord with results by Steinbach et al. [1993]. In our numerical experiments, the time to the change
in dynamic regime depends mainly on the cooling rate of the upper mantle and varies between 1 and
2.2 Gyr: in model II-e it starts around 2 Gyr. The downwellings that penetrate the lower mantle
produce pronounced flow velocities and large material fluxes across the phase transition (Plate 4b,
1b,e). They also create topography on the deep mantle reservoir, which at times is swept into isolated
piles (Plate 4d,e). Plate 4e shows that after some 4.5 Gyr of model evolution, a partially layered
convection regime has set in, with some cold downwellings temporarily obstructed by the endothermic
phase transition near 670 km depth.

In this model, the cool downwelling material remains mostly on top of the deep dense layer. The
presence of the deep mantle reservoir thus limits the amount of contact between the relatively cold
downwellings and the hot core, which results in thermal blanketing of the core (Figure 1a,d,g). At
the relatively high temperatures in the deep mantle, the material originating from the surface heats
up and eventually rises back to the surface in the form of mantle plumes (Plate 4d), entraining
material from the bottom high density reservoir. Entrainment is a possible explanation for the
typical chemical signature in ocean island basalts [Zhong and Hager , 2003] as was also shown in
Samuel and Farnetani [2003], where different chemical components were explicitly modeled in a
numerical evolutionary mantle model.

4.2.2 Long term stability of the deep domains

In our computer simulations, the stability of compositional layering is controlled by a time dependent
buoyancy number B(t), which gives the ratio of the positive thermal buoyancy relative to negative
compositional buoyancy:

B =
1

α0δT (t)
· δρc

ρ0
(10)

where δρc is the compositional density difference and δT (t) the time-dependent temperature differ-
ence between the deep layer and the overlying mantle. We carried out systematic variations to model
II-e in order to investigate the effects on layer stability of variations in excess compositional density
and heat productivity in the deep mantle reservoir. The relevant parameters are listed in Table 4.

The time series of B(t), calculated using equation 10, is shown in Figure 1h. It shows that initially,
when there is no temperature difference between the two reservoirs, the buoyancy number has a large
value. When temperature differences appear, the value of B(t) drops and layer stability decreases.
Plate 5 shows snapshots of the composition and temperature field after 4.5 Gyr model time for models
II-a, b, c, and d. These models were selected to illustrate the fate of the primitive reservoir when
stability decreases.

The topography of the layer is small if the intrinsic density of the layer is large, and global layering
as was proposed by Kellogg et al. [1999] is observed (model II-e in Plate 4). When the stability
decreases, the deep reservoir is pushed aside by cold downwellings and is swept into isolated piles, as
modeled by Hansen and Yuen [2000] and Tackley [2000] (model II-c in Plate 5c). Further reduction
of stability leads to a regime where the primitive material is present as blobs of material floating in
the lower mantle (model II-b in Plate 5b), which can be compared with the work of Becker et al.
[1999]. Ultimately, under conditions least favoring stability, total mixing occurs (model II-a in Plate
5a).

The effects of density and heat productivity distribution on layer stability are examined separately.
As a measure for stability, the mean depth of tracers that initially are placed in the deep mantle
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reservoir (with composition Cenr) is used. The mean depth of Cenr-tracers is calculated at every
time step as

zCenr =
1
n

n∑
i=1

zi, (11)

where n is the amount of Cenr-tracers, and zi is depth of the i-th tracer. To give a reference for
interpreting this mean depth we note that in the initial condition zCenr = 0.9 and for total mixing
zCenr = 0.5.

In Figure 2a the mean depth evolution is compared for models II-a, b, c and d, which all have a
uniform heat production. The density jump δρc

ρ0
varies from 0.0 to 0.015.

Figure 2a shows that the mean depth for all models starts at z = .9 as was expected. Then, after
cold downwellings penetrate the lower mantle and induces layer instability, the mean depth becomes
shallower. For subsequently smaller values of the density jump, the deviation from the initial condition
is bigger, indicating less stable layering. In Figure 2b the mean depth is compared for models with
a uniform density jump of .01 and a heat production ration Henr

Hdepl
that varies between 1 and 100.

With increasing enrichment of the deep mantle reservoir, stability decreases as is illustrated by the
shallower mean depth of the tracers.

Figure 3 shows a domain diagram indicating which models are stable or instable in the δρc

ρ0
- Henr

Hdepl

space. In agreement with previous studies (e.g., Kellogg et al. [1999]) the diagram shows a clear
trade-off between density contrast and excess heat productivity in controlling the long-term stability
of the internal layering.

4.3 Sensitivity to the Postspinel Clapeyron Slope

Most mantle convection models which include solid state phase transitions apply a Clapeyron slope
of around -2.5 MPa/K for the postspinel phase transition, consistent with several petrological [e.g.
Bina and Helffrich, 1994; Hirose, 2002] and seismological [e.g. Lebedev et al., 2002] studies. Recently,
however, Katsura et al. [2003] have shown that the slope may in fact have a smaller magnitude,
probably in the range of -0.4 to -2.0 MPa/K. In order to investigate the effect of a reduction of the
magnitude of the Clapeyron slope of the postspinel phase transition on the stability of a deep dense
layer, we have conducted a series of experiments for a range of Clapeyron slopes, with a fixed 1%
δρ/ρ0 = 0.01 and Henr/Hdepl = 10. The results are presented in Plate 6 (snapshots after ∼ 4.4 Gyr
of evolution) and Figure 2c (time series of average vertical coordinate of dense tracers).

Figure 2c shows that for a low value of the Clapeyron slope of 0 and -1.25 MPa/K, respectively,
the dense layer starts mixing through the mantle around 1 Gyr after the start of the models, and is
more or less completely mixed after 4.5 Gyr. This picture is also shown by Plate 6a,b, which shows
that nonetheless the heavy tracers are not uniformly mixed throughout the mantle. For a stronger
phase transition (γ = −2.5MPa/K), we observe the survival of part of the deep dense layer after
4.5 Gyr in the form of a mound. Survival is near complete for the highest Clapeyron slope of -3.75
MPa/K.

Clearly, the ability of cold downwelling from the upper mantle to penetrate into the (deep) lower
mantle strongly affects the mixing of the deep layer through the mantle. As is illustrated by Plate
4b,c and Figure 1e, the transition of completely layered to partially layered convection is accompanied
by an increase in the root mean square velocity, and cold downwellings cause significant topography
in the deep layer (Plate 4d,e).
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5 DISCUSSION AND CONCLUDING REMARKS

5.1 Transient Dynamical Regimes

Model series I and II both show a transient behavior. In model I-a, the initial hot phase is character-
ized by layered mantle convection and the formation of a thick basaltic crust. Exchange of material
between the upper and lower mantle and the sinking of crustal sections into the lower mantle break
this layered convection on a relatively short timescale of O(108 yr). The progressed cooling of the
model results in the production of a thinner and more stable crust, and because of the absence of
a sharp temperature contrast between upper and lower mantle due to whole mantle convection and
lack of fertile mantle material, lower mantle diapirism inducing large-scale melting events no longer
takes place. A transition to plate tectonics would be expected here, though the model is incapable
of reproducing plate tectonics. Because of the small extent of this model, characteristic time scales
of cooling and thus transition between regimes are short compared to the Earth.

Around 1 to 2 Gyr, model II-e shows a transition from layered mantle convection to a mode of
convection where the phase transition acts as a filter to subducting slabs, which results in cold down-
wellings reaching the deep mantle and disturbing the compositional layering. This observation is
qualitatively consistent with some interpretations of the geochemical record: on the basis of geo-
chemical mass balances of large-ion-lithophile (incompatible) elements such as Sr, Nd and Hf and
noble gas isotope systems, Allègre [1997] argued that the transition to whole mantle convection may
have started some 0.5 Gyr ago.

The ultimate stability of the primitive reservoirs depends on the initially prescribed parameters,
which directly and indirectly control the excess density of the deep layer. This is illustrated by Figure
3, which shows stable layering for large excess chemical densities of the lower layer and low internal
heating rates, and instability for small density contrasts at high internal heating rates.

5.2 Reconciliation With Isotope Geochemistry

By numerical modeling we have explored a mechanism for the formation and deep mantle storage
of enriched crustal material (see Plate 1). Plate 3 demonstrates that significant amounts of mafic
(metabasalt) material, perhaps corresponding to the HIMU source, are transported to the base of the
mantle. Christensen and Hofmann [1994] also found that, in a plate tectonic like model, significant
volumes of subducted crust may settle at the base of the mantle and contribute to Pb and Nd isotope
ratios which correspond to observed values in the MORB to HIMU spectrum.

Tatsumi [2000b] proposed that the EM-1 reservoir may have been formed by the accumulation of
delaminated pyroxenitic restite from which continental material had been extracted, produced be-
tween 4 and 3 Ga by partial melting of arc basalts. He supported this hypothesis by calculating the
corresponding isotopic evolution for Nd and Pb isotopes assuming 45% and 60% of batch melting,
resulting in pyroxenitic and eclogitic restites, respectively. He found that a pyroxenitic restite with a
3-4% andesitic component (interpreted as retained melt in his model) produces an isotopic signature
characteristic of EM-1, with low 143Nd/144Nd, 207Pb/204Pb, and 206Pb/204Pb (see Table 1) . Al-
though subduction zones are the setting in which this model is thought to have operated [Tatsumi ,
2000b, a], we propose that a resurfacing setting such as discussed in section 3.2 is equally valid,
with a sinking crust in this context corresponding to a subducting slab in the plate tectonics sense.
Significant quantities of basalt are produced in association with recycling of crust (either small-scale
delamination or resurfacing), more or less analogous to arc basalts. During a resurfacing event, par-
tial melting of this basalt may take place, equivalent to partial melting associated with delamination
in Tatsumi’s model. Plate 3 shows that a significant part of the metabasalt which has sunk into the
mantle has undergone (varying degrees of) partial melting (pink color). No melt retention is included
in our model but, as in Tatsumi’s model, some retention is not unlikely.

Alternatively, our model is also consistent with the interpretation of the EM-1 and EM-2 isotopic
signatures being caused by recycled continental material [Zindler and Hart , 1986; Chauvel et al.,
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1992; Hofmann, 1997], since Plate 3 shows significant amounts of felsic material entrained in the
resurfacing event and residing at the bottom of the model domain. The inhomogeneity of the deep
material shown in Plate 3 is consistent with the apparent coexistence of different sources in the
Earth’s mantle which are interpreted for the different types of OIBs (see Table 1).

Most geochemical mantle models include, next to DMM, a reservoir of enriched recycled crust
and a primitive undegassed mantle reservoir with a primitive trace element composition and a high
3He/4He ratio [see Tackley , 2000], but the use of He isotopes in oceanic basalts as an indicator for
derivation from a primitive undegassed reservoir has been questioned [Meibom et al., 2003].

In model I-a, no undifferentiated mantle peridotite survives longer than 500 million years of model
evolution (see Plate 2). However, the small size of the model domain and its implications of a more
rapid cooling of the system result in a reduction of the thermal Rayleigh number (= ρ0αg0∆Th3/η0κ),
which favors the development of single-layer mantle convection over two-layer convection [Christensen
and Yuen, 1985]. This would reduce the probability of pristine material to survive. However, the
lower velocities associated with the reduced Rayleigh number oppose this effect.

5.3 Long Term Stability of Deep Mantle Domains

Although they are sensitive to prior assumptions and model geometry, the results of Experiment II
can be used to give a qualitative insight in the dynamics of mantle evolution.

The series of models II shows that a deep, enriched reservoir may be dynamically stable on a 4.5
Gyr time scale, which is in line with previous studies [Kellogg et al., 1999; Hansen and Yuen, 2000;
Tackley , 2002; Samuel and Farnetani , 2003; Zhong and Hager , 2003; Nakagawa and Tackley , 2004].
The relative enrichment in heat producing elements as seen in the results of numerical experiment Ia
(Plate 2) gives an estimate of the position of Earth on the vertical axis in Figure 3 (that is, between
101 and 102). An estimate of the position on the horizontal axis is more difficult, as the phase
relations of basaltic material are poorly known for the deep mantle. But in order to be consistent
with the presence of some chemically distinct material in the deep mantle, an excess density of at
least 1.5% seems required. However, for Clapeyron slope magnitudes less than the canonical -2.5
MPa/K for the postspinel phase transition, as suggested by recent work of Katsura et al. [2003], cold
downwellings from the upper mantle may be too strong and numerous to allow survival of a deep
dense layer over billions of years. In our models, the primitive reservoir appears in several forms. For
decreasing stability conditions it first appears as a global layer on top of the CMB, transforms into
isolated piles and then into blobs, before it would finally mix with the depleted mantle material.

5.4 Concluding Remarks

We have presented computer simulations of a possible early formation and the subsequent long term
evolution of compositionally distinct domains in Earth’s deep interior, and we have shown that these
models are in qualitative agreement with the geochemical record; that is, a deep, dense layer consisting
of a geochemically inhomogeneous melange is consistent with the presence of distinct types of OIB.
From such analysis alone we cannot, however, determine which of the models presented here (if any)
is representative for planet Earth. Seismic tomography is producing increasingly convincing evidence
for the presence of compositional heterogeneity both on large [Masters et al., 2000; Saltzer et al.,
2001; Trampert et al., 2004] and small length scales [Saltzer et al., 2004], see Trampert and Van der
Hilst [2005](this volume) for a review, but studies of scattering of the high frequency seismic wavefield
[Vidale et al., 2001; Castle and Van der Hilst , 2003] have, so far, not produced convincing evidence
for the type of global interface that one would expect for global layering. In combination, the results
from geodynamical modeling, geochemistry, and seismic imaging are consistent with mantle models
in which the changes in bulk composition gradually occur over a large depth range (for instance by
depth dependent subduction in the zoned convection proposed by Albarède and Van der Hilst [2002]
or in which small scale heterogeneity exists in the mantle above a distinct layer that has a diffuse
boundary, significant short wavelength topography, or both. These models are broadly consistent with
the mantle model postulated by Kellogg et al. [1999]. Further narrowing the range of plausible mantle
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models requires (1) better seismological constraints on wavespeed and density ratios and on mantle
interfaces, and their uncertainties, (2) continued quantitative integration of results from seismology,
experimental and theoretical mineral physics, geochemistry, geodynamical modeling, and (3) careful
analysis of secular variations in the geological record (e.g., major element basalt chemistry) and
comparison with predictions from geodynamical modeling of Earth’s differentiation over long periods
of geological time.
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source
143Nd
144Nd

87Sr
86Sr

206Pb
204Pb

207Pb
204Pb

238U
204Pb

187Os
188Os

3He
4He interpretation

DMM high low low low low
HIMU high low high high high high recycled crust

(<DMM)
EM-1 low interm. low rel. low high recycled

(continental) crust
EM-2 low high low rel. high interm. recycled

continental crust
FOZO/C high low interm. interm. low high

Table 1: Oceanic basalt source reservoirs and their distinguishing isotopic characteristics. DMM is
depleted MORB mantle, HIMU is high-µ (238U/204Pb), EM-1 and EM-2 are enriched mantle 1 and 2,
FOZO is focal zone and C is common. Information compiled from Zindler and Hart [1986], Chauvel
et al. [1992], Hart et al. [1992], Hauri and Hart [1993], Hanan and Graham [1996], Hofmann [1997],
and Hauri [2002].
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symbol property value/unit
cp heat capacity at constant pressure 1250 Jkg−1K−1

F degree of depletion
g gravitational acceleration 9.8 ms−2

H radiogenic heat productivity Wkg−1

k thermal conductivity Wm−1K−1

p pressure Pa
∆p non-hydrostatic pressure perturbation Pa
∆S entropy change upon full differentiation 300 Jkg−1K−1

t time s
T temperature oC
T0 non-dimensional surface temperature 273

∆T
u velocity ms−1

z depth m
z0(T ) temperature dependent depth of phase transition m

γk Clapeyron slope for transition k PaK−1

Γk phase function for transition k
δz depth range of phase transition m
κ thermal diffusivity 10−6 m2s−1

ρ density kgm−3

δρk density increase of phase transition k kgm−3

τij deviatoric stress tensor Pa
τ 1

2
half life of radiogenic heating 2.5 Gyr

Experiment I only
h depth scale 1200 · 103m

∆T temperature scale 2450 oC
α thermal expansion coefficient 3 · 10−5 K−1

η0 viscosity scale 1020 Pas
ρ0 reference density 3416 kgm−3

δρ density difference
peridotite upon full depletion −226 kgm−3

basalt −416 kgm−3

eclogite 200 kgm−3

felsic material −800 kgm−3

Experiment II only
h depth scale 2900 · 103m

∆T temperature scale 4000 oC
α thermal expansion coefficient K−1

α0 reference thermal expansion coefficient 2 · 10−5 K−1

∆α thermal exp. contrast across mantle 5
η0 viscosity scale 5 · 1020 Pas
ρ0 reference density 3400 kgm−3

Table 2: Symbols definitions and parameter values.
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symbol definition experiment
eij ∂jui + ∂iuj I,II
e [ 12eijeij ]

1
2 I,II

k κρcp I,II
α α0∆α

((∆α1/3−1)(1−z)+1)3
II

Γk
1
2

(
1 + sin(π z−z0(T )

δz )
)

I,II
δρ ∂ρ

∂F I
δρk

∂ρ
∂Γk

I,II
τij ηeij I,II
τ [ 12τijτij ]

1
2 I,II

Table 3: Parameter definitions.
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model specific characteristics Raeff
start Plate

I-a partial melting of mantle
melt segregation → crustal production 9.0 · 108 1,2

I-b Experiment I-a including partial melting
of basaltic crust to form felsic material 6.5 · 106 3

model δρc

ρ0

Henr

Hdepl
Raeff

start Raeff
end Plate

II-a 0.000 1 7.2 · 106 1.6 · 106 5a
II-b 0.005 1 7.2 · 106 2.1 · 106 5b
II-c 0.010 1 7.2 · 106 1.8 · 106 5c
II-d 0.015 1 7.2 · 106 2.3 · 106 5d
II-e 0.010 2 7.2 · 106 2.3 · 106 4

Table 4: Numerical models used in this study and their characteristics. δρc

ρ0
indicates the relative

intrinsic excess density of the deep layer, and Henr

Hdepl
its relative enrichment in heat producing elements

relative to the rest of the mantle. The effective thermal Rayleigh numbers at the start (Raeff
start) and

the end (Raeff
end) of the experiments are indicated, as well as a figure reference.
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symbol property value/unit
B1 diffusion creep prefactor Pas
B2 dislocation creep prefactor Pan2s
C0 cohesion factor 0 Pa
E1 diffusion creep activation energy 270 · 103Jmol−1

E2 dislocation creep activation energy 485 · 103Jmol−1

eij strain rate tensor s−1

e second invariant of the strain rate tensor s−1

f(F ) composition dependent viscosity prefactor
n1 diffusion creep stress exponent 1
n2 dislocation creep stress exponent 3.25
ny yield exponent 10
R gas constant 8.341Jmol−1K−1

V1 diffusion creep activation volume 6 · 10−6m3mol−1

V2 dislocation creep activation volume 17.5 · 10−6m3mol−1

ε̇ strainrate s−1

ε̇y yield strainrate 10−15s−1

η viscosity Pas
η0 reference viscosity 1020 Pas
ηy yield viscosity Pas
µ friction coefficient 0.03
σn normal stress Pa
τij deviatoric stress tensor Pa
τ second invariant of

the deviatoric stress tensor Pa
τy yield stress Pa

Table 5: Definitions and values of rheological parameters for Experiment I.
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Figure 1: Time series and profiles of several global quantities for the reference model II-e. Panels
(a)-(c) show vertical profiles of the horizontally averaged temperature, the vertical flow velocity at
x=0.5, and the horizontally averaged viscosity, respectively, at 893 Myr intervals (decreasing dash
size corresponds to increasing model time). Panels (d)-(f) show time series of the volume averaged
temperature, root mean square velocity, and volume averaged viscosity, respectively. Dashed and
dotted curves in panels (d) and (f) indicate values for the enriched layer and the depleted mantle,
respectively. Panels (g)-(i) show mean surface heat flux (top curve) and mantle to core heat flux
(bottom curve), the buoyancy parameter B, and entrainment, respectively.
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Figure 2: Mean depth/vertical coordinate of dense tracer population according to expression (11),
as a function of time: a) Uniform distribution of heat productivity; b) dense layer enriched in heat
producing elements; c) sensitivity to the postspinel Clapeyron slope.
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Figure 3: Stability of a deep dense layer as a function of chemical density contrast (horizontal axis)
and internal heating of the layer (vertical axis). The grey scale of the dots shows the mean depth
of deep layer tracers after 4.5 Gyr of model evolution, according to equation (11). Dark grey dots
indicate stable configurations, light grey dots show complete mixing.
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Plate 1: Secular evolution of the composition (left) and temperature (right) fields of model I-a. The
color scale in the composition plots indicates the degree of depletion of mantle peridotite. Black
indicates basalt, and red indicates eclogite. The arrows show the instantaneous flow field. The
contours in the temperature frames indicate regions of partial melting.
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Plate 2: Incompatible trace element concentrations, corrected for radioactive decay, at nine different
times in the evolution of model I-a (see also Plate 1). Pristine material is white, depleted material is
yellow and enriched material is blue/grey. Curves indicate phase boundaries at 50% (solid) and 10
and 90% (dashed) of the transition for peridotitic (red) and basaltic (green) compositions.
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Plate 3: Non-mantle material type (a-c) and trace element concentration, relative to pristine mantle
peridotite (d-f) of model I-b, which is started from a 600x600 clipping from the upper right corner
of the 1200x1200 km domain of model I-a, some time between (b) and (c) of Plate 1.
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Plate 4: Snapshots at five subsequent times of model II-e, showing the composition field, the tem-
perature field with stream lines, and the viscosity field (effective values range from 1021 Pas (red) to
1023 Pas (blue)).
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Plate 5: Snapshots after 4.5 billion years of model evolution of the composition field, temperature
and flow field (stream lines), and horizontally averaged temperature profiles for models II-a,b,c, and
d.
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Plate 6: Mantle composition, temperature and flow field after approximately 4.4 billion years of
evolution, for four different magnitudes of the postspinel Clapeyron slope. a) γ = 0 MPa/K, b)
γ = −1.25 MPa/K, c) γ = −2.5 MPa/K, d) γ = −3.75 MPa/K.
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