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e Equation of motion

e Stress-strain relation for elastic medium



Lagrangian approach: follows particle at specified position X and
specified time t. (Alternative is Eulerian approach.)

Particle 1: at X with displacement z(X) moves to x + u(x)

Particle 2: at X + dx with displacement t(x + dx) moves to
X 4 0x + U(Xx + 0Xx)

Initial difference: dx

New difference: 6x + §u = X + dx + t(x + dx) — (x + u(x))
= 6% + 0(X + 6%) — 0(X)

1st order Taylor expansion:

(% + 0%) = U(X) + 00 ~ G(%) + (6% - V)@

where
ou = (6x - V)u
ou;
ou; = o, 0X;
8U,' _ 1 (8u,~ _ 8Uj) —|—1 <8u,- 1 (9uj>
Ox; 2 \0x; Ox; 2 \0x;  Ox;
rotation deformation

Notation:



Surface forces

Traction T at a point across internal surface S with normal 7
(for a closed surface 7 is the outward directed normal):

= §F
T(n) = limss_ 5S

We have, as V — 0,
TdS =0

nn

and therefore T(—7) = —

Surface forces

—

h)

also:
T(R)SH + T(—%1)Ss, + T(—%2)Sx, + T(—%3)Ss, =0
with
S)Aq = S,A,nl 5&2 = Sﬁng 5§<3 = S,A,n3

and volume tedrahedron — O:

T(A) = T(%)n; (summation convention)



Surface forces

Again
So

Furthermore, 7;; = 7

So

or

Body forces

Body force works per unit volume (unit is [N/m?3]).

Point force f:
m in direction X,, axis
m at location &

m at time 7

fi(x,t) = A8(x — &) 6(t —7) i



Dirac delta function

Definition delta function

/ " F(x) 8(x) dx = £(0)

— 00
B(r) Delta Function
i.3 T T T

o0, r=1{ e
§(r) =

10 {0 r#0
08l Eoé-;r.\d =1

o-fmf;.r:-a dr = flo

L " "
-1 L] [}
kS

Surface area under delta function = 1 (width — 0, height — o0).
Thus,

/OO f(x) 0(x —a) dx = f(a)

— 00

Dirac delta function

/_Z /_Z /_Z £(%) 6(%) dV = £(0)

/_O; /_Z /_O; (%) 0(x = &) dV = £(§)

Delta function is derivative of Heaviside step function, H(t):

0 t<O0
H(t):{ 1 t>0



Kronecker delta

s _ [0 ifi#]
P= 1 ifi=j

Body forces

Body force works per unit volume (unit is [N/m?3]).

Point force f:
m in direction X, axis
m at location &

m at time 7

fi(x,t) = Ad(x—&) 6(t — ) din

Scalar A has dimension of impulse, unit is [Ns].



Equation of motion

Rate of change of momentum of particles in V

o [ 0 _ _
5 o5 av = [ Fav e [ T(ayas

In Lagrangian description pdV constant:

A dV—/ ?dv+/ T(R)dS
vpé)l‘2 v S

/T,'dS:/T,'jnde
S S

With the divergence theorem

/T,-dSz/ ALY
S v 0%

(92U,' 87’,]
Jo (oo i) o=t

Equation of motion

We have

Thus,

Again:

or

Equation of motion:

pu; = fi + 7jj j



Elastic medium: medium with natural state with zero stress and
strain to which it will return when forces are removed.

Generalization of Hooke's law:

Tij = Cijpq€pq
Cijpq Is 4th order elasticity tensor with 81 components

Symmetries:
W Tij = Tji = Cijpqg = Cipq

W €pg = €gp — Cijpg = Cijgp

Thermodynamics: strain-energy function

— Ll oo — 1o
W = 3Ciipq€ijepq = 3Tij€j

1 1
W= 5 Tij€ij = 5 Ciipa€pq€ij

1 1
W= 5 Pa€pq = 5 Cpqij€ij€pq

W Cijpqg = Cpqij

Due to symmetries cjjpq has 21 independent components



Cijki = M0ijOks + p(0ikdj1 + 0716k

with Lamé’s constants A and pu.
It can be shown that:
Tij = )\05,‘1' + 2,LLe,'J'

with dilation 6:
0 = e11 + exn + e33 = €

e Green's function

e Reciprocity

e Representation theorems



Uniqueness

u(x, t) is uniquely determined
after ty
throughout V with surface $§

given:
m U(X, tg) and u(x, to)
m (X, t>tg)
n 7'()‘(, t>ty)over 51 <S
m u(x,t>ty)over S-S5

Betti's theorem

/(f,-—pu,-)dv+/ THdS =0
4 S



Betti's theorem

/(g,- —pi),-)dV—|—/ TYdS =0
Vv S

Betti's theorem

Take scalar product with v and & respectively:

/(fi—p'u,-)v,- dV+/ URY dSZ/(gi—pVi)Ui dV+/ T} u; dS
Vv S 4 s

This is Betti's theorem.

It gives the reciprocal relation between the displacements
corresponding to 2 systems of forces and tractions acting on the
same volume.



Betti's theorem with causality

Betti's theorem integrated over time:

/ dt/ p(ujvi — uivi)dV =

—00 174

/ dt/ (V,'f,' — u,-g,-)dV+/ dt/(v,-T,-D — u,-T,-V)dS
— 00 vV —00 S

Evaluate system | at t; = t, and system Il at ty =7 — t
|.h.s. becomes (change order of integration):

/ dV/ olin(t)vilr — ) — ui(£)ii(r — £)]dt
Causality (i.e. medium at rest until distorted):

”’:L.'izo}tgo

V,':V,'ZO

Betti's theorem with causality

/OT p%[il,-(t)v,-(T ) 4 i — ()] dt =

plui(T)vi(0) + vi(0)ui(7) — 4i(0)vi(7) — vi(7)ui(0)] =

With causality |.h.s. is zero, thus for r.h.s.

/ dt/ (u,-g,- — Vif})d\/ :/ dt/(v,-T,-D — U,'T,-V)ds
—00 Vv —00 S

/_oo dt /\/[D()_(’ t)-g(x,7—t)—v(x,7 —t)- ,?()-(’ £)]dV =

/_oo dt/j[V(X,T —t)- "rt‘l(x, t) — o(x,t) - 7—0()-(77 —1)|dS



Betti's theorem with causality

Betti's theorem (with causality):

/_oo dt /V[U(F(, t)-g(x,7—t)—v(x,7 —t)- ?(;(’ £)]dV =

/_oo dt/S[V(i,T —t)- "rﬂ(x, t) — o(x,t) - Tv()-(m — 1)|dS

Important, because it allows the representation of the displacement
due to a system of forces by those produced by a different system
(given that causality is satisfied).

Displacements due to a complicated system of forces can be
represented in terms of those produced by a simpler one.

Green’s function

The displacement field due to a unit impulse in space and time is
the elastodynamic Green’s function.

Green's function:

The ith component of displacement at location X and time t due
to a unit impulse acting in the X,-direction at location & and time
7 is denoted by the Green's function:

Gin(>_<7 t; gv T)
Or

due to



Green’s function

Equation of motion:
puj = fi + 1ijj = fi + (Cjkruk,1) j (see problem 2.1)

for uj(x,t) = Gjy(x, t;€,7) due to a unit impulse at (£, 7) in the
X,-direction becomes

P Gt &) = 6005t 2 (a2 Gun(x. 1 E.7)
patz in(X, 1,8, T) = Oin T aXJ Uk/@ kn )

Initial conditions:

(Xté-v) 0 v -
th(Xt& =0 }for t<7 and X #¢&

and

P ot E7) = 6n8(3—B)0(t—) 42 (-2 Gen(3, £, 7)
p@tz in\ X, 1, &, T) = 0jp0\ X T 8XJ Cljk/a kn\ X, ;

(a) Boundary conditions independent of time (i.e. rigid boundary):
Time dependence only through t — 7:

Time reciprocity

G()_<7 t;f,T) G( t—T, § O) (X7 —T;f,—t)



(b) Traction free boundary condition on S and:
for system I:

(%, t) = 6imd(X — E1)6(t — 1) — ui(X, t) = Gim(X, t; &1, 71)
for system |I:
gi(x,t) = 6imd(x — &)6(t + 1) — vi(X,t) = Gin(X, t; &2, —T2)

Then with Betti's theorem for causal conditions

/OO dt/ G,'m()_<, t;§1,71)5,-,,5(>'< — 52)5(7‘ — t—i—Tz)dV =
—00 74
/OO dt/ Gin(%, 7 — t: &, —T2)0imd0(X — &1)6(t — 11)dV
—00 4
or

Gnm(g277_ + T2, 517 7-1) — Gmn(glaT — 71, 527 _7_2)

Gnm(g277_ + T2, 517 7-1) — Gmn(glaT — 71, 527 _7_2)

e With 71 = m» = 0, we have

Spatial reciprocity

Gom(&2,T: €1,0) = Gmn(é1, 73 £2,0)

e With 7 = 0, we have

Gom(&2,72; €1, 71) = Gmn(&1, —71; &2, —72)

— space-time reciprocity



Representation theorem

We had Betti's theorem with causality:

/ dt/ (u,-g,- — V,'f,')dV :/ dt/(v,-T,-D — U,'TI-V)dS
— 00 % —00 S

With

gi(X,t) = 6ind(x — £)d(t) giving vi(X,t) = Gin(X,1;&,0)

and

|4
Ti" = Tjinj = Cijravi,1nj = Cijki Gin,11;

we get

/_oo dt /V[Ui(>_<, t)(sin(s()?_g)(s(T—t)—G,'n()_(,T—t; g) O)f;()‘(, t)]d\/ —

/ dt/[Gin(;ﬂT—t? £,0) T (%, t)—ui(X, t)Cijkt Gk (X, T—t, €, 0)n;]dS
—00 S

Representation theorem

With
[t [l 08 (x - 3( — 0V = un(E. 7
we find
un(&,7) = /OO dt/v G,-,,f,-c/v+/oo dt/S[G,-,,T,U—u,-njc,-jk,c;k,,,,]ds

Change of variables:
X—=&t—T1, 6> X Tt

un(X, ) :/_OO dT/V Gin(€, t — 7, %,0)(€, 7)dV (£)+

/_ dT/S[Gin(g, t—7;%,0) TF (&, 7)—ui(&, 7)nj ikt Gin 1 (€, t—7: %, 0)]dS(€)



Representation theorem

un(x,t) = /_OO dT/V Gin(&, t — 7%, 0)i(E, 7)dV(€)

+/_Zd7_/S[Gin(§_at_T;)_QO)TiD(gaT)
—ui(&, T)njCijks Gkn 1 (€, t — 73 %,0)]dS(€)

The integrals involve a Green's function with source at X and
observation point £. Apply spatial reciprocity:

G,‘n(g, t —7;%,0) = Gpi(x,t — T;g, 0)

Representation theorem:

Un()?, t) — /_OO dT/\/ Gni()?a t— T;éa O)fl(gﬂ_)dv(g)

+/_Z dT\/S[Gni()?at_T;gao)TiD(gvT)
—ui (&, T)n;Cijit Gk 1 (X, t — T3 £,0)]dS(E)

Representation theorem with boundary conditions

(a) Rigid boundary condition:
vi(€,t —7) = G'8(&,t — 7;%,0) = 0 for £ on S:

un(%, 1) / dr / (€,7)GE (%, t — 7;,0)dV/(£)
/ dr / ui(E,7) Cian; 6B (R, t — 7 ,0)dS(€)
0

Traction free boundary condition: )
{,t—T) = Cijuin; G,Z,e?(f, t—7;%,0)=0foronS:

T
/ dr / (1) Gl (%, t — 7:£,0)dV ()
w [ ar [ Gl (.6 = i £ 0 THE P)as(d



Representation of seismic sources

Fault slip: body force representation

Slip across ¥ — discontinuous displacement at >~ — equation of
motion not valid at . Equation of motion is valid at all other
points — apply representation theorem:

Un()_<, t):/ dT/V Gn,f;dV(f_)—F/ dT/Z+S[Gn;T,-D—u,-njc,-jk,G,,k’/]dS(g)

or with 7 — ¥ (fault/surface normal), k — p, | — q:

un(>_<, t):/ dT/V Gn,'f;'d\/(g)—l—/ dT/):+S[Gn;T,-D—u,'l/jC,'quan,q]dS(g)



Fault slip: body force representation

With f = 0 and homogeneous boundary conditions on S
(fS G, Ti‘_’ — uin;Cjjki Gkn,1dS = 0), and fault surface integration
using slip o at fault :

un(x, t) = —/ dr [/z+ ufr(f_’, T)erc,-qu% Gnp(X,t — 7;€,0)dX

— 00

PR 0 _ =
+/_ u; (577)%' Cqua_&?an(Xat_T?&O)dZ]

Define fault normal vj = vT = —1u7 so that:

J 7

— [/ ufrujrdZ—i—/ ui_l/j_dZ] = —/(ufr—ui_)z/de:/Auil/de
>+ - > >

Then

un(X, £) = / dr /z Au,-(g‘,T)ujc,-J-pq%G,,p(x,t—T;g‘,O)dz
—00 q

Fault slip: body force representation

Displacement up(Xx, t) due to slip At across & with normal 7

00 _ o .
il ) = / b / BSHE P mae G & — 71 5 DT
—00 2 8€q
To represent fault slip as body force a volume integral is needed.
Use 'trick’:

Gop(X. t — 7:€,0) = / Gop(%, £ — 73177, 0)8(7 — £)dV/(7)

0 = 0
pe o5t =mE0) = [ Gt = 7i.0) 300 - Davi(i)

= [ Gulrt =700 8?7q6(ﬁ—5)d\/(ﬁ)



Fault slip: body force representation

Therefore

9 _
(%, t)—/ dT/Au,(g, )VJC,J,,C,&S Gop(%, t — 71E,0)dE =

/ dr / [ / Aui(&,T)VCiipg=— a 5(7 —E)dZ(é)] Grp(X, t—T7;1,0)dV/(7)

Fault slip AT on X is represented by body-force equivalent FAZ:
o _
AU/ VJCUPQa (77 T f)dZ(f)

to give 'predicted’ displacements

(X, t)—/ dT/ “(77,7) Gnp(X, t — 7;71,0)dV/(77)

Convolution

Convolution of f(t) and g(t) is defined as:

(0.0}

h(t) = f+ g = /Oo F(r)a(t — 7)dr = / F(t — 7)g(r)dr

—00 — O

For causal functions f and g (f(t) =g(t)=01t<0):

f*g:/o f(T)g(t—T)dT:/O f(t—7)g(r)dr

(Note: if f(t) =46(t): h(t)=Ffxg=g(t) )

Application to body force distribution f(X, t):
un(R, 1) — / dr / £(7,7) Gop (%, £ — 77, 0)dV/(7)
—00 74

= /fp*c,,,, dV
14



Example: Slip on a fault

Fault plane X in plane &3 =10
Fault normal ©# = (0,0, 1)
Fault slip At = (Auy,0,0)
Body-force equivalent

_ ) _ _
F(7,7) = — /z Bui(E 7, -7~ DIZ(E)

becomes

- 0
01.7) = = | BunE)erspqy 007 - Dad

Example: Slip on a fault

For isotropic medium:

Cijipg = A0jj0pq + p(Jipdjq + Gigljp)

C13pg = 0 except for c1313 = 1 and ci331 = W

AT = — / Aun(E, T)u@)@%é(ﬁ—f‘)dgld@
f(7,7) =
Hi7) = / Auy(€,7) )—5(77 £)de1de

§(77— &) = 0(m — &1)3(m2 — £)8(nz — &3) with & =0on &

First consider fi:
f (7, 7) = —u(7)Au(7, ) 5(773) on X, elsewhere ff =0



Example: Slip on a fault

Using 8 (x)
] PGk

) j
M=rxf=\|m m mn
hi h £ 8(x)

it can be shown that f1(77, 7) = —pu(N)Aur (7, T

7)
(only on X!) represents a force couple (5 o 6(773)
MQZ

i
on3
) w th moment
M2=/773f1d\/ = /—"73MAU15’(773)C/771€/772C/773

Vv Vv

= / uAule = ,uAulz
)R

with Au; the average slip and X the fault area.

Example: Slip on a fault

Next consider f3(77,7) = — [5 u(€)Au (€, ) -0(7 — £)dérdé;
(£ 0 on X, elsewhere f3 = 0).

f3 does not represent a force couple:

HT) = - /z (@) Au(E, T)a%[a(m — e)6(n2 — €2)5(ns)dérds

_ _i () A (7, 7)] 0 (113)

but has a net moment:

M, — / oy
vV
0 _ _
_ / m—— [(7) A (77, 7)] 5 (13) dy drgodin
v Om

= —/,LLAUle:—,LLAulz
>



Example: Slip on a fault

Interpretation of f3 = —8%1 [(7)Aui(7,7)] d(n3) distribution:

S

Fault slip is equivalent to a distribution of single couples (1) plus a
distribution of single forces (f3) that have the net effect of a

opposing couple.

Example: Slip on a fault

Body-force equivalents are non-unique, different distributions
produce the same radiation from slip on a fault.

For point source approximation — double couple.



Point source representation

Point source representation adequate if A > (length of X).
Furthermore, if period > source duration and origin at t = O:

fT) = —Moa(m)a(ng)[a%awg)]H(T)
f2(7777_) = 0
fT) = —Mo[aim5(m)]5(nz)5(?73)H(T)

where H(7) is the Heaviside step function and

MOZ/,LL|AU|dZ
>

Unit of My is Nm.

Moment tensor representation

We have found

Un()_(, t) = / dr fPAD(ﬁ, 7_) an()_<7 t— T, Uk O)dV(ﬁ)

but also, earlier,

00 B ) B
Un()_(,t) = /_ dr /ZAUI(€77_) VjC[qua—é.anp()?at_T;gao)dz(g)

0
= AU;V'C," * —Gn dX
/): J=upq 8€q p

%an can be regarded as the response of a single couple with a

force in the é’p—direction and arm in the éq direction.
Aujvjcijpq can be considered as the strength of the (p, g) couple.



Moment tensor representation

We therefore have 9 couples to obtain equivalent forces for a
displacement discontinuity:

(L,1) (1..2) 1,3)

@10 2,2) 2,3)

3,1 3,2 (3,3)

P
RS

Moment tensor representation

Define the

Moment density tensor:
Mpq = AUiVjCijpq

(Note that mpq is symmetric.)

Then
0

up(x,t) = /z Mpq * 8_§ande

with in case of isotropy ( Cjjpg = AJjjdpq + 1(0ipbjq + 0igljp) ) :

Mpq = AAUVi0pq + p(Auprg + Augrp)



Moment tensor representation

Examples:
(A) Fault slip with Az parallel to plane ¥ (— Awn -7 = 0)

Mpq = (Aupvg + Augvyp)

For our example with ¥ plane with £&3 =0, i.e. ¥ =(0,0,1), and
A in &-direction At = (Awy,0,0):

0 0 pAw
m = 0 0 0
,LLAUl 0 0

representing a double couple mechanism.

(B) Tension crack in plane with £&3 =0 (— 2 = (0,0,1) ), and
At in &3-direction (— Au = (0,0, Aus) ):

A us 0 0
m= 0 A u3 0
0 0 (A +2u)Aus

Moment tensor representation

Define moment tensor M as:

M,'J' = m,JdZ
2

so that
Up = Mpg * Gpp,q

where M is the representation for an effective point source.



Derivation of Green's function for a homogeneous,
isotropic, unbounded medium

Statement of the problem

We try to find t(x, t) for a point force in a homogeneous,
unbounded, isotropic, elastic medium:

puj = fi + (A + p)ujji + pujj

or

pi=f+(A+2u)V(V- 1) — uV x (V x 0)
with a point force at X = 0 in Xq-direction:
f(x,t) = Xo(t)6(X)x1
So, solve the equation of motion for a point force:
pti = Xo(t)6(X)%1 + (N +2u)V(V - 1) — puV x (V x )

The response of the medium to this force is:

Un()_<7 t) = Xo * Gn1



Helmholtz decomposition

First, learn about_ Helmholtz decomposition.
Any vector field f(x) can be decomposed in terms of Helmholtz
potentials ® and V:

F=VO+VxV with V-W=0

Define o
VPF =f

using the definition of the vector Laplacian:
V2F=V(V-F)=V x(V xF)

=Vb+VxWU

where

¢=V-F

and

V=-VxF with V-V=-V-(VxF)=0

Helmholtz decomposition

Note: _
V- f=V%®
VXxf = VxVP+VXxVxWU
= V(V V) - VU =_VU
With o
V2F = f = Xo(1)6(X)%1
we have

V2F1 = Xo(t)5()_<)
V°F, = 0
VPF3 = 0



Finding the solution

szl = Xo(t)é()_()

has form of Poisson’s equation for fixed t.
The solution of

V2g = —4ni(r)
IS 1
g(r) = v
(e.g. Boas, section 13.8)
We therefore find
A= —Xo(t)—
TN anR|
F, =
F3 =

®=V.F
O(%,t) = V- [-Xo(t)——%
oh = O gz
_ X)) 90 1
B 4 Oxq |X|
V=_VxF:

V(z,t) = V><<47T1‘)_<|Xo(t)f<1)
_ Xo(1) (O,ii _ié)

A7




Finding the solution, continued

After Helmholtz decomposition of f we can do a similar

decomposition for u:
U=Vo+V xey with V-¢y=0
Substitution in
pi=f+(\+2u)V(V - 1) — pV x (V x )

gives (together with f = V& 4+ V x V).

p(Vo+V XJ)—VCI)—V XxW—(A2p)V(V-Vo)+u(VxVxVx) =0

Finding the solution, continued

P(V+V x0)) =V D -V x W—(A+20)V(V-V )+ (VX VX Vx3) = 0

By taking the divergence (V) we find

pV2h — V20 — (X +2u)V3(V3h) = 0

or
p p
> Xo(t) 0 1
$-aVig= Arp Oxq |X|

where V¢ is the P-wave component of 7 and a = \/—’\4;2“,

the P-wave speed.



Finding the solution, continued

p(V&—I—VXzZ)—VCD—V><\TJ—(A—I—ZM)V(V-V@—F,LL(VXVXVMZ) =0
By taking the curl (Vx) we find

PVXV X -V xVxV+pu(VxVxVxVxgp)=0

or N _ _
pU+ (VX V x )=V
or -
= - v
¢_ﬁv2¢:_
p p
or

5—52V2&:X0(t) (0 0 1 _ii)

4rp \ Oxz|X| Ox |X|

where V x @E is the S-wave component of & and § = \/%,

the S-wave speed.

Solutions to scalar wave equations

Now we need to obtain the displacement & from the scalar
potentials ¢ and . These potentials satisfy the wave equation.

Find solutions to scalar wave equations:
(1) (see A & R, Box 4.1)

g — Vg =6(x)é(t)

1 o(t—|x|/¢c)
A7 c? ||

g(x,t) =




Solutions to scalar wave equations

(3)

ex = e Rkog
(4)
g — C2V2g = ®(x, t)
with
d(x,t) = _oo dr V<D(§,7)6(>‘< —&)o(t — 1)dV(§)
F o |x=¢ _
g(x,t) = 47r1C2/V¢(§’|;—g|C )dV(g)

Solution for ¢

For the scalar potential ¢ we had:

X)) 0 1
4dp Oxq |X|

6 —a’V3¢ =

so we find the solution

ked )
¢()?,t):_ 1 /\/Xo(t S ) 0 1

— = —dV
@y k=2 oa g’

With |x — | = a1 it can be shown (see A & R, Box 4.3) that

(%, 1) = —— (ii) /Oi/a 7Xo(t — 7)dT



Solution for v

For the vector potential 1 we had

g;b-—ﬁZszZ:XO(t) (0 o 1 _ii)

4rp \ Ox3 x| Oxs |X]

which has the solution

x1/8
Y(x,t) = 1 (O 0 1 _ii)/o TXo(t — 7)dT

4p \ Ox3 || Oxz |R|

Solution for u

With 1 = V¢ +V x 9, [x| = r (i.e. £ =0), and some algebra, it
follows:

_ 1 0?2 1\ [P 1 Or Or
ui(x:8) = Amp (8x,-3x1 7) /r rXo(t = 7)dT + Amtpa®r (8X,- 8x1) Xo(t

[0

1 or Or
i A pB2r (5i1 X 8_X1> Xo(t = r/6)

Now point force Xp(t) in the X; direction and using

i 0 — :
XT = 8_>:, = v; (direction cosine)
(%) L 3 5)1/r/ﬁX(t VAT + i Xo(t — 1/
uilx,t) = — (377 —9jj) =3 - iV~ -
4rp ViV i) 3 a TX0 T)aT 47T,00427%I’ 0
1

+ (055 — i) %Xo(t —r/B)

4 p[3?
For short Xp(t), 1st term }2 — near-field term (problem 4.1).
2nd & 3rd terms oc 1 — P-, S- far-field terms.

r



Far-field P-wave term due to point force

Far-field P-wave due to point force Xp(t) in Xj-direction:

1 1
P/-
P(%,t) = ———~i7;=Xo(t —
u; (Xv ) 47T,0C¥2,Y’YJF 0( I’/Oz)

m decays as
r

m argument is t — ~: propagates with speed o = w/”%
m waveform proportional to Xp(t) at retarded time
m u? proportional to v; — longitudinal motion

Far-field P

\\\Tf//’
- T

Far-field S-wave term due to point force

Far-field S-wave due to point force Xp(t) in Xj-direction:

1
Ufs()_(a t) = 47T,052 (5U 'YI'YJ) XO(t —r/B)

1
m decays as

m argument is t — é: propagates with speed ( = \/%
m waveform proportional to Xp(t) at retarded time
m ° perpendicular ¥ — transverse motion

Far-field S

/// . \\\
[ ! |
\ i
N A
\\ //

(b)



Near-field term due to point force

Near-field term due to point force Xp(t) in Xj-direction:

N 1 1 [r/B
up'(x,t) = yr (3viv; — dif) 3 /r/a TXo(t — 7)dT

m Contributions from V¢ and V x 1)
— combination of P- and S-wave motion

m Waveform not proportional to Xp(t)

Near-field recording

Landers Recorded at Lucerne Valley

LA I R R

N . ]
R fault-normal acceleration
3 ]
Q - -
@
[ -
D -
e -
= 0N -
e + L
[
L=
><|5 L T I T T T I T i 3
w L
] 100 fault-normal velocity
. L
g 0
[
£ i
k= 0
[
(&)

150
100

centimeters

b

0 1 I 1 3 1 1 | 1 1 1
0 10 20 30 40
time (seconds)

M=7.2, 1992, Landers, California, earthquake at 3 km distance.



Green function for homogeneous, isotropic, elastic medium

o due to a point force F(t)d(x — &) for a hom., iso., el. medium:

+

+

47
1

1

1 r/B
P (3vnYp — Onp) 3 /r TFo(t — 7)dT

/o

1

M—pag%%;’:p(t— r/c)

1

1

dnp P (0np — ¥nVp) FFp(t —r/B)

where r = |x — £| and v; = _Xi:é“i

,i.e. 4 is unit vector from ¢ to X.

Since up(X, t) = Fp * Gpp this means that we have the Green

function:

Gnp(X, t;éa 0)

1

4mpr

1

1
Amp[3?

A por?

r/B

(37070 — Onp) T7o(t — 7)dT

r/a

1
fynvp;é(t— r/a)

(5np - Vn’YP) 15(t o I’/ﬂ)

r

We have the Green function in a homogeneous,
Isotropic, elastic medium.

Now find the displacement field & due to dislocation

source.



Displacement field u due to dislocation source

For a displacement discontinuity we had
0
Un()_(, t) = / AU,'I/J'C,'qu * —G,,de
> 8€q
or

un(X,t) = / Mpg * Gnp,qd2
>

To obtain far-field expression due to dislocation source we need
far-field expression of Gy g.
The P-wave component of the Green function is:

1
P _
Gpp = 47Tpa27,ﬁp 5(t— r/a)
Thus
, 1 1 1
Crpqg = 4mpa’ 7n,q7p75(t_r/04) +%7p,q—5(t—f/04)

# (1) 8o/ (e oL

Displacement field u due to dislocation source

1 1 1
G,’; q W [’Yn,q'Yp;(s(t —r/a) + ’Yn’Yp,q;fS(t —r/a)
1 1
T YnYp (;) ot —r/a)+ %7,;7 [0(t — r/a)])q]
7q
With
Yig = 07 _ Ji%q — dig
b 0g, r
and
or B
oe,

Ist term: 2 ; (fy,,qr)

2nd term: < = (%qr)
.

3rd term: oc % @ (== - —7q)

4th term: o 1. %5(1‘ —r/a) =6(t — r/a)%laa—gq o(t — r/o)



Displacement field u due to dislocation source

Neglect O(rlz) terms for far-field approximation:

p . InVp7q I
an,q ~ 47‘(‘pa3 ;(5(1’ — r/oz)

For a point dislocation source with up(X,t) = Mpq * Gpp.q
the far-field P-wave displacement field is:

P/ YnVpVq y
ul (x,t) = %Ml,q(t —r/a)

where M,q(t — r/a) is the time derivative of the moment tensor.

Analogously, the far-field S-wave displacement field is:

5n — In ’
(. 0) = el o 1)

Double-couple P-wave radiation pattern




Double-couple S-wave radiation pattern

P- and S- wave displacement fields

We had
P/= _ np7q
(1) = T Mp(t — r/a)
US()_( t) — (5 7n7p)'7q M (t . r/ﬁ)
n ) 47Tpﬂ3l’ pPq
With

Mpq(t) = n(vpAug(t) + vgAup(t))x

we find that the far-field displacement field u,(X, t) is proportional
to Auj, the time derivative of the displacement at the source.

And a similar Au;-dependence when the moment tensor density is
used (mpq(t) = fZ Au;(ﬁ, t)VjC,'jk/dZ).



P- and S- wave displacement fields

Isolating time dependence: Mpq(t) = Mpaf(t), we have

1 1 -
P/-
n (X, t) = ampadr 7 VpVaMpq f(t —r/a)
and we can recognize the following factors:
1 1

Ampad r

geometrical spreading

Yn VpYgMpgq radiation pattern

f(t —r/a) time dependence
For u>:
1 1
Amp@3 r
1 1
Amp33 r
(6np — YnYp)VqMpq radiation pattern
f(t—r/B) time dependence

uy (%,t) = (Onp — 1 ¥p)VaMpq (t — r/B)

geometrical spreading

Ray theory:

a high frequency approximation of the solution of
the wave equation.



Ray theory: outline

We need to find the solution of

pu; = Tijj = [Cijkitk,1]

everywhere outside the source region.

For general heterogeneous media this equation cannot be reduced
to the wave equation.

We often use ray theory for inhomogeneous media specified by rays
which are the normals to wavefronts.

In many applications it is sufficient to know the travel time and the
amplitudes along the rays.

Outline of theory is presented for scalar wave equation:

1 .
2z)" ="

V2 —

Ray theory: outline

For a homogeneous medium the solution of the wave equation is

or

for a spherical wave.

(1) Waveform remains same (¢o(t)) and propagates with constant
velocity c.
(2) The amplitude varies as geometrical spreading occurs.

We look for a similar solution for an inhomogeneous medium:
a pulse propagating with local velocity c(x) without distortion.



Ray theory: solve wave equation in frequency domain

Using Fourier transform w.r.t. time, and its inverse:

o) = [ olx. et

1 [ -
o(x,t) = —/ d(x,w)e "“dw
27 ) _ oo
we obtain in frequency domain:
2
w
Vip+ —5¢=0
c
Take as trial solution:

$(%, w) = do(w)A(x)e™TH)

Important features: (1) separation of frequency and spatial
dependence, and (2) linear frequency dependence of phase.

Ray theory: solve wave equation in frequency domain

Then _ _
Vo = ¢o (VAe'wT +iwAY Te'wT)

and
V2 = o (V2Aef” 4 2i(VA-VT)eT
o iwAV2TewT sz\VT|2ei”T>

Substitution in wave equation and division by ¢ge™T:

2
V2A — WAIVT]? + %A] +i[20(VA-VT) +wAV2T] =0

Real part and imaginary part have to be zero.



Ray theory: eikonal equation

Real part:
w2
V2A - WPAVTP + —5A=0

For high frequency: 2nd and 3rd terms are dominant
— high frequency approximation yields

Eikonal equation:

1

VTEP = 25

giving the travel time T(x).

Ray theory: transport equation

Imaginary part:
2w(VA-VT)+wAV?T =0

This is the transport equation which allows the calculation of the
amplitude A(X) from travel time T (x).




Ray theory: interpretation of the solution

We had
d(%,w) = ¢o(w)A(R)e™TX)

where ¢p(w) is the source spectrum:

do(t) = % /_ do(w)e—“tduw

We obtain for ¢ in the time domain:
1 [ iy
61) = 5 [ dolw)ARETOe
™ — 00

O Ax) [ iw(t—T(%))
= - /_oogbo(w)e dw

= A(X)¢o (t — T(X))

In the high-frequency ray-geometrical limit the waveform does not
change and the function T(x) gives the travel time.

The lines T(x) = constant are wavefronts.

Rays are defined as curves perpendicular to the wavefronts.

Rays and wavefronts

wavefronts




Kinematic ray tracing

Consider the implicit equation of a ray X(s) where s is the distance
along the ray. The tangent is defined by

dx

ds

The tangent 7 is parallel to VT, with VT perpendicular to the
wavefronts of T(x) = constant.

n—=

With the eikonal equation |V T|? = %

we obtain: Iz
X
RN VAT
ds ¢
We define the slowness vector p as
1 dx
p=VT =——
P cds
and
_ 1
p=1pl=-
c

Kinematic ray tracing

How do we obtain the ray path knowing c(x)?

We need to eliminate T in % = cV T to obtain x(s) depending

only on c¢(x). This can be achieved by evaluating %:

VT _ d (1%
ds  ds \cds

The derivative to s is the projection of the gradient on tangent n:

izfr-V:cVT-V
ds

dVT
ds




Kinematic ray tracing

Thus J /1 dx .
X
ds (zg) =V (‘)

dp 1
F_vy(=
ds (c)
This equation can be solved by integration if the initial conditions

— A dx .
X and h = 37 are given.

or

Example: For a homogeneous medium (¢ = const.) we find

—— =0 therefore X=23s+b

where 3 and b are vector constants.
This means a straight line in the a direction with initial point b.

Kinematic ray tracing

Now we want to find the travel time along the ray.
We already defined

1 dx
c ds
and T 1
Or with JT
T = [ —d
/ds °
we have



Kinematic ray tracing through 1-D model

Problem:

Find distance and travel time for a flat layered Earth model ¢(z):

dp
==V

(

We find that px = const and p, = const are along the ray.
and propagation in x — z plane we have

1dx
c ds

With p =

Px
Py
Ps

1

c

)ﬁ

1 - -
ESIHI

0

L cosi

C

OO RO =

NoS|efle

Px

Kinematic ray tracing through 1-D model

For the travel ti

so that we find

me T we have:

T :/ L_ds
x(s) €(X)

1

Ty =2 " =

V1—c2p?

And for the horizontal distance X we have:

X = / dx
x(s)

so that we find

Zmax

dz

P
0o /1—c?p?



Ray amplitude

Amplitude A is obtained from the transport equation:
2(VA-VT)+AVT =0

multiply by A:
2A(VA-VT)+ AV?T =0
or

V- (A*VT)=0

e

’
’
G
’
4
4
”

,
y
,
S

.
-----

ny

Ray amplitude

Integrate over volume of tube of rays with end surfaces S¢ and $;
at travel times tg and t;, and apply Gauss's theorem:

/AZVT-hdszo
S

S is the surface enclosing the volume, and 7 the outer unit vector
normal to S.

The outer normal corresponding to 5S¢ is —cV T.

The outer normal corresponding to 51 is cV T.

The outer normal along the tube is normal to the rays. For this
part of S we have VT - h = 0.

Thus: e

/cA2VT-VTd5: cA’V T-VTdS 5
50 51

Using the eikonal equation |V T|? = é:



Ray amplitude

/ 1A2d5 - 1A2ds
So € S ¢

For a narrow tube we can approximate:

<1A2) 6Sy = (1A2) 05y
9 0 ¢ 1

or .
ZA%5S = constant
c

g—:% specifies the geometrical spreading.

— The amplitude is inversely proportional to square root of the
geometrical spreading.

Wavefield decomposition into plane waves



Plane waves

Plane wave propagates in direction T with speed c if

m at a fixed time the physical quantity is unchanged over each
plane normal to /,

m the plane propagates with speed c in direction 1.

-

Space-time dependence is given by:

T %
t _
c
Slowness vector s is defined as:
]
5= —
C
Plane waves
In Cartesian coordinate system:
i Sy 1 sigi
S — S = —
Y c )
S, COoS |

for propagation in x — z plane
Take

u(x,t)=1o(t—5-Xx)

to describe P- or S-wave displacement in isotropic medium. Note:

ou___on
Ox; Ot
SO
V-u=-5-u
and



Plane wave in wave equation

Substitution in wave equation for homogeneous, isotropic medium:
pi = A+ p)V(V - 1) + uVa
pt = (A + p)(5- u)s+ pu(s-3)u
pt— A+ p)GE-u)s—pu(5-5)u=0
(a) Take scalar (dot) product with 5 (component of u parallel to 35):
p(i-35) = (A+p)(3-u)(5-5) — p(3-5)(u-3)=0

(A;“) s.5) = (i 9)

p(u-3) -

So with U-5 # 0 for U parallel to propagation direction: ¢? = >‘+—p2“.

Plane wave in wave equation

pti— A+ p)(5-u)s—u(s-5)u=0
(b) Take vector (cross) product with 5 (component of &
perpendicular to 3):

p(tx3) = (A+p)(3-0)(5x5)—p(5-5)(ux5)=0
( —%)(ﬁx?):(_)

U x5 #0 for i perpendicular to propagation direction:

=-
B = S

o wnm
N O
I =



Separation of variables «» plane wave decomposition

Separation of variables of wave equation is similar to plane wave
decomposition of wave field.

¢ = a’V?¢
d(x,y,2,t) = X(x)Y(y)Z(2) T(t)
% = %YZT
= e

With similar expressions for other derivatives:

1T o (l1dX  1dY  1d°Z
T dt2 X dx?2 Y dy?2  Z dz?

Separation of variables <+ plane wave decomposition

1d°T 2(1d2x 1 d?Y 1d2Z>
=

T dt2 X dx? +7dy2 74z
Differentiate w.r.t. t to see that:
1 d°T constant 2
- @ — n nt = —
T dr2 “
’T
T e:l:iwt
Similarly
1 d’°X )
X ol constant = —k;,
d?X .
— = 4+ kX =0 and X ox etk
dx?

and ,
d<yY .
W—I—kﬁyzo and YOCe:tlkyy



Separation of variables «» plane wave decomposition

d*Z

—5 TKZ=0 and Z et
where )
=5 -k
Solutions are of type )
ei(k-)'(—wt)

with k = (k, ky, k;) and |k| = w/a.
and w = (angular) frequency

and k = wavenumber vector.
Alternatively:

eiw(E-)?—t)

with s = slowness vector.

Separation of variables <+ plane wave decomposition

General solutions:

¢(X7y’ Z) t) — /// q)(kX) ky;w)ei(kXX+kyy+\/W2/a2_k)%_k}%Z—wt)dkxdkydw

m Solution given in terms of horizontal wavenumbers k, and k,
and frequency.

m Amplitude ®(ky, k,,w) depends on source excitation.

m Evaluations of triple integral often with approximations or
done numerically



Plane wave reflection and transmission coefficients

Plane waves and elastic potentials

P- and S-components of the wave field are separated through their
elastic potentials.

P-wave: 7P = V¢ with ¢ = a2V2¢
For propagation in x — z plane ¢(x, z, t):

0/ 0x
o” = 0
0¢p/0z

S-wave: T° = V x ¢ with V- ¢ = 0 and ) = 2V
For propagation in x — z plane ¥ (x, z, t):
Oy Oy

8X+8z =0




Plane waves and elastic potentials: SH- and SV-component

If y-component of T° is zero: SV-wave

O OY
sv X z _
YT Tz Ox 0
0°Y can be expressed by scalar potential 1): 1) = (0,,0)
—0Y/0z
oY = 0
o /O0x
with ¢ = 82V2y)
If x- and z-components of T° are zero: SH-wave
0 0
gSH_ | v 1 = |
0 0

with °H = 52v2 51

Reflection and transmission: boundary conditions

We still need to describe what happens at a sharp transition, a
boundary between two media.
Boundary conditions for displacement and traction:

x
1
Z=0

z

Solid/solid in welded contact

m Uy, Uy, U, continuous at discontinuity

n 7'(2) continuous — Ty, Tz, T2z CONtinuous
Solid /fluid

m U, continuous at discontinuity

B Ty, Tzy, Tzz CONtinuous

Solid /vacuum

B Ty = Tzy = T2z =0



P-SV Reflection at free surface

For P-wave:

Ox’ 7 Oz
Use Tij = )\95U + 2ue; = >\(9(5ij + (g_)L;I + 8_x,>

o (202)

1 (Ou ou 0%¢
P % z
= 2Uuezy =2 Y =2
Tzx 25 K [2 ( Oz + OX )] ’uaxﬁz
Tzlj/ = 2,uezy =0
p 2 ¢
T,, = )\(exx + eyy + eZZ) + zluezz = AV ¢ + 2'“ 822

P-SV Reflection at free surface

For SV-wave:
= <_ai¢’0’ gﬁ)
2 - (55
)/ =0
Y = A (55—;54—04—%) +2u% =2M§Zzgx

For SH-wave:

> = (0,v,0)

TiH = 0
sH _ Ov

A

=H = 0

zz



P-SV Reflection at free surface

Slowness vector of incident P-wave:

b sin | CcoS |
SP,InC — ,O, .
Q Qa

Slowness vector of reflected P-wave:

_ sin i CoS |
P refl _ ( 0, )
(87

«

Slowness vector of reflected SV-wave:

_SV.refl sinj _ cosj )
CRAE ,0,
(50

Ty, = 0 of incident P-wave — no SH-waves

P-SV Reflection at free surface

Total P-wave field from ¢ = ¢¢ + ¢
¢inc — Aeiw(%x—%“z—t)
¢refl _ Beiw(%x—i—%z—t)
SV-wave field from 1 = "l

sian+cost_t)

wref/ — Ceiw( 8

A, B, and C are constants per wave.



P-SV Reflection at free surface

Displacement & not constrained on z = 0.
Boundary condition for z = 0: 7, = 7,, = 0.

For z = 0: 7, and 7., determined by three contributions with
factors:

oio(Smix—t) eiw(—si“a"* x—t) and eiw(—sigfx—t)
)

Y

Arguments must be the same for all x and all t —

sini_ sinj
a f

horizontal slowness (sy), or ray parameter (p) is constant:

=1 and

(Snell’s law)

sini sinj

a

SX:p:

P-SV Reflection at free surface

For P-wave: 5 _
& iwpe
"= 0 | = 0
0¢ 0¢
0z 0z
9?2 :
_ 2/“L 82(‘;bx 2[362"*}[72_?
TP()A(Z) = 0 = 0
2
AV2¢ 4298 —p(1 —23%p*)w?e
For SV-wave:
V= o0 = 0
ad iwpy
9?2 9?2
) u(5%-53) p(1 —28%p*)w?y
T°Y(%,) = 0 = 0
2#% 2pﬁ2iwpg—f



P-SV Reflection at free surface

On z=0:
inc refl
Tzx — 2,0521.00,0 8¢ + 8¢ + p(]_ _ 262p2)w2wref/ —0
0z 0z
. refl
Tzz = —P(]- - 262[)2)&)2 (¢/nc + ¢refl> + 2pﬁ2iwp B =0
z
or _
cos
20°p= (A~ B) + p(1 ~ 20°7)C =
—p(1 - 28°p*)(A+ B) — 2p3°p C°;f C=0
giving | |
B 4% p? <=l S (1-24%p?)?
A 434 p2 Cfi COﬁSJ + (1 — 232p2)?
and

_452 cos:( 52 2)

464 2 cosi COBSJ +(1_252 2)2

P-SV Reflection at free surface

Note that B and & = are 'reflection coefficients’ of the potentials.
Dlsplacement amplitudes are derived from potentials:

C_
A

P-wave displacement: amplification factor = ‘%ﬁ‘
S-wave displacement: amplification factor = ‘%’

With signs as chosen in figure and table, we find:

2 .

1 2 2 ]
o (B 2) e ey
(B —202) +ap <zt e

45 p <2t (% -2




P-SV Reflection at free surface

—

Incident P PP sP
P$ $$
Incident SV
Incident wave Scattered waves
Type Displacement Type Displacement

L. X Downgoing P S(sin i, 0, cos t')I—:'I5 exp |:ia) <wx + &z — t)]
Upgoing P S(sin i, 0, —cos i) exp |:iw (Slﬂx - &z - t)] “«
® t

« « Downgoing SV S(cos j, 0, —sin j)ﬁS‘ exp | i (%x + %z - )]

Upgoing SV S(cos j, 0, sin j) exp |:iw (%x - %z

-
|
-
~
—
—_———
o
£
ag
ug
-l
©
z
E 5
o
I
=}
g
S
~
o
=
-}
—
S}
N
E
ki
|
St
f, =1

P-SV Reflection at free surface

For an SV-wave incident on the free surface:

450 % (& 2

_|_
D
ko)
N
(@]
o
(a)
m‘a
.

|
N
e
Q
=

2)2 2 cosj COSj

—|—4P2 cosi COSj
We call o

PP SP

PS $S

the scattering matrix of free surface reflections.



P-SV Reflection at free surface

5 5
4+ 4
a =5 km/s
8 =3km/s
: O s 3
: o2k 2

PS
1 e ettt I 1
SR 1
L . K]
& S b .
. PN .
o SS SN i .
0 > 0 >
z. A s,
r PP B PP
-1 [T N N B [ S T T T T I B TR T N
0.00 0.05 0.10 0.15 0.20 0.25 0.190 0.195 0.200 0.205
Slowness p (s/km) Slowness p (s/km)

(b)

Reflection and transmission of SH-waves

Reflection and transmission of SH-waves at solid-solid interface.

In case of downgoing incident SH:

(ot L 5
Incident SH: S e'w(pXJr B 27t

cosjy

) Séeiw(px— B, z—t)
0
S
0

Reflected SH:

0
S
0
Transmitted SH: (



Reflection and transmission of SH-waves

Continuity of displacement v and stress 7, at interface z =0
yields: _ _
& _ P11 COS j1 — P22 COS J
P11 €os j1 + p232 €oS j2
55 2p1/31 cos j1
P11 €OS j1 + p232 €OS J
For upgoing incident SH we find:

20232 cos jo
P11 cos j1 + p232 cos jo

SS

s p2/32 €os jo — p1/31 €oS j1
P11 cos j1 + p232 cos jo

Reflection and transmission of P-SV waves

Reflection and transmission of P- and SV-waves at solid-solid

interface.
(c) [CJ]
sin i1 ot )
. N IW\PXT————Z—
(a) Incident P: 0 e P e
COS i1

produces:



Reflection and transmission of P-SV waves

sin i1 cos i
Reflected P: 0 ppe Pzt
— COS i1
Cos j1 . cos j;
Reflected SV: 0 PSP =52 t)
sinj1
sin i2 cos i
Transmitted P: 0 Plbeiw(pXJra_;z_t)
COS Ip
COS Jo ,
Transmitted SV: 0 pSe(pt=g2z—t)
— sinj2
Boundary conditions on z = 0:

1_,2 ,1_,2 1 _ .2 _1 _ 2
ux _ ux1 uz — uz1 sz - TZX’ 7-zz \_,Tzz\' PN N
4 equations with four unknows: PP, PS, PP, PS.
Similarly for incident S, P, and S:

Scattering matrix has 4x4 elements.

Inhomogeneous waves



Inhomogeneous waves

What happens if the horizontal slowness becomes larger than
1/velocity of the medium?
Slowness vector of P-wave:

sin i/

sini p
(6
P — 0

0
o cosi Lo T

If horizontal slowness p > =: — s, is imaginary,

— sini = ap > 1 — angle i is complex.
We speak of an inhomogeneous P-wave.
S-wave slowness:

p
3° = 0
+ ﬂ—2 _ ,02
If p > % — 52 is imaginary — inhomogeneous S-wave.
(Then P-wave is inhomogeneous as well.)

Inhomogeneous waves

What does this imply? We had plane waves of type 0 o:

iw(sx—t) _ iwszzeiw(px—t)
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I.e. exponential decay or growth with depth.
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For inhomogeneous waves we therefore have

B p=S > % — horizontal phase velocity smaller than
underlying body wave speed.

m and s? = negative — amplitudes decay exponentially from the
interface.



Inhomogeneous waves: 1. SV-wave incident at free surface

ss
Incident SV

Free surface incident SV-wave.
Reflected P-wave:
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Inhomogeneous waves: 1. SV-wave incident at free surface

. ordinary reflected P- and SV-waves.
- critical incidence for reflected P-wave.
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1 1.
Reflected P-wave for = < p < 3

m s imaginary — inhomogeneous P-wave — P-wave decays

with depth:
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m SP no longer real — waveform changes w.r.t. incident wave
due to phase shift.

m for positive w:
phase u2F ~ phase (5P)
phase uZ” ~ phase (SP) + Z
— phase shift between horizontal and vertical component.



Inhomogeneous waves: 1. SV-wave incident at free surface

Reflected S-wave for é <p< %:
m is not inhomogeneous,

m but changes waveform w.r.t. incident SV-wave, because S5 is

complex:
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Inhomogeneous waves: 1. SV-wave incident at free surface
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Inhomogeneous waves: 2. SH-wave incident at interface

Incident SH-wave at interface. > é nor
23 B2

Transmitted SH-wave is inhomogeneous when % <p< é:

. COS jo
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It decays with depth: €2 = j\/p2 — 352 (for w > 0).
B2 2

Reflected SH-wave is not inhomogeneous for é <p< % but with

L6 P11 €os j1 — p232 €OS J2
p1/31 cos j1 + p232 Cos jo

we find total internal reflection (|SS| = 1) with phase shift.

(Critical angle of incidence when p = é i.e. j1 =sin1 %)

Inhomogeneous waves: 3. Rayleigh and Stonely waves

What happens if incident and reflected waves are inhomogeneous?
At free surface: all P-SV waves are inhomogeneous if p > % > é
— Energy is not travelling toward and away from boundary, but
channelled along the surface.

Inhomogeneous P-wave:

ap
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Inhomogeneous SV-wave:

i/ 32p% -1
.\S 0 e—w\/p2—ﬂ—2z eiw(px—t)

—Bp

P and S: amplitudes at z = 0.



Inhomogeneous waves: 3. Rayleigh and Stonely waves

These two waves are coupled by boundary conditions 7., = 7,, =0

on z = 0.
Tox = 0
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2 equations with 2 unknowns: non-trivial solution (P = S = 0)
when determinant = 0:
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has one solution for p slightly larger than 371,

Inhomogeneous waves: 3. Rayleigh and Stonely waves

— |t is possible to have a coupled pair of inhomogeneous
P-SV-waves that propagates along the surface of a half-space:
Rayleigh wave.

Features:

m cg = 1/p is slightly smaller than 3
m cgr is independent of frequency (for half-space)

m elliptical particle motion

Stonely wave is an interface wave for two homogeneous
half-spaces: decays upward and downward from interface.




