
Geophys. J .  Int. (1997) 130,497-505 

Noise reduction and detection of weak, coherent signals through 
phase-weighted stacks 

Martin Schimmel and Hanneke Paulssen 
Department of Theoretical Geophysics, Institute of Earth Sciences, Utrecht Unitrersity, PO Box 80,021,3508 TA Utrecht, the Netherlands. 
E-mail: schimmel@geof.ruu.nl 

Accepted 1997 April 8. Received 1997 April 1; in original form 1996 August 27 

SUMMARY 
We present a new tool for efficient incoherent noise reduction for array data employing 
complex trace analysis. An amplitude-unbiased coherency measure is designed based 
on the instantaneous phase, which is used to weight the samples of an ordinary, linear 
stack. The result is called the phase-weighted stack (PWS) and is cleaned from 
incoherent noise. PWS thus permits detection of weak but coherent arrivals. The 
method presented can easily be extended to phase-weighted cross-correlations or be 
applied in the z-p domain. We illustrate and discuss the advantages and disadvantages 
of PWS in comparison with other coherency measures and present examples. We 
further show that our non-linear stacking technique enables us to detect a weak lower- 
mantle P - t o 4  conversion from a depth of approximately 840 km on array data. Hints 
of an 840 km discontinuity have been reported; however, such a discontinuity is not 
yet established due to the lack of further evidence. 
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INTRODUCTION A N D  MOTIVATION 

In the determination of Earth structure, the identification of 
weak signals such as reflections or conversions from mantle 
discontinuities plays an important role. Their traveltimes, 
amplitudes and spatial coherencies at different frequencies are 
crucial for inferences about the impedance contrast, thickness 
and topography of the discontinuity. Identifying these weak 
seismic phases usually requires many good-quality seismo- 
grams and a good spatial sampling of the target. In seismic 
exploration the target sampling, amount of data and source 
can be controlled during the design of the experiment. 
However, in global seismology we are generally restricted 
due to a sparse distribution of earthquakes and stations and 
imprecisely known source parameters. This decreases the 
number of applicable techniques for signal enhancing in the 
usual seismological framework. 

Weak phases can only be detected by their coherent appear- 
ance on different traces. Various techniques have been designed 
to detect coherent signals. For array data, stacking techniques 
can be applied where the traces are summed along assumed 
traveltime curves. These can be the normal-moveout (NMO) 
curves for reflected phases or just straight traveltime curves 
for slant stacks. Assuming that the summation of seismograms 
is performed along the correct traveltime curve, the signal is 
expected to sum up constructively while the surrounding noise 
amplitude should decrease. An important factor for the noise 
reduction is of course the data quality. Unfortunately, a large 

part of the seismogram consists of signal-generated noise. 
Consequently, other larger and more prominent phases in the 
vicinity of our weak signal are considered noise. Even though 
they stack less coherently than our signal they can appear as 
large-amplitude features in the stack and lead to ambiguous 
phase detection. The difficulty in suppressing noise using 
ordinary stacks was the motivation for non-linear stacking 
techniques such as the nth root process of Muirhead (1968) 
and Kanasewich, Hemmings & Alpaslan ( 1973). In seismology 
the nth root stack has been successfully applied in the detection 
of weak non-prominent phases such as s670P (Richards & 
Wicks 1990) or s920P (Kawakatsu & Niu 1994) conversions. 
Another motivation for non-linear stacking is to lower the 
threshold for event detection. For instance, Weichert (1975) 
successfully used a logarithmic process similar to the nth root 
processing. A number of other beamforming techniques exist. 
Neele & Snieder (1991) increased the resolution of the con- 
ventional beamforming by applying inverse theory in order to 
optimize the array response. Kruger et al. (1993) designed a 
double-beam method, which combines source and receiver 
array beamforming. ZUrn & Rydelek ( 1994) recalled the 
phasor-walkout method to show how coherent harmonic 
signals such as the eigen modes of the Earth can be detected 
on single time-series. They used a graphical representation of 
the Fourier transform which reveals the random, coherent or 
periodic nature of signals in a complex spectrum. In addition, 
Rydelek & Sacks (1989) applied phasor walkouts to detect 
periodicities in earthquake catalogues. Phasor walkouts and 
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the method proposed here, although very different, are based 
on the same principle, namely the phase coherency of complex 
signals. 

In exploration seismology a function called semblance 
(Taner & Koehler 1969) is widely used to detect coherent 
signals across an array, and semblance-weighted slant stacks 
are used for signal detection (e.g. Stoffa et al. 1981; Kong, 
Phinney & Roy-Chowdhury 1985). Here we present a similar 
technique, which is based on a more direct coherency measure 
by involving instantaneous phases. It is called a phase-weighted 
stack and we will use the abbreviation PWS. We will show 
an application and discuss the PWS in comparison with the 
nth root stack (Muirhead 1968 ), energy-normalized cross- 
correlation (Neidell & Taner 1971), the coherency functional 
(Gelchinsky, Landa & Shtivelman 1985) and semblance (Taner 
& Koehler 1969). 

METHOD 

We present a coherency measure which is explicitly independent 
of the amplitude and use this measure to weight the samples 
of the linear stack. The coherency measure is based on the 
instantaneous phase of the unstacked traces as will be shown 
using complex trace analysis. We outline the method below. 

Analytic signal and phase stacks 

In complex trace analysis an analytic signal or complex 
trace S ( t )  is constructed from the seismic trace s ( t ) .  This is 
done by ascribing the seismic trace s ( t )  to the real part of 
the analytic signal and its Hilbert transform H ( s ( t ) )  to the 
imaginary part of S ( t ) .  The analytic signal then takes the 
form S( t )  = s( t )  + iH(s( t ) ) .  The analytical signal can also be 
expressed with time-dependent amplitude A( t )  and phase @( t ) :  

S( t )  = s( t )  + iH(s( t ) )  = A( t )  exp[i@( t ) ]  . (1 )  

A( t )  is the envelope of s( t )  and @( t )  is called instantaneous 
phase (e.g. Bracewell 1965). We visualize the analytic trace as 
a vector with length A( t )  which rotates with progressing time 
in the complex space around a time axis (Taner, Koehler & 
Sheriff 1979). The projection of this curve onto the surface 
spanned by the real axis and the time axis is our seismic 
trace s( t ) .  

We picture the linear or ordinary stack l /N C s j (  t )  as the 
real part of the sum of the analytic traces. Index J enumerates 
the N traces used. Fig. l(a) schematically shows the stack of 
two analytic traces C(z) = S,(z) + S2(z) at fixed time t = z, that 
is on a sample-by-sample basis. Let us assume that the phase 
of &(t) is variable, then we know C(t) ends on the circle 
indicated with dashed lines. The envelope IC( t ) )  will be maximal 
if both instantaneous phases CDl(z) and @,(z) are equal. In that 
case the signal is coherent. The sum of incoherent signal adds 
to a smaller IC(r)l. ISl(z)l will in general differ from lS2(r)1, and 
in the presence of large-amplitude noise IC(t)l can be larger 
for noise than for the tiny coherent signal. The stack of small 
data sets in particular is biased by this sort of noise. We bypass 
this and increase the S/N ratio for IC(t)l by normalizing the 
analytic traces S , ( t )  and S 2 ( t )  sample by sample. This is 
illustrated in Fig. l (b)  and we call the following sum a phase 

Im 

Figure 1. (a) Illustration of the summation of two samples from 
analytic traces S1 ( t )  and Sz( t )  in the complex plane. The sum vector 
C is not very sensitive to changes in the instantaneous phase QZ. 
(b)  S , (  t )  and S,( t )  are normalized on a sample-by-sample basis. C is 
now very sensitive to changes in the instantaneous phase. ICI, the 
phase stack, is a direct measure of the coherency. 

stack, since no amplitudes are explicitly involved: 

where N is the number of traces used. The amplitudes of the 
phase stack range between 0 and 1 as a function of time. If 
the instantaneous phases of the signals at a certain time are 
coherent, then the amplitude of the phase stack equals one. 
Zero amplitude means that the signals summed up completely 
destructively. The phase stack is a measure of coherency as a 
function of time, that is the effectiveness of the stack on the 
base of the instantaneous phase is described. The amplitudes 
of the seismic traces are only involved in computing the 
instantaneous phase. We would like to mention here that the 
phase stack c( t )  can be smoothed similarly to other measures 
which are mainly used in seismic exploration. Hereafter the 
smoothed phase stack T )  is obtained by averaging over a 
time-gate centred at time t with width 2 T  

In eq. (3), t ,  z and T are indices rather than time variables. 

Phase-weighted stacks 

The objective is to suppress stacked signals which are not 
coherent. For this purpose we involve the phase stack as a 
coherency measure for the sum of seismic traces. The idea is 
to use the phase stack as a time-dependent weight of the linear 
stack. This is easily performed by the multiplication of both 
terms: 

(4) 

Now it becomes clear why we call this a phase-weighted stack 
(PWS): every sample of the linear stack will be weighted by 
the coherency of its instantaneous phases. Weak coherent 
signals are enhanced through the incoherent noise reduction. 
The phase stack acts as a filter with a certain sharpness of the 
transition between phase similarity and dissimilarity, which is 
controlled by the power v. The linear stack is retrieved with 
v = 0. The PWS is a non-linear stack, and waveform distortion 
is expected. However, coherent signals will not be distorted 
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too much since the instantaneous phase is presumed to be 
more or less stationary on the individual traces. The strongest 
distortions are expected for incoherent signals. In the following 
we involve synthetic data to show the merits of PWS and 
phase stack. 

APPLICATION TO SYNTHETIC DATA 

In subsequent sections we show the performance of PWS using 
synthetic data. This encompasses a qualitative comparison of 
PWS with the linear stack and the nth root stack (Muirhead 
1968; Kanasewich et al. 1973), which is another effective non- 
linear stacking technique. A second important issue which is 
addressed in this section is the coherency measure itself. We 
compare the phase stack with other coherency measures which 
are often applied in seismic exploration. 

Phase-weighted stack versus linear stack 

In the following example we compare the abilities of the PWS 
and linear stack to detect coherent signals and to distinguish 
them from signal-generated noise. Fig. 2(a) shows 10 synthetic 
seismograms. Arrows with numbers label the distinct arrivals 
to simplify their naming. The same seismogram section but 
with superimposed noise is illustrated in Fig. 2( b). Note that 

it seems impossible to recognize all arrivals by eye due to 
relatively high-amplitude noise. Figs 2(c) and (d) demonstrate 
the squared phase stacks (PS), linear stacks (LS) and PWSs 
at zero slowness. The squared phase stack (v=2)  is used to 
calculate the PWS. It can be regarded as the power of the 
phase stack that helps to increase the S/N ratio. [We would 
like to mention here that an analytic signal with zero amplitude 
theoretically does not have a phase. However, numerically a 
phase zero is ascribed to a zero-amplitude signal. Consequently, 
phase stacks of zero-amplitude traces equal one. In Fig. 2(c) 
the phase stack deviates from one due to numerical noise in 
the time-series of Fig. 2(a).] The phase stack of Fig. 2(c) 
equals one for the coherent arrivals 1 and 4, and is still large 
for arrival 2, which interferes with arrival 3. The noise- 
contaminated data yield a phase stack (Fig. 2d) which indicates 
coherency for the same arrivals. Due to the noise they are less 
coherent than in Fig. 2(c), but stand out clearly from the 
surrounding noise. 

Note that from Fig. 2(b) it seems to be impossible to 
distinguish between coherent arrival 4 and 'signal-generated 
noise' 5 and 6. Indeed, all three arrivals show up as a clear 
signal in the linear stack and thus might be misinterpreted as 
coherent arrivals. However, the PWSs (bottom traces in Figs 
2c and d)  allow the distinction to be made. They are cleaned 
from arrivals 5, 6 and other noise. This is justified since the 
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Figure 2. (a) Synthetic seismograms with different arrivals labelled by numbers. (b)  Same as (a) but with random noise. (c) From top to bottom: 
squared phase stack, linear stack and PWS for the noise-free seismograms. (d) Same as (c) but for the seismograms with noise. (e) and ( f )  show 
normalized slant stacks of the noisy data of (b). The stacks are performed with respect to the trace at lo" over a slowness range of - 1.2 to 
1.2 s deg-'. The envelopes of the linear stacks (e) and PWSs ( f )  are contoured at 0.1 intervals. 
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PWS is constructed from the linear stack by multiplication 
with the phase stack. Phases 5 and 6 are not coherent over 
the array (see Fig. 2a) and are therefore down-weighted by the 
phase stack. This decision could not have been made by 
inspecting the noisy data themselves or the linear stack. Note 
that the random noise is similarly down-weighted. 

Figs 2(e) and (f ) show the contoured envelopes of the linear 
stacks and PWSs at different slownesses. The stacks are 
performed with respect to the trace at a distance of 10". Both 
slant stacks are normalized to 1 and contoured for intervals 
of 0.1. PWS enables a correct slowness and arrival-time 
determination of all weak arrivals, while the linear stack is too 
noisy. PWS is indeed cleaned from signal-generated noise that 
in the linear stack might lead to misinterpretations. 

Phase stack versus other coherency measures 

Many other coherency measures are based on the cross- 
correlation coefficients of real or complex traces. Some of them 
differ by normalization. For the subsequent comparison, three 
coherency measures commonly used in seismic exploration 
have been selected. 

Fig. 3(a) shows four time-series, each with a wavelet at about 
3 and 8 s. Their waveforms, arrival times and amplitudes are 
similar, except one wavelet at 8 s which is three times larger. 
Some small-amplitude noise has been added to the traces. 

First we apply the energy-normalized cross-correlation sum 
[after eq. 10 in Neidell & Taner (1971) but for analytic traces] 
to our data. The first trace in Fig. 3(b) shows the result. 
The second trace of Fig. 3( b) shows the 'coherency functional' 
of Gelchinsky et al. (1985) (their eq. 21). This measure is 
normalized by the cross-correlation sum of the envelopes. Note 
that these two measures can reach negative values. Third, 
(Fig. 3b, third trace) we apply the semblance, which is defined 
as an output-to-input energy ratio (Taner & Koehler 1969; 
Neidell & Taner 1971). The output energy is determined by 
the squared stack, and the input energy by the stack of squared 
traces. The last trace in Fig. 3(b) shows the squared phase 
stack. Squaring has been used, since the other measures also 
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involve the power 2. Note that the squared phase stack 
becomes similar to the semblance, which uses real traces and 
explicitly involves amplitudes. Semblance and phase stack 
range between 0 and 1. 

In exploration seismology the coherence measurements are 
often smoothed by averaging over a time-gate, such as in 
eq. (3). The influence of a 0.4 s time-gate is illustrated by the 
traces in Fig. 3(c). Smoothing is a simple and often used 
filter used to stabilize waveforms and simplify signal detection. 
Throughout this paper we do not apply further smoothing, 
since we want to present the method in its plain form without 
obscuring any undesired features. 

All these measures have in common the fact that they 
become equal to 1 in the case of phase and amplitude similarity, 
that is for equal instantaneous phase and envelope. This is 
fulfilled for the first arrival in our data in Fig. 3(a) and explains 
the maximum values between 3 and 5 s in Figs 3( b) and (c). 
Note that the semblance reaches 0 whenever the corresponding 
sample of the stack has zero amplitude. This causes the high- 
frequency character of the semblance function and justifies 
smoothing. 

The cross-correlation sum, coherency functional and semblance 
are amplitude-biased coherency measures. Consequently, these 
measures do not depend on the waveforms alone but also on 
their relative amplitudes. This means that if one changes 
the amplitudes without modifying the waveforms then the 
coherence measure generally varies. The signals at - 8-10 s in 
our data in Fig. 3(a) have equal instantaneous phases but 
varying amplitudes. The cross-correlation sum and semblance 
give a coherency smaller than 1 (Figs 3b and c), as they 
penalize coherent signals with varying amplitudes. Conversely, 
the coherency functional and phase stack result in a coherency 
of 1. Both measures perform equally well for our data. The 
phase stack is not sensitive to varying amplitudes since no 
amplitude information is involved (see eq. 2). The coherency 
functional is amplitude-unbiased only for the phase coherency 
of all the records. 

We want to mention that the measures applied to our 
data are based on different design philosophies. For instance, 
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Figure 3. (a) Synthetic time-series with two arrivals each. Waveforms are all similar but the amplitude of the second signal of the last trace is 
multiplied by three. (b)  From top to bottom: cross-correlation sum, coherency functional, semblance and phase stack for data from (a). (c) Same 
as (b) but smoothed with a time-gate width of 0.4 s ( 5  samples). 
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penalizing signals with varying amplitude can be advantageous 
for certain applications. For our application we consider the 
phase stack (Fig. 6d) to be the better coherency measure, since 
it is not biased by the signal amplitudes and thus justifies its 
use for weighting stacks. Especially for the detection of weak 
signals, we should not punish these when their amplitudes vary. 

Phase-weighted stack versus nth root stack 

Lastly we compare our stacking technique with another often 
used non-linear stacking technique: the so-called nth root stack 
(Muirhead 1968; Kanasewich et al. 1973). We treat it separately 
here because, due to the non-linearity, the results might appear 
similar to PWS. The nth root stack is defined as 

y ( t )  = sign(r(t))lr(t)l", (5)  
where 

The power n is a number larger than or equal to 1. The linear 
stack is retrieved with n= 1; n > 1 leads to a non-linear 
amplification which brings out small-amplitude signals more 
clearly. It occurs at the expense of waveform distortion 
(e.g. Kanasewich et aE. 1973), which for simple signal detection 
might not be of importance. In Fig. 4 we compare the PWS 
(a) with the nth root process (b)  for the data of Fig. 2( b). The 
uppermost panel of Fig. 4 shows the linear stacks as they are 
obtained by both techniques with v = 0 and n = 1, respectively. 
The labels mark the coherent signals. The other panels show 
the ability of both methods to enhance the coherent signals 
by increasing the power. We observe that the waveform 
distortion due to non-linearity is smaller in the PWS than in 
the nth root traces. The waveforms in the nth root traces 
become narrower for increasing n. This waveform distortion 
can even go so far that spurious arrivals seem to be generated, 
although in this example they are very small. We have marked 
them with an open circle in Fig. 4( b). A comparison with the 
linear stack shows that these arrivals are in fact part of one 
wavelet. Strong spurious arrivals can be recognized in the real 
data example from Fig. 7. Both PWS and nth root stack 
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Figure4. PWS (a) versus nth root stack (b) at different powers 
(v and n) for data from Fig. 2( b). Uppermost stacks ( v  = 0, n = 1 )  equal 
the linear stack. Labels 1, 2 and 4 mark the coherent arrivals. Open 
circles mark the onset of spurious signals which can appear to be 
independent arrivals. 

seem to be appropriate for signal detection. However, PWS is 
based on a more physical background of phase coherency and 
permits a separation into its components, namely the linear 
stack and phase stack. 

APPLICATION TO REAL DATA 

In the following we illustrate the performance of the stacking 
techniques and the coherency measures by using real data. We 
selected data from an earthquake which occurred 599 km 
underneath the Peru-Brazil border region ( 10.97"S, 70.78"W) 
on 1990 October 17. The nine broad-band seismograms 
used are recordings from the NARS-NL array [Network of 
Autonomously Recording Stations which was employed in 
The Netherlands at that time (Paulssen, Van der Lee & Nolet 
1990)]. The arrivals we detect are weak and less coherent than 
in the synthetic case study. A qualitative comparison of the 
different techniques evidently points to the advantages of phase 
stack and PWS. 

Phase stack versus linear stack 

Data pre-processing consists of the rotation of the horizontal 
components to obtain radial and transverse polarized records, 
aligning the data to zero time with respect to the P arrival 
and bandpassing them between 0.02 and 0.2 Hz. The three 
components of every recording have been normalized with 
respect to the P phase on the Z-component. Fig. 5(a) shows 
the P-wave coda including the pP phase at about 129 s on the 
radial components. These traces have been summed, yielding 
the linear stack. Its envelope (dotted line) and phase stack 
(dashed line) are plotted in Fig. 5( b). From the phase stack it 
is obvious that there are three coherent phases (marked by a 
dot) in the coda of the P phase (excluding pP). However, this 
is not evident from the envelope of the linear stack. What is 
more, the signal between 80 and 90 s on the linear stack might 
easily be misinterpreted as a coherent arrival, whereas the 
phase stack shows that it is not. As a result we expect it to be 
down-weighted in the PWS. The squared phase stack (v = 2) 
is used to calculate the PWS. Linear stack (dotted lines) and 
PWS (solid lines) for the R- and Z-components are displayed 
in Figs 5(c) and (d). The amplitude range plotted corresponds 
to 12 per cent of the P wave amplitude on the Z-component. 
Note that the amplitudes of the PWS are smaller than or 
equal to the amplitudes of the linear stack since the coherency 
weight does not become larger than 1. 

The first two arrivals marked with a filled circle in 
Fig. 5( b) can be identified as S waves which left the source as 
P waves, since there is no coherent arrival on the Z-component 
and since they arrive too early for a pure S wave. The first 
dot marks a Psms phase which reverberated once in the 
crust as an S wave. Its amplitude on the PWS trace is about 
60 per cent of the linear stacked amplitude. Thus the Psms 
phase experienced a 40 per cent amplitude reduction due to 
incoherencies. The first multiple reverberation Psms2 (Psmssms) 
also appears in the linear stack (open circle in Fig. 5c), but is 
obviously much more incoherent since it is much more strongly 
down-weighted in the PWS than the Psms arrival. The second 
dot in Fig. 5(b) marks a P phase converted to S at the 410 km 
discontinuity (P410s). The linear stack shows the P410s phase 
and the first Moho multiple Psms2 with similar amplitudes. 
However, in the PWS P410s stands out more clearly since it 
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Figure 5.  (a) Radial traces recorded at NARS-NL, aligned with respect to the P phase on the Z-component and bandpassed between 0.02 and 
0.2 Hz. (b) Envelope of the linear stack (dotted line) and phase stack (dashed line) for data presented in (a). (c) Linear stack (dotted line) and PWS 
(solid line) for the R-component. Maximum amplitude plotted corresponds to 12 per cent of the P-wave amplitude on the Z component. (d) Same 
as (c) but for the Z-component. 

sums up more coherently. The interpretation of the third signal 
in Fig. 5 (  b) is more ambiguous since there is also energy on 
the 2-component (Fig. 5d). Phase-weighted slant stacking 
showed that there is interference of two arrivals at about 66 s 
which are separated by more than 1 s deg-' in the slowness 
domain. One (P670s) has predominant energy on the radial 
component, the other at larger slowness has more energy on 
the vertical component. Finally, the open circle in Fig. 5(d) 
indicates a clear longitudinally polarized arrival. It could be a 
P-wave reverberation near the source or receiver. A possible 
explanation would be a p410P phase, which is a near-source 
underside reflection from the 410 km discontinuity. This signal 
is almost not down-weighted, and is thus very coherent. 

Fig. 5 shows that the detection of the coherent signal is 
simplified due to the amplitude reduction of the incoherent 
signal. The amplitude reduction cleaned the PWS from the 
incoherent signal, and together with the linear stack permits a 
more unambiguous phase detection. 

Phase stack versus other coherency measures 

Here we apply the energy-normalized cross-correlation sum 
(Fig. 6a), coherency functional (6b), semblance (6c) and squared 
phase stack (6d) to the data of Fig. 5(a). 

Fig. 6 enables a direct qualitative comparison between the 
abilities of the different techniques to detect weak phases. For 
instance, Figs 6(a)-(c) show many large-amplitude signals. 
However, some of these (marked by an open circle) do not 
coincide with the picks of Fig. 6(c). From the phase stack we 
know that the coherency increases with the similarity of 
instantaneous phases only. This is its essential advantage, 
since it enables one to detect weak arrivals that are more 
coherent than the surrounding signal. The coherency measures 
of Figs 6(a)-(c) depend on the amplitudes. This dependence 
can obscure or feign weak coherent arrivals by assigning a 

50 100 150 

Ref. Time [s] 

Figure 6. Energy-normalized cross-correlation sum (a), coherency 
functional (b), semblance (c) and squared phase stack (d) for data 
from Fig. 5(a). 

coherency which is smaller than the coherency of a less phase 
coherent but larger-amplitude arrival. 

Among Figs 6(a)-(c) the semblance (Fig. 6c) seems to give 
the best coherency measure. However, a larger variation in 
amplitude of the coherent arrivals would result in a much 
poorer semblance (see Fig. 3). We want to recall that this 
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measure is usually smoothed. However, smoothing would not 
improve the S/N ratio. 

Phase-weighted stack versus nth root stack 

We now apply the nth root stack (Muirhead 1968; Kanasewich 
et al. 1973) to the data of Fig. 5(a). In Fig. 7 PWS (a) is 
compared with the nth root process (b). The uppermost panel 
of Fig. 7 shows the linear stacks as they are obtained by both 
techniques with v = 0 and n = 1, respectively. The other traces 
show that both methods efficiently suppress noise. We observe 
that the waveform distortion is smaller in the PWS than in 
the nth root traces, as spurious arrivals (open circles) seem 
to be generated by this last method. Comparison with the 
linear stack shows that these arrivals are in fact part of one 
wavelet. Note that such artefacts are well known and might 
be recognized in, for instance, Kanasewich et al. (1973) and 
Richards & Wicks (1990). 

Although PWS and the nth root stack perform almost 
equally well on our data, we prefer to apply PWS for the 
detection of weak but coherent signals. PWS seems to suffer 
less from waveform distortions and spurious phases, which 
can be larger than the coherent signal. It further permits a 
separation into the linear stack and its phase coherency, the 
phase stack. 

ANOTHER APPLICATION: DETECTION OF 
WEAK P840s PHASES 

Lastly we illustrate how PWS helped us to detect a coherent 
weak phase which is not predicted by standard earth models. 
We selected data from three more events, with hypocentres 
beneath Northwest Argentina ( 1991 June 23, 26.8"s 63.35"W, 
558 km, mb=6.4), the Bonin Island region (1991 May 3, 
28.08"N 139.59"E, 433km, mb=6)  and Peru (1991 July 6, 
13.11"s 72.19"W. 105 km, mb = 6.2). The events were recorded 
at 9, 4 and 5 broad-band receivers of the NARS-NL array, 
respectively. Data were processed similarly to the recordings 
from the Peru-Brazil event. Fig. 8 shows the linear stacks (a,c) 
and the PWSs (b,d) of the radial (solid lines) and vertical 
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Figure8. Linear stack for the Argentina event (a) and the Bonin 
Island event (c). (b )  and (d) contain the corresponding PWSs. The Z -  
and R-components are shown with dotted and solid lines, respectively. 
The data are bandpassed between 0.05 and 0.6 Hz. Filled circles point 
to the clear P840s arrival in the PWS, while open circles mark the 
same phase in the linear stack. 

components (dotted lines) of the Argentina and Bonin Island 
events. The Argentina event (Figs 8a and b) has an epicentral 
distance of -100" to the reference station used for data 
alignment. Consequently, the first arrival is a core-diffracted P 
wave. The epicentral distance of the Bonin Island earthquake 
is 90". The first arrivals are the P and PcP phases. The clear 
observation of radially polarized signals 80 s after the first 
arrivals is striking. They are marked with filled circles in the 

0 50 100 150 
(b) Ref. Time [s] 

Figure 7. PWS (a) versus nth root stack (b)  at different powers (v and n )  for data from Fig. 5(a). Uppermost stacks ( v  = 0, n = 1) equal the linear 
stack. Open circles mark spurious signals which appear to be independent arrivals. 
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PWSs in Figs 8(b) and (d). After recognizing them on the 
PWSs, they are also identified on the linear stacks, where they 
are marked with open circles. This phase is also present in 
the stacks of the Peru-Brazil event (from Fig. 5, at higher 
frequencies, however) and for the Peru event. 

The interpretation could be either a P-to-S conversion from 
a discontinuity at a depth of approximately 840 km (P840s) or 
a Pp22Os phase which experiences one surface reflection and a 
reflection conversion at 220 km depth. Both phases arrive at 
about the same time and are indistinguishable by slowness, 
using the NARS-NL data per event. Possible Pp220s phases 
were observed for the North American craton by Bostock 
( 1996). However, comparing the differential traveltime from 
the Argentina event and the Peru or Peru-Brazil event (these 
three events have almost the same backazimuths), one finds 
a negative differential slowness, as is predicted for the P840s 
phase. There are two other points in favour of a P840s rather 
than a Pp22Os phase. ( 1 ) A Pp22Os phase experiences one 
more reflection and two extra passages through the uppermost 
mantle than a P840s phase would do. We therefore do not 
expect that a Pp22Os phase is coherent at high frequencies, as 
will be shown below. (2) A Pp22Os phase has multiplicity 5, 
which means there are four other phases with the same 
traveltime and slowness. These are Ps22Op, p22OsP, P220sp22Op 
and p22Ops22OP. One would expect a hint of these phases on 
the PWS of the vertical component. Altogether, we favour 
P840s over Pp22Os. 

In Fig. 9 we manually aligned the stacked Pdiff and P phases 
on the Z-components (dashed lines) and the P840s phases on 
the R-components (solid lines) to obtain the best waveform 
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Figure 9. Stacked waveforms with Pdi, (a) and P ( b  and c) on the 
2-components (dashed lines) and P840s on the R-components 
(solid lines). Dashed traces are normalized, multiplied by -1, and 
shifted by 79 s (a) and 79.5 s ( b  and c). 

coherency between both phases. To achieve this the vertical 
traces had to be multiplied by - 1 and shifted by 79 s (9a) and 
79.5 s (9b and c), respectively. The coherency between both 
phases at high frequencies is striking. This means that little 
waveform distortion occurred at the high frequencies, and a 
sharp 840 km discontinuity can be inferred (Richards 1972; 
Paulssen 1988). For instance, a 4 km thick linear transition 
zone at about 840 km depth yields a transmission coefficient 
which decreases at 1 Hz to about 80 per cent and at 1.5 Hz to 
about 60 per cent of the transmission coefficient at zero 
frequency. Increasing the transition zone would increase the 
frequency dependence and waveform distortion. Note that the 
polarity of the P840s phase is opposite to that of the first 
arrival. This would imply a small S-velocity decrease at about 
840km. First evidence for P840s phases was presented by 
Paulssen (1988). She performed linear stacks of 48 events with 
different azimuths (mainly from the Japan region), recorded at 
individual NARS stations, and illustrated a clear signal on the 
radial component. Shearer (1990) reported observing a hint of 
a Pp84Op phase in his global data stacks. Such a phase has a 
multiplicity two; this means it can be a near-source or near- 
receiver reflection. In a 1-D earth, both arrive at the same time 
and sum to double amplitude. Poupinet (1974) required a 
strong S-velocity gradient at 850 km depth in order to model 
a PL(S)  coupled wave observed at 40" epicentral distance. 
There is no global evidence for an 840 km discontinuity and 
we do not have any additional information to explain its 
nature. Its study is not the purpose of this paper. 

DISCUSSION AND CONCLUSIONS 

We have developed a non-linear stacking technique for 
enhancing signals through incoherent noise reduction. The 
results are stacked traces which are cleaned from incoherent 
noise. This enables the detection of weak signals, even for a 
small amount of data. 

Similar to PWS, phase-weighted cross-correlations can be 
designed and used for signal recognition or arrival-time picking. 
The phase stack can further be used to weight the misfit 
function between synthetic and stacked waveform data. Its 
advantage would be that one avoids fitting large-amplitude 
noise better than weak but coherent portions of the waveform. 
In this paper we restricted ourselves to PWS and illustrated 
its applicability. No quantitative investigation of the merits of 
PWS was performed, but the examples presented justify its use 
for the detection of weak phases. For instance, the P-to-S 
conversions in Figs 5, 8 and 9 were not detectable in the linear 
stacks, but they were in the PWSs. 

The advantages compared to other non-linear stacking 
techniques are two-fold. ( 1) The phase-weighted stack can be 
separated into a phase stack and a linear stack. This enables 
a better control of the physics behind the non-linear process. 
The phase stack is an amplitude-unbiased coherency measure. 
( 2 )  Waveform distortion of coherent signals is expected to be 
minimal since these signals should be stationary in phase over 
the entire waveform. Consequently, waveform distortion 
does not depend on amplitudes but on the coherency of the 
components of the stack. Due to the coherency weight, the 
stack is more sensitive to time offsets and therefore allows a 
more accurate slowness determination. In other words, phase- 
weighted slant stacks can improve the time and slowness 
resolution of weak and coherent phases. 
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In this paper we found evidence for a discontinuity at about 
840 km. This discontinuity is detected from events with differ- 
ent azimuths and seems to be sharp at least locally beneath 
the Netherlands. More observations and a more detailed study 
of the 840 km discontinuity are required to explain its nature. 
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