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S U M M A R Y
We present a method for the computation of finite-frequency sensitivity kernels for two-station
surface wave measurements. It is based on the combination of spectral-element modelling of
seismic wave propagation, adjoint techniques and traveltime estimates from two-station cross-
correlations of seismograms. The analysis of sensitivity kernels for a 1-D earth model resulted
in two major conclusions: (1) The finite-frequency sensitivity is zero along the interstation
ray path for group velocity measurements obtained by cross-correlations. It follows that
interstation group velocity measurements should not be made by cross-correlation if a ray-
based interpretation is used. (2) Although sensitivity along the interstation ray path is dominant
for phase velocity measurements, sensitivity far from the ray path can be large, depending on
the details of the source–receiver geometry. The complexities of finite-frequency two-station
sensitivity kernels should be taken into account to avoid misinterpretations and to improve the
quality of tomographic inversions.

Key words: Surface waves and free oscillations; Seismic tomography; Theoretical seismol-
ogy; Wave scattering and Diffraction; Wave propagation.

1 I N T RO D U C T I O N

The two-station method (Sato 1955) is often used for regional sur-
face wave tomography and local-scale interstation measurements
of phase velocity (e.g. Yao et al. 2006; Zhang et al. 2007; Endrun
et al. 2008). The outstanding advantage of this method lies in the
reduction of wave propagation effects from the source to the nearest
receiver. Assuming that ray theory is valid and that waves propagate
along the exact great circle, effects of unknown 3-D structure away
from the interstation ray path cancel completely, thereby enabling
detailed and reliable investigations of the Earth’s local structure.

In the hypothetical absence of lateral heterogeneity, the two-
station method would be exact for pure great circle propagation.
The phase velocity between two stations could then be estimated
from the cross-correlation of seismograms recorded at both stations
and filtered within a narrow frequency band. However, the presence
of 3-D heterogeneity in the real Earth and the finite frequency con-
tent of seismic waves complicate the application of the two-station
method. Several studies have shown evidence for propagation off
the great circle (e.g. Baumont et al. 2002; Alvizuri & Tanimoto
2011). Also, phase velocity curves estimated from events at one
side of the station pair can differ from those calculated from events
at the other side of the station pair (Zhang 2009). This suggests
that velocity perturbations away from the interstation ray path can
affect the surface wave arrivals at the receivers. Furthermore, it is
practically impossible to find earthquakes that are located exactly
on the great circle of interest. Not taking the entire travel path into
account, as is common in the two-station method, might therefore

result in wrong conclusions concerning the phase velocity struc-
ture of the interstation area. Little research has been done to check
whether the interpretation of the two-station method is adequate.
Pedersen (2006) studied the effect of non-plane waves on phase
velocity curves. For random heterogeneities far from the station
pair, she found that only five to ten different events are needed to
obtain an average phase velocity curve with less than 1 per cent er-
ror. However, these results are too specific for general applications
because the non-random nature of real, unknown velocity structure
and the radiation patterns of the events were not taken into account.

To further improve tomographic inversions based on the two-
station method, the effects of 3-D heterogeneity on the measurement
of a particular event should be quantified in the form of properly cal-
culated finite-frequency sensitivity kernels. Sensitivity kernels pro-
vide information on how specific measurements react to perturba-
tions of elastic properties (e.g. P or S velocity) anywhere in the earth
model volume. They can be computed efficiently via the interaction
of the ‘forward’ wavefield and an ‘adjoint’ wavefield (e.g. Taran-
tola 1988; Tromp et al. 2005; Fichtner et al. 2006; Liu & Tromp
2006; Fichtner 2011). The adjoint wavefield travels backward in
time from the receiver to the source, and is excited by an adjoint
source, located at the receiver position. In recent years, sensitivity
kernels have been computed for various types of measurements and
source–receiver geometries (e.g. Tromp et al. 2005; Liu & Tromp
2006; Fichtner et al. 2008; Bozdağ et al. 2011), as well as for
interstation ambient noise cross-correlations (Tromp et al. 2010).

Earlier attempts to study the sensitivity of interstation phase
velocity measurements were based on the calculation of 2-D
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sensitivity kernels (Kuo et al. 2009). However, they lack a direct
relation to Earth structure in the form of 3-D perturbations in veloc-
ities or elastic parameters. The 3-D sensitivity kernels for intersta-
tion measurements presented by Chevrot & Zhao (2007) are based
on phase difference, rather than the cross-correlation as used in the
two-station method. Here, we properly define interstation traveltime
measurements in terms of frequency-dependent cross-correlations
between seismograms recorded at two stations. The resulting sen-
sitivity kernels can be directly used in 3-D tomographic inversions
of seismic velocity.

In the following, we will discuss the method used for calculating
shear wave sensitivity kernels and present the results of the simu-
lations. The influence of different parameters will be investigated,
including the interstation distance, radiation pattern, frequency con-
tent, as well as the number and distribution of sources.

2 T H E O RY

Sensitivity kernels can be calculated via the adjoint method in the
form of a product that involves the forward and adjoint wavefields
(e.g. Tarantola 1988; Tromp et al. 2005; Fichtner et al. 2006; Liu &
Tromp 2006; Fichtner 2011). The adjoint wavefield is excited by the
adjoint source which is fully determined by the measurement. Con-
sequently, the adaptation of the general adjoint method to a specific
case reduces to the calculation of the adjoint source that corre-
sponds to the particular measurement of interest. Our derivation
of the adjoint source, as described below, is based on the operator
formulation of the adjoint method (Fichtner 2011), and it can be
seen as an adaptation of the wave equation traveltime inversion of
Luo & Schuster (1991) to the two-station scenario.

2.1 Definition of measurements and misfits

For the two-station method, we define the measurement as the
frequency-dependent traveltime between two stations, estimated
from the interstation cross-correlation. Let si (m; xA, t) be the i- and
s j (m; xB, t) the j-component of the synthetic displacement seismo-
grams for an Earth model m at locations xA and xB , respectively. The
cross-correlation between the (potentially filtered) seismograms at
A and B is given by

Ci j (t) =
∫ ∞

τ=−∞
si (xA, t + τ )s j (xB, τ ) dτ , (1)

where we omitted the dependence on m in the interest of a condensed
notation. The time at which the global maximum of the cross-
correlation occurs is defined as the synthetic traveltime, TAB(m),
from station A to B. Because the time derivative of the cross-
correlation is zero at its maximum, the following relation holds
for t = TAB:

Ċi j (TAB) =
∫ ∞

τ=−∞
ṡi (xA, TAB + τ )s j (xB, τ ) dτ = 0 . (2)

Eq. (2) defines TAB implicitly. The measurement of the ob-
served traveltime T obs

AB from observed seismograms sobs
i (xA, t) and

sobs
j (xB, t) follows the same procedure.

The L2 misfit between synthetic and observed traveltimes is given
by

χ = 1

2

(
TAB − T obs

AB

)2
. (3)

A small perturbation of the model, δm, induces the misfit variation

δχ = (
TAB − T obs

AB

)
δTAB , (4)

where δTAB and δχ are related to δm via the measurement sensitivity
kernel vector KTAB and the misfit sensitivity kernel vector Kχ ,
respectively:

δTAB =
∫

V
KTAB (x) · δm dV , (5)

δχ =
∫

V
Kχ (x) · �m dV . (6)

The components of the kernel vectors represent the sensitivity ker-
nels for different variables, such as P- or S-wave velocity, considered
in the inversion. It follows from the combination of eqs (5) and (6)
that the misfit and measurement sensitivity kernels are scalar multi-
ples of each other, and the scaling factor is the traveltime difference
(TAB − T obs

AB ) :

Kχ = (TAB − T obs
AB ) KTAB . (7)

Eq. (7) implies that the misfit sensitivity kernel Kχ , used in a tomo-
graphic inversion, has the same spatial pattern as the measurement
sensitivity kernel KTAB , which is independent of any observed seis-
mograms. This is in contrast to data-dependent misfit sensitivity
kernels for various types of phase misfits (e.g. Fichtner et al. 2008;
Bozdağ et al. 2011) or the L2 norm (e.g. Tarantola 1988), and it
allows us to draw general conclusions from the analysis of KTAB

without the need to involve actual observations.

2.2 Derivation of the adjoint source for two-station
measurements

We can find the adjoint source f† that produces the measurement
sensitivity kernel KTAB by bringing the variation of the measure-
ment, δTAB, into the following canonical form (Fichtner 2011):

δTAB =
∫

V

∫ ∞

t=−∞
f†(x, t) · δs(x, t) dt dV , (8)

where δs is the variation of the vectorial displacement field induced
by the model perturbation δm. Specifically we find (see Appendix)

δTAB = 1

N

[∫ ∞

t=−∞
ṡ j (xB, t − TAB)δsi (xA, t) dt

−
∫ ∞

t=−∞
ṡi (xA, TAB + t)δs j (xB, t) dt

]
, (9)

with

N =
∫ ∞

t=−∞
s̈i (xA, TAB + t)s j (xB, t) dt . (10)

To isolate the wavefield perturbation δs in eq. (9) we introduce delta
functions and unit vectors (ν̂i and ν̂ j ):

δTAB = 1

N

∫
V

∫ ∞

t=−∞

[
ṡ j (xB, t − TAB)δ(x − xA)ν̂i

− ṡi (xA, TAB + t)δ(x − xB)ν̂ j

] · δs(x, t) dt dV . (11)

Eq. (11) is now in the canonical form (8), with the adjoint force
given by

f†(x, t) = 1

N

[
ṡ j (xB, t − TAB)δ(x − xA)ν̂i

− ṡi (xA, TAB + t)δ(x − xB)ν̂ j

]
. (12)

The adjoint source consists of two separate parts, each being located
at one of the receivers. The time evolution of the adjoint source
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at location A is based on the velocity seismogram at location B,
but shifted forward in time by TAB. At location B, the velocity
seismogram of location A is used, now shifted backward in time by
TAB. Note that this structure of the adjoint source is similar to the
one encountered for noise cross-correlation (Tromp et al. 2010).

3 F O RWA R D A N D A D J O I N T
M O D E L L I N G

For the simulation of forward and adjoint wavefields we used the
spectral-element solver SES3D by Fichtner & Igel (2008). SES3D
numerically solves the 3-D seismic wave equation for heterogeneous
earth models. Other methods to calculate wavefields could have been
used as well. A normal mode approach (Zhao & Chevrot 2011a,b),
for instance, would have been less time consuming. However, it can
not be generalized to 3-D heterogeneous media, which might be
useful for iterative inversions. Also, the near-field contributions of
the adjoint sources located at the receivers, which have a large effect
on the sensitivity kernels computed in this paper, are omitted in a
normal mode approach. In the spectral-element approach used here
these terms are computed correctly. In this study, we limited our-
selves to the isotropic variant of the reference earth model PREM
(Dziewonski & Anderson 1981). Only vertical components of seis-
mograms were used. Furthermore, we restricted ourselves to the
analysis of S velocity kernels, because the sensitivities with respect
to P velocity and density are negligibly small when Rayleigh waves
are considered.

To calculate sensitivity kernels, two wavefield simulations had
to be performed: First, the forward wavefield was calculated for
an earthquake source, given by a moment tensor and for a lim-
ited frequency band. Ideally, tests should be done for a single fre-
quency, because then the traveltime difference between the stations
would give the exact frequency dependent phase velocity [c(f) =
�xAB/�TAB(f)]. However, this is practically impossible, because the
seismograms are calculated using a time-domain approach. There-
fore, the seismograms are calculated for a certain frequency band
through a bandlimited source time function. Narrowing the fre-
quency band results in a better approximation of single-frequency
(i.e. phase velocity) measurements, but also requires a longer source
time function. In this study, sensitivity kernels were calculated for
both a wide and narrow frequency band. The source signals for the
wide frequency band were obtained by bandpass filtering (Butter-
worth filter, 4 poles) between cut-off periods of 5 s below and above
the centre period. For the phase velocity measurements, on the other
hand, we filtered a monochromatic source signal with a Gaussian
filter (with a width of 0.0028 Hz) resulting in a much narrower am-
plitude spectrum. In the following, the terms ‘group’ and ‘phase’
velocity relate to interstation cross-correlation measurements with
wide and narrow frequency bands, respectively. The group velocity
kernels may therefore differ from the group velocity kernels ob-
tained by frequency differentiation of the phase delay (e.g. Dahlen
& Zhou 2006).

For the second simulation, we excited an adjoint field by the
adjoint force given in eq. (12). The traveltime difference of the
surface waves, TAB, was obtained from the maximum of the cross-
correlation between the vertical components of synthetic seismo-
grams at both receivers, calculated in the forward simulation. Only
events with strong Rayleigh wave excitation were used. This re-
sulted in an adjoint wavefield as illustrated in Fig. 1; according to the
mathematical description of the adjoint source, the adjoint wavefield
is excited at both receiver locations, with a time difference of TAB.

4 S E N S I T I V I T Y K E R N E L G A L L E RY

As stated before, we calculated sensitivity kernels for both a wide
and narrow frequency band, which is referred to as group and phase
velocity measurements, respectively. Fig. 2 shows horizontal sec-
tions at 100 km depth through the shear velocity sensitivity kernel,
for a source at an epicentral distance of 28.5◦ and 34.5◦ from the
first and second receiver, respectively. The centre period was 30 s.
Both group and phase velocity kernels have a cigar-shaped structure
of alternating bands of positive and negative sensitivity (Fresnel
zones); this structure is present at all depths. The group velocity
kernel (Fig. 2 a) has a large sensitivity between the source and the
first receiver, whereas it shows a gap of zero sensitivity in the in-
terstation area. This remarkable result is exactly opposite to that
expected from ray theory. The phase velocity kernel (Fig. 2b), on
the other hand, shows the expected negative sensitivity between the
stations and reduced sensitivity in surrounding areas. The ‘ringy’
structure of the kernels is due to the limited frequency bands of
the wavefields: the narrower the frequency band, the more oscilla-
tory the kernel becomes. Although the interstation sensitivity is not
fully restricted to the vicinity of the great circle path, the impor-
tance of using a narrow frequency band in the two-station method
is clear.

4.1 Interstation distance

We investigated the variations in sensitivity for several interstation
distances. To get useful results, a minimum value of two wavelengths
is required for the interstation distance, which in turn depends on the
frequency content of the measurements. The effect of changing the
interstation distance on the sensitivity kernels with a centre period
of 30 s is shown for both group and phase velocity measurements
in Figs 3 and 4, respectively. Again, the kernels based on group
velocity measurements (Fig. 3) show a gap of zero sensitivity in
the interstation area, which becomes larger with increasing inter-
station distance. This is similar to the reduced sensitivity of surface
wave phase shift measurements along the source–receiver ray path
(Spetzler et al. 2002), and the character of banana-doughnut body
wave traveltime kernels measured from cross-correlations (Hung
et al. 2000). The phase velocity kernels, on the other hand, have
a fairly homogeneous sensitivity within the interstation area. The
assumption that, when using the two-station method, the phase ve-
locity estimation gives an average velocity for the entire interstation
area is therefore more reliable for measurements with a narrow fre-
quency band. However, due to the strong sensitivity outside the
interstation ray path, the ray approximation can still be poor. In the
following, only sensitivity kernels based on phase velocity mea-
surements will be shown, because those are most relevant for the
purpose of this study.

4.2 Frequency dependence

An important factor in seismic velocity estimation is the frequency
content of the seismograms. Lower frequencies sample the Earth
deeper than higher frequencies, and the use of high-frequency data
can result in a higher spatial resolution. Using a centre period of
70 s, rather than 30 s, results in the sensitivity kernel shown in Fig. 5.
As expected, using a lower frequency causes wider Fresnel zones in
the sensitivity kernel.
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Sensitivity kernels for two-station measurements 1045

Figure 1. Illustrative example of the vertical components of the forward (top) and adjoint (bottom) velocity wavefields at 600 s after excitation of both
wavefields. The large-amplitude Rayleigh waves are mostly visible. The stars represent the source, triangles represent receivers. The source is located at 28.5◦
and 31.5◦ from the first and second receiver, respectively. A period range of 25–35 s was used.

4.3 Source effects: seismic moment, focal mechanism
and source location

The source mechanism and location are expected to have a sig-
nificant impact on the sensitivity kernels. The seismic moment,
however, does not affect the results. This is because an amplitude
increase in the forward wavefield results in a decrease of equal size
in the amplitude of the adjoint wavefield (see eq. 12), and the net
result after interaction of both wavefields is therefore zero.

We performed tests, using several focal mechanisms, epicentral
distances and focal depths. An example of a sensitivity kernel,
using a centre period of 30 s, for a focal mechanism and location
different from those used in the previous figures, is shown in Fig. 6.
Clearly, a shorter epicentral distance results in a sensitivity kernel
with a smaller spatial extent. Also, the use of a different focal
mechanism results in a different radiation pattern of Rayleigh waves.
This causes small-scale variations in the pattern of the sensitivity
kernel. However, the overall shape and sign of the sensitivity kernels
(cigar-shaped; negative sensitivity between the stations) remained
the same for all configurations. The focal depth was found to have a

negligible effect for relatively shallow events with strong Rayleigh
wave excitation.

4.4 Number and distribution of sources

A practical difficulty in using the two-station method is finding
events that are located exactly on the great circle of interest. For a
plane wave propagating at an angle that differs less than 5◦ from
the great circle, the effect on the traveltime difference between both
stations is less than 0.4 per cent. Events that satisfy this condition
are therefore often used in the two-station method. Furthermore,
multiple events are often included to improve the signal-to-noise
ratio. To test whether this increases the dominance of the interstation
sensitivity we can simply add kernels for specific source locations.

Fig. 7 shows the result after summing the sensitivity kernels
of three different sources. Compared to Figs 2(b) and 6, the
relative interstation sensitivity is increased significantly, whereas
the values close to the sources are reduced. This indicates
that using multiple events partly compensates for effects from
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Figure 2. Horizontal sections through shear velocity sensitivity kernels at 100 km depth, for a source at 28.5◦ and 34.5◦ from the first and second receiver,
respectively. (a) Group velocity kernel with a period range of 25–35 s. (b) Phase velocity kernel with a centre period of 30 s. Moment tensor components: Mθθ =
−0.300 · 1018 N m; Mφφ = −0.800 × 1018 N m; Mrr = 1.100 × 1018 N m; Mθφ = −0.560 × 1018 N m; Mθr = 1.050 × 1018 N m; Mφr = 1.250 × 1018 N m.

Figure 3. Horizontal sections through shear velocity sensitivity kernels at 100 km depth. The sources are located at 30◦ and 33◦ (top); 28.5◦ and 34.5◦
(middle); 27◦ and 36◦ (bottom) from the first and second receiver. The kernels are based on group velocity measurements with a period range of 25–35 s. Other
parameters were similar to Fig. 2(a).
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Sensitivity kernels for two-station measurements 1047

Figure 4. Horizontal sections through shear velocity sensitivity kernels at 100 km depth. The sources are located at 30◦ and 33◦ (top); 28.5◦ and 34.5◦ (middle);
27◦ and 36◦ (bottom) from the first and second receiver. The kernels are based on phase velocity measurements with a centre period of 30 s. Other parameters
were similar to Fig. 2(b).

Figure 5. Horizontal section through shear velocity sensitivity kernel at 100 km depth, for a source at 28.5◦ and 34.5◦ from the first and second receiver,
respectively. The kernel is based on phase velocity measurements with a centre period of 70 s. Other parameters were similar to Fig. 2(b).

non-interstation areas and that the cumulative traveltime differ-
ence for all sources is mainly affected by the interstation area.
However, no matter how many sources are included, the sen-
sitivity between the first station and the nearest source cannot
be completely removed, and the value of TAB therefore also con-
tains information from outside the interstation area. A further im-
provement can be obtained by using events from both sides of
the station pair. As shown in Fig. 8, this increases the intersta-
tion sensitivity relative to the surrounding areas. However, addi-
tional sensitivity is introduced at the other side of the station pair.

5 D I S C U S S I O N A N D C O N C LU S I O N S

We have calculated sensitivity kernels for surface wave two-station
traveltime measurements, using the cross-correlation between seis-
mograms at two stations. Sensitivity kernels for wide band (group
velocity) measurements show a strong sensitivity between the
source and the first receiver. Also, a gap of zero sensitivity along
the great circle is present in the interstation area. This indicates that
‘group velocity’, measured by cross-correlation for a relatively wide
frequency band around the centre frequency, does not adequately
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Figure 6. Horizontal section through shear velocity sensitivity kernel at 100 km depth, for a source at 18.5◦ and 24.5◦ from the first and second receiver,
respectively. The kernel is based on phase velocity measurements with a centre period of 30 s. Moment tensor components: Mθθ = 0.710 × 1019 N m; Mφφ =
−0.356 × 1019 N m; Mrr = −0.355 × 1019 N m; Mθφ = 0.800 × 1019 N m; Mθr = 0.315 × 1019 N m; Mφr = −1.150 × 1019 N m.

Figure 7. Horizontal section through the sum of shear velocity sensitivity kernels at 100 km depth, for three different sources. The kernel is based on phase
velocity measurements with a centre period of 30 s.

Figure 8. Horizontal section at 100 km depth through the sum of shear velocity sensitivity kernels, for six different sources, distributed on both sides of the
station pair. The kernel is based on phase velocity measurements with a centre period of 30 s.

represent the average interstation group velocity along the ray path.
However, when phase velocity measurements are approached by us-
ing a narrow frequency band, the interstation sensitivity is dominant
and the sensitivity closer to the source is reduced. The use of phase
velocity measurements is therefore more useful in the context of the
two-station cross-correlation method.

Although the use of multiple sources on both sides of the station
pair clearly improves the concentration of sensitivity along the in-
terstation ray path, pronounced streaks of sensitivity far from the
interstation area and off the great circle remain. Perturbations in
these areas can have a large effect on the traveltime difference be-
tween the stations. For large-scale perturbations (compared to the
frequency) the effects might cancel out, but this will not be the
case for small-scale perturbations. This strong sensitivity to small-
scale structure far from the interstation ray path can result in wrong
interpretations of the measurement. A study that encountered this
problem was performed by Zhang (2009), who used the two-station
method for surface wave tomography in the Gulf of California. For
a station pair located on the Baja-California Peninsula, with a great
circle along the strike of the coast, Zhang (2009) found a discrep-
ancy between the phase velocity curves for the two propagation
directions (i.e. from station A to B and from station B to A) for

frequencies above 30 mHz. For events from the northeast, the area
of higher sensitivity outside the interstation area coincides with the
ocean-continent transition. Because this transition is not included in
the reference model, this causes large phase velocity perturbations.
As a result, the phase velocity curves are affected by an area outside
the interstation area.

In conclusion, using two-station phase velocity measurements in
a tomographic inversion based on ray theory can be appropriate,
as long as the measurements and inversion parameters are chosen
with care. The importance of using as many sources as possible is
clear. When choosing a station pair and events on the corresponding
great circle, it is important to identify the regions of high sensitivity
outside the interstation area. If, in those areas, there are indications
for large anomalies compared to the reference model, it is better not
to include these events.

However, to avoid misinterpretations and to improve the qual-
ity of tomographic models, correct 3-D sensitivity kernels should
be used. This means that for each combination of stations and
events, a sensitivity kernel has to be calculated and used subse-
quently in a tomographic inversion. Due to the complexity of the
sensitivity kernels, a fine tomographic grid should be used (Chevrot
& Zhao 2007). Although being computationally expensive, this
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improvement is needed to further advance tomographic inversions
based on two-station measurements.
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A P P E N D I X A

Here, we derive the variation in the misfit due to a change in the
seismogram, as a consequence of a perturbation of the model. For
a single model parameter m (of m), eq. (2) can be rewritten as

Ċi j (TAB) = f (TAB(m), m) = 0 . (A1)

Therefore,

∂ f [TAB(m), m]

∂m
= 0 , (A2)

or

∂ f

∂TAB

∂TAB

∂m
+ ∂ f

∂m
= 0 , (A3)

which results in

∂TAB

∂m
= −

∂ f
∂m
∂ f

∂TAB

. (A4)

Or, with all terms written out explicitly and replacing derivatives by
perturbations (δ), this can be written as

δTAB = − 1

N

[∫ ∞

τ=−∞
δṡi (xA, TAB + τ )s j (xB, τ ) dτ

+
∫ ∞

τ=−∞
ṡi (xA, TAB + τ )δs j (xB, τ ) dτ

]
, (A5)

with

N =
∫ ∞

τ=−∞
s̈i (xA, TAB + τ )s j (xB, τ ) dτ . (A6)

Partial integration of the first term of eq. (A5), causality and substi-
tution of t = TAB + τ in the first, and t = τ in the second term and
N lead to

δTAB = 1

N

[∫ ∞

t=−∞
ṡ j (xB, t − TAB)δsi (xA, t) dt

−
∫ ∞

t=−∞
ṡi (xA, TAB + t)δs j (xB, t) dt

]
, (A7)

with

N =
∫ ∞

t=−∞
s̈i (xA, TAB + t)s j (xB, t) dt . (A8)

This equals eq. (9), which we needed to prove.
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