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Abstract—We analyze the anelasticity of the earth using group delays of P-body waves of deep (> 200

km) events in the period range 4–32 s for epicentral distances of 5–85 degrees. We show that Time

Frequency Analysis (TFA), which is usually applied to very dispersive surface waves, can be applied to the

much less dispersive P-body waves to measure frequency-dependent group delays with respect to arrival

times predicted from the CMT centroid location and PREM reference model. We find that the measured

dispersion is due to: (1) anelasticity (described by the P-wave quality factor Qp), (2) ambient noise, which

results in randomly distributed noise in the dispersion measurements, (3) interference with other phases

(triplications, crustal reverberations, conversions at deep mantle boundaries), for which the total

dispersion depends on the amplitude and time separation between the different phases, and (4) the source

time function, which is dispersive when the wavelet is asymmetrical or contains subevents. These

mechanisms yield dispersion ranging in the order of one to 10 seconds with anelasticity responsible for the

more modest dispersion. We select 150 seismograms which all have small coda amplitudes extending to ten

percent of the main arrival, minimizing the effect of interference. The main P waves have short durations,

minimizing effects of the source. We construct a two-layer model of Qp with an interface at 660 km depth

and take Qp constant with period. Our data set is too small to solve for a possible frequency dependence of

Qp. The upper mantle Q1 is 476 [299–1176] and the lower mantle Q2 is 794 [633–1064] (the bracketed

numbers indicate the 68 percent confidence range of Q�1p ). These values are in-between the AK135 model

(KENNETT et al., 1995) and the PREM model (DZIEWONSKI and ANDERSON, 1981) for the lower mantle

and confirm results of WARREN and SHEARER (2000) that the upper mantle is less attenuating than PREM

and AK135.
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Introduction

An anelastic medium changes the shape of waves that travel through it. On a

global scale, teleseismic S- and P-body waves have been used to assess the

anelasticity by analyzing the waveforms. This can be done in the time domain by

waveform fitting (CHOY and CORMIER, 1986; DZIEWONSKI and STEIM, 1982),

however since anelasticity is a frequency-dependent effect, this can be more directly

observed using amplitude spectra (ROTH et al., 1999; GAO, 1997; WARREN and
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SHEARER, 2000), both amplitude and phase spectra (BHATTACHARYYA et al., 1996),

or group arrival times (CORREIG and VILA, 1994) which are related to the phase.

The effect of anelasticity on a P-body waveform can be expressed in terms of the

quality factor, Qp. Group arrival times have only a second-order sensitivity to Qp

(MITCHELL, 1998), but they are less sensitive to focussing effects of earth structure than

amplitudes and provide constraints on the waveform that are practically independent

(if we measure them in a finite frequency band) of those from amplitudes.

A robust way to measure group arrival times is provided by the method of Time

Frequency Analysis (TFA). TFA has been developed to measure group arrival times

of surface waves (DZIEWONSKI and HALES, 1972). TFA provides an alternative to the

method used by CORREIG and VILA (1994), who characterized the group arrival times

by the first maximum of band-pass filtered signals. TFA also applies filters to the

seismogram, but relates group arrival times to the maximum of the envelopes of the

filtered signals.

TFA of body waves is different from its application in surface wave studies,

namely, (1) body waves are analyzed at short periods, whereas surface waves are

usually analyzed at longer periods, (2) body waves are much less dispersive, with

dispersion of about 1 s, whereas surface waves show tens of seconds of dispersion,

e.g., WU and LEVSHIN (1994), and (3) their recordings often contain a sequence of

separate waveforms (the coda), whereas fundamental mode surface waves often

present an isolated waveform. This means that we have to re-assess the reliability of

the group arrival times which we obtain.

The main purpose of this paper is to see the extent to which TFA is applicable to

body waves. While CONG et al. (2000) have applied TFA to measure dispersion of the

first swing of regionally recorded P waves, we will use information from the complete

waveforms at teleseismic distances. We give an overview of the method and examine

its sensitivity to different aspects of P recordings such as noise, the presence of other

phases besides the direct P-wave arrival and the source time function. Then we

examine the constraints that dispersion measurements of P put on a simple two-layer

model of the P-wave quality factor Qp.

Theory of Time Frequency Analysis

TFA and its application have been described in detail by DZIEWONSKI and HALES

(1972). Here we summarize the theory and properties of the method.

To decompose a seismogram uðtÞ in time and frequency, we use Gaussian

bandpass filters around central frequencies f0 of the form:

W ðf ; f0Þ ¼ c1 exp �
ðf � f0Þ2

2r2
f

 !
: ð1Þ
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The constant c1 is not important for our applications. For real signals, amplitudes

and phases at negative frequencies do not add independent information compared to

that given at positive frequencies. Therefore, and for mathematical convenvience, the

filter width rf must be chosen such that

W ðf ; f0Þ ’ 0 for f < 0; ð2Þ

at each frequency f0. Since a Gaussian function is nonzero everywhere, equation(2) is

only approximate.

Applying a filter W ðf ; f0Þ þ W ðf ;�f0Þ to a signal yields a bandpassed signal;

applying 2W ðf ; f0Þ yields a complex signal euuðt; f0Þ, comprising the bandpassed signal

as the real part and its Hilbert transform as the imaginary part. The impulse response

of the Gaussian bandpass filter (equation (1)) is:

wðt; f0Þ ¼ c2 exp �
t2

2r2
t
� i2pf0t

� �
; ð3Þ

where

rt ¼
1

2prf
; ð4Þ

and c2 is some scaling factor. Equation (3) defines the Morlet wavelet, which is

sometimes used in Wavelet Analysis (CHAKRABORTY and OKAYA, 1995). Equation

(4) shows that the resolution obtainable in the time domain is inversely proportional

to that in the frequency domain.

The impulse response (equation (3)), and hence also the filtered signal, are

modulated by a harmonic wave, which can be removed by using j euu j, the envelope of
the filtered signal. DZIEWONSKI and HALES (1972) showed that the maximum of j euu j
corresponds to the group arrival time, if phase and amplitude are linear functions of

frequency within the frequency band, i.e., all Fourier components interfere

constructively in the time domain. In case the signal is dispersive, the group arrival

times are a function of f0.
Equation (2) implies that the filters we use should be narrow at low frequencies,

but can be wider at higher frequencies. The choice rf ¼ af0 yields best time

resolution if second and higher order terms in the phase are not important (CARA,

1973); this is a reasonable assumption since we are interested in measuring slowly

varying dispersion due to Qp. TFA now has one free tuning parameter, namely a. Its
value should be set subjective to noise conditions and dispersiveness of the waveform

of interest.

A sampling strategy should provide some degree of independence between

measurements at different frequencies f0. If we would choose equidistant sampling

with frequency, the filters which increase in width with f0 are nearly identical for

subsequent samples at high frequencies; similarly, if we would choose an equidistant
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sampling with period, the filters at very large periods are nearly identical. The least

bias occurs when filters at subsequent frequencies have the same relative amount of

overlap, that is, are centered at frequencies fjþ1 ¼ fj þ crf ;j. Given that the filter has

width rf ;j ¼ afj around fj, valid frequencies are fjþ1 ¼ ð1þ caÞfj. This yields an

exponentially increasing series of frequencies,

fj ¼ f0ð1þ caÞj ; ð5Þ

at which we will filter the seismogram and estimate group arrival times; f0 is the

frequency at j ¼ 0.

Concluding, with TFA we measure a physical quantity, the group arrival time,

but obtain a smoothed image of the true dispersion.

On the Origin of the Dispersion

TFA consists of convolving a Gaussian time window with a signal and any

seismic energy that arrives within the window is used for the group arrival estimate.

An application of TFA to a seismogram is shown in Figures 1a and 1b. The

envelope j euu j is contoured and the group delays sðf0Þ (relative to the CMT solution

(DZIEWONSKI et al., 1981) are found as a function of frequency by tracing the

maxima, indicated by circles.

In Figure 1a we find different dispersion curves associated with different

waveforms in the seismogram, which merge at long periods (P and pP around 50 s

period and pP and PP around 60 s period) due to decreasing time resolution with

period. In Figure 1b we observe a trend which may be associated with dispersion of

the P wave and slight oscillations in the measured dispersion which result from

interference between arrivals that are so closely spaced that these cannot be separated

in our period range.

The dispersion observed in Figures 1a and 1b is the result of anelastic dispersion

of P, of the dispersiveness of the source time function, of the interference between

different phases, and of ambient noise. These issues are addressed separately in this

section.

Ambient Noise

Ambient noise is always present in seismograms. To examine its effect on

measurements of group arrival times, we apply TFA to seismograms containing a

delta pulse and different realizations of white noise (with a uniform probability of

taking a value between )1 and +1) for different values of the S/N ratio. We define

the S/N ratio at each frequency as the ratio between the amplitude of the envelope

at the group arrival time and the largest maximum present in the remainder of the

envelope.

2226 R. J. R. Devilee et al. Pure appl. geophys.,



Figure 1

TFA (with filter width scale factor a ¼ 0:3) applied in two different period ranges to recordings of a P wave

at station YAK for event 02-20-1998, Mb 5.8, with centroid located at (36.5N,70.9E) at a depth of 243.7 km.

(a) Shows interference at long periods, (b) shows interference at short periods. The epicentral distance is

44�. Envelopes of seismograms filtered around different periods form a surface as a function of time and

period. At each period, envelopes are scaled by the value of the maximum associated with the P wave. The

location of relatively strong maxima of the envelope is indicated by circles, which define the group delays

associated with the strongest phases. The seismograms are shown for normalized velocity in the lower

frame: these have been lowpassed using a second order Butterworth filter with a corner frequency of 0.5

Hz. Measurements used for inversion are shown by triangles.
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Figures 2a and 2b show the decrease in resolution of group arrival times at 1 s

period if we decrease the scale factor a or decrease the S/N ratio. The noise in the

group arrival times increases with decreasing filter width rf due to the decrease in

time resolution. Figure 3 shows the increase in standard deviation (as determined

from 100,000 of such noise realizations) of the group arrival times with period, for

synthetic signals with different S/N ratios. The filtering operation is linearly scalable

at each period and therefore uncertainty in group arrival times increases propor-

tionally with period. At large periods, however, we have few samples within the

frequency band, resulting in less reliable noise statistics and hence in more scatter.

The distribution of group arrival times is symmetric around the expected arrival time,

hence, ambient noise does not introduce a bias.

White noise has spectral amplitudes proportional to
ffiffiffiffi
T
p

for a window of length

T . Thus, for analysis of a P waveform contaminated with noise, increasing rt results

in a decrease of the S/N ratio if rt exceeds the window within which most of the

energy of the P waveform is contained. In the case of slightly dispersed P waves,

most energy is contained in the first cycle, hence, 2rt (note that rt is the half width)

should be proportional to the period of interest, i.e., a ¼ 1=p � 0:3.

Concluding, random noise in a seismogram does not introduce a bias into our

measurements of group arrival time, but introduces an uncertainty that depends on

the choice of filter width and period.

Interference between Arrivals

The P wave is followed by a series of phases containing crustal reverberations,

surface reflections (pP, sP) (e.g., Figs. 1a and b), and triplications at epicentral

Figure 2

Distributions of group arrival times sðf0 ¼ 1HzÞ obtained using TFA with filter width scale factor a ¼ 0:3

(a) and a ¼ 0:15 (b), for signals containing a delta pulse at 50 s and superposed white noise. The S/N ratio

is given by the ratio of the amplitude of the envelope at the group arrival time and the maximum value in

the surrounding ambient noise. 100,000 random realizations of the signal were analyzed. Note that the

uncertainties of group arrival times in (b) are about twice as large as in (a).
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distances of 15�–30�. If a seismogram consists of a series of impulsive arrivals,

bandpassing these arrivals creates a series of Gaussian-tapered harmonic waves (the

impulse responses of the filter). If these waves overlap, they produce an interference

pattern which depends on the amplitudes and the time interval of the phases.

For large phases like P and pP we find their mutual interference to be negligible if

2rt < s, where s is the distance between two subsequent waveforms and rt the

halfwidth of theGaussian.Hence, valid values for central frequencies are f0 > ðpasÞ�1;
if we choose a ¼ 0:3 (see the previous section), we have approximately f0 > s�1. On the

other extreme, at frequencies f0 � s�1 we measure a weighted average of the group

arrival times, the weight depending on the amplitudes of the waveforms involved.

Figure 1a shows a signal containing a prominent pP phase, arriving at s ¼ 51 s

after P. At periods less than s, the group arrival times are specific to each waveform;

at periods comparable to s, interference causes substantial dispersion. The effect is

strong because the two signals have similar amplitude. Such interference masks any

other dispersion, including that due to Qp. At long periods, dispersion curves merge

into one average dispersion of the two waveforms. This is difficult to model, hence

data in such a period range are not used in this study.

Figure 1b shows small phases arriving within about 10 s after P. They originate

from reflections and conversions at mantle and crustal boundaries. Since the phases

form a complicated coda, we cannot determine a frequency band which is free of

Figure 3

We applied TFA with a ¼ 0:3 to simulated recordings of delta pulses with different amounts of white noise.

The S/N ratio is defined as in Figure 2. 100,000 realizations of the noise were analyzed in each case. We

show the standard deviations of the scatter of values of group arrival times as a function of S/N ratio,

evaluated at periods of 1, 2, 4, 8, 16 and 32 s.
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interference. These phases, because they only occur after the P wave and have non-

random amplitudes, always contribute to the dispersion. The interference introduces

an oscillatory signature into the dispersion so that we may identify cases where

interference is strong. In this example however, the phases have relatively small

amplitudes and the dispersion due to interference is also small.

Concluding, subsequent large phases can be analyzed at periods shorter than

their separation in time. Interference of P with small phases introduces minor noise

into our measurements.

Source Time Function

The shape of each arrival is the result of the source time function convolved with

the response of the earth. The source time function causes dispersion if it is

asymmetric in time; see Figure 4. Some source time functions consist of different

subevents which produce dispersion through interference. This dispersion is small at

periods that exceed the source duration, but is significant at shorter periods. Events

with good signal-to-noise-ratio at periods reaching 32 s have a duration of several

seconds, hence we will measure dispersion at periods of 4 s and higher.

Anelasticity

We model the effect of anelasticity by the P-wave quality factor, Qp, which we

assume is constant with period. This model yields group delays which are a linear

function of log-period. An inversion would fit a linear trend in the data, with limited

sensitivity to oscillations from interference. PREM predicts a variation of about 0.5 s

of the differential group delays (relative to a reference period of 4 s) over a period

range of 4–32 s (Fig. 5).

We have discussed several sources of dispersion which contribute to our

measurements. In subsequent sections we invert the measurements of group delays

for the quality factor Qp only. The other forementioned effects are considered as

noise, and hence we choose the data in such a way as to keep these effects to a

minimum.

Measurements

Group delays

For our measurements we use vertical component BHZ seismograms, sampled at

20 Hz, and LHZ seismograms, sampled at 1 Hz, deconvolved by the instrument

response to velocity. We apply TFA and examine the envelopes at different periods.

The location of the maximum peak within a time window of 40 s centered around the

predicted Centroid Moment Tensor (CMT) arrival time (DZIEWONSKI et al., 1981;

DZIEWONSKI and WOODHOUSE, 1983) yields the group delay.
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We use data from 01–1990 to 09–2000, obtained from IRIS. The epicentral

distance range is 5 to 85 degrees. A few measurements are recorded at < 30 degrees;

those may include interference between upper mantle triplications. We use only deep

(> 200 km) events, so that the largest phases, namely P and pP, are well separated.

The period range we use is 4–32 s; 4 s is an upper limit of the source durations, and

32 s is the period above which group delays show interference with the pP waveform

for the shallowest of the events, given that a is around 0.3. Within this period range

we choose frequencies fj ¼ 2�j; j ¼ 2; 3; 4; 5.

We reject data in period ranges that have bad S/N ratio, show significant

interference, or exhibit complicated P wave shapes. We selected 150 seismograms

which have two or more acceptable group delay samples out of several thousands of

seismograms which had reasonable S/N (> 5) ratio. The coverage of the data is

Figure 4

Dispersion of triangular waveforms intended to resemble simple source time functions from a source with a

linear rise and healing time, but negligibly small fault surface. The asymmetry of a signal introduces

dispersion.
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shown in Figure 6. The data are most representative of structure in Eastern Asia and

the Western Pacific.

Uncertainties

We measure group delays using three values of the filter scaling factor a, namely,

0.25, 0.30 and 0.35. Choosing a smaller width causes interference between P and pP

Figure 5

Dispersion of P waves calculated from the PREM Qp model (DZIEWONSKI and ANDERSON, 1981) for a

source at 600 km depth and recorded at epicentral distances of 29 and 72 degrees, respectively. Differential

group delays are relative to the value at 4 s period. Dispersion increases with distance.

Figure 6

Coverage of event-station pairs which yield at least one differential group delay measurement. Most

sources lie along the Pacific Rim where deep seismicity occurs, however some are located under

southwestern Tibet. Most stations are located on continents.
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for the shallow events; a larger width means that we use a time window significantly

less than one cycle, i.e., we become sensitive to details of the source. In-between, no

value is unambiguously preferred over another. We use the average of these

measurements, si at each frequency fi, for inversion. Their standard deviation ra

represents the uncertainty due to a. Another source of uncertainty is due to ambient

noise. We measure the S/N ratio of the recordings and use the previously established

uncertainties in the group delays as a function of the S/N ratio (Fig. 3). We add the

squared standard deviations, so that the total uncertainty in si is now represented by

the standard deviation r2
i ¼ r2

a þ r2
noise.

Differential Group Delays

The group delays si (averaged from different a) at frequencies fi contain a

frequency-dependent part due to anelastic properties of the earth, and a frequency-

independent part due to elastic velocity variations in the earth. We eliminate the

latter at each station by taking the average group delay at frequency fi relative to the

average group delay at another frequency fj, i.e., by using Dsij ¼ si � sj. We call this

the differential group delay. The uncertainty of the differential group delay is the sum

of uncertainties of the two average group delays, i.e., r2
ij ¼ r2

i þ r2
j . By choosing a

particular reference frequency fj we favor a certain noise at that frequency. To

obtain a fair representation of the noise, we measure differential group delays Dsij

for all reference frequencies j.
Observed differential group delays correspond to wide distributions, but also

show a clear trend with period, indicative of the presence of dispersion (Fig. 7).

Inversion for Qp

Inversion Theory

We define a simple model which has two layers with homogeneous Qp, namely

Qp ¼ Q1 for z < 660 km and Qp ¼ Q2 for z > 660 km where z denotes depth. The

boundary at 660 km depth separates the upper and lower mantle, and here we expect

the most significant change of Qp with depth. We use the approximation that Q1 and

Q2 are constant in the seismic frequency band, and express the predicted differential

group delays Dsij by (BEN-MENAHEM and SINGH, 1981):

Dsijk ¼ skðfiÞ � skðfjÞ ¼ �
2t�k
p

ln
fi

fj

� �
; ð6Þ

where skðfjÞ is the group arrival time in a spherically symmetric earth for ray path k.
Note that high frequency energy arrives earliest. The value of t�k is related to Qp by

(BEN-MENAHEM and SINGH, 1981):
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t�k ¼
Z R

0

nkðrÞ
dr

vpðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� vpðrÞpkr�1

� �2q 1

2QpðrÞ
; ð7Þ

where R denotes the earth’s radius, nkðrÞ an integer giving the number of times the

ray path k samples the earth at radius r, vpðrÞ the PREM P velocity model of the

earth (DZIEWONSKI and ANDERSON, 1981), and pk the ray parameter for a spherical

medium. We assume that this ray theoretical estimate of differential group delays is

valid in our frequency range.

We define the misfit E between sets of K synthetics DsijkðQ1;Q2Þ and measure-

ments Dsijk , each with N frequency samples, by:

EðQ1;Q2Þ ¼
XK

k¼1

XN

j¼1

XN

i¼jþ1

wijk

mrijk
m

Dsijk � Dsijk

�� ��m XK

k¼1

XN

i¼1

Xn2ðiÞ
j¼n1ðiÞ

wijk

2
4

3
5
�1

; ð8Þ

where wijk ¼ f0; 1g indicates our confidence in the differential group delays. By

normalizing E by the summed weights we obtain a chi-squared value. We dropped

the dependence on the Qp model for clarity. We use m ¼ 2, i.e., the L2 norm; the use

of m ¼ 1 (the L1 norm) only slightly changes the results.

Figure 7

The distribution of the measured P-wave differential group delays, relative to the values at 4 s period. The

distributions are wide, but are shifted which clearly indicates dispersion.
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The data are distributed as a function of period, epicentral distance, and depth.

Tests showed that weighting by these distributions hardly changes the results and

hence we use a uniform weighting in the inversion.

We systematically vary Q�11 and Q�12 between 0 and 2 to obtain E. This gives us
the shape of the complete misfit function.

Results

The model we use for Qp is a constant function of frequency and should

provide a robust result in the form of an estimate of average Qp between 4 and 32 s

period.

Figure 8 shows the misfit surface (equation (8)) of the data in this period range.

The minimum of the misfit forms an ellipsoid valley with little variation of the misfit

inside, showing a significant linear trade-off between Q�11 and Q�12 due to the poor

sampling of the upper mantle by the teleseismic ray paths. The values of the misfit are

large. In terms of v2, we mismatch the data by about 2 standard deviations. This is

due to the presence of effects of interference and the source time function in the

Figure 8

Misfit surface of data (equation (8) with norm m ¼ 2). Qp values of earth models PREM (DZIEWONSKI and

ANDERSON, 1981) (star), QL6 (DUREK and EKSTRÖM, 1996) (diamond), AK135 (KENNETT et al., 1995)

(circle) and WL (WARREN and SHEARER, 2000) (triangle) are shown; these values are representative of the

dispersion for a source at 400 km depth and a station at 50 degrees epicentral distance. The error bars

indicate the root of the principle components of the cross-correlation matrix of a jackknife experiment,

characterizing the distribution of optimal solutions to 500 linear inversions, each fitting a random subset of

50% of the data set. This indicates the uncertainty in the mean.
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measurements of differential group delay, whose errors were not included in the

inversion.

Uncertainty of the solution is determined by the available distribution of the

data and their uncertainties. This is shown by the error bars which we obtain

using jackknifing (EFRON, 1982; TICHELAAR and RUFF, 1989). Equations (6) and

(7) pose a linear problem in Q�1p , namely d ¼ Gq, where d is a vector containing

all measured differential group delays, and q ¼ ðQ�11 ;Q�12 Þ. In order to obtain the

optimal solution for m ¼ 2, we minimize the misfit function E (equation (8)). We

run 500 linear inversions using a random subset of 50% of the data and the

covariance of the optimal models yields the jackknife estimate of uncertainty in

the average.

We infer Q�11 ¼ 2:1� 1:25 10�3, yielding Q1 ¼ 476 with 68 percent probability

that Q1 is between 299 and 1176, and Q�12 ¼ 1:26� 0:32 10�3, yielding Q2 ¼ 794 with

68 percent probability that Q2 is between 633 and 1064. Note that the misfit function

of Q�1p is symmetric around the mean, which maps into an asymmetric uncertainty

estimate of Qp.

Conclusion

We used Time Frequency Analysis to measure group arrival times. This method

has been applied to very dispersive surface waves, but we showed that it can also be

applied to the much less dispersive P body waves. The dispersion is expressed as

frequency-dependent group delays which provide information about the earth which

is independent of amplitude data. The measurements depend on the filter width;

variation around its optimal value indicates the uncertainties in the measurement due

to noise.

The measurements represent the effects of attenuation, interference and the

source time function on the shape of the P waveform. The dispersion due to

interference depends on the size and sign of the amplitudes of the phases following P,

and is easily identified due to its oscillatory nature.

We used 150 high quality dispersion measurements of P body waves to constrain

Qp (the P-wave quality factor) in the mantle. We used a model of Qp that is constant

with period in order to obtain robust results. The simple model contained two layers

with a boundary at 660-km depth. The inverse of upper mantle Qp (Q�11 ) and lower

mantle Qp (Q�12 ) trade off linearly. The valley of acceptable misfit lies in-between the

values of the AK135model (KENNETT et al., 1995) and the PREM model in the lower

mantle. The optimal model we find is Q1 ¼ 476 and Q2 ¼ 794, with an indication that

the upper mantle is less attenuating than PREM or AK135, in agreement with

findings of WARREN and SHEARER (2000).
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