Inner core structure behind the PKP core phase triplication

Nienke A. Blom, 1 Arwen Deuss, 1 Hanneke Paulssen1 and Lauren Waszek 2

1 Department of Earth Sciences, Universiteit Utrecht, Budapestlaan 4, NL-3584 CD Utrecht, The Netherlands. E-mail: n.a.blom@uu.nl
2 Bullard Laboratories, Department of Earth Sciences, University of Cambridge, Cambridge CB3 0EZ, UK

SUMMARY
The structure of the Earth’s inner core is not well known between depths of ~100–200 km beneath the inner core boundary. This is a result of the PKP core phase triplication and the existence of strong precursors to PKP phases, which hinder the measurement of inner core compressional PKIKP waves at epicentral distances between roughly 143 and 148º. Consequently, interpretation of the detailed structure of deeper regions also remains difficult. To overcome these issues we stack seismograms in slowness and time, separating the PKP and PKIKP phases which arrive simultaneously but with different slowness. We apply this method to study the inner core’s Western hemisphere beneath South and Central America using paths travelling in the quasi-polar direction between 140 and 150º epicentral distance, which enables us to measure PKiKP–PKIKP differential traveltimes up to greater epicentral distance than has previously been done. The resulting PKiKP–PKIKP differential traveltimes increase with epicentral distance, which indicates a marked increase in seismic velocity for polar paths at depths greater than 100 km compared to reference model AK135. Assuming a homogeneous outer core, these findings can be explained by either (i) inner core heterogeneity due to an increase in isotropic velocity or (ii) increase in anisotropy over the studied depth range. Although this study only samples a small region of the inner core and the current data cannot distinguish between the two alternatives, we prefer the latter interpretation in the light of previous work.

Key words: Core, outer core and inner core; Body waves; Seismic anisotropy.

1 INTRODUCTION
Given its remoteness and small size (less than 1 per cent of the Earth’s volume), the inner core plays a surprisingly important role in the Earth’s dynamics. Discovered less than a century ago (Lehmann 1936), it is still relatively unknown, although many enigmatic characteristics have come to light over the past few decades. It has been found to be anisotropic, with the axis of symmetry approximately along the Earth’s rotation axis and rays in the polar direction traveling faster than those in the equatorial plane (e.g. Morelli et al. 1986; Woodhouse et al. 1986). More recently, it was discovered to have two seismically distinct hemispheres (Tanaka & Hamaguchi 1997) that are separated by sharp boundaries (Waszek et al. 2011). The quasi-Western hemisphere has a lower velocity and stronger anisotropy than the quasi-Eastern hemisphere (Creager 1999; Garcia & Souriau 2000; Niu & Wen 2001a; Deuss et al. 2010; Irving & Deuss 2011; Waszek & Deuss 2011; Lythgoe et al. 2014). Internally, the hemispheres are not homogeneous either, as both isotropic and anisotropic velocities are found to vary laterally and with depth (e.g. Creager 1997; Waszek & Deuss 2011; Tkalčić et al. 2013).

A variety of different mechanisms have been proposed to explain both the anisotropy and the existence of hemispheres, all depending on how the inner core interacts with the surrounding outer core and mantle. While some propose that the anisotropy is frozen into the inner core as it solidifies (Karato 1993; Bergman 1997), others suggest that it formed later on, as a result of thermal convection (Jeanloz & Wenk 1988), deformation due to anisotropic growth (Yoshida et al. 1996), or magnetic field stresses (Karato 1999; Buffett & Wenk 2001). Whatever the mechanism causing the anisotropy, it also has to be in accordance with the existence of structurally different hemispheres and any other lateral or depth variations inside the inner core (Deuss 2014; Tkalčić 2015). The hemispheres have been proposed to be due to either degree-one convection in the inner core, the so-called ‘inner core translation’ model (Alboussiére et al. 2010; Monnereau et al. 2010), or alternatively they may be due to thermochemical outer core flow resulting in laterally varying solidification regimes at the inner core boundary (ICB; Aubert et al. 2008).

In order to be able to determine what processes govern this remotest part of the Earth, it is important to have an accurate idea of its structure. Progress has been made in recent years with the compilation of large sets of inner core body wave and normal mode data (e.g. Shearer & Toy 1991; Creager 1992; Song & Helmberger 1995; McSweeney et al. 1997; Creager 1999; Tkalčić et al. 2002; Wen & Niu 2002; Cao & Romanowicz 2004; Garcia et al. 2006; Cormier 2007; Irving & Deuss 2011; Waszek & Deuss 2011; Deuss et al. 2013; Lythgoe et al. 2014). While normal modes have the advantage of uniform coverage, they consist of long-period data...
and have limited depth resolution. Here, we are interested in a more detailed mapping of inner core structure and therefore short-period body waves are more suitable.

The upper parts of the inner core have been studied in relatively high detail. In the Western hemisphere, an isotropic layer of about 60 km in thickness seems to be present at the very top of the inner core (Shearer 1994; Song & Helmberger 1995), below which anisotropy increases to 2.8 per cent (Waszek & Deuss 2011). No such layer has been found in the Eastern hemisphere. The isotropic velocity of the upper Western hemisphere is lower than that of the Eastern hemisphere (Tanaka & Hamaguchi 1997; Creager 1999; Wen & Niu 2002; Waszek & Deuss 2011; Tanaka 2012), with internal variations detected as well (e.g. Stroujkova & Cormier 2004; Iritani et al. 2014). Anisotropy is however found to be larger in the Western hemisphere (∼3 per cent as opposed to 0.5–1 per cent in the Eastern hemisphere; Song & Helmberger 1995; Tanaka & Hamaguchi 1997; Niu & Wen 2002; Deuss et al. 2010; Irving & Deuss 2011). Much more uncertainty and variation are found concerning the seismic structures deeper in the inner core. Suggested values for anisotropy in the Western hemisphere vary widely from 2–4 per cent at depths of 100–200 km beneath the ICB (Creager 1999; Sun & Song 2008) to 8 per cent at depths >250 km (Song & Xu 2002; Lythgoe et al. 2014), while the Eastern hemisphere is generally found to be more isotropic (e.g. Sun & Song 2008; Irving & Deuss 2011).

This larger uncertainty at depth is partially due to an unfortunate geometry of ray paths and traveltimes. At epicentral distances of 130–143°, PKiKP and PKIKP are used to study the upper 100 km of the inner core. For epicentral distances larger than 148°, PKPbc, PKPab and PKIKP are used to study the inner core below ∼200 km depth [Fig. 1(a)]. Around 145°, however, these core phases all arrive very closely in time and their traveltime curves intersect [Fig. 1(b)]. The presence of the PK caustic at the B point in the traveltime curve (which results in very large PKPbc amplitudes drowning out the other phases), the intersections of the traveltime curves and strong precursors to PKP at smaller epicentral distances together make it very difficult to recognize individual PKP phases in the seismogram around ∼143–148°, so that there are almost no measurements [Fig. 1(c)]. As a result, the spherical shell at depths of ∼100–200 km below the ICB is difficult to image using direct seismic observation and, consequently, uncertainties at depth remain large.

In this study, we attempt to bridge the gap between 143 and 148° by stacking seismograms in slowness and time in order to separate the PKP core phases and measure PKiKP–PKIKP differential traveltimes. Our efforts focus on the Western hemisphere, which is strongly anisotropic in the upper part, but whose anisotropy in deeper regions is still a subject of discussion. Another reason for focusing on polar paths is that we expect PKIKP to arrive earlier, leading to a greater separation from the other PKP phases, thus making it a favourable setting to test our method.

We will first discuss our stacking and data processing method. Then, we will present PKiKP–PKIKP differential travel time measurements and finally we will interpret our results in terms of inner core velocity structure.

2 METHODS AND DATA

We study the inner core using PKIKP (also called PKPdf), a compressional seismic body wave which travels through the mantle, the outer core and the inner core (Fig. 1). As a reference phase we use PKiKP, which travels along nearly the same path but reflects off the ICB. The other PKP phases are PKPab and PKPbc, which travel through the mantle and the outer core only. Because the paths of PKIKP and PKiKP are so close together, heterogeneities in the mantle encountered along the way will affect both rays in nearly the same way so that no corrections for 3D mantle structure need to be applied. Likewise, a potential mislocation of the earthquake hypocentre will have almost the same effect on both phases. The differential traveltimes between these two phases can therefore be

![Figure 1](http://gji.oxfordjournals.org/)
used to study the inner core because this is where the ray paths deviate: a difference between the observed PKiKP–PKIKP differential traveltimes and a model prediction can be attributed to inner core structure. Studied as a function of epicentral distance, it gives information about the depth dependence of inner core seismic velocity. PKiKP–PKIKP has thus been used to study the upper 100 km of the inner core at epicentral distances of 130–143° (e.g. Niu & Wen 2001a; Wen & Niu 2002; Cao & Romanowicz 2004; Waszek & Deuss 2011).

As PKiKP and PKIKP cannot be distinguished individually from single seismograms between 143 and 147°, we combine the traces in stacks. For each event, we divide the data in bins of epicentral distance, stacking the traces from different stations for a large range of slownesses. The results are visualized in a plot called vespagram, which displays signal amplitude as a function of slowness η. The slowness where a phase has the largest amplitude is selected as the slowness for that particular phase. Traveltimes are then compared to predictions using the Phase Weighted Stack (PWS) technique (Schimmel & Paulssen 1997), where the sum of the seismograms is weighted by the coherency of their instantaneous phase.

We focus on polar paths in the Western hemisphere, whose traveltimes are known to be anomalous, while equatorial traveltimes are close to those predicted by globally averaged 1-D models (Creager 1999; Niu & Wen 2002; Irving & Deuss 2011). We define polar paths as paths where the angle ζ between the Earth’s rotation axis and the direction of the ray path at its turning point is smaller than 35°. Events with magnitudes of $M_W > 5.5$ are selected based on locations yielding polar paths. High-quality recordings from South Sandwich Islands subduction events to stations mainly in North-West Canada and Alaska are abundant and are therefore suitable for our aims (see Fig. 2). All used events have magnitudes around $M_W = 6$ and at depths up to 200 km (see Table 1).

The gathered seismic traces are filtered between 0.5 and 2 Hz, and checked for quality. The traces for each event are then divided into bins of 5° epicentral distance: 140–145°, 142.5–147.5°, 145–150° and 150–155°, and stacked, where any bin containing fewer than four traces is discarded. The bins contain data from arrays and single stations, all for the same event, so that within a single bin, azimuths may vary by as much as 51° and ζ by as much as 13° (see also Table 1). The combination of different stations ensures that station specific biases are averaged out and a more robust result is obtained. The combination of multiple traces into a stack also helps reduce the scatter typical of individually interpreted waveforms, making it possible to achieve a more stable mean measure of differential traveltimes. The traces are normalized and stacked with PWS at slownesses ranging between 0 and 5 s deg$^{-1}$. Within each bin, the median epicentral distance is used as the reference for the stack. This ensures that the differential traveltimes are calculated at the distance where most of the data are found, and that the resulting vespagram does not become distorted as a result of unbalanced epicentral distance distribution within the bin.

We measure differential traveltimes from the vespagrams that are thus generated for each event and each bin. Traveltimes are hand-picked from phase onsets in the vespagrams. The slowness where a phase has the largest amplitude is selected as the slowness for that particular phase. Traveltimes are then compared to predictions from velocity model AK135 (Kennett et al. 1995), and differential traveltimes residuals δt are calculated with

$$\delta t = (t_{PKiKP} - t_{PKIKP})_{\text{data}} - (t_{PKiKP} - t_{PKIKP})_{\text{model}}.$$

(1)
Model traveltimes are calculated using TauP (Crotwell et al. 1999) and residuals are initially calculated with respect to AK135. Unless stated otherwise, all depths mentioned in this paper have been calculated for AK135. For comparison, we also calculate synthetic seismograms with the WKBJ modelling method (Chapman 1978) for model AK135, using the same source parameters and station locations as the real data and processed in the same way.

Observations

Table 1. Overview of differential traveltime data. Events are from the South Sandwich Islands region, recording stations are mostly located in Alaska and Northwest Canada. Δref is the reference epicentral distance in the stack and $t_{ref} - t_i = (t_{PKiKP} - t_{PKIKP})_{data}$ for the bins 140–145°, 142.5–147.5° and 145–150° (top three sections of the table) and $t_{ref} - t_i = (t_{PKPbc} - t_{PKIKP})_{data}$ for the bin 150–155° (bottom section). Data from overlapping bins have been omitted.

<table>
<thead>
<tr>
<th>Event date & time (UTC)</th>
<th>M_W</th>
<th>Depth (km)</th>
<th>Δref (°)</th>
<th>ξ range (°)</th>
<th>n_{seis}</th>
<th>$t_{ref} - t_i$ (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004-09-06 14:17:19.3</td>
<td>5.8</td>
<td>10.0</td>
<td>142.33</td>
<td>26.11–27.62</td>
<td>8</td>
<td>4.4</td>
</tr>
<tr>
<td>2004-10-08 15:28:39.2</td>
<td>5.9</td>
<td>101.5</td>
<td>143.60</td>
<td>26.21–27.48</td>
<td>5</td>
<td>4.5</td>
</tr>
<tr>
<td>2004-10-26 22:53:07.8</td>
<td>6.2</td>
<td>10.0</td>
<td>143.13</td>
<td>24.12–27.29</td>
<td>9</td>
<td>5.4</td>
</tr>
<tr>
<td>2005-05-18 09:10:53.6</td>
<td>6.0</td>
<td>102.2</td>
<td>143.54</td>
<td>26.36–27.53</td>
<td>4</td>
<td>5.1</td>
</tr>
<tr>
<td>2005-06-12 19:26:24.8</td>
<td>6.0</td>
<td>94.1</td>
<td>142.78</td>
<td>26.39–27.30</td>
<td>4</td>
<td>4.2</td>
</tr>
<tr>
<td>2005-07-25 19:45:16.0</td>
<td>5.5</td>
<td>84.8</td>
<td>142.94</td>
<td>24.92–27.47</td>
<td>5</td>
<td>4.7</td>
</tr>
<tr>
<td>2005-08-04 12:11:21.3</td>
<td>5.6</td>
<td>45.9</td>
<td>142.86</td>
<td>21.63–25.96</td>
<td>20</td>
<td>4.3</td>
</tr>
<tr>
<td>2004-11-07 02:41:41.0</td>
<td>5.8</td>
<td>38.6</td>
<td>145.64</td>
<td>23.15–27.75</td>
<td>6</td>
<td>5.7</td>
</tr>
<tr>
<td>2006-05-29 05:20:48.4</td>
<td>5.7</td>
<td>124.4</td>
<td>145.50</td>
<td>12.42–25.60</td>
<td>4</td>
<td>6.6</td>
</tr>
<tr>
<td>2004-09-06 14:17:19.3</td>
<td>5.8</td>
<td>10.0</td>
<td>148.83</td>
<td>25.71–30.19</td>
<td>18</td>
<td>8.5</td>
</tr>
<tr>
<td>2005-07-25 09:15:51.8</td>
<td>5.6</td>
<td>45.9</td>
<td>145.81</td>
<td>21.63–25.96</td>
<td>7</td>
<td>6.0</td>
</tr>
<tr>
<td>2005-09-09 19:55:21.8</td>
<td>5.6</td>
<td>142.8</td>
<td>148.33</td>
<td>23.05–28.55</td>
<td>11</td>
<td>8.1</td>
</tr>
<tr>
<td>2008-04-14 09:45:19.7</td>
<td>6.0</td>
<td>140.2</td>
<td>149.36</td>
<td>23.04–28.58</td>
<td>29</td>
<td>8.4</td>
</tr>
<tr>
<td>2010-12-05 05:24:35.2</td>
<td>6.3</td>
<td>29.4</td>
<td>147.73</td>
<td>23.15–28.01</td>
<td>26</td>
<td>7.7</td>
</tr>
<tr>
<td>2011-08-21 12:38:53.7</td>
<td>5.6</td>
<td>130.4</td>
<td>147.87</td>
<td>22.92–27.93</td>
<td>26</td>
<td>8.2</td>
</tr>
<tr>
<td>2011-09-03 04:48:57.3</td>
<td>6.4</td>
<td>84.0</td>
<td>147.45</td>
<td>22.99–27.84</td>
<td>21</td>
<td>8.5</td>
</tr>
<tr>
<td>2011-12-11 09:54:55.2</td>
<td>6.2</td>
<td>116.0</td>
<td>147.58</td>
<td>23.03–28.53</td>
<td>32</td>
<td>8.1</td>
</tr>
<tr>
<td>2004-09-11 21:53:38.3</td>
<td>6.1</td>
<td>63.9</td>
<td>152.54</td>
<td>24.31–34.70</td>
<td>25</td>
<td>10.0</td>
</tr>
<tr>
<td>2005-05-18 09:10:53.6</td>
<td>6.0</td>
<td>102.2</td>
<td>151.40</td>
<td>25.29–29.88</td>
<td>17</td>
<td>9.5</td>
</tr>
<tr>
<td>2006-05-12 19:26:24.8</td>
<td>6.0</td>
<td>94.1</td>
<td>151.16</td>
<td>23.38–33.38</td>
<td>17</td>
<td>9.0</td>
</tr>
<tr>
<td>2005-08-04 12:11:21.3</td>
<td>5.6</td>
<td>45.9</td>
<td>152.91</td>
<td>23.90–31.75</td>
<td>11</td>
<td>11.5</td>
</tr>
<tr>
<td>2011-03-06 14:32:36.0</td>
<td>6.5</td>
<td>87.7</td>
<td>151.92</td>
<td>25.09–33.40</td>
<td>34</td>
<td>10.1</td>
</tr>
<tr>
<td>2011-09-03 04:48:57.0</td>
<td>6.4</td>
<td>84.0</td>
<td>152.00</td>
<td>24.65–33.36</td>
<td>32</td>
<td>10.6</td>
</tr>
<tr>
<td>2011-12-11 09:54:55.2</td>
<td>6.2</td>
<td>116.0</td>
<td>150.84</td>
<td>25.41–33.71</td>
<td>28</td>
<td>8.4</td>
</tr>
</tbody>
</table>

As a proof of concept, we first compare vespagrams from real and synthetic WKBJ seismograms between 150 and 155°, a range where the PKP phases are difficult to pick from individual seismograms. In the resulting vespagrams, both from real and synthetic seismograms [see Figs 4(c)–(f)], PKIKP and PKiKP are visible as clearly identifiable, separate arrivals. This is important, firstly, because it means that the effect of the PKP triplication can be circumvented by stacking, allowing the phases to be separated. Secondly, PKiKP differential travel time remains detectable up to 150°, which enables us to measure PKiKP–PKIKP differential travel times up to greater epicentral distance than has previously been done.

PKIKP and PKiKP have opposite polarities in both observed and synthetic vespagrams, a result of PKiKP being reflected, while PKIKP is transmitted at the ICB. In the real data vespagrams [Figs 4(d) and (f)], we also see that the PKIKP waveform becomes wider and of smaller amplitude with increasing epicentral distance. This is probably due to a longer path in the inner core, where attenuation anisotropy may result in anomalously low amplitudes for quasi-polar paths (Souriau & Romanowicz 1996; Creager 1999).

We then measure differential traveltimes for PKiKP and PKIKP from their phase onsets in constant slowness cross-section at the maximum amplitude of each phase. Generally, we see that PKIKP tends to arrive earlier and with smaller slowness than predicted for AK135. As a result, measured PKPbc–PKIKP differential traveltimes (Table 1) are larger than predicted. We also see additional, smaller arrivals, but the main phases can be identified unambiguously.
model AK135; PKiKP–PKIKP differential traveltime residuals are thus larger than predicted by AK135 and in addition increase with epicentral distance. This agrees with what we observed at 150–155° for PKPbc–PKIKP.

Apart from the main arrivals, additional smaller phases are visible in the observed data vespagrams. The most notable among these are a line of distinct arrivals visible in the bin for 140–145° [Fig. 4(f)], starting from the PKIKP arrival time and slowness, and then continuing to larger slownesses and earlier arrival times. These are PKP precursors (Doornbos & Husebye 1972; Hedlin et al. 1997; Niu & Wen 2001b; Margerin & Nolet 1997; Niu & Wen 2001b; Cao & Romanowicz 2007; Thomas et al. 2009) which are also clearly visible in the individual seismograms of Fig. 3 in the same epicentral distance range. Even though in single seismograms the precursors make it difficult to distinguish individual PKP peaks, the vespagrams allow us to successfully separate PKIKP and PKiKP from the PKP precursors and measure differential traveltimes. In some vespagrams (not shown here), depth phases can also be distinguished, but these do not interfere with the direct core phases. Thus, the use of vespagrams also helps us in separating the depth phases from the direct phases.

We investigated a total of 30 events and found that 16 of these produced vespagrams of sufficient quality to enable us to measure differential traveltimes \(t_{\text{PKiKP}} - t_{\text{PKIKP}} \). This resulted in nine measurements for the 140–145° bin, eight at 145–150° and four at 142.5–147.5°. Table 1 shows the measurement details for each (non-overlapping) event and bin. The relatively high rejection rate is a result of quality requirements—both PKIKP and PKiKP must be clearly distinguishable in the vespagram. In addition, some bins did not contain enough seismograms to allow for stacking. The PKiKP–PKIKP differential travel time residuals \(\delta t \) (eq. 1) are calculated for model AK135 and shown in Fig. 5(a) for all bins. Only residuals from non-overlapping data bins are included and all our measurements are for polar paths. We find that residuals for model AK135 become larger with increasing epicentral distance, which corresponds to waves travelling deeper in the inner core. This trend is visible across the different bins, and it means that for these paths a larger increase in seismic velocity with depth than AK135 is needed to explain our observations.

The ray paths of PKIKP and PKiKP are very close together, so it is unlikely that mantle structure has an effect on their differential traveltime. However, some studies have found strong effects of mantle structure on PKPab–PKIKP and PKPbc–PKIKP differential traveltimes (Bréger et al. 1999, 2000; Tkalčič et al. 2002), whose paths are farther apart. To further assess to what extent the path separation may play a role, we analyse \(t_{\text{PKPbc}} - t_{\text{PKPbc}} \) measurements at 150–155°. Even with a much larger path separation, PKPab–PKPbc residuals obtained from these measurements average at 0.2 s with a scatter of 0.8 s. This is significantly smaller than our measured PKPbc–PKIKP residuals in the same distance range, which average at 3.1 s with a scatter of 1.3 s, in accordance with previous studies (e.g. Morelli et al. 1986; Shearer 1994; Creager 1999; Irving & Deuss 2011). Moreover, the systematic trend of increasing differential traveltime with epicentral distance over different sources that we see in our results makes it unlikely that a mantle heterogeneity is its cause.

4 INTERPRETATION

We compare our measured differential traveltimes (Table 1) to predictions for various models. Table 2 sums up the residual sums of squares (RSS) for the various models, which is an indication for the
goodness of fit. The positive residuals increasing with epicentral distance that were found for model AK135 [Fig. 5(a)] produce a very large RSS of ~ 112 s2. To reduce the misfit, an increase in seismic velocity with depth appears necessary.

Waszek & Deuss (2011) constructed inner core velocity models for the upper ~ 100 km of the inner core based on PKiKP–PKIKP measurements up to $\sim 143^\circ$. Beneath 60 km beneath the ICB, they find 2.8 per cent anisotropy for the Western inner core, the result of a 0.3 km s$^{-1}$ velocity increase in their model for polar paths. However, this velocity increase (attributed to anisotropy) is not sufficient to remove the positive differential traveltime residuals that we measure, even if the larger velocities are extended to depths beyond 100 km beneath the ICB (model WDpolW-ext in Fig. 5).

To investigate the constraints that our data put on velocity structure below 100 km, we perform a model space search minimizing the RSS for the PKiKP–PKIKP measurements in a least-squares sense. A gradual increase in velocity is imposed, where the starting depth of the velocity increase and the velocity gradient are taken as free parameters. The ‘best-fit’ model NpolW reduces the RSS to 3.07 s2, and we also obtain a range of models with
Inner core structure from stacking

Figure 5. (a) Differential traveltime residuals of PKiKP–PKIKP for the data in the bins 140–145°, 142.5–147.5° and 145–150° (squares), and of PKPbc–PKIKP for the bin 150–155° (triangles). The residuals have been calculated with eq. (1) for models AK135 (red), the ‘best-fit’ model NpolW (yellow) and WDpolW-ext (light blue). Residuals are plotted at the reference epicentral distance of the stack, and the vertical arrows indicate the actual width of the epicentral distance bin, which is variable according to the exact spread of stations that were available. (b) Velocity models used in this study. Model NpolW (yellow) is the least-squares minimum RSS model generated using PKiKP–PKIKP differential traveltimes at epicentral distances of 140–150° obtained in this study (RSS = 3.07). The models plotted in grey around it have a similar fit to the data (RSS < 4) and show the trade-off between starting depth and gradient of the velocity increase.

Table 2. Residual sum of squares (RSS) for the different models tested in this study.

<table>
<thead>
<tr>
<th>Model name</th>
<th>RSS (s²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK135</td>
<td>111.74</td>
</tr>
<tr>
<td>WDpolW-106</td>
<td>64.05</td>
</tr>
<tr>
<td>WDpolW-ext</td>
<td>13.36</td>
</tr>
<tr>
<td>NpolW</td>
<td>3.07</td>
</tr>
</tbody>
</table>

We also investigate our data as a function of ζ (Fig. 6), but find that our polar data only have a limited range of ζ, preventing us from determining the velocity in the quasi-equatorial direction.

5 DISCUSSION

To our knowledge, this is the first study to measure PKiKP–PKIKP residuals at distances beyond 143° and up to 150°. The data—polar ray paths travelling through the Western inner core beneath Central/South America—require a velocity increase with depth in the inner core for at least the region sampled. We did not find any events that would allow us to make observations of equatorial paths in the region, thus preventing us from investigating the variation of velocity as a function of ζ.
The increase in velocity with depth for polar paths in this region is either due to end-member hypotheses (i) an increase in isotropic velocity or (ii) an increase in inner core anisotropy. An increase in isotropic velocity requires strong inner core heterogeneity, because the equatorial velocity would be increasing to values much larger than observed at other depths or laterally in the inner core for either equatorial or isotropic velocity variations (e.g. Sun & Song 2008; Irving & Deuss 2011). Without observations of equatorial paths in the same region it cannot be proven that anisotropy is the cause of the observed trend. However, we prefer to interpret our results as being due to an increase in anisotropy with depth for a number of reasons. The most important one is that the travel times for our global paths deviate so strongly from globally averaged models, which are essentially equatorial models. At the epicentral distances we are interested in (140–150 °), there are 18 times as many conceivable equatorial paths as polar paths. Thus, global reference models like AK135 are effectively an equatorial average, and therefore a clear difference from these travel times in polar paths is likely to be a result of anisotropy. Previous studies for shallower and deeper depths in the same region also find that polar paths yield anomalous travel times while equatorial travel times are close to those predicted by globally averaged 1-D models, which are essentially equatorial models. An increase in anisotropy most likely means that the process responsible for the anisotropy is of a gradual or constant nature. One type of process that would fit our observations is a post-solidification process which acts on the whole of the inner core, for example, crystal alignment due to deformation because of thermal convection (Jeanloz & Wenk 1988), because of preferential growth in the equatorial region (Yoshida et al. 1996), or due to magnetic field stress (Karato 1999; Buffett & Wenk 2001). Deeper layers, which have been solid for a longer time, would then be more anisotropic. A heterogeneous increase in isotropic velocity, leading to locally anomalously fast equatorial and polar paths, would be more difficult to explain.

So far, we have only studied polar paths in the Western hemisphere. With the displacement of USArray to Alaska and increasing numbers of stations that come available in general, it will become possible to extend upon this data set. Adding equatorial paths and data for the Eastern hemisphere will be the subject of a further study, where velocity variations can be studied fully as a function of θ in the depth range of 100–200 km in the upper part of the inner core. This will allow us to unambiguously distinguish between either an increase in isotropic or anisotropic velocity variations with depth.

Our new data set consists of quasi-polar paths, sampling a region of the Western hemisphere of the Earth’s inner core beneath Central/South America at depths of 100–200 km below the ICB. Although there is a significant trade-off between starting depth of the velocity increase and its magnitude, the polar data require a larger increase in velocity with depth than AK135 in the inner core’s Western hemisphere. The increase in velocity can either be due to an increase in isotropic velocity or anisotropic velocity. Without any observations of equatorial paths in the same region we cannot distinguish between these two alternatives, though we prefer an increase in anisotropic velocity given the context of previous work. Such an increase in anisotropy would support a post-solidification process as a cause of anisotropy in the inner core.

These results are also important for studies of the deeper inner core, as even a thin layer influences deeper travel times in a significant way. Because the shallower layers can now be accounted for more accurately, this will increase our understanding of the inner core as a whole.

ACKNOWLEDGEMENTS

We thank the editors, Vernon Cormier, and two other anonymous reviewers for their thorough reading of our paper and comments that helped improve the manuscript. Earthquake data have been collected from the Incorporated Research Institutions for Seismology (IRIS) Data Management Center (DMC) and the Canadian National Seismograph Network. The figures have been produced using GMT software (Wessel & Smith 1991, 1998). NB was funded by an EC Erasmus placement scholarship and is currently funded by the Dutch NWO VIDI grant number 864.11.008. AD is funded by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007–2013)/ERC grant scheme number 204995 and by a Philip Leverhulme Prize. Part of NB’s research was also supported by this grant. LW is funded by a research fellowship from Homerton College, University of Cambridge. We thank Jessica Irving and Karen Lythgoe for letting us use their data in our Fig. 1(c).

REFERENCES

6 CONCLUSION

We have shown that the combination of vesgrams with the PWS technique is a powerful tool to differentiate between simultaneously arriving, interfering phases. Smaller amplitude core phases such as PKiKP (which in single seismograms are hidden in the coda of the bigger PKPbc and PKPa phases) can be distinguished from PKiKP and its precursors, which have a clearly defined, separate signal. As a result, we have been able to bridge the gap in PKiKP measurements which existed between 143 and 148° and measured PKiKP–PKiKP differential traveltimes up to 150° epicentral distance.

Downloaded from http://gji.oxfordjournals.org/ at University library Utrecht on August 5, 2015