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360 - - - Chapter 7/ Eigenvalues, Figenvectors

In Section 2.3 we introduced the concepts of eigenvalue and eigenvector.
In this section we will study those ideas in more detail to set the stage for

7.1

EIGENVALUES applications of them in later sections.

AND :

EIGENVECTORS

Review We begin with a review of some concepts that were mentioned in Sections 2.3 and 4.3.

B S e e g

- If Ais an n x n matrix, then a nonzero vector x in R" is called an eigenvector of A
. . . . . H
if Ax is a scalar multiple of x; that is, if ;

AX = Ax
 for some scalar A. The scalar A is called an eigenvalue of A, and x is said to be an
| eigenvector of A corresponding to X. i
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In R? and R*, multiplication by A maps each eigenvector x of A (if any) onto the
same line through the origin as x. Depending on the sign and the magnitude of the
eigenvalue A corresponding to x, the linear operator AX = AX compresses or stretches x
by a factor of &, with a reversal of direction in the case where A is negative (Figure 7.1.1).

S

(a) 0<A<1 (b Azt (©) ~1<A<0 (d) A< -1
Figure 7.1.1

EXAMPLE 1 Eigenvector of a 2 x 2 Matrix

1
The vector x = [ 2] is an eigenvector of

=

corresponding to the eigenvalue A = 3, since
3071 3
AX = = =3
il HE MRS

To find the eigenvalues of an # x n matrix A, we rewrite Ax = ix as

Ax = Alx
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or, equivalently,
(Al — A)x =0 (1)

For A to be an eigenvalue, there must be a nonzero solution of this ¢quation. By
Theorem 6.4.5, Equation (1) has a nonzero solution if and only if

det(A] — A) =0

This is called the characteristic equation of A; the scalars satisfying this equation are the
eigenvalues of A. When expanded, the determinant det(A/ — A) is always a polynomial
p in A, called the characteristic polynomial of A.

It can be shown (Exercise 15) that if A is an n x n matrix, then the characteristic
polynomial of A has degree n and the coefficient of 1" is 1; that is, the characteristic
polynomial p(1) of an n x n matrix has the form

PR) =det(A] — A) = A" 4¢3 4 ... 4 Cn
It follows from the Fundamental Theorem of Algebra that the characteristic equation
Mt 4. 4, =0

has at most » distinct solutions, so an n x n matrix has at most n distinct eigenvalues.

The reader may wish to review Example 6 of Section 2.3, where we found the
eigenvalues of a 2 x 2 matrix by solving the characteristic equation. The following
example involves a 3 x 3 matrix.

EXAMPLE 2 Eigenvalues of a 3 x 3 Matrix

Find the eigenvalues of

0 1 0
A=10 0 1
4 17 8
Solution
The characteristic polynomial of A is
A =1 0
det(Al — Ay =det| 0 A | =2 - 8241754
-4 17 A-8

The eigenvalues of A must therefore satisfy the cubic equation
M-8 1T ~4=0 2)

To solve this equation, we shall begin by searching for integer solutions. This task can
be greatly simplified by exploiting the fact that all integer solutions (if there are any) to
a polynomial equation with integer coefficients

Mot e =0

must be divisors of the constant term, ¢,. Thus, the only possible integer solutions of (2)
are the divisors of —4, thatis, +1, +2, +4. Successively substituting these values in (2)
shows that & = 4 js an integer solution. As a consequence, A — 4 must be a factor of the
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left side of (2). Dividing A — 4 into A> — 847 4+ 17X - 4 shows that (2) can be rewritten
as
A=HF -4+ 1) =0

Thus the remaining solutions of (2) satisfy the quadratic equation
MW —dr+1=0
which can be solved by the quadratic formula. Thus the eigenvalues of A are

A=4, A=2++3, and A1=2-V3 &

Remark In practical problems, the matrix A is usually so large that computing the
characteristic equation is not practical. As a result, other methods are used to obtain
eigenvalues.

EXAMPLE 3 Eigenvalues of an Upper Triangular Matrix

Find the eigenvalues of the upper triangular matrix

an an ap a4
A 0 an an au
0 0 an au

60 0 0 au

Solution

Recalling that the determinant of a triangular matrix is the product of the entries on the
main diagonal (Theorem 2.1.3), we obtain

A= an —an —dy3 —di4
A—a —a —a
det(Al — A) = det T Y 23 24
0 0 A —az —d3zq
0 0 0 A - asq

= (A —ap) (A = an)(h — a)(h — aw)
Thus, the characteristic equation is
(A —an)d —an)d —ax)(h —aw) =0
and the eigenvalues are
A=ay, A = axn, A = az3, A= A4y

which are precisely the diagonal entries of A. 4

The following general theorem should be evident from the computations in the pre-
ceding example.

If Ais an n x n triangular matrix (upper triangular, lower triangular, or diagonal),
then the eigenvalues of A are the entries on the main diagonal of A.
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EXAMPLE 4 Eigenvalues of a Lower Triangular Matrix

By inspection, the eigenvalues of the lower triangular matrix

1 0 0
_ 2
A=|-1 1 ¢
I
R
arek:%,k:%,andk:—%. L 4

It is possible for the characteristic equation of a matrix with real entries to have complex
solutions. In fact, because the eigenvaluesofann x n matrix are the roots of a polynomial
of precise degree n, every n x n matrix has exactly n eigenvalues if we count them as
we count the roots of a polynomial (meaning that they may be repeated, and may occur
in complex conjugate pairs). For example, the characteristic polynomial of the matrix

_[2 -
“ls o2
A+2 1

det(Al — = det
et(A A) e[_s 52

J =2+ 1

so the characteristic equation is A% + 1 = 0, the solutions of which are the imaginary
numbers A = i and A = —i. Thus we are forced to consider complex eigenvalues, even
for real matrices. This, in turn, leads us to consider the possibility of complex vector
spaces—that is, vector spaces in which scalars are allowed to have complex values. Such
vector spaces will be considered in Chapter 10. For now, we will allow complex eigen-
values, but we will limit our discussion of eigenvectors to the case of real eigenvalues.

The following theorem summarizes our discussion thus far.

Equivalent Statements
If Ais ann x n matrix and ) is a real number, then the following are equivalent.

(@) X is an eigenvalue of A.

(b) The system of equations (Al — A)x = 0 has nontrivial solutions.
(¢) There is a nonzero vector x in R" such that Ax = AX.

(d) A is a solution of the characteristic equation det(Al — A) = (.

Now that we know how to find eigenvalues, we turn to the problem of finding eigenvectors.
The eigenvectors of A corresponding to an eigenvalue A are the nonzero vectors x that
satisfy Ax = Ax. Equivalently, the eigenvectors corresponding to  are the nonzero
vectors in the solution space of (A\] — A)x = 0—that is, in the null space of A/ — A. We
call this solution space the eigenspace of A corresponding to A,

EXAMPLE 5 Eigenvectors and Bases for Eigenspaces

Find bases for the eigenspaces of
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Solution

The characteristic equation of matrix A is 3> — 542 + 83 — 4 — 0, or, in factored form,
(A— 1A =-2) = 0 (verity); thus the eigenvalues of A are A; = 1 and A23 = 2, sothere
are two eigenspaces of A.

By definition,

is an eigenvector of A corresponding to X if and only if x is a nontrivial solution of
(Al — A)x = 0—that is, of

A 0 2 X 0
-1 A-2 -] X | =10 (3)
-1 0 A=3{]x; 0
If A = 2, then (3) becomes
20 2]|x 0
—1 0 ~l{|x|l=10
-1 0 —1(]x3 0

Solving this system using Gaussian elimination yields (verify)
Xp = —s§, Xy =1, X3 =g

Thus, the eigenvectors of A corresponding to A = 2 are the nonzero vectors of the form

—~s —5 ] 0 r—l 0
X = t] = 01+ = Ol+¢]1
§ SJ 0 1 0
Since _ _
-1 0
0 and 1
I_J OJ

are linearly independent, these vectors form a basis for the eigenspace corresponding to
A=2.
[fA = 1, then (3) becomes

1 0  2|lx 0
-1 -1 —1 Xy | = 0
-1 0 =2]]x 0
Solving this system yields (verify)
xp = —2s, X =, X3=s¢

Thus the eigenvectors corresponding to A = 1 are the nonzero vectors of the form

—2s -2 -2
Si=s 1 'so that 1
s 1 1

is a basis for the eigenspace corresponding to A = 1. 4
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Notice that the zero vector is in every eigenspace, although it isn’t an eigenvector.

Once the eigenvalues and eigenvectors of a matrix A are found, it is a simple matter to
find the eigenvalues and eigenvectors of any positive integer power of A; for example,
if A is an eigenvalue of A and x is a corresponding eigenvector, then

A’X = A(AX) = A(AX) = A(Ax) = A(Ax) = A)x

which shows that A? is an eigenvalue of A2 and that x is a corresponding eigenvector. In
general, we have the following result.

If k is a positive integer, A is an eigenvalue of a matrix A, and x is a corresponding
eigenvector, then A* is an eigenvalue of AX and x is a corresponding eigenvector.

EXAMPLE 6 Using Theorem 7.1.3

In Example 5 we showed that the eigenvalues of

0 0 =2
A= |1 2 1
1 0 3

are A =2 and A = 1, so from Theorem 7.1.3, both A =27 = 128 and A = 17 = | are
eigenvalues of A7, We also showed that

-1 0
0 and 1
1 0

are eigenvectors of A corresponding to the eigenvalue A = 2, so from Theorem 7.1 3, they
are also eigenvectors of A” corresponding to A = 27 = 128. Similarly, the eigenvector

-2
1
1

of A corresponding to the eigenvalue A = 1 is also an eigenvector of A’ corresponding

tor=17"=1 @

The next theorem establishes a relationship between the eigenvalues and the invertibility
of a matrix.

A square matrix A is invertible if and only if A = 0 is not an eigenvalue of A.

Proof Assume that A is an n x n matrix and observe first that A = 0 is a solution of
the characteristic equation

Mt e, =0

if and only if the constant term ¢, is zero. Thus it suffices to prove that A is invertible if
and only if ¢, # 0. But

det(hl —A)=2"+c A" '+ ¢,
or, on setting A = 0,
det(—A) =¢, or (—1)'det(A) =¢,

It follows from the last equation that det(A) = 0 if and only if ¢, = 0, and this in turn
implies that A is invertible if and only if ¢, # 0. n

EXAMPLE 7 Using Theorem 7.1.4

The matrix A in Example 5 is invertible since it has eigenvalues A = 1 and A = 2, neither
of which is zero. We leave it for the reader to check this conclusion by showing that
deti AN + 0 @



