Normal modes

We start from the wave equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

And use separation of variables resulting in

$$u(x,t) = X(x)T(t)$$

$$\frac{1}{T}\frac{d^2T}{dt^2} = \frac{c^2d^2X}{X} = -\omega^2$$

We solve for X and T separately, giving

$$T(t) = \begin{bmatrix} \cos(\omega t) & X(x) = \begin{bmatrix} \cos(\omega x/c) \\ \sin(\omega t) & \sin(\omega x/c) \end{bmatrix}$$

The general solution is

$$u(x,t) = C_1 \cos(\omega t) \cos(\omega x/c) + C_2 \cos(\omega t) \sin(\omega x/c) + C_3 \sin(\omega t) \cos(\omega x/c) + C_4 \sin(\omega t) \sin(\omega x/c)$$

We use the boundary conditions

(1)
$$u(0,t) = 0 \rightarrow C_1 = C_3 = 0$$

(2)
$$u(L,t) = 0 \rightarrow \sin(\omega L/c) = 0$$

$$\frac{\omega L}{c} = (n+1)\pi$$

$$\omega_n = \frac{(n+1)\pi c}{L}$$

Discrete eigenfrequencies

$$\omega_n = \frac{(n+1)\pi c}{L}$$

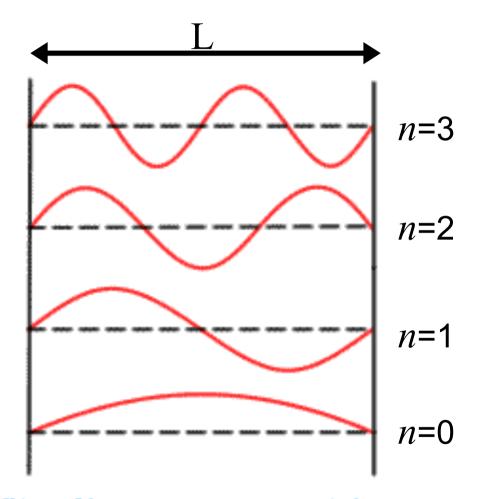
Discrete eigenfrequencies

$$\sin(\frac{\omega_n x}{c})$$

Eigenfunctions or normal modes

Solutions are of the form

$$u(x,t) = \sum_{n=0}^{\infty} [A_n \cos(\omega_n t) + B_n \sin(\omega_n t)] \sin(\frac{\omega_n x}{c})$$



Standing waves on a string

Frequency of standing wave on a string:

$$\omega_n = \frac{(n+1)\pi c}{L}$$

where c = wave velocity

Fourier spectrum will have spikes at ω_n

Normal mode summation

The amplitudes A_n depend on the source

$$A_n = \sin(n\pi x_s/L)F(\omega_n)$$

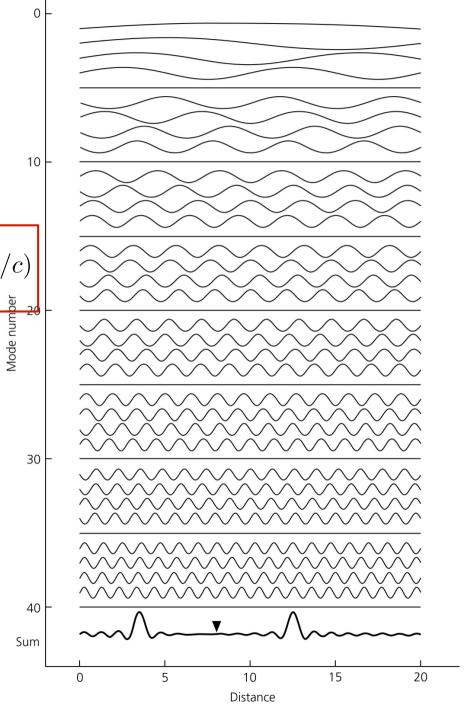
So, the normal mode summation is

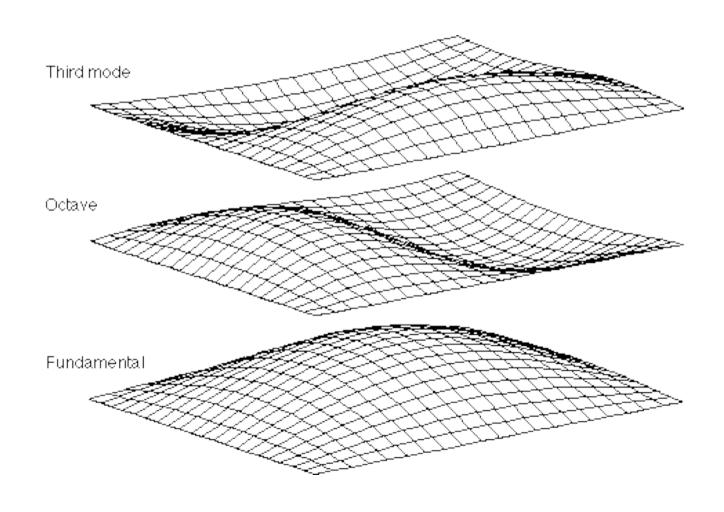
$$u(x,t) = \sum_{n=0}^{\infty} \sin(n\pi x_s/L) F(\omega_n) \cos(\omega_n t) \sin(\omega_n x/c)$$

with the source, at x_s =8, described by

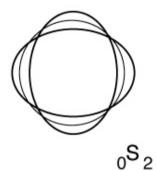
$$F(\omega_n) = \exp[-(\omega_n \tau)^2/4]$$

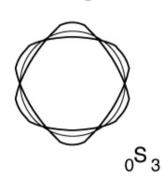
for
$$\tau = 0.2$$

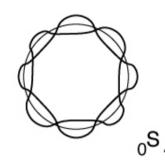




Surface patterns







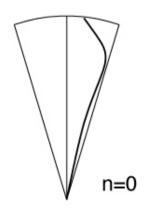
Spherical harmonics

 $Y_l^m(\theta, \phi)$

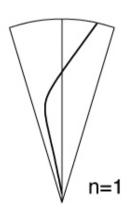
Angular order l l=0,1,2,...

Azimuthal order mm=-l,-l+1,1,..0,...l

Radial patterns

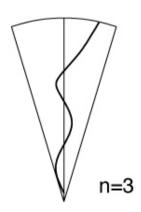


Fundamental



First Overtone

Second Overtone



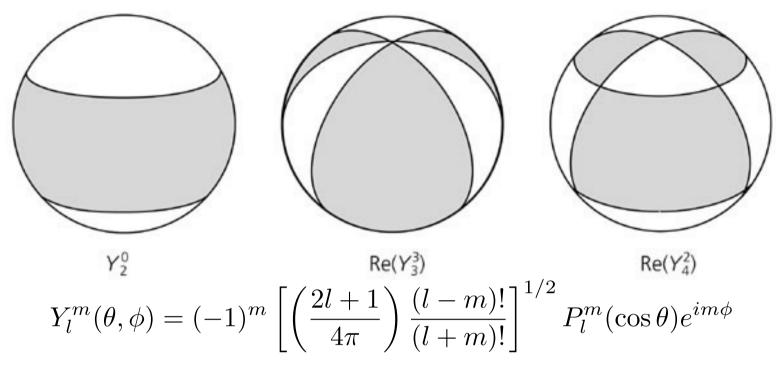
Third Overtone

Spherical Bessel function

 $j_n(kr)$

Radial order n n=0,1,2,...

Spherical harmonics



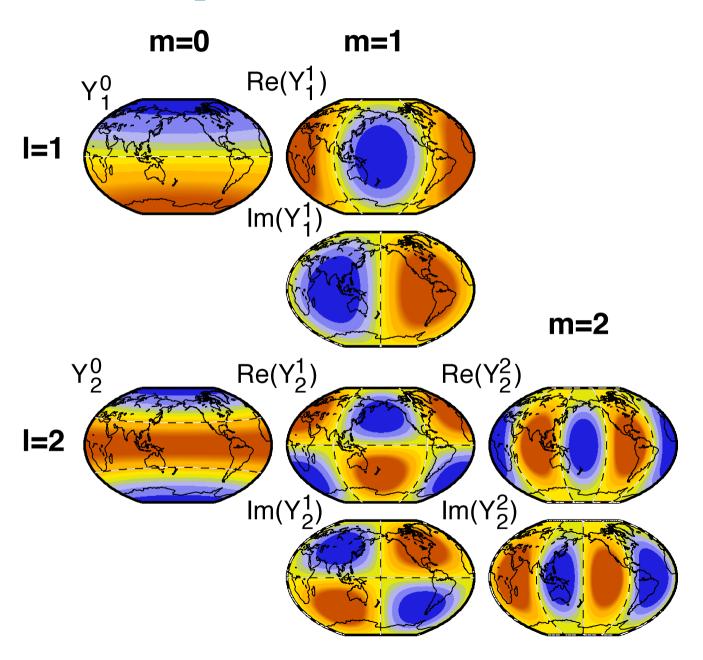
(where $P_I^m(\cos \theta)$ is associated Legendre function)

The angular order *l* gives the number of nodal lines on the surface

If the azimuthal order m is zero, the nodal lines are small circles about the pole. These are called zonal harmonics and do not depend on φ .

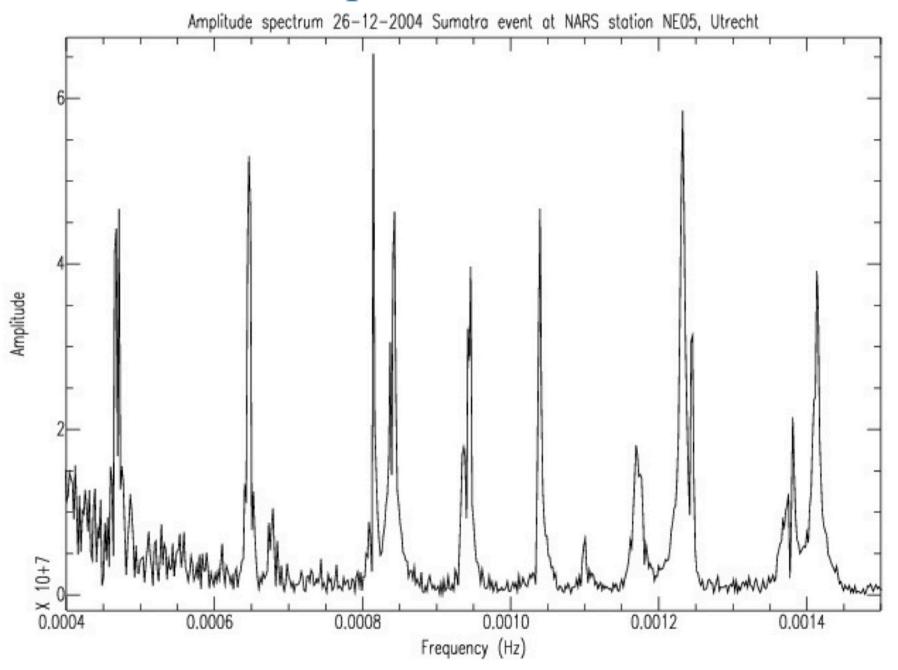
For a given angular order l, m has 2l+1 values, leading to 2l+1 different singlets (or eigenfunctions)

Spherical harmonics

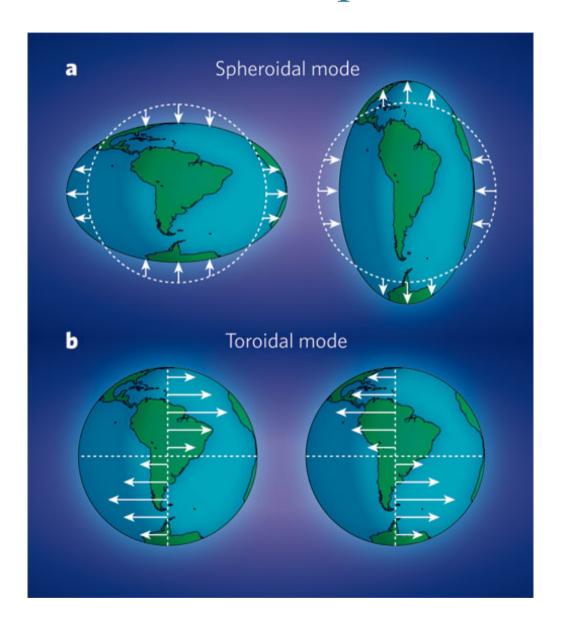


Sumatra earthquake 2004, M 9.1

Sumatra earthquake recorded in Utrecht

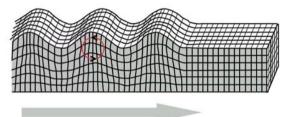


Displacement direction



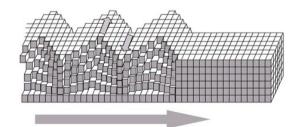
Spheroidal modes

- P-SV motion
- Similar to Rayleigh



Toroidal modes

- SH motion
- Similar to Love



Toroidal modes

For $_{n}T_{l}^{m}$:

n=radial order, l=angular order, m=azimuthal order

The 2l+1 modes are different azimuthal orders l=-m,-m+1,...,0,...,m are called singlets, and the group of singlets is called a multiplet.

If the Earth were perfectly spherically symmetric and non-rotating, all singlets in a multiplet would have the same frequency (called degeneracy).

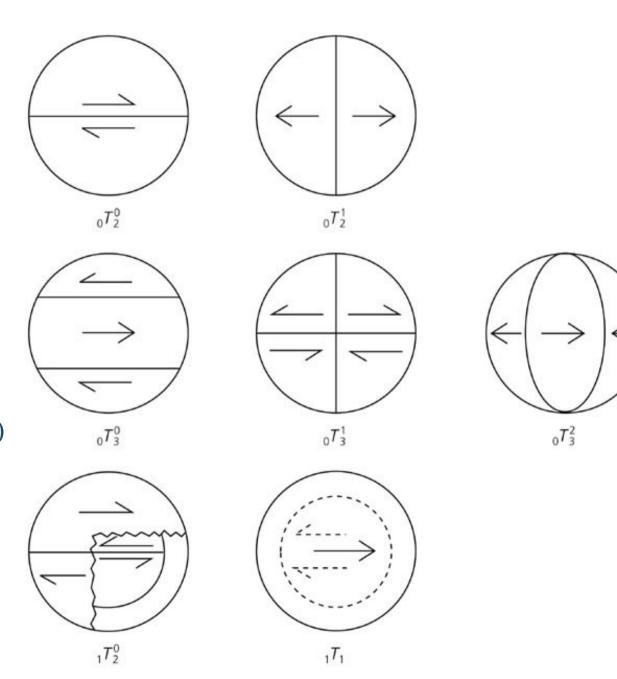
For example, the period of ${}_{n}T_{l}^{0}$ would be the same for ${}_{n}T_{l}^{1}$, ${}_{n}T_{l}^{2}$ etc. In the real Earth, singlet frequencies vary (called splitting).

The splitting is usually small enough to ignore, so we drop the m superscript and refer to the entire ${}_{n}\mathrm{T}_{l}^{m}$ multiplet at ${}_{n}\mathrm{T}_{l}$ with eigenfrequency ${}_{n}\omega_{l}$

Toroidal modes

Toroidal modes with n=0 ($_0$ T $_l$) are called fundamental modes (motions at depth in the same direction as at the surface).

Modes with *n*>0 are called **overtones** (motions reverse directions at different depths)



Spheroidal modes

For $_nS_l^m$:

n=radial order, l= angular order, m=azimuthal order

The 2l+1 modes are different azimuthal orders l=-m,-m+1,...,0,...,m are called singlets, and the group of singlets is called a multiplet.

If the Earth were perfectly spherically symmetric and non-rotating, all singlets in a multiplet would have the same frequency (called degeneracy).

For example, the period of ${}_{n}S_{l}^{0}$ would be the same for ${}_{n}S_{l}^{1}$, ${}_{n}S_{l}^{2}$ etc. In the real Earth, singlet frequencies vary (called splitting).

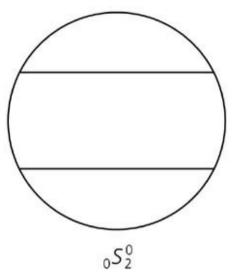
The splitting is usually small enough to ignore, so we drop the m superscript and refer to the entire ${}_{n}S_{l}{}^{m}$ multiplet at ${}_{n}S_{l}$ with eigenfrequency ${}_{n}\omega_{l}$.

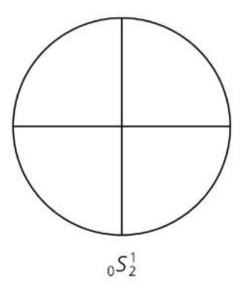
Spheroidal modes

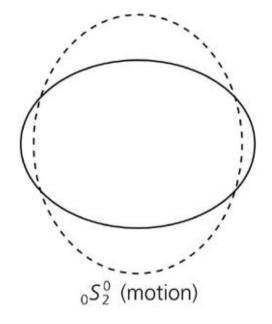
₀S₂ (football mode) is the gravest (lowest frequency) mode, with a period of 3233 seconds, or 54 minutes.

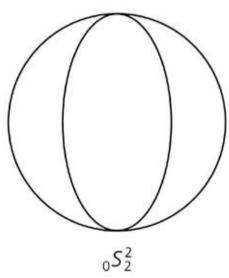
There is no ₀S₁ which would correspond to a lateral translation of the planet.

The $_1S_1$ Slichter mode due to lateral sloshing of the inner core through the liquid outer core, is not yet observed, but should have a frequency of about 5 $\frac{1}{2}$ hours.

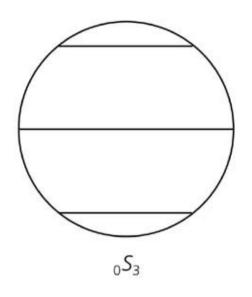


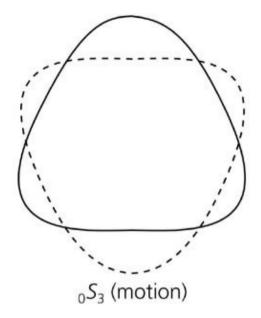




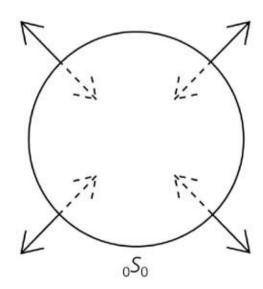


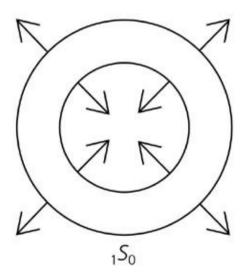
Spheroidal modes

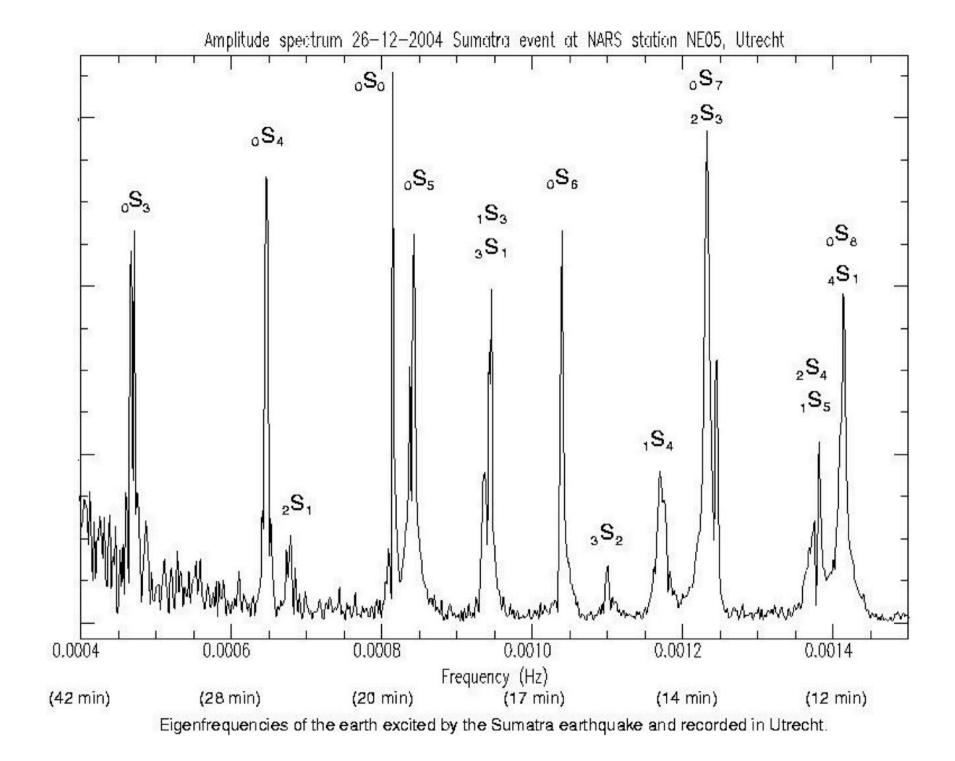




The "breathing" mode $_0S_0$ involves radial motions of the entire Earth that alternate between expansion and contraction.





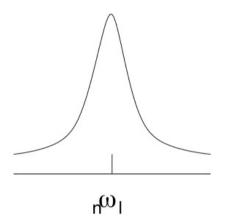


SNREI

- *spherical symmetric,
- *non-rotating,
- *isotropic Earth

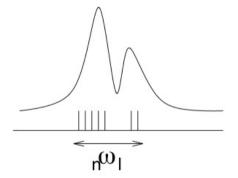
degeneracy:

2l+1 singlets have same frequency



Real Earth

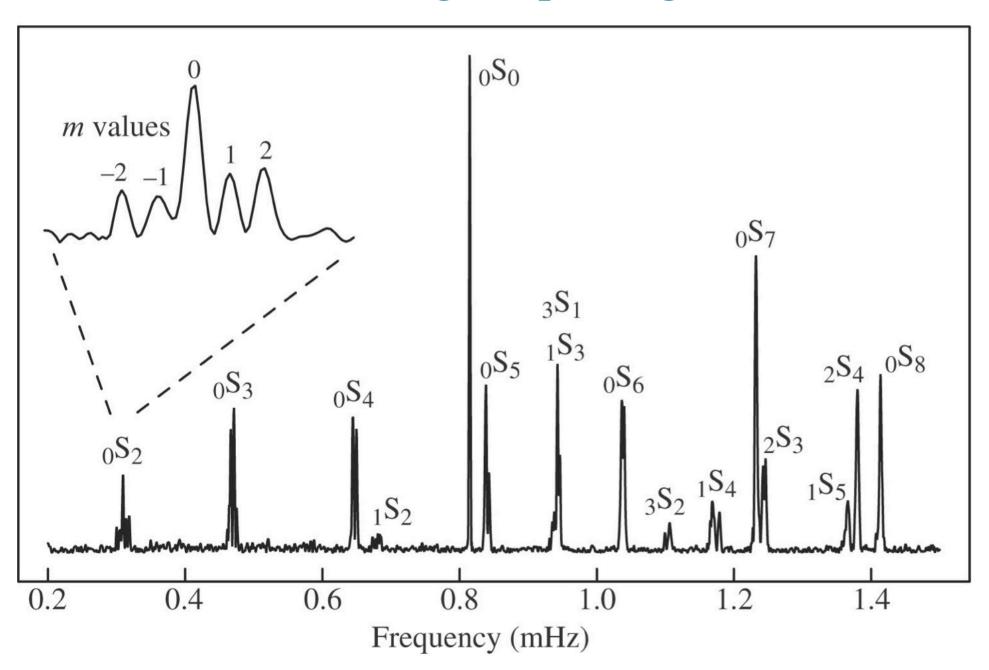
- * Rotation
- * Ellipticity
- * Heterogeneity
- * Anisotropy



degeneracy removed: 2l+1 singlets have different frequency

splitting and coupling

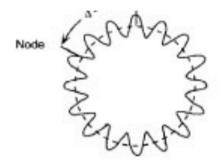
Singlet splitting



Splitting

Split due to rotation

Anomalously split due to inner core anisotropy



Spherical Earth

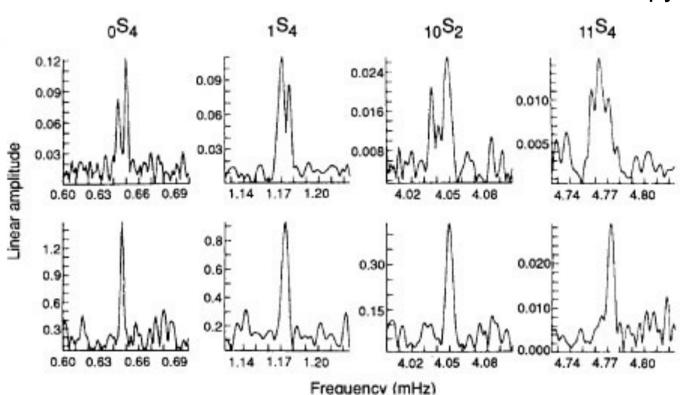
Wavenumber > / + 1/2

Slow Region

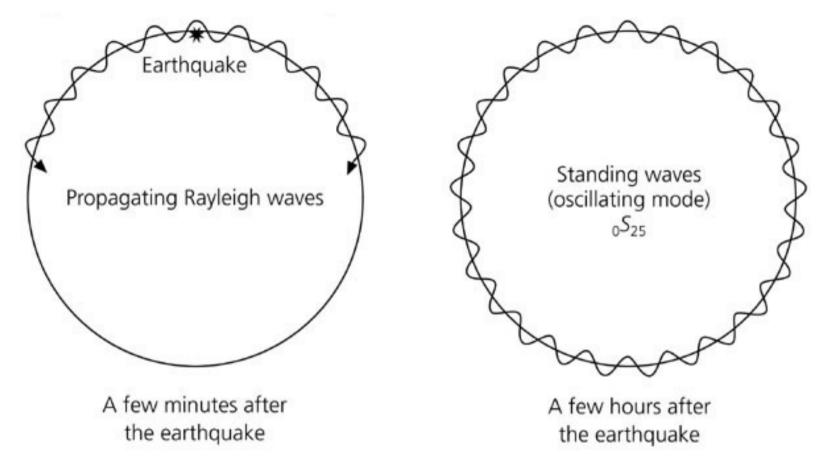
Fast Region

Wavenumber < / + 1/2

Aspherical Earth



Normal modes and surface waves



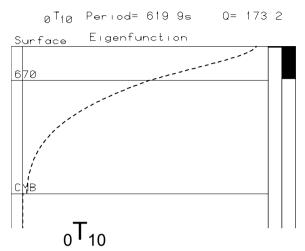
The mode with angular order l and frequency $_n\omega_l$ corresponds to a travelling wave with horizontal wavelength $\lambda_x=2\pi/\mid k_x\mid=2\pi a/(l+1/2)$ that has l+1/2 wavelengths around the Earth.

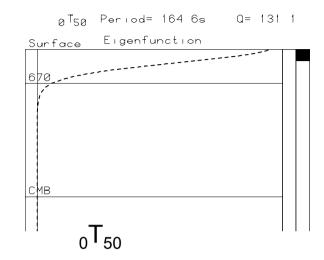
These waves travel at horizontal phase velocity

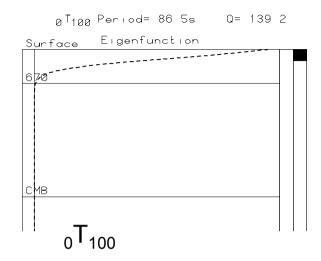
$$c_x =_n \omega_l / \mid k_x \mid =_n \omega_l a / (l + 1/2)$$

Eigenfunctions of fundamental modes

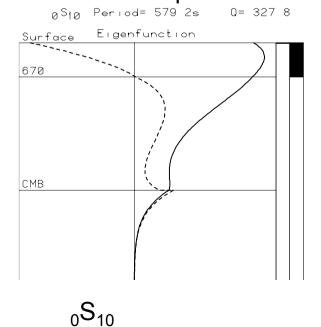
Fundamental toroidal branch

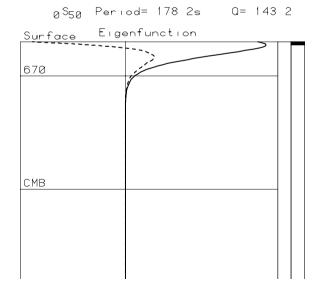


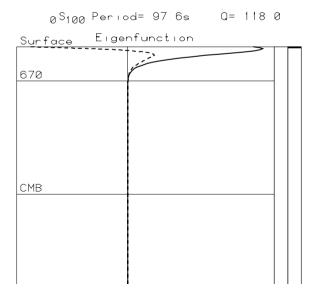




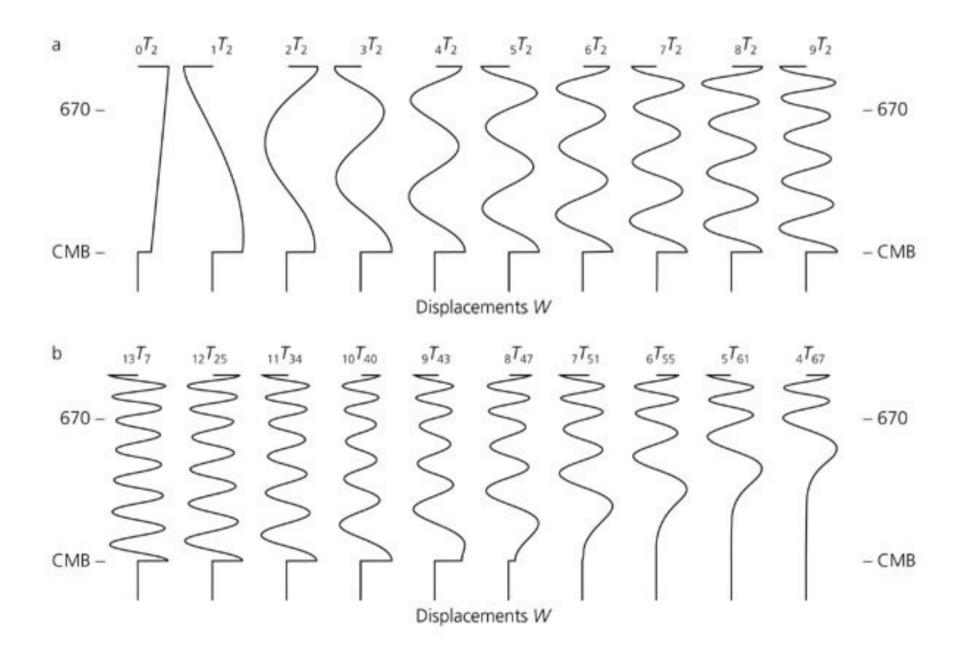
Fundamental spheroidal branch



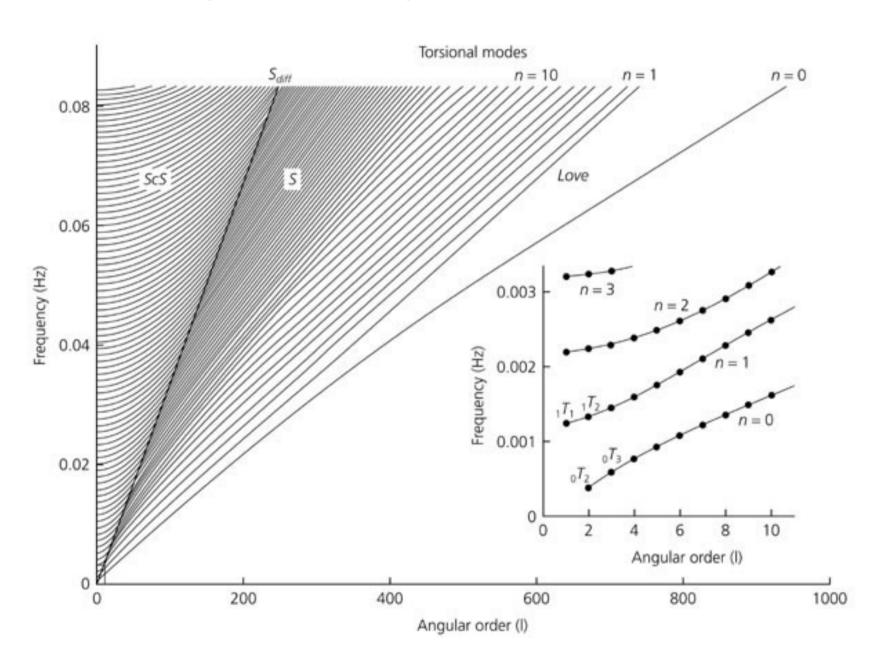




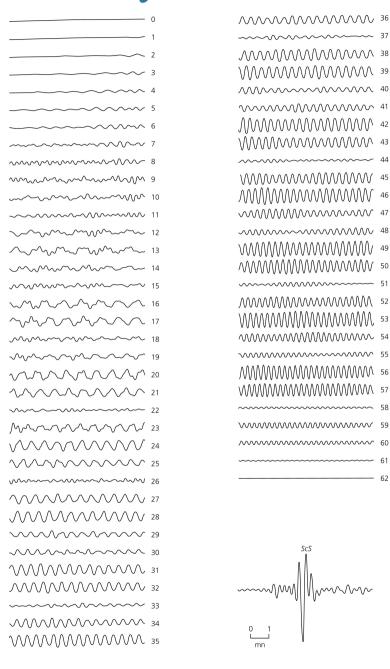
Eigenfunctions of overtones (higher modes)



Body waves by mode summation



ScS wave by mode summation



Application: density tomography

Only normal modes are sensitive to density perturbations in the Earth.

