
GMT TECHNICAL REFERENCE & COOKBOOK H–1

 Appendix H: Hints and known bugs concerning display of GMT PostScript

GMT creates valid (so far as we know) Adobe PostScript Level I. It does not use
operators specific to Level II and should therefore produce output that will print on old as
well as new PostScript printers Sometimes unexpected things happen when GMT output
is sent to certain printers or displays. This section lists some things we have learned from
experience, and some work-arounds.

• PostScript driver bugs.

When you try to display a PostScript file on a device, such as a printer or your screen,
then a program called a PostScript device driver has to compute which device pixels
should receive which colors (black or white in the case of a simple laser printer) in order
to display the file. At this stage, certain device-dependent things may happen. These are
not limitations of GMT or PostScript, but of the particular display device. The following
bugs are known to us based on our experiences:

Early versions of the Sun SPARCprinter software caused linewidth-dependent path
displacement. We reported this bug and it has been fixed in newer versions of the
software. Try using psxy to draw y = f(x) twice, once with a thin pen (–W1) and once
with a fat pen (–W10); if they do not plot on top of each other, you have this kind of bug
and need new software. The problem may also show up when you plot a mixture of solid
and dashed (or dotted) lines of various pen thickness

The first version of the HP Laserjet 4M had bugs in the driver program. We reported
it, and they have just released (we got ours Aug. 10 1993) a new one. The old one was
PostScript SIMM, part number C2080-60001; the new one is called PostScript SIMM,
part number C2080-60002. You need to get this one plugged into your printer if you
have an HP LaserJet 4M.

Apple Laserwriters with the older versions of Apple's PostScript driver will give the
error "limitcheck" and fail to plot when they encounter a path exceeding about 1000–
1500 points. Try to get a newer driver from Apple, but if you can't do that, set the
parameter MAX_L1_PATH to 1000–1500 or even smaller in the file src/pslib_inc.h and
recompile GMT. The number of points in a PostScript path can be arbitrarily large, in
principle; GMT will only create paths longer than MAX_L1_PATH if the path represents
a filled polygon or clipping path. Line-drawings (no fill) will be split so that no segment
exceeds MAX_L1_PATH. This means psxy –G will issue a warning when you plot a
polygon with more than MAX_L1_PATH points in it. It is then your responsibility to
split the large polygon into several smaller segments. If pscoast gives such warnings and
the file fails to plot you may have to select one of the lower resolution databases The
path limitation exemplified by these Apple printers is what makes the higher-resolution
coastlines for pscoast non-trivial: such coastlines have to be organized so that fill
operations do not generate excessively large paths. Some HP PostScript cartridges for
the Laserjet III also have trouble with paths exceeding 1500 points; they may
successfully print the file, but it can take all night!

8-bit color screen displays (and programs which use only 8-bits, even on 24-bit
monitors, such as Sun's Pageview under OW3) may not dither cleverly, and so the color
they show you may not resemble the color your PostScript file is asking for. Therefore,
if you choose colors you like on the screen, you may be surprised to find that your plot
looks different on the hardcopy printer or film writer. The only thing you can do is be
aware of this, and make some test cases on your hardcopy devices and compare them
with the screen, until you get used to this effect. (Each hardcopy device is also a little
different, and so you will eventually find that you want to tune your color choices for
each device.) The rgb color cube in example 11 may help.

Some versions of Sun's OW program Pageview have only a limited number of colors
available; the number can be increased somewhat by starting openwin with the option

GMT TECHNICAL REFERENCE & COOKBOOK H–2

"openwin -cubesize large". (Our SPARC-10 doesn't seem to need this anymore, but
earlier machines did.)

Many color hardcopy devices use CMYK color systems. GMT PostScript uses RGB
(even if your .cpt files are using HSV). The three coordinates of RGB space can be
mapped into three coordinates in CMY space, and in theory K (black) is superfluous. But
it is hard to get CMY inks to mix into a good black or gray, so these printers supply a
black ink as well, hence CMYK. The PostScript driver for a CMYK printer should be
smart enough to compute what portion of CMY can be drawn in K, and use K for this and
remove it from CMY; however, some of them aren't.

In early releases of GMT we always used the PostScript command setrgbcolor(r,g,b)
to specify colors, even if the color happened to be a shade of gray (r=g=b) or black
(r=g=b=0). One of our users found that black came out muddy brown when he used
FreedomOfPress to make a Versatec plot of a GMT map. He found that if he used the
PostScript command setgray(g) (where g is a graylevel) then the problem went away.
Apparently, his installation of FreedomOfPress uses only CMY with the command
setrgbcolor, and so setrgbcolor(0,0,0) tries to make black out of CMY instead of K. To
fix this, in release 2.1 of GMT we changed some routines in pslib.c to check if (r=g and
r=b), in which case setgray(g), else setrgbcolor(r,g,b).

Recent experience with some Tektronix Phaser printers and with commercial printing
shops has shown that this substitution creates problems precisely opposite of the
problems our Versatec user has. The Tektronix and commercial (we think it was a
Scitex) machines do not use K when you say setgray(0) but they do when you say
setrgbcolor(0,0,0). We believe that these problems are likely to disappear as the various
software developers make their codes more robust. Note that this is not a fault with
GMT: r = g = b = 0 means black and should plot that way. Thus, the GMT source code
as shipped to you checks whether r=g and r=b, in which case it uses setgray, else
setrgbcolor. If your gray tones are not being drawn with K, you have two work-around
options: (1) edit the source for pslib.c or (2) edit your PostScript file and try using
setrgbcolor in all cases. The simplest way to do so is to redefine the setgray operator to
use setrgbcolor. Insert the line

/setgray {dup dup setrgbcolor} def

immediately following the first line in the file (starts with %!PS.)
Some color film writers are very sensitive to the brand of film. If black doesn't look

black on your color slides, try a different film.

• Resolution and dots per inch.

The parameter DOTS_PR_INCH can be set by the user through the .gmtdefaults file
or gmtset. By default it is equal to the value in the src/gmt_defaults.h file, which is
supplied with 300 when you get GMT from us. This seems a good size for most
applications, but should ideally reflect the resolution of your hardcopy device (most
laserwriters have 300 dpi, hence our default value). GMT computes what the plot should
look like in double precision floating point coordinates, and then converts these to integer
coordinates at DOTS_PR_INCH resolution. This helps us find out that certain points in a
path lie on top of other points, and we can remove these, making smaller paths. Small
paths are important for the laserwriter bugs above, and also to make fill operations
compute faster. Some users have set their DOTS_PR_INCH to very large numbers. This
only makes the PostScript output bigger without affecting the appearence of the plot.
However, if you want to make a plot which fits on a page at first, and then later magnify
this same PostScript file to a huge size, the higher DPI is important. Your data may not
have the higher resolution but on certain devices the edges of fonts will not look crisp if
they are not drawn with an effective resolution of 300 dpi or so. Beware of making an

GMT TECHNICAL REFERENCE & COOKBOOK H–3

excessively large path. Note that if you change dpi the linewidths produced by your –W
options will change, unless you have appended p for linewidth in points.

• European Characters

Note for users of "pageview" in Sun OpenWindows: GMT now offers some octal
escape sequences to load European alphabet characters in text strings (see section 4.15).
When this feature is enabled, the header on GMT PostScript output includes a section
defining special fonts. The definition is added to the header whether or not your plot
actually uses the fonts.

Users who view their GMT PostScript output using "pageview" in OpenWindows on
Sun computers or user older laserwriters may have difficulties with the European font
definition. If your installation of OpenWindows followed a space-saving suggestion of
Sun, you may have excluded the European fonts, in which case pageview will fail to
show you anything when you try to view a plot.

Ask your system administrator about this, or run this simple test: (1) View a GMT
PostScript file with "pageview". If it comes up OK, you will be fine. If it comes up
blank, open the "Edit PostScript" button and examine the lower window for error
messages. (The European font problem generates lots of error messages in this window).
(2) Verify that the PostScript file is OK, by sending it to a laser printer and making sure
it comes out. (3) If the PostScript file is OK but it chokes "pageview", then edit the
PostScript file, cutting out everything between the lines:

%%%%% START OF EUROPEAN FONT DEFINITION %%%%%
<bunch of definitions
%%%%% END OF EUROPEAN FONT DEFINITION %%%%%

Now try "pageview" on the edited version. If it now comes up, you have a limited subset
of OpenWindows installed. If you discover that these fonts cause you trouble, then you
can edit your .gmtdefaults file to set WANT_EURO_FONT = FALSE, which will
suppress the printing of this definition in the GMT PostScript header. With this set to
FALSE, you can make output which will be viewable in pageview without any editing.
However, you would have to reset this to TRUE before attempting to use European fonts,
and then the output will become un-pageview-able again. If you try to concatenate
segments of GMT PostScript made with and without the European fonts enabled, then
you may find that you have problems, either with the definition, or because you ask for
something not defined.

• Hints.

When making images and perspective views of large amounts of data, the GMT
programs can take some time to run, the resulting PostScript files can be very large, and
the time to display the plot can be long. Fine tuning a plot script can take lots of trial and
error. We recommend using grdsample to make a low resolution version of the data files
you are plotting, and practice with that, so it is faster; when the script is perfect, use the
full-resolution data files. We often begin building a script using only psbasemap and/or
pscoast to get the various plots oriented correctly on the page; once this works we replace
the psbasemap calls with the actually desired GMT programs.

If you want to make color shaded relief images and you haven't had much experience
with it, here is a good first cut at the problem: Set your COLOR_MODEL to HSV using
gmtset. Use makecpt or grd2cpt to make a continuous color palette spanning the range of
your data. Use the –Nt option on grdgradient. Try the result, and then play with the
tuning of the .gmtdefaults , the .cpt file, and the gradient file.

