Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle

Zhongqing Wu*1 and Renata M. Wentzcovitchb,c,1

*Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, People’s Republic of China; and bDepartment of Chemical Engineering and Materials Science and cMinnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455

Deciphering the origin of seismic velocity heterogeneities in the mantle is crucial to understanding internal structures and processes at work in the Earth. The spin crossover in iron in ferropericlase (Fp), the second most abundant phase in the lower mantle, introduces unfamilar effects on seismic velocities. First-principles calculations indicate that anticorrelation between shear velocity (Vs) and bulk sound velocity (Vp) in the mantle, usually interpreted as compositional heterogeneity, can also be produced in homogeneous aggregates containing Fp. The spin crossover also suppresses thermally induced heterogeneity in longitudinal velocity (Vp) at certain depths but not in Vs. This effect is observed in tomography models at conditions where the spin crossover in Fp is expected in the lower mantle. In addition, the one-of-a-kind signature of this spin crossover in the RgPp (∂ln Vp/∂ln Vs) heterogeneity ratio might be a useful fingerprint to detect the presence of Fp in the lower mantle.

seismic tomography | lateral heterogeneity | elastic modulus | density functional theory | mantle plume

Ferropericlase (Fp) is believed to be the second most abundant phase in the lower mantle (1, 2). Since the discovery of the high-spin (HS) to low-spin (LS) crossover in iron in Fp (3), this phenomenon has been investigated extensively experimentally and theoretically (4–14). Most of its properties are affected by the spin crossover. In particular, thermodynamics (14) and thermal elastic properties (15–20) are modified in unusual ways that can change profoundly our understanding of the Earth’s mantle. However, this is a broad and smooth crossover that takes place throughout most of the lower mantle and might not produce obvious signatures in radial velocity or density profiles (20, 21) (see Figs. S1 and S2). Therefore, its effects on aggregates are more elusive and indirect. For instance, the associated density anomaly can invigorate convection, as demonstrated by geodynamics simulations in a homogeneous mantle (22–24). The bulk modulus anomaly may decrease creep activation parameters and lower mantle viscosity (10, 24, 25) promoting mantle homogenization in the spin crossover region (24), and anomalies in elastic coefficients can enhance anisotropy in the lower mantle (16). Less understood are its effects on seismic velocities produced by lateral temperature variations.

The present analysis is based on our understanding of thermal elastic anomalies caused by the spin crossover. It has been challenging for both experiments (15–19) and theory (20) to reach a consensus on this topic. Measurements often seemed to include extrinsic effects, making it difficult to confirm the spin crossover signature by different techniques and across laboratories. A theoretical framework had to be developed to decipher these effects. However, an agreeable interpretation of data and results has emerged recently (20). With increasing pressure, nontrivial behavior is observed in all elastic coefficients, aggregate moduli, and density throughout the spin crossover—the mixed spin (MS) state. In an ideal crystal or aggregate, bulk modulus (Ks), C11, and C12 are considerably reduced in the MS state, whereas shear modulus (G), C44, and density (ρ) are enhanced. The pressure range of these anomalies broadens with increasing temperature whereas the magnitude decreases. With respect to the HS state, all these properties are enhanced in the LS state.

Results and Discussion

The nature of lateral (isobaric) heterogeneity produced by temperature variations in an Fp-bearing aggregate is better grasped by inspecting the temperature dependence of Fp’s aggregate moduli and density. Along an adiabatic geotherm (26), spin crossovers manifest most strongly near 75 GPa (~1,750-km depth) in a pyrolite mantle (Fig. S2). At this pressure, the bulk modulus softening anomaly in Fp, ΔKMS, is maximum at ~1,400 K (Fig. 1). At these conditions ΔKMS ~ ~ 120 GPa compared with ΔKHS = LS ~ 13 GPa for Mg0.89SiO2 (Fig. L4). Below ~1,400 K, dKMS/dT can be enhanced more than 20 times at ~920 K (Table 1). Above ~1,400 K, dKMS/dT is positive and is 2 to 10 times larger than |dKHS/dT| at 1,850 K. This effect can be misinterpreted as compositional heterogeneity in the mantle. At ~1,400 K, dKMS/dT ~ 0 GPa/K; that is, temperature anomalies do not manifest in the bulk modulus. In contrast, the shear modulus is most sensitive to temperature variations at ~1,400 K, and dGMS/dT is enhanced more than two times. Density behaves similarly to GMS (Table 1). In a pyrolite aggregate, such anomalies are largely reduced (Fig. 1B), but the anticorrelation between dKs/ΔT and dGMS/ΔT above ~1,400 K remains.

Significance

Seismic tomography reveals Earth’s internal structure in great detail. Lateral variations of seismic wave velocities expose enigmatic mantle structures that, to be deciphered, require independent knowledge of acoustic velocities in minerals. Using density functional theory-based computational methods we show that a spin state change in iron in ferropericlase, the second major phase of the Earth’s lower mantle, produces seismic velocity anomalies that can be misinterpreted as compositional heterogeneity. This spin change reduces thermally induced longitudinal velocity variations between ~1,500- and 2,000-km depths. This phenomenon is observed in P velocity tomography models and has been thought to be related to a chemical transition in the mantle. The spin change in iron in ferropericlase may offer an alternative interpretation of this phenomenon.

Author contributions: Z.W. and R.M.W. designed research, performed research, analyzed data, and wrote the paper.

The authors declare no conflict of interest.

*This Direct Submission article had a prearranged editor.

Freely available online through the PNAS open access option.

†To whom correspondence may be addressed. Email: wuzq10@ustc.edu.cn or wentz002@umn.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1322427111/-/DCSupplemental.
lower mantle is not considered here owing to its complexity, uncertainties, and unresolved issues. However, its potential effect is addressed later. Uniform mantles with several compositions are then examined between ~700 and ~2,600 km (25–120 GPa). Effects of the postperovskite phase change (32–34) should be avoided in this depth range.

Although crossover related anomalies in radial velocity profiles in a pyrolitic lower mantle might be subtle and hard to notice (Fig. S2), related lateral heterogeneities in bulk, \(V_P / \rho \), and longitudinal velocities, \(V_P / \rho \), are quite robust (Fig. 2). Uncertainties related to the geotherm do not preclude their expression as long as Fp is present in nonnegligible amounts in the mantle. Anomalies start manifesting at ~1,000-km depth (~38 GPa) and develop dramatically beyond 1,250 km (Fig. 2A and B). Between ~1,500-km and 2,000-km depth, \(V_P / \rho \) increases with increasing temperature; that is, \(R_{VP} / T \) is positive (Fig. 2A).

In contrast, beyond ~2,050 km (~90 GPa), \(R_{VP} / T \) is negative, reaching a minimum somewhere between ~2,350- and 2,620-km depth. The related anomaly in \(V_S / \rho \), \(R_{VS} / T \), is barely discernible; that is, \(V_S / \rho \) is basically insensitive to the spin crossover (Fig. 2C). Consequently, the anomaly in \(V_P / \rho \), \(R_{VP} / T \), although similar, is more subtle than that in \(R_{VP} / T \) (Fig. 2B). Depending on Fp abundance and composition, \(R_{VP} / T \) can be positive, vanish, or remain negative as in a perovskitic mantle (Fig. 2B). As long as Fp is present in detectable amounts, the magnitude of \(R_{VP} / T \) should be reduced in the mid–lower mantle (Fig. 2B and caption). This result translated into velocity heterogeneity in a pyrolitic mantle (see results for pyrrhotite in Fig. 2B caption) implies that a lateral temperature change of \(\Delta T \) ~ ± 500 K manifests at ~1,100-km depth or between ~2,350- and 2,620-km depths as \(\Delta V_P / V_P \sim 1\% \), whereas between 1,650 and 1,800 km it produces \(\Delta V_P / V_P \sim 0.3\% \). For a pyrolitic mantle with 18 wt % of Mg0.81Fe0.19O, \(\Delta V_P / V_P \sim 0% \) at 73 GPa (~1,720 km) along the adiabatic geotherm (26). Along the superadiabatic geotherm (27), \(\Delta V_P / V_P \sim 0% \) at 78 GPa (~1,820 km) for a mantle with 21 wt % of Mg0.81Fe0.19O.

These are typical pyrolitic compositions (1, 3, 35).

This suppression of lateral variations in \(V_P / \rho \) at ~1,700 km correlates with a similar and well-known global feature (36) believed to correspond to a compositional transition (37) to a denser (~4%) layer in the deep lower mantle (38). For comparison, the spin crossover in Fp increases the density of a chemically homogeneous pyrolitic mantle by ~0.7%. It is a smooth and broad feature that should enhance convection in a chemically uniform mantle (22–24), especially in the spin crossover zone, which spans most of the lower mantle. This broad spin crossover also seems consistent with the lack of seismological evidence of a compositional transition and associated thermal boundary layers (39, 40) in the mid–lower mantle. In some slow regions beneath hot spots, similar reduction of \(P \) velocity heterogeneity at comparable depths is well documented.

![Fig. 1](https://example.com/fig1.png)

Fig. 1. Temperature dependence of bulk modulus, \(K_S \); shear modulus, \(G \); and density, \(\rho \), at 75 GPa for (A) aggregates of Fe, Mg0.87Fe0.125O (solid line) and Mg0.83Fe0.2O (dotted line); (B) pyrolitic aggregates containing 78 wt % of Mg0.83Fe0.2O (solid line) and same but Mg0.8Fe0.2O (dotted line); and (C) a perovskitic aggregate containing 92 wt % (Mg0.8Fe0.2O3SiO2)3O2 and 8 wt % CaSiO3-Pv. Corresponding Preliminary Reference Earth Model values (65) at 75 GPa are shown as solid squares.

A striking feature. (See Fig. S3 for illustration of this effect at other temperatures.)

The potential influence of the spin crossover on seismic tomography is better understood by inspecting simultaneously its effects on all velocities and correlations among these effects at likely mantle conditions and compositions. Two geotherms are considered: an adiabatic one consistent with whole-mantle convection (26) and a superadiabatic one (27) more consistent with a chemically stratified mantle and layered convection. The analysis is carried out for compositionally homogeneous mantle models, and the aim is to expose trends. For contrast, the following uniform models are considered: pure Fp, where effects are fully expressed, and pyrolitic and perovskitic aggregates. Elastic properties of iron-bearing perovskite (MgPv) and of CaSiO3 perovskite (CaPv) used in these calculations are described in **Supporting Information**. The effect of a possible but unlikely spin crossover in ferroic iron in MgPv (28–31) in the

Table 1. Temperature gradients of bulk (\(K \)) and shear (\(G \)) moduli and density (\(\rho \)) of Mg0.87Fe0.125O and Mg0.83Fe0.2O at 75 GPa and several temperatures

<table>
<thead>
<tr>
<th>(x)</th>
<th>T (K)</th>
<th>(dK/dT), 10^{-3}</th>
<th>(dG/dT), 10^{-3}</th>
<th>(d\rho/dT), 10^{-3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.125</td>
<td>920</td>
<td>-12</td>
<td>-270</td>
<td>0.08</td>
</tr>
<tr>
<td>1,400</td>
<td>-12</td>
<td>0</td>
<td>-11</td>
<td>-0.08</td>
</tr>
<tr>
<td>1,850</td>
<td>13</td>
<td>60</td>
<td>-11</td>
<td>-0.09</td>
</tr>
<tr>
<td>0.21</td>
<td>920</td>
<td>-12</td>
<td>-446</td>
<td>-0.07</td>
</tr>
<tr>
<td>1,400</td>
<td>-12</td>
<td>0</td>
<td>-11</td>
<td>-0.09</td>
</tr>
<tr>
<td>1,850</td>
<td>13</td>
<td>110</td>
<td>-11</td>
<td>-0.09</td>
</tr>
</tbody>
</table>
suggests a possible relationship between this anticorrelation and thermal and compositional heterogeneities. The present study implies that in a compositionally homogeneous lower mantle, temperature variations in the spin crossover in Fp does not inhibit manifestation of lateral temperature variations in VP. Similar suppressions or reductions in lateral variations in VP are also found under several other hot spots in similar depth intervals. The exact depth and magnitude of this effect should depend on temperatures and on lateral and radial variations in abundance and composition of Fp. However, it should be robust and an expected effect in a lower mantle containing nonnegligible amounts of Fp.

In contrast to R_{PST} and R_{PST}^\prime, R_{ST} remains negative and is only slightly affected by the spin crossover in Fp (Fig. 2C). Therefore, the spin crossover in Fp does not inhibit manifestation of lateral temperature variations in VS. An analysis of velocity structures beneath more than 40 hot spots (44) indicated that far more continuous slow velocity structures extending all of the way from the core–mantle boundary to the surface could be identified in three S models than in two P tomography models, the Hawaii thermal structure being an example. This outcome seems broadly consistent with the suppressed expression of lateral variations in P but not in S models expected because of a spin crossover in Fp. The behavior of R_{PST}^\prime, R_{PST}^\prime, and R_{PST} shown in Fig. 2 also implies that in a compositionally homogeneous lower mantle, anticorrelation between V_P and V_S and decrease in correlation between V_P and V_S could be observed between ~1,500-km and ~2,000-km depth, where R_{PST}^\prime is positive (Figs. 2A and 3A and B). It has been shown that anticorrelation between V_P and V_S in the D* region (e.g., ref. 45), can be explained to a great extent by the postperovskite transition (46, 47). However, anticorrelation at shallower depths in the mantle is still debatable. Masters et al. (45) and Ishii and Tromp (48) observed very weak anticorrelation (or decorrelation) at mid–lower mantle depths. The recent joint geodynamic–tomographic model developed by Simmons et al. (49), however, shows anticorrelation below ~1,800-km depth. This was interpreted as a sign of coexisting thermal and compositional heterogeneities. The present study suggests a possible relationship between this anticorrelation and the spin crossover in Fp, although it does not exclude simultaneous compositional heterogeneity. The manifestation of the spin crossover in R_{PS} or in R_{PST} depends on local temperatures and compositions (Fig. 3 and Fig. S4) but should be a robust phenomenon in a homogeneous pyrolitic mantle that could be misinterpreted as compositional heterogeneity.

A most striking sign of the spin crossover appears in the R_{SP} ($\partial \ln V_S/\partial \ln V_P$) heterogeneity ratio (Fig. 4). Along plausible mantle geotherms (26, 27) and for several homogeneous aggregates, R_{SP} is insensitive to composition outside the spin crossover zone, i.e., above 1,200-km depth (Fig. 4). This happens because mantle minerals produce similar R_{PS} values (50) in the absence of the spin crossover. In the spin crossover zone, R_{SP} is quite sensitive to the abundance and composition of Fp but remains relatively insensitive to the relative abundances of MgPv or CaPv. This behavior of R_{SP} with depth is remarkably similar to those seen in tomography models analyzed by Saltzer et al. (51). R_{SP} values in mantle regions away from subduction (nonslab regions) and beneath convergent margins (slab regions) are very similar above 1,200-km depths. Below 1,500-km depths, R_{SP} increases faster in nonslab regions. In the context of our results, this difference suggests smaller abundance of Fp and/or of iron in Fp in the slab region, which could be compatible in principle with a compositional heterogeneity related with the presence of mid-ocean ridge basalt (MORB) crust material (52) intermixed with pyrolite. In a homogeneous pyrolytic mantle, R_{SP} should be maximum between ~1,500-km and ~2,000-km depth where V_P and V_S are most anticorrelated (Figs. 3A and 4).

Because the anomalous softening in V_P depends on the abundance and iron content of Fp, R_{SP} should be significantly affected by compositional heterogeneity altering these quantities. This effect is not considered here. Saltzer et al. (51) reported that R_{SP} reaches a maximum around 2,100 km in nonslab regions. However, in most seismic tomography models, values of R_{SP} increase with depth and do not show a peak within mid–lower mantle depths (45, 48). The present study suggests that the absence of a clear peak in R_{SP} or a peak above the 1,500–2,000-km depth interval could be used as an indirect argument in support of compositional heterogeneity, particularly a reduction in Fp abundance with depth (19). A peak at greater depths could be produced by a combination of factors, especially by a change in iron partitioning between MgPv and Fp throughout the spin crossover in Fp. This can increase its iron concentration and its spin crossover pressure (11).

The complex spin crossover in fercric iron in MgPv (28–31, 53) is too uncertain at the moment, and its effects are presently not
understood, but it could also affect the R_{SP} profile in a compositional homogenous mantle. The recently discovered dissociation of iron-bearing MgPv into an iron-free MgPv and a hexagonal iron-rich phase (54) might also produce novel and unanticipated effects on lateral variations beyond 2,000-km depth. The mantle geotherm, which should depend on material properties that are strongly affected by the spin crossover (14), could also affect these R_{SP} profiles and shift the peak position (Fig. 4 A and B). Uncertainties in the calculated elastic anomalies in Fp at high temperatures cannot be ruled out either, because comparison with experiments has not been possible. The elasticities of CaPv and of other MORB phases at lower mantle conditions still need to be clarified to improve analyses of heterogeneities and/or radial velocity profiles in the deep lower mantle. However, the spin crossover in Fp is remarkably perceptible and its manifestation is exceptionally distinctive on lateral heterogeneities. In particular, a peak in R_{SP} near the mid-lower mantle could be viewed as a fingerprint of Fp presence in this region. Therefore, inclusion of Fp spin crossover effects in the analyses of tomography models should advance considerably our understanding of lower mantle structures.

Methods

The thermal elastic coefficients of Fp used in this work have recently been reported in detail by Wu et al. (ref. 20 and Supporting Information). They are based on a theoretical framework that was developed for spin crossover systems with low concentration of strongly correlated ions (up to $X_{Fe} \sim$ 0.2) (9, 10, 14, 20). This formalism addresses Fp in the MS state as an ideal solid solution (ISS) of pure HS and LS states (9, 10, 14, 20). It is important to emphasize that this is a solid solution of two solid solutions, not of two (or three) end members, MgO and FeO (or MgO, Fe$^{2+}$O, and Fe$^{+}$O). Extensive comparisons of equations of state and elastic moduli for different iron concentrations have been reported in figure 1 of ref. 20 and in Supporting Information.

ACKNOWLEDGMENTS. We thank R. O’Connell for bringing ref. 44 to our attention while this manuscript was under review and two referees for helpful comments. This work was supported by National Natural Science Foundation of China (412441905), the Chinese Academy of Sciences International Partnership Program for Creative Research Teams, and National Science Foundation (EAR-1341862 and EAR-1046249).

Supporting Information

Wu and Wentzcovitch 10.1073/pnas.1322427111

SI Methods

Ferropericlase (Fp) in the mixed spin (MS) state has been successfully described as an ideal solid solution (ISS) of pure high-spin (HS) and low-spin (LS) states (1–4). The Gibbs free energy of this MS state, \(G(n, P, T) \), is

\[
G(n, P, T) = nG_{LS}(P, T) + (1 - n)G_{HS}(P, T) + G_{mix}. \quad [SI]
\]

where \(n = n(P, T) \) is the fraction of LS states; \(G_{LS} \) and \(G_{HS} \) are Gibbs free energies of the pure LS and HS states, respectively; and \(G_{mix} \) is the free energy of mixing. This free energy formalism has provided a foundation for the theory developed to describe the elastic properties of Fp in the MS state, as reported in ref. 1. (See Methods for a brief summary.)

A combination of first-principles calculations and a model vibrational density of state (VDOS), the vibrational virtual crystal approximation (VVCM) (2, 3), were used to obtain \(G_{LS} \) and \(G_{HS} \) within the quasiharmonic approximation (5). The oxygen pseudopotential was generated by the Troullier–Martins method (6), in a \(2\times2\times2 \) configuration with local-\(p \) orbital and core radii \(r(2s) = r(2p) = 1.45 \) a.u. The magnesium pseudopotential was generated using the von Barth–Car method, with five different electronic configurations \(3s^23p^6 \), \(3s^23p^4 \), \(3s^23p^{10}3d^{10}5s^1 \), \(3s^23p^{10}5s^3 \), and \(3s^23d^4 \), with weights of 1.5, 0.6, 0.3, 0.3, and 0.2, respectively, with local-\(d \) orbital, and core radii \(r(3s) = r(3p) = r(3d) = 2.5 \) a.u. The iron pseudopotential was generated using the modified Rappe–Rabe–Kaxiras–Joannopoulos method (7), in a \(3d^74s^1 \) configuration, with core radii \(r(4s) = (2.0, 2.2), \) \(r(4p) = (2.2, 2.3) \), and \(r(3d) = (1.6, 2.2) \) a.u., where the first value represents the norm-conserving core radius and the second one represents the ultrasoft radius. The electronic wave functions were expanded in a plane wave basis set, where a cutoff of 70 Ry provided converged results. The Brillouin zone was sampled by a \(2 \times 2 \times 2 \) \(k \)-point grid.

The calculations used a rotationally invariant version of the local density approximation adding a Hubbard potential (LDA+U), where \(U \) was computed by an internally consistent procedure (8). The values of \(U \) used here are the same as those used in ref. 4, where the dependences of \(U \) with supercell size, spin state, and pressure were carefully investigated. Atomic positions were always fully relaxed with forces determined by the LDA+U energy functional. Calculations were performed in a supercell with 64 atoms for the concentration \(X_{Fe} = 0.1875 \) (26 Mg, 32 O, and 6 Fe atoms), with substitutional ferrous iron in the magnesium site. Iron atoms were positioned in a way to maximize the interiron distances within the supercell. With such iron distribution, \(X_{Fe} = 0.1875 \) is the upper concentration limit in which iron–iron interactions are negligible in the calculation. Those interactions are expected to slightly increase the static transition pressure (9). This effect cannot be easily computed using the ideal solid solution formalism, given the strong dependence of those interactions on orbital ordering. To capture such phenomenon and reproduce the observed transition pressure at 300 K, the static enthalpy curves of HS Fp were shifted uniformly to increase the static transition pressure from 33 to 45 GPa, as recently reported in ref. 1. Such constant shift does not affect thermal equations of state or thermoelastic properties of Fp in HS or LS states.

The VDOSs of pure Mg\(_{0.875}\)Fe\(_{0.125}\)O in HS and LS states, i.e., the VVCM (2, 3), were developed by modifying the largest interatomic force constants of MgO to reproduce the elastic constant of Fp in HS and LS states (2), which were calculated using LDA+U. The interatomic force constants of MgO were calculated using density functional perturbation theory (10). The VDOSs of HS and LS Fp were then obtained using these modified force constants, and the mass of Mg was replaced by the average mass of Mg\(_{0.875}\)Fe\(_{0.125}\)O. This average mass mimics atomic disorder, an effect not included in other calculations of high-temperature Fp (11–13). Inclusion of the vibrational contribution to the free energy considerably improved agreement between experimental measurements (14–16) and our predicted pressure and temperature-dependent spin populations and compression curves at room temperature (2, 3).

A comparison between spin populations predicted by the VVCM and measurements is shown in Fig. S1. Some experimental data for \(n = 0.5 \) obtained by Lin et al. (14) on a sample with \(X_{Fe} = 0.25 \) and by Komabayashi et al. (15) on a sample with \(X_{Fe} = 0.19 \) are indicated by stars and squares, respectively. White and black lines correspond to \(n = 0.5 \) in our unshifted and shifted calculations, respectively. It can be seen that high-temperature measurements are still not in good agreement. At these iron concentrations, spin populations should not depend strongly on iron concentration. At low temperature the transition pressure for \(X_{Fe} = 0.25 \) and \(X_{Fe} = 0.19 \) are similar. However, there are large differences in the high-T behavior, which do not seem to be explained easily by the difference in iron concentration alone. As shown by others (see ref. 16 for a summary), the transition pressure increases with increasing iron concentration for \(X_{Fe} \geq 0.25 \). This trend is not reflected by these two sets of experimental data at high temperatures. It can also be seen that our (shifted) results on \(X_{Fe} = 0.1875 \) agree very well with data on a sample with \(X_{Fe} = 0.19 \) (15) and also with data by Lin et al. (14) at low temperatures.

Elastic Properties of the Pyrolitic Aggregate

The first step in the present work was to investigate the effect of the spin crossover in Fp on the elastic modulus of a uniform aggregate with pyrolitic composition (17) along a mantle geotherm (18). The considered aggregate consists of 12 wt % Mg\(_{1-y}\)Fe\(_y\)O (Fp) with \(X_{Fe} = 0.1875 \) (Fp18.75), 81% Mg\(_{3/2}\)Fe\(_{1/2}\)SiO\(_3\) with \(y = 0.08 \) (MgPv8), and 7% CaSiO\(_2\) perovskite (CaPv). The bulk and shear moduli of CaPv are those listed in Stixrude and Lithgow-Bertelloni’s tables (19). The first-principles elastic moduli of MgPv are those reported earlier by our group (20). The effect of iron on the elastic modulus of MgPv without the effect of its own spin crossover was included as reported in ref. 21. Theoretical investigations predict that HS ferrous iron does not undergo a spin state change to the LS state at lower mantle pressures (22). Instead, it displaces laterally with no significant density change (22). Spin crossover should happen only in ferric iron in the B site in MgPv (23, 24). Aluminum in MgPv displaces ferric iron from the B site and appears to prevent spin crossover in ferric iron (25, 26), but a consensus has not emerged on this issue yet (27, 28). However, the elastic modulus of MgPv is not noticeably affected by the spin crossover (29–31). Calculated elastic moduli, velocities, and density all agree well with values reported in the Preliminary Reference Earth Model (PREM) (32) along the lower mantle (Fig. S2). We previously reported a more enhanced bulk modulus softening in an aggregate of 20 wt % Fp18.75 and 80 wt % MgPv12. Results in the present aggregate produce elastic moduli and velocities more consistent with those reported in PREM (32) (Fig. S2). In this aggregate the maximum effect of the spin crossover happens at ~74 GPa.
Elastic Anomalies

The unusual effect of spin crossover on the elasticity of FeP is clearly reflected on the temperature dependence of all velocities. Both $\partial n V_p/\partial n P$ (R_{PT}) and $\partial n V_S/\partial n T$ (R_{ST}) are sensitive to temperature and pressure. However, their behaviors are quite different. In contrast to R_{ST}, which is always negative, R_{PT} can be positive throughout a large pressure range as shown in Fig. S3 A and C. The effect of the spin crossover is enormous. The maximum value of R_{PT} at 1,000 K is 5×10^{-3}, which is about 60 times the maximum $|R_{ST}|$ of a Pv aggregate (Fig. S3G) at the same pressure. Even at 3,000 K, the maximum value, 8×10^{-3}, is still about 13 times that of the $|R_{ST}|$ in a Pv aggregate (Fig. S3G) at the same pressure. Therefore, although the lower mantle should have less than 20 wt % of FeP, we may still expect positive R_{PT} in some pressure range, even at 3,000 K (Fig. S3D). However, R_{ST} is always negative in a pyrolitic aggregate (Fig. S3F). The pressure and temperature dependence of $\partial n V_p/\partial n T$ (R_{PT}) is similar to that of R_{PS} but with smaller variations (Fig. S3 A and B). R_{PT} of a pyrolitic aggregate (Fig. S3E) can be positive in some pressure range only at relatively low temperatures (less than 2,000 K). Without spin crossover, R_{PS} of FeP is always positive with a value similar to those of other silicate minerals such as MgPv in Fig S3E. In the presence of the spin crossover, R_{PT} can be negative with a minimum reaching -12.8 (-3.2) at 1,000 K (3,000 K). R_{PS} of FeP and of pyrolite shown in Fig. S3 A and C are negative in the same pressure region where their R_{PT} is positive. Namely, V_p and V_s can be negatively correlated in a compositionally homogeneous pyrolitic lower mantle.

Another striking feature of the spin crossover is that it can lead to an unusually large positive R_{PS} (R_{PS}); for example, the maximum of R_{PS} (R_{PS}) of FeP at 2,000 K is about 6.3 (4.4) at ~100 GPa (Figs. S3F and S4). Changes in V_p or ρ caused by the spin crossover are similar in nature. $\partial n \rho/\partial n T$ (R_{PS}) is also negative, and V_s and ρ are positively correlated.

Fig. S1. Predicted fraction of low spin iron, \(n(P,T) \), for \(X_{Fe} = 0.1875 \). Black and white lines correspond to the midpoint of the crossover, i.e., \(n = 0.5 \), with and without energy shift, respectively. Stars represent \(n = 0.5 \) in data by Lin et al. (14) for Fp with \(X_{Fe} = 0.25 \). Solid squares represent \(n = 0.5 \) in data by Komabayashi et al. (15) for Fp with \(X_{Fe} = 0.19 \).

Fig. S2. (A) Velocities and (B) elastic moduli and density of a uniform pyroilitic aggregate with 81 wt % of MgPv8, 12 wt % Fp18.75, and 7% CaPv along the Boehler mantle geotherm (18) compared with PREM (32).
Fig. S3. Pressure dependence of lateral heterogeneity in bulk ($R_{\phi,T} = \partial \ln V_{\phi} / \partial T$), longitudinal ($R_{P,T} = \partial \ln V_{P} / \partial T$), and shear ($R_{S,T} = \partial \ln V_{S} / \partial T$) velocities at 1,000 K, 2,000 K, and 3,000 K. (A–C) An aggregate of Fp18.75; (D–F) a pyrolithic aggregate with 81 wt % of MgPv8, 12 wt % Fp18.75, and 7 wt % CaPv; and (G–I) a perovskitic aggregate with 92 wt % MgPv8 and 8 wt % CaPv.

Fig. S4. Pressure dependence of thermally induced heterogeneity ratios $R_{\phi,S} = \partial \ln V_{\phi} / \partial \ln V_{S}$ and $R_{P,S} = \partial \ln V_{P} / \partial \ln V_{S}$ at 1,000 K, 2,000 K, and 3,000 K. (A and B) An aggregate of Fp18.75; (C and D) a pyrolithic aggregate containing 81 wt % of MgPv8, 12 wt % Fp18.75, and 7 % CaPv; and (E and F) a perovskitic aggregate containing 92 wt % MgPv8 and 8% CaPv.