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Chapter 1

Introduction

1.1 Seismic Tomography

Seismic tomography was developed in the mid 1970s (Aki et al., 1977; Dziewon-
ski et al., 1977; Dziewonski, 1984; Woodhouse and Dziewonski, 1984) as a way
to infer information about the Earth’s three-dimensional structure from seismic
waves. Since then, body waves have been used to map the Earth globally and
regionally (van der Hilst et al., 1997; Kennett et al., 1998;Widiyantoro et al.,
1999; Bijwaard and Spakman, 2000; Masters et al., 2000; Kárason and van der
Hilst, 2001; Amaru, 2007) while surface waves have mainly been used to map the
crustal and upper mantle structure (Ekström et al., 1997; Ritzwoller and Levshin,
1998; Debayle and Kennett, 2000; Shapiro and Ritzwoller, 2002; Romanowicz,
2003; Trampert and Woodhouse, 2003). Over the years, tomographic maps have
improved due to the increase in data and computing power as well as improve-
ments in the theory. In the 1970s, global models were only able to resolve the
largest wavelengths (∼3000-5000km, corresponding to spherical harmonic de-
gree 6-8) while now lateral resolutions may be obtained corresponding to wave-
lengths of less than 1000km and in some places less than 500km. Tomography has
provided many sharp images of fast velocity slabs, or subducting plates (van der
Hilst et al., 1997; Widiyantoro et al., 1999; Bijwaard and Spakman, 2000), and
showed that some slabs penetrate the lower mantle while others appear to lie flat
(e.g. Fukao, 1992 ,van der Hilst et al, 1997 ). There is also evidence of plumes
(regions of low velocity), for example underneath Iceland and Hawaii (Bijwaard
and Spakman, 1999; Zhao, 2001; Montelli et al., 2004). Seismic tomography has
also been extended to anisotropy (Tanimoto and Anderson, 1985; Montagner and
Tanimoto, 1990; Ekström and Dziewonski, 1998; Trampert and van Heijst, 2002;

11



12 Chapter 1

Panning and Romanowicz, 2006), attenuation (Durek et al., 1993; Romanowicz,
1995; Selby and Woodhouse, 2002) and density (Ishii and Tromp, 1999, 2001).
Furthermore, tomographic images have been used to obtain information about the
temperature and composition of the Earth (van der Hilst and Kárason, 1999; De-
schamps et al., 2002; Godey et al., 2004).

1.2 Limitations of seismic tomography

The two types of tomography, body wave and surface wave tomography, are more
or less complementary. This is because they see different parts of the Earth at dif-
ferent scales of resolution. Body wave tomography lacks resolution in the oceanic
parts of the Earth due to the uneven geographical coverage ofsources and stations.
It is however well suited to study subducting slabs in great detail (due to the many
sources in the subducting slab). Surface wave tomography, on the other hand, has
good coverage in oceanic areas but suffers from limited depth resolution due to
the use of mainly fundamental mode surface waves.

Another issue is anisotropy. Most tomography assumes an isotropic Earth for
theoretical and computational convenience. By now however, there is consider-
able evidence for both radial and azimuthal anisotropy at a variety of depths in
the Earth. Radial anisotropy, the discrepancy between Rayleigh and Love waves,
was first observed by Anderson (1961); Aki and Kaminuma (1963); McEvilly
(1964) and was later included in the upper 200km of the globalreference Earth
model PREM (Dziewonski and Anderson, 1981). Azimuthal anisotropy, the az-
imuthal variation of phase velocity, was first observed by Forsyth (1975). Ra-
dial and azimuthal anisotropy are different expressions ofthe underlying general
anisotropy of the Earth’s interior. The source of anisotropy in the mantle is usu-
ally assumed to be the alignment (lattice preferred orientation or LPO) of intrinsi-
cally anisotropic minerals under strain in the mantle (Karato, 1998a; Montagner,
1998). Nataf et al. (1986) first inverted radial anisotropy and related the results to
mantle flow. They found evidence for veritical flow beneath ridges and subduction
zones and horizontal flow beneath lithospheric plates. Tanimoto and Anderson
(1985) first inverted for azimuthal anisotropy at differentperiods and found that
the fast directions correlate with plate motions at the lowest wavelengths. These
studies were follwed by joint inversions for radial and azimuthal anisotropy (Mon-
tagner and Nataf, 1986; Montagner, 1986; Nishimura and Forsyth, 1989). Al-
though anisotropy was first found to be limited to the upper mantle. Montagner
and Kennett (1996), using normal modes, and Vinnik and P. (1996), using receiver
functions, first found evidence for anisotropy in the transition zone. Finally the
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forward problem

estimation problem

true model

data

estimated model

appraisal problem

Figure 1.1:Definition of the forward and inverse problem viewed as a combination of the
estimation problem and the appraisal problem from Snieder and Trampert (2000).

use of higher mode phase velocities allowed Trampert and vanHeijst (2002) to
construct the first global model of azimuthal anisotropy in the transition zone.

Seismic tomography is based on solving an inverse problem (figure 1.1). The
data are observables obtained from seismograms such as travel times, phase veloc-
ities and splitting measurements and the objective is to findthe Earth’s structure
(’true model’). Due to the limited number of data and the manydegrees of free-
dom necessary to reconstruct an Earth model, the inverse problem is not unique.
There are many models that explain the data equally well. Themodel obtained
through inversion is therefore not equal to the true model but represents some es-
timated model. The appraisal problem tries to relate the estimated model to the
true model. There are two reasons why the estimated model differs from the true
model. One is the non-uniqueness mentioned above and the other is the propaga-
tion of uncertainties present in the data. In the appraisal problem, therefore, we
need to find which properties of the true model are retrieved and what uncertainties
are attached to them. An example of non-uniqueness in tomography is shown in
figure 1.2, taken from Deal et al. (1999). Deal et al. (1999) first obtained an initial
tomographic model by inverting delay time data. They then defined a theoretical
slab model by finding velocity profiles that were obtained from an assumed slab
temperature model. The initial tomographic model satisfiesthe delay time data,
the theoretical slab model does not. They then projected thedifference between
the initial model and the theoretical slab model onto the null space (the area of
the model space not constrained by the data of their initial problem). The result-
ing enhanced tomographic image now has a comparable fit to thedelay time data
as the initial tomographic image but contains null space components that were
introduced by the theoretical slab model. Even though the initial model and the
enhanced model fit the delay time data equally well by construction, the models
themselves are quite different. In the initial model (figure1.2), the slab seems to
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(a) Initial (b) Theoretical slab (c) Enhanced

Figure 1.2:Non-uniqueness in tomography taken from Deal et. al. 1999 . The enhanced
tomography result is obtain by putting the difference between the initial model and the
theoretical slab into the null space. The final image has beenstrongly biased towards the
theoretical slab model and only deviates from it as requiredby the seismic data.

lie flat and may even penetrate the 670km discontinuity whileit clearly does not
in the enhanced tomography result, illustrating the problem of non-uniqueness.

To illuminate the importance of model uncertainty we show infigure 1.3
two phase velocity models for the fundamental mode Rayleighat 150 seconds.
Although the long wavelength features are very similar the models display dif-
ferences. Differences in tomographic maps are caused by choices in the inver-
sion algorithm (exact, iterative), assumptions in the theory (great circle arc prop-
agation, ’fat’ rays), regularisation (norm damping, gradient damping), parame-
terisation (spherical harmonics, latitude-longitude grid) and type of data (body
waves, surface waves, normal modes) (Boschi and Dziewonski, 1999; Romanow-
icz, 2003). Without appropriate uncertainties we cannot determine whether tomo-
graphic models are similar or different.

1.3 Dealing with the limitations

As already mentioned, one of the limitations of surface wavetomography is the
depth resolution due to the use of mainly fundamental mode surface waves. To
increase the resolution of surface wave tomography at depthwe need to use higher
mode surface waves (Nolet, 1975; Cara, 1979; Stutzmann and Montagner, 1993;
Van Heijst, 1997; Yoshizawa and Kennett, 2002; Beucler et al., 2003). For sim-
ilar periods, higher modes are sensitive to larger depths. This is illustrated in
figures 1.4 and 1.5 which show several spheroidal (Rayleigh wave) and toroidal
(Love wave) shear wave sensitivity curves. For the period range of 35s to 200s,
the sensitivities for higher modes extend well into the lower mantle which should
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Figure 1.3: Rayleigh wave phase velocity models at a period of 150s for Trampert &
Woodhouse (2003) and Visser et. al. (2007).

significantly improve the depth resolution of surface wave mantle models.

Waveform inversion techniques inherently use higher mode information whe-
ther by direct use of the seismograms (Nolet et al., 1986), orby the use of sec-
ondary observables based on cross-correlations between the observed and syn-
thetic seismograms (Cara and Leveque, 1987). The relation between the seismo-
grams and the underlying velocity model is highly non-linear, which is the rea-
son that waveform inversion is often linearized. In most waveform inversion ap-
proaches, the one-dimensional velocity model obtained by waveform fitting is in-
terpreted as the average structure along the source-receiver path. This assumption
breaks down for high frequency higher modes (Marquering andSnieder, 1996)
since they represent body waves with a sensitivity along thebody wave path. This
may be avoided by introducing mode coupling, however at large computational
costs (Li and Romanowicz, 1996; Capdeville et al., 2000). This traditional two
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Figure 1.4:Spheroidal shear wave sensitivities for the fundamental mode from a period
of 35s to 175s, first higher mode from 35s to 175s and fourth higher mode from 35s to
65s. The sensitivities are normalized.
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Figure 1.5:Toroidal shear wave sensitivities for the fundamental modefrom a period of
35s to 175s, first higher mode from 35s to 175s and fourth higher mode from 35s to 65s.
The sensitivities are normalized.

stage inversion consists of obtaining one-dimensional velocity models through
waveform fitting and inverting them, using the path average assumption, for a
three-dimensional velocity model. Kennett and Yoshizawa (2002) proposed a
three stage approach in stead of the regular two stage approach which we adopt in
this work. The three stage approach consists of obtaining one-dimensional veloc-
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ity models through waveform fitting, building multimode phase velocity models
as a function of frequency using the path average assumptionand a final inversion
for local wave speed properties to obtain a three-dimensional velocity model. The
one-dimensional velocity model in the first stage is now regarded as a representa-
tion of the character of multimode dispersion along the source-receiver path. This
three stage approach is flexible due to the ability to use different methods: wave-
form inversion (Nolet, 1990; Lebedev et al., 2005), mode stripping (Van Heijst
and Woodhouse, 1999), roller-coaster technique (Beucler et al., 2003) and differ-
ent types of information (Rayleigh waves, Love waves, polarisation information)
to obtain the one-dimensional velocity model in the first stage. It is also a robust
method. Yoshizawa and Kennett (2002) showed that multiple one-dimensional
shear wave velocity models obtained through waveform fitting with a slight dif-
ference in misfit share the same dispersion characteristicsindicating that the one-
dimensional velocity model in the first stage may be regardedas a representation
of the multimode dispersion characteristics along the source-receiver path.

Rather than assuming isotropy we invert for azimuthal and radial anisotropy as
well. Radial and azimuthal anisotropy are both observed by surface waves which
is why these are well suited to study anisotropy. The alignment (lattice preferred
orientation or LPO) of intrinsically anisotropic mineralsunder strain in the mantle
is assumed to be the major cause of upper mantle anisotropy (Montagner, 1998;
Karato, 1998a). Anisotropy is thus an indicator of mantle deformation and flow.
Adding higher mode information, also in the azimuthally andradially anisotropic
tomographic maps, will increase our understanding of the dynamics of the mantle,
especially in the transition zone and lower mantle.

A very important aspect of any inversion are the uncertainties (the appraisal
problem). There have been many attempts to assign uncertainties to tomographic
models. For this study, we focus on uncertainties of fundamental and higher mode
phase velocity measurements and the uncertainties of the final three-dimensional
shear wave speed models. In general, the standard deviations of the phase ve-
locity measurements (and therefore also of the phase velocity models) and the
shear wave velocity models are not known. The focus is more onthe resolution
of shear wave velocity models which is often assessed by synthetic tests (for ex-
ample, checkerboard tests) (Bijwaard et al., 1998) or more recently by calculating
the model resolution matrix (Boschi, 2003; Soldati and Boschi, 2005). The syn-
thetic tests check whether an input model will be retrieved using the same source
station geometry as for the real data. This is dependent on the input model and
the source station geometry (Lévêque et al., 1993). The calculation of the model
resolution matrix, on the other hand, is computationally very demanding. Un-
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certainties for the (fundamental mode) phase velocity measurements have mostly
been obtained using cluster analysis (Ritzwoller and Levshin, 1998; Trampert and
Woodhouse, 2001; Shapiro and Ritzwoller, 2002), where similar paths are used
to obtain the standard deviations. Trampert and Woodhouse (2001) showed that
phase velocity standard deviations obtained with cluster analysis are in agreement
with uncertainties obtained for comparing model predictions to real seismograms.
Higher mode phase velocity uncertainties have been impossible to obtain using
cluster analysis since higher modes are very difficult to measure using traditional
techniques and there are too few measurements to reliably use cluster analysis.
Van Heijst (1997) assigned a reliability measure for his higher mode measure-
ments based on the amount of higher mode information in the seismogram and
the fit between the seismogram and the synthetic prediction of the seismogram.
Yoshizawa and Kennett (2002) measured fundamental and higher mode phase ve-
locities with a model space search and took the 1000 best dispersion models to
calculated approximate standard deviations.

In this study, we follow the three stage approach of Kennett and Yoshizawa
(2002) and measure phase velocities using a model space search approach, as Yo-
shizawa and Kennett (2002). In a model space search each point in the model
space represents a set of parameters describing some physical property of the
Earth, for example velocity. The objective of the search is to find the (set of) mod-
els that minimizes an objective function, which in geophysical inverse problem
is usually a measure of misfit between the observations and theoretical predic-
tions. Contrary to Yoshizawa and Kennett (2002), we use the whole ensemble
of models obtained with the model space search to obtain Bayesian statistical
inferences about the ensemble. In this way we obtain not onlythe best model
but also consistent and reliable uncertainties. These uncertainties are used in the
second stage to invert the phase velocity measurements for global isotropic and
azimuthally anisotropic phase velocity maps. After inversion, we obtain the pos-
terior uncertainties of the phase velocity models. In the final inversion for the
radially anisotropic shear wave velocity model, we use the phase velocity model
uncertainties to obtain consistent posterior uncertainties on the anisotropic model.

1.4 Overview

In chapter 2 we present the fully automated waveform inversion method to ob-
tain fundamental and higher mode phase velocity measurements. We follow Yo-
shizawa and Kennett (2002), and measure phase velocities using a model space
search approach which enables us to obtain consistent standard deviations for the
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phase velocity measurements. Chapter 2 also presents the tests we have performed
to validate the method (convergence of the model space search, tuning parameters,
parameterisation, approximations). In chapter 3 we present the Love wave higher
mode measurements specifically since they are more difficultto measure than
Rayleigh wave higher modes due to their overlap with the fundamental mode and
the, in general, noisier seismograms for Love waves. Chapter 4 presents global
isotropic and azimuthally anisotropic phase velocity models for the fundamental
up to the sixth higher mode for Rayleigh and up to the fifth higher mode for Love
waves. Finally, the isotropic phase velocity models are inverted for a global depth
dependent radially anisotropic shear wave velocity model in chapter 5. We obtain
the radially anisotropic shear wave velocity model using a model space search ap-
proach, which takes the full non-linearity of the problem into account and allows
us to obtain consistent uncertainties and probabilities ofradial anisotropy. Finally,
in chapter 6 we present the general conclusion.
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Chapter 2

Measuring phase velocities for
fundamental and higher mode
surface waves

In this chapter we explain the method we used to obtain fundamental and higher
mode phase velocity measurements and corresponding uncertainties for Rayleigh
and Love waves and discuss all the tests we performed to validate the automated
procedure.

2.1 Separation of higher modes

One of the problems of surface wave tomography is the lack of depth resolution
due to the use of mainly fundamental mode surface waves. For commonly used
periods of 50s to 200s, the fundamental mode surface waves are sensitive to the
upper 400km of the Earth. Adding higher mode surface waves extends the depth
resolution to the transition zone and lower mantle.

Figure 2.1 shows the PREM (Dziewonski and Anderson, 1981) phase (c) and
group (u) velocities for the fundamental and higher mode Rayleigh and Love
waves. For the spheroidal modes at a phase velocity close to 8km/s (figure 2.1,
top), the Stonely wave at the CMB cuts across the sequence of branches. Especial-
ly at short periods, the group velocities for the higher modes only slightly differ
from each other indicating that these higher modes will arrive almost simulta-
neously in the seismogram. At longer periods (>100s) for Rayleigh waves, the
fundamental mode group velocities differ significantly from the first higher mode

21
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Figure 2.1:Rayleigh and Love fundamental and higher mode dispersion curves for phase
(c, solid lines) and group (u, dotted lines) velocity.

group velocities such that the fundamental mode can be separated from the higher
modes. For Love waves at all periods, the group velocity of the fundamental mode
and the first higher mode do not differ a lot, which makes it challenging to sep-
arate the fundamental mode from the higher modes. This is also illustrated in
figure 2.2, where we show the contribution per higher mode (m) to a synthetic
seismogram for Rayleigh and for Love waves. For Rayleigh waves, the funda-
mental mode waveform (as shown withm = 0 in figure 2.2) does not change,
the higher modes only add information in time before the fundamental mode, due
to their higher group velocities. The fundamental mode is completely separated
in time from the higher modes. For Love waves, the fundamental mode wave-
form (m = 0) changes if you add higher modes to the seismogram, illustrated
by the changes around 2000s when adding higher modes (for example: compare
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Figure 2.2: Rayleigh and Love synthetic seismogram (filtered between 20and 50 sec-
onds) build with only the fundamental mode (m=0), the fundamental and first higher
mode (m=0,1) up to full synthetic seismogram (full). For theRayleigh seismogram the
epicentral distance is 7584 km and the depth is 33.8 km. For the Love seismogram the
epicentral distance is 9332 km and the depth is 15.0 km.

m = 0 with m = 0− 3 around 2000s). The fundamental mode and higher modes
arrive almost simultaneously, which makes it challenging to separate the funda-
mental mode from the higher modes. In spite of this, most methods that measure
higher modes are based on the separation of modes in the seismogram. Over-
tones were separated in the frequency-wavenumber(ω, k) domain, first by Nolet
(1975, 1977) and later by Cara (1978), Mitchel (1980) and Okal and Jo (1987) us-
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ing an array of seismometers. Cluster based techniques (Nolet, 1975; Cara, 1979;
Stutzmann and Montagner, 1993; Beucler et al., 2003) use either a clustering of
stations (Nolet, 1975; Cara, 1979) or of events (Stutzmann and Montagner, 1993;
Beucler et al., 2003), which reduces the number of paths to measure phase ve-
locities and the geographical ray coverage. The geographical ray coverage will
be high in areas with lots of events, for example the Pacific subduction zone, or
lots of stations, for example the continents. The models aregenerally valid only
in regions of good ray coverage. The advantage of such an approach is that the
clusters will have a better signal to noise ratio and phase velocities will be easier
to measure.

Van Heijst and Woodhouse (1999) and Yoshizawa and Kennett (2002) used
single seismograms to measure phase velocities, thus obtaining more measure-
ments with better geographical coverage. Van Heijst and Woodhouse (1999)
used a mode branch stripping technique which measures the phase velocities of
the fundamental and first few higher modes. It relies on the separation of modes
in the seismogram and it thus can only measure seismograms with sufficiently
long paths where the modes are well separated. Yoshizawa andKennett (2002)
used a fully non-linear waveform inversion to obtain path specific multimode dis-
persion measurements for Rayleigh and Love waves. The method searches the
model space for the shear wave velocity model that explains the seismogram best.
This shear wave velocity model is interpreted as providing implicit information
on the multimode dispersion of the specific source receiver path, but it is not
meant as a direct representation of the Earth. A direct interpretation of path spe-
cific shear wave velocity models is only valid for small lateral perturbations along
the path, whereas less constrictive conditions apply to themultimode dispersion
curves (Kennett and Yoshizawa, 2002). We follow Yoshizawa and Kennett (2002)
and perform a waveform inversion using a model space search approach. So our
estimation problem is to obtain velocity models that explain the data (single ob-
served seismograms) after which we need to solve the appraisal problem to make
inferences about the uncertainties. For the appraisal problem, Yoshizawa and
Kennett (2002) used the best 1000 dispersion models and calculated approximate
standard deviations. In contrast, we use the whole ensembleof models obtained
with the model space search to obtain Bayesian statistical inferences about the en-
semble. In this way we obtain not only the best model but consistent uncertainties
as well.
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2.2 Overview: method and tests

Figure 2.3 gives an overview of all the ingredients of the method to obtain the
phase velocity measurements. We will first briefly discuss all the ingredients and
later discuss them in detail.

In a waveform inversion, the objective is to find the velocitymodel that gives
a synthetic seismogram explaining the data best. The relation between the ve-
locity model and the synthetic seismogram is highly non-linear. Therefore, we
calculate the synthetic seismogram using linearized mode summation. For this
linearisation, we need a reference velocity model and Fréchet derivatives of the
reference model. The Fréchet derivatives are the derivatives of the phase veloc-
ity of the reference model with respect to the compressionalwave velocity, shear
wave velocity and density of the reference model. A change inthe velocity model
(in terms of a change in compressional, shear wave velocity and density) can then
be expressed, using the Fréchet derivatives, as a change inphase velocity. This
procedure relies heavily on the reference model chosen. Therefore, we use the
best possible reference velocity model for the specific seismogram obtained with
AMI (Lebedev et al., 2005). We perform waveform inversion using a model space
search approach. The dimensions of the model space are determined by the pa-
rameterisation of the velocity model. We find the best possible parameterisation
by calculating the resolution kernels for different parameterisations and determine
the number and shape of the basis functions. Since we use a model space search
approach, we need to define a search interval for every parameter. We define each
search interval as a certain percentage of change with respect to the reference
model. The model space search is guided to areas where the sampled velocity
models give synthetic seismograms that fit the data well by a misfit criteria be-
tween the data and the synthetics. Finally, the tuning parameters of the model
space search determine whether we perform a slow but extensive search or a fast
converging search. Since we want to apply this method to thousands of seismo-
grams we need to find the tuning parameters that give a fast, but reliable, ensemble
of velocity models. At this stage, we have solved the estimation problem.

For the appraisal problem, we resample the ensemble of velocity models to
obtain the posterior probability density function of the ensemble of velocity mod-
els and, at the same time, we obtain the posterior probability density function for
specific surface wave mode phase velocities. This is possible since the relation
between the velocity models and the phase velocities is known. Phase velocities
are obtained by integrating the velocity model using sensitivity kernels for specific
surface wave modes. We obtain one-dimensional marginals for specific phase ve-
locity parameters by integrating the posterior probability density function over all
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other phase velocity parameter using Bayesian statistics.The posterior probabil-
ity density function depends on the prior information (parameterisation, search
boundaries, forward theory) and the likelihood (misfit). Therefore, we examine
the effect of the prior information on the inversion. Finally, we decide on the num-
ber of higher modes that are constrained by the seismogram. The one-dimensional
marginals for the phase velocity parameters are Gaussian shaped which enables us
to represent the phase velocity measurement by a mean and a standard deviation.
In the end, we have obtained phase velocity measurements forthe fundamental
mode as well as a number of higher modes including inferencesabout the uncer-
tainties of the phase velocity measurements.

2.3 Theory

Waveform inversion is a highly non-linear problem due to thecomplicated rela-
tion between the synthetic seismogram and the Earth model. Asynthetic seismo-
gram (s) can be calculated as a sum of modes (m) using the JWKB approxima-
tion (Dahlen and Tromp, 1998) in the frequency domain (ω):

s(ω) =
∑

m

Am(ω)exp[iω∆/cm(ω)], (2.1)

whereAm(ω) is the complex amplitude of the modes,∆ is the source-receiver
distance andcm(ω) is the phase velocity of modem. A part of the non-linearity
of equation 2.1 is in the calculation of the phase velocity given an earth model.
This can be linearized using an expansion for the phase velocity

cm(ω) = c0m(ω) + δcm(ω) +
1

2
δc2m(ω) + ... (2.2)

Ignoring the second order terms and higher, equation 2.1 becomes

s(ω) =
∑

m

Am(ω)exp[iω∆/(c0m(ω) + δcm(ω))], (2.3)

Wherec0m(ω) is the phase velocity in the reference model andδcm(ω) is the phase
velocity perturbation defined as

δcm(ω) =

∫ a

0

{
∂c0m(ω)

∂VP (r)
δVP (r) +

∂c0m(ω)

∂VS(r)
δVS(r) (2.4)

+
∂c0m(ω)

∂ρ(r)
δρ(r)

}
dr.
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∂c0m(ω)/∂VP (r), ∂c0m(ω)/∂VS(r) and∂c0m(ω)/∂ρ(r) are the Fréchet derivatives
which relate the change in compressional, shear wave velocity and density from
the reference model to changes in the phase velocity anda is the radius of the
Earth. We normalise the amplitude of the synthetic seismogram (Am(ω)) to the
real seismogram and solve mainly for the phase of the seismogram. The only
unknown in equation 2.3 is now the phase velocity perturbation (δcm(ω)) and
the waveform inversion is now reduced to finding the phase velocity perturbation
given an Earth model. In this equation we recognise the definition of a linear
inverse problemd = Gm, where the data (d) is given by the phase veloctity
perturbationsδcm(ω) as a function of modem, the model (m) is given by the
perturbations inVP , VS andρ (δVP , δVS , δρ) as a function of depth (r) andG the
Fréchet derivatives. We use a model space search to solve this linearized inverse
problem. Usually a model space search is used to solve non-linear problems,
we use it to map the nullspace of a linear problem instead. Foreach sampled
Earth model, we calculate the corresponding perturbationsin phase velocity. The
perturbations in phase velocity are used to compute the synthetic seismogram
which is then compared to the observed seismogram. In the end, the model space
search provides us with an ensemble of Earth models and theircorresponding fit
to the observed seismogram.

2.4 Isotropic reference model

We have assumed an isotropic reference model and isotropic perturbations to this
reference model mainly for computational reasons. We use transversely polar-
ized seismograms to estimate Love wave phase velocities andvertically recorded
seismograms to estimate Rayleigh wave phase velocities. This is, in theory, only
correct for an isotropic medium. We therefore examined whether we would obtain
the same phase velocity measurements assuming a transversely isotropic medium.
We first calculated Love and Rayleigh wave phase velocities for the anisotropic
PREM model (Dziewonski and Anderson, 1981). We then separated the anisotro-
pic PREM model in a horizontally polarized model (VPH , VSH) and a vertically
polarized model (VPV , VSV ) and calculated the Love and Rayleigh wave phase
velocities separately assuming isotropy. Since anisotropic PREM contains only
shallow anisotropy, we performed the same test for a radially anisotropic model
taken from chapter 5, located in the Baltic Shield (figure 2.5). Figure 2.4 shows
the differences in phase velocity assuming isotropy and radial anisotropy. For
both tests the differences in the phase velocities calculated assuming isotropy or
anisotropy are small. Therefore we conclude that as long as the standard devi-
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ations on the phase velocity measurements are larger than these differences it is
justified to assume isotropy.

2.5 Why do we need to linearise the phase velocity?

In principle, we could include the full non-linearity of theforward problem and
solve equation 2.1. In practise, this is a very time-consuming process since we
would have to recalculate the eigenfunctions for each modelwe sample in the
model space search. Each model space search typically samples thousands of
models per seismogram and we want to perform the model space search on hun-
dreds of thousands of seismograms, which makes it impossible to include the full
non-linearity of the problem. Therefore we chose to linearise the inversion by
using the Fréchet derivatives. This enables us to calculate the phase velocity per-
turbations at each point in the model space using a best reference model and the
perturbation to the reference model. It does introduce a dependence on the refer-
ence model. We will only be able to obtain a global minimum if our final model
is close to the reference model. Therefore we choose the reference model to be
the best shear wave velocity model that results from the Automated Multimode
Inversion (AMI, Lebedev et al. , 2005) method. AMI is a non-linear waveform
inversion method that uses carefully chosen time and frequency windows to ob-
tain a shear wave velocity model that explains both the fundamental as well as the
higher modes in the seismogram. The resulting shear wave velocity model acts
as our reference model but is in fact already the best shear wave velocity model
which we would find using the model space search. Our best shear wave velocity
model is (close to) the AMI best shear wave velocity model. The small differences
between the models can be explained by different parameterisations and window-
ing. AMI also acts as a data quality control and rejects seismograms that are too
noisy, are invalid according to the JWKB approximation, or are close to the nodes
of the fundamental or higher mode radiation pattern.

2.6 Scaling the density and the compressional wave ve-
locity

The phase velocity perturbation depends on the changes of the compressional
wave velocity, shear wave velocity and density. For Rayleigh waves the sensitiv-
ity to shear wave velocity is highest, followed by the compressional wave velocity
and density. For Love waves the shear wave velocity sensitivity is highest fol-
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lowed by that of density. In principle, all variations (compressional wave velocity,
shear wave velocity and density) could be allowed in the inversion. In practice,
computational resources force us to limit the number of variations allowed in the
inversion since the number of parameters would triple for Rayleigh if we take
variations in compressional wave velocity, shear wave velocity and density into
account. In general, a model space is empty and an increase inthe number of
dimensions severely increases the time needed for a thorough search of the model
space. Since we will use the Neighbourhood Algorithm (Sambridge, 1999a,b), the
computation time needed for increasing number of parameters would grow expo-
nentially. The Neighbourhood Algorithm is efficient only for a small number of
parameters (<30) and since we want to obtain a relatively fast model space search
to apply to hundreds of thousands of seismograms, we need a small number of
parameters. The density and compressional wave velocity are of secondary im-
portance (due to the lower sensitivities compared to the shear wave velocity) and
thus we decided to scale them to the shear wave velocity perturbations using the
scaling relation of Ritsema and Van Heijst (2002) (R = ∂Vs/∂Vp) for the com-
pressional wave perturbations and Deschamps et al. (2001) (ξ = ∂lnρ/∂lnVs) for
the density perturbations. The scaling relation for the compressional wave veloc-
ity from Ritsema and Van Heijst (2002), increases fromR = 1.25 at the surface
to R = 3.0 at the core mantle boundary. This positive correlation between the
compressional wave velocity and the shear wave velocity hasbeen found earlier
by other studies (Su and Dziewonski, 1997; Vasco and Johnson, 1998; Masters
et al., 2000; Saltzer et al., 2001; Resovsky and Trampert, 2003). The increase
with depth for the scaling relation is found up to 2000 km (Saltzer et al., 2001;
Resovsky and Trampert, 2003). We are interested in the scaling relation up to a
depth of 1500 km, since this is the limit of our one-dimensional velocity model,
so the increasing scaling relation is appropriate. For the scaling of the density
with the shear wave velocity, there is no consensus, but luckily surface waves are
not very sensitive to density due to the strong oscillationsin the density sensitivity
curves with depth. This lack of consensus is illustrated by Resovsky and Trampert
(2003), who used probabilistic seismic tomography to test mantle velocity-density
relationships. While the relation between the compressional wave velocity and
the shear wave velocity is clearly constrained and positive, the scaling relation
between the density and shear wave velocity is not as well constrained with the
probability of a positive or negative scaling relation non-zero at all depths.
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2.7 The effect of scaling the density

Since there is no consensus on a scaling relation for density, we need to check
the effect of the scaling relation on our results. We use the scaling relation of De-
schamps et al. (2001) (ξ = ∂lnρ/∂lnVs) which is derived from an inversion of
gravity and S-wave velocities. They propose different scaling relations for sub-
oceanic and sub-continental paths. Therefore, for each seismogram we extracted
the ocean/continental information from CRUST2.1 (Mooney et al., 2004). An al-
ternative density scaling relation is given by Kaban and Schwintzer (2001), who
inverted a global shear wave velocity model and residual crust-free gravity anoma-
lies to obtain a sub-oceanic scaling relation that extends into the lower mantle.
There are significant differences between the two scaling relations under oceans.
The scaling relation of Kaban and Schwintzer (2001) is larger in the top 60 km of
the model and at depths greater than 250 km.

We applied the waveform inversion using no density scaling,the scaling rela-
tion of Deschamps et al. (2001) and the scaling relation of Kaban and Schwintzer
(2001) and compared the phase velocity measurements. The phase velocity mea-
surements are very similar and the difference is well withinour standard devia-
tions. In the case where we assume no density scaling, the number of modes we
are able to measure is slightly smaller (see section 2.18).

This test suggests that it does not matter which density scaling relation we use
as long as we use a density scaling relation.

2.8 Parameterisation

After scaling equation 2.5 simplifies to

δcm(ω) =

∫ a

0

∂c0m(ω)

∂VS(r)
δVS(r)dr. (2.5)

We parameterise the shear wave velocity perturbationsδVs(r) as a set of one-
dimensional basis functionshi(r):

δVS(r) =
N∑

i=1

γihi(r), (2.6)

where theγi are the coefficients to be found in the waveform inversion andN the
number of basis functions. Combining equations 2.5 and 2.6 we obtain

δcm(ω) =

∫
∂c0m(ω)

∂VS(r)

N∑

i=1

γihi(r)dr (2.7)
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N∑

i=1

γi

∫
∂c0m(ω)

∂VS(r)
hi(r)dr. (2.8)

Where we finally find the expression for the theory that links the data to the model

in the inverse problemG =
∫ ∂c0m(ω)

∂VS(r) hi(r)dr.
An overparameterisation (largeN ) will capture all details of the one-dimen-

sional shear wave velocity models but will also significantly increase the compu-
tation time needed for the model space search due to the increase in the number
of dimensions. On the other hand, an underparameterisation(smallN ) affects
the depth resolution and causes a bias in our phase velocity measurements while
providing us with a fast model space search. Since the resolution of surface waves
decreases with depth we expect to be able to solve for thinnerlayers at the top of
our model and for thicker layers as the depth increases. We performed a Backus-
Gilbert resolution test to identify the optimal number and depths of the basis func-
tions.
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Figure 2.6:Resolving a layer from 400 km to 600 km using only the fundamental (a,b) or
the fundamental and higher modes (c,d) for the Spheroidal (a,c) and Toroidal (b,d) target
sensitivity kernels. In grey the target sensitivity kerneland in red the best fit resolution
kernel for the shear wave sensitivity.
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Figure 2.7:Resolving thin layers for the Spheroidal (a,c) and Toroidal(b,d) target sensi-
tivity kernels. In grey the target sensitivity kernel and inred the best fit resolution kernel
for the shear wave sensitivity.

2.9 Backus-Gilbert

We tested how well we can resolve shear wave velocity for a target depth layer.
We use ray theoretical toroidal and spheroidal sensitivitykernels up to the sixth
higher mode in the period range between 35s and 200s. The kernels are calcu-
lated in PREM (Dziewonski and Anderson, 1981). We further remove surface
wave modes with sensitivity in the core and the Stoneley mode. We start with
equation 2.5 and define the change in phase velocity as

δlncm(ω) =

∫ a

o

{
∂c0m(ω)

∂VP (r)
δlnVP (r) +

∂c0m(ω)

∂VS(r)
δlnVS(r) (2.9)

+
∂c0m(ω)

∂ρ(r)
δlnρ(r)

}
dr.

The compressional wave velocity and density are again scaled to the shear wave
velocity using the scaling relations of Ritsema and Van Heijst (2002) and De-
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Figure 2.8:Best fit resolution kernels (red) for the Spheroidal (a,c) and Toroidal (b,d)
target sensitivity kernels (grey).

schamps et al. (2001). This reduced equation 2.10 to

δlncm(ω) =

∫ a

o

∂c0m(ω)

∂VS(r)
δlnVS(r)dr. (2.10)

For convenience, we write the shear wave sensitivity kernelas

KS = ∂c0m(ω)/∂VS(r). (2.11)
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A target shear wave velocityδlnVS(r0) centered at radiusr0 can be found by

δlnVS(r0) =
N∑

i=1

αiδlnci(ω) (2.12)

=
N∑

i=1

αi

∫ a

0
Ki

SδlnVS(r)dr (2.13)

=

∫ a

0
(
∑

αiK
i
S)δlnVS(r)dr, (2.14)

whereN is the total number of surface wave modes,αi are the coefficients and∑
αiK

i
s is the resolution kernel. We need to find the coefficients (αi) such that

dlnVs(r
0) −

∑
αiK

i
s is minimized. This can be done by a classical least-squares

optimization. The resolution kernel can be used to illustrate the fit to any target
depth layer. First we checked the influence of higher modes onthe resolution
kernel for both the spheroidal as well as the toroidal modes.As expected, higher
modes are indispensable if we want to resolve layers at larger depths (for example
in the transition zone in figure 2.6). Also, it is impossible to resolve thin layers
both at shallow as well as at larger depths (figure 2.7). The ideal parameterisation
is able to fit small layers at shallow depths. At larger depths, the layers should
increase in size, as illustrated in figure 2.8.

# Spline Toroidal [%] Spheroidal [%]
1 62 43
2 61 58
3 85 86
4 88 85
5 93 86
6 90 82
7 91 84
8 89 74
9 91 73
10 89 61
11 81 25
12 41 0 −1 0 1 2
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Figure 2.9:Variance reduction in percent of recovery (left) for the target depth layer
corresponding to the twelve spline parameterisation (right) using spheroidal and
toroidal modes. The splines are numbered from the top (1) to the bottom (12).
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In the end, we have chosen twelve natural cubic splines for the parameterisa-
tion with a more dense layering at shallow depth and less dense at larger depths
(figure 2.9). We are able to resolve this parameterization for both Rayleigh and
Love waves quite well. This is illustrated by the variance reductions for the spline
parameterisation (figure 2.9). The variance reduction is smallest for the spline at
1500 km, this is due to the decrease in resolution at these depths ranges for the
higher modes. The first spline also has a relatively small variance reduction for
the spheroidal modes. This spline is situated in the crust where the toroidal modes
are more sensitive hence the larger variance reduction for the toroidal modes.
The best resolved splines are situated in the 60km to 800km depth range. In this
range, we are able to resolve more than 85% for Love waves and 73% for Rayleigh
waves. We obtain better variance reductions at larger depths (spline 8 to 12) for
the toroidal modes than for the spheroidal modes. This can beexplained by look-
ing at the shapes of the sensitiviy curves for the toroidal and spheroidal higher
modes that are sensitive to these depths. The spheroidal higher modes have their
maximum sensitivity at shallow depths and a very broad peak sensitivity around
500 to 1500 km. The toroidal higher modes, on the other hand, have their max-
imum sensitivity at larger depths (depending on the specificmode from 500 to
1200 km) and the peak of this sensitivity is narrower. This indicates that it is
easier to find coefficients for the toroidal modes to fit the target sensitivity kernel
than for the spheroidal modes at larger depths, which explains the better variance
reductions.

2.10 Number of basis functions

In the resolution test we have seen that we need a dense parameterisation at shal-
low depths and a less dense parameterisation at larger depths. The number of
basis functions has an effect on the depth resolution of the shear wave velocity
models. A fine parameterisation inherently allows a higher depth resolution than
a coarse parameterisation, but also results in a larger number of basis functions
(dimensions) in the model space search. As the number of dimensions increases,
the computation time for the Neighbourhood Algorithm increases dramatically.
Also, a fine parameterisation at every depth is not needed dueto the decreasing
resolution with depth of surface waves as illustrated in theprevious section. From
the Backus-Gilbert resolution test, we selected twelve splines that give resolu-
tion kernels close to the target depth kernels indicating wewill be able to resolve
shear wave velocity with that parameterisation. We still wanted to see the effect
of this choice and tested three other parameterisations (figure 2.10) ; a 24 spline
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Figure 2.10:Three spline parameterisations with depth, a 9 spline parameterisation (a),
a 18 spline parameterisation (b) and a 24 spline parameterisation (c).

parameterisation, a 18 spline parameterisation, and a 9 spline parameterisation.
The parameterisations have thin layers at shallow depths and thicker layers as
the depth increases to match the expected depth resolution of surface waves (see
previous section).

First, we perturbed PREM using 9, 18 or 24 splines and calculated the exact
synthetic seismogram of the perturbed model using mode summation. Second,
we assumed PREM as a reference model and performed a model space search to
find the best fitting shear wave velocity models to the exact seismograms. The
model space search used either 9, 18 or 24 basis functions. Weselected the best
100 shear wave velocity models that resulted from the model space search and
calculated the mean misfit and standard deviation of the misfits. The position
of the exact perturbed model in the model space is known and wecan therefore
also calculate the relative distance to the solution shear wave velocity model. We
choose to express the relative distance in terms of perturbations from PREM, since
the perturbations for the solution models are exactly known. The relative distance
is defined as

d =
1

N

N∑

i=1

(γ0
i − γi)

2

(γ0
i )2

, (2.15)

whered is the relative distance,N is the number of basis functions,γ0 are the
perturbations for the solution shear wave velocity model and γ are the perturba-
tions for one of the 100 best shear wave velocity models we selected from the
model space search. We calculate the relative distance for all 100 models and
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Figure 2.11:(a) The relative distance to the solution and (b) the misfit asa function of
the number of modes in the synthetic seismogram for a perturbed 24 spline model (black),
a perturbed 18 spline model (red) and a perturbed 9 spline model (blue) fitted using 9
splines. Solid lines give the mean and the dashed lines the standard deviation.

compute the mean and standard deviation. We only show three test results in this
section since the results of the other tests are similar. Figure 2.11 shows the rel-
ative distance and misfit as a function of the number of highermodes used in the
synthetic seismogram calculation for the perturbed 9, 18 or24 spline model fitted
using 9 splines. As the number of modes in the synthetic seismogram increases,
the misfit and distance to the solution model decrease to zerowithin the standard
deviations, which means that we are able to find the exact solution. The figure
also shows that for all three tests, the behaviour is quite similar. It is initially sur-
prising that we can fit a perturbed 24 spline model using only 9parameters. This
can be explained by examining the eigenfunction curves of modes 10 through 15
(figure 2.12). These modal eigenfunctions display two lobesin the 1000 to 1500
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Figure 2.12:Modal eigenfunctions for the indicated modes. The solid line represent the
vertical component U and the dashed line the horizontal component V.

km depth range. Even the 9 spline parameterisation has threelobes in the same
depth range. Most seismograms contain a significant amount of information only
below mode 10, which is why all the parameterisations we usedare good enough.
They are all capable of solving up to the fifteenth higher modewhich we do not
expect to be able to measure due to its low amplitude.

2.11 Shape of the basis functions

The parameterisation we chose according to the Backus-Gilbert resolution tests is
given by twelve natural cubic splines. Other choices for theshape of the param-
eterisation are also possible. Here we compared the difference in phase velocity
for a twelve spline parameterisation and a twelve triangle parameterisation (fig-
ure 2.13f,g) The triangles are defined such that their maximum value is positioned
at the same depths as the splines maxima and their sensitivity is zero at the depths
where the splines contain sidelobes. We chose this parameterisation to exclude
changes in the position of the basis functions affecting thetest. Figure 2.13a-e
shows the difference in phase velocity for the fundamental and first four higher
modes between a triangle and spline parameterisation. Also, we indicated the
standard deviations obtained for these measurements. The phase velocity mea-
surements are well within the standard deviations and are infact very close to
zero. Therefore we conclude that the shape of the basis functions does not signif-
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Figure 2.13:Difference between phase velocity measurements using spline (f) or triangle
(g) basis functions for the fundamental (a), first higher mode (b), second higher mode (c),
third higher mode (d), fourth higher mode (e). The grey linesindicate the corresponding
standard deviation.

icantly influence the phase velocity measurements.

2.12 Neighbourhood Algorithm

Central in this research is the use of the Neighbourhood Algorithm (NA) by (Sam-
bridge, 1999a,b). The Neighbourhood Algorithm consists oftwo parts. The first
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Figure 2.14:quasi uniform random points and their Voronoi cells (right), the Voronoi
cells about the first 100 (middle) and 1000 (left) samples generated by a Gibbs sampler
using the neighbourhood approximation (from Sambridge, 1999a).

part is a Monte Carlo sampling of the model space which makes use of a geomet-
rical construct known as the Voronoi cell to drive the searchin the model space.
The Voronoi cells are defined as nearest neighbour regions using a suitable dis-
tance norm. The objective of the Neighbourhood Algorithm isto find an ensemble
of models that preferentially samples the good data fitting regions in the model
space, rather than a single optimal model. The NA first uniformly (or otherwise)
generates an initial set of models (ni) in the parameter space and calculates the
misfit corresponding to these models and their Voronoi cells. The models are then
ranked by lowest misfit.ns new models are generated by performing a uniform
random walk (using a Gibbs sampler, see Geman and Geman (1984); Rothmann
(1986) for extensive explanations) in the Voronoi cells around thenr lowest misfit
models. Then the models are ranked again according to their lowest misfit and the
Voronoi cells are recalculated. This is repeated for a selected number of iterations
(niter). Figure 2.14 shows an example of the sampling of the model space using
the NA. The higher density of the Voronoi cells indicates regions of better fit in
the model space.

The second part of the NA consists of the appraisal problem orin other words,
how to infer information from the ensemble of models. The NA first constructs an
approximate posterior probability density (PPD) using theassumption of constant
known PPD values in each Voronoi cell of the input ensemble. Using a Gibbs
sampler, multiple random walks are performed in the model space. The random
walk starts at some point (for example the best fit model) and takes a series of steps
along each parameter axis in turn to obtain the next model. From this model, a
new series of steps along each parameter axis in turn is performed to obtain the
next model. This is repeated until the specified number of models is reached.
After multiple random walks the distribution will asymptotically resemble the
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Table 2.1:frequency-time windows
windows (t,ω)

f (mHz) Rayleigh (km/s) Love (km/s)
5 - 10 3.7± 0.75 b - 3.8

10 - 20 3.75± 0.55 b - 3.8
b - 4.3

20 - 50 b - 4.3 b - 4.3

Definition of frequency-time windows for Rayleigh and Love seismograms. The
time windows are defined using the group velocity (km/s).

approximate PPD (importance sampling). This resampled ensemble can be used
in a Bayesian framework to construct statistical properties of the ensemble such
as one or two dimensional marginals and the covariance matrix.

2.13 Model space search

Usually a model space search is used to solve highly non-linear problems. Our
problem is linearized (equation 2.3) and we use the model space search to map
the nullspace of the linear problem instead. The dimension of the model space
is determined by the number of spline coefficientsγ of equation 2.6 (in this case
N = 12, since we use twelve natural cubic splines for the parameterisation). The
Neighbourhood Algorithm performs a guided Monte Carlo typesampling of the
model space using the values of the misfit between the real andthe synthetic seis-
mogram. The data and the synthetic are compared in differenttime and frequency
windows (table 2.1). The windows are chosen such that the fundamental mode
and the higher modes are included in the windows. The timeb in table 2.1 de-
pends on the epicentral distance. Below 35◦ the timeb corresponds to the time
just before the arrival of the S wavetrain, between 35◦ and 70◦ the timeb corre-
sponds to the time just after the S and before the SS wavetrainetc. The misfit
guides the model space search to area’s of better fit. We prefer a relative least
squares misfit since we expect it to be able to fit the higher modes better than an
absolute misfit definition. The relative misfit is defined as

M =
N∑

w=1

L∑

i=1

(di − si)
2

(dmax(w))2
, (2.16)
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whered is the seismogram,dmax the maximum amplitude of the seismogram
for the windoww ands the synthetic seismogram. The number of windows is
N and the number of time samples in each window isL. The definition of the
misfit influences the sampling of the Neighbourhood Algorithm. Therefore we
considered another misfit function.

The absolute misfit is defined as

Mabs =
N∑

w=1

L∑

i=1

(di − si)
2, (2.17)

whered is the seismogram ands is the synthetic seismogram computed for all
windowsN and all time samples in the windowsL. We use the same time and
frequency windowing as in table 2.1. The relative misfit in equation 2.16 should
weight the higher modes more since the misfit is defined relative to the maximum
amplitude in the window which reduces effect of higher amplitudes for the fun-
damental mode. The absolute misfit should favor the fundamental mode since it
gives more weight to higher amplitudes. We performed the waveform inversion
for a test dataset using the relative and absolute misfit definitions and compared
the best-fitting synthetic seismograms to the real seismograms. Figure 2.15 shows
the effect of the absolute and relative misfit for one seismogram. Especially in the
second frequency window (compare figure 2.15b with 2.15e) the higher mode fit
is less when the absolute misfit is used. Although the difference is only small we
prefer to use the relative misfit which improves the higher mode fit.

Figure 2.16 shows two examples of the best fitting waveform for a vertical
(Rayleigh) and horizontal (Love) seismogram obtained using the relative misfit
in the model space search. Also indicated are the different time and frequency
windows for Rayleigh and Love waves. We have chosen two time windows in
the second frequency window for Rayleigh, since for Rayleigh we are able to
separate the fundamental mode from the higher modes. This will improve the
relative misfit for these windows, since we use the maximum amplitude in the
window to scale the misfit. For Love waves, we use only one timewindow since
the fundamental mode and higher modes cannot be separated. The effect for the
higher mode misfit is clearly shown in figure 2.16d. The Love wave higher mode
fit is not as good as the Rayleigh higher mode fit. Also, Love wave seismograms
are noisier, which affects the fit.
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Figure 2.15:Fit between the data (solid) and the synthetic seismogram (dashed) for the
relative misfit (a)-(c) and absolute misfit (d)-(f) for the frequency and time windows indi-
cated in red.

2.14 Bayesian statistics

In the second part of the NA (Sambridge, 1999b), the ensembleof shear wave ve-
locity models is resampled using importance sampling to construct a conditional
posterior probability density function defined as

P (m|d) = κρ(m)L(m|d), (2.18)

whereρ(m) is the prior probability distribution (depending on the parameterisa-
tion, equation 2.6; the model space size; and the forward theory, equations 2.3
and 2.5),κ is a normalisation constant andL is a likelihood function which rep-
resents the fit to the observations. For Gaussian error statistics the likelihood is
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Figure 2.16: Fit of the data with the synthetic for the (a)-(c) Rayleigh surface waves
and (d)-(f) for Love surface waves in three frequency windows: (a),(d) 5-10mHz, (b),(e)
10-20mHz and (c),(f) 20-50mHz. The time windows are indicated in red.

defined as

L(m|d) = exp[−
1

2
(d − Gm)T C

−1
d (d − Gm)] (2.19)

whereCd is the data covariance matrix describing noise statistics.In this equa-
tion we recognise theχ2 misfit (χ2 = (d − Gm)TC

−1
d (d − Gm)). The misfit

M as defined in equation 2.16 is not aχ2 misfit. For aχ2 misfit we would need
to know the data covariance matrix which is not obvious. The difficulty in ob-
taining the data covariance matrixCd is that there are many sources of noise for
real seismograms. Examples of noise are uncertainties in the source location,
source mechanism, receiver, scattered waves or in general any waves that are not
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accounted for in the theory. Therefore we define the likelihood as

L(m|d) = exp(−
1

2
M/k). (2.20)

WhereM is the misfit as defined in equation 2.16 andk is a normalisation con-
stant, which is chosen as the minimum misfit. In this way we assume the data
covariance matrix is not known and our (scaled) minimum misfit is now one and
all other misfits are larger than one. This resembles aχ2 definition.

The ensemble of models is resampled using random walks through the model
space. The number of walks and the number of steps in each walkare tuning
parameters for the Bayesian stage of the Neighbourhood Algorithm. We tested
different values for the tuning parameters and selected three walks of 500 mod-
els each which makes a total of 1500 resampled models, which is sufficient for
the convergence to the posterior probability density function. The resampling
algorithm can also be used to evaluate Bayesian indicators of any transformed
parameters, that are a combination of the original parameters, in an identical man-
ner to the original variables. We introduce phase velocity parameters defined for
certain modes and periods, since phase velocities may be obtained by integrating
a shear wave velocity model (defined by the coefficientsγi) using the sensitivity
kernels for the specific mode and period using equations 2.5 and 2.6. The sensi-
tivity kernels are calculated for the reference model, which is the best shear wave
velocity model that we obtained from AMI. We thus obtain a probability density
surface for our original (shear wave velocity) parameters and transformed (phase
velocity) parameters. From the probability density surface we can obtain one-
dimensional marginals for one original/transformed parameter by integrating over
all other original/transformed parameters. The Neighbourhood Algorithm also al-
lows us to obtain two-dimensional marginals, correlation and covariances which
show the relations between different parameters. The one-dimensional marginals
for the phase velocities are Gaussian shaped, which is why werepresent our phase
velocity measurements as mean phase velocities and standard deviations.

2.15 Tuning the Neighbourhood Algorithm

The sampling stage of the Neighbourhood Algorithm only needs a couple of tun-
ing parameters; the number of initial models (ni), the number of iterations (niter),
the number of new models sampled at each iteration (ns) and the number of best
misfit models (nr) needed to guide the model space search. The initial models are
generated at random in the model space. A large number of initial models means
a more extensive preliminary search. The number of iterations should be large
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enough for convergence of the model space search. The tuningparameters (nr

andns) determine how the model space is sampled. A large number forns and a
small number ofnr means the Neighbourhood Algorithm will converge quickly
onto the area’s of better fit (but you might miss an area). A large number fornr

and a small number forns makes the model space search much broader.
We tested different values for the tuning parameters (nr andns), from a very

broad search to a very focused search and we selectednr = 5 andns = 10 as the
tuning parameters that provide us with efficient and reliable phase velocity mea-
surements. We also decided to use 100 initial models (ni) as a more preliminary
search should give a good indication about the region of better fitting models. The
number of iterations has a large effect on the computation time needed for the
Neighbourhood Algorithm. Therefore, we would prefer a small number of iter-
ations but still sample enough models to be sure of convergence. We performed
the waveform inversion for our test dataset using model space searches with 100,
500, 1000, 2000 and 3000 iterations. Figure 2.17 and 2.18 show the difference
in phase velocity and standard deviation for the waveform inversion runs. The
results are shown for the fundamental and first four higher modes for one specific
seismogram, but other seismograms of our test dataset showed similar results.
The differences in phase velocity are small and well within the standard devia-
tions. Also, the standard deviations do not change significantly. From this test,
we concluded that we could use as few as 100 iterations and still obtain the same
phase velocity measurements and standard deviations. However, we selected 500
iterations as a conservative choice, keeping in mind that the 100 iteration case
displays the largest differences.

With these tuning parameters (ni = 100, ns = 10, nr = 5, niter = 500)
we sample 5100 models (100 initial models, 10 new models per iteration, 500
iterations) for each waveform inversion. In contrast with other direct search meth-
ods, the Neighbourhood Algorithm characterizes the whole range of models in the
model space, not only the best fitting ones.

2.16 Do we need to resample the ensemble?

The resampling stage of the Neighbourhood Algorithm is a time consuming pro-
cess, which leads to the question whether we need to resamplethe ensemble of
shear wave velocity models to obtain standard deviations for the phase velocities,
or take the approach of Yoshizawa and Kennett (2002) and obtain the standard
deviations from the 1000 best models sampled in the first partof the NA. We com-
pared the phase velocity for the best shear wave velocity model in the sampling
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Figure 2.17:The difference in phase velocity (∆c) for the fundamental (0), first (1), second
(2), third (3) and fourth (4) higher mode for the different number of iterations indicated
in color, the reference is the run with 3000 iterations

stage, the average phase velocity of the 1000 best shear wavevelocity models in
the sampling stage and the most likely phase velocity obtained by the Bayesian
stage of the Neighbourhood Algorithm (see figure 2.19). Figures 2.19 and 2.20
give the result for one seismogram. The differences betweenthe phase veloc-
ity measurements are larger than one standard deviation from the second higher
mode on. We also compared the standard deviations obtained by the Bayesian
stage and the number of best shear wave velocity models (#M ) obtained from
the sampling stage of the Neighbourhood Algorithm (figure 2.20). Even for a
very thorough search of the model space (30,000 models) we obtain underesti-
mated standard deviations using only the ensemble of shear wave velocity models
from the sampling stage. We also compared the phase velocities and standard
deviations for other seismograms and found similar results.

The one-dimensional marginals are projections of the probability density sur-
face onto the corresponding axis (the phase velocity for a certain mode and fre-
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Figure 2.18:The difference in standard deviation (∆σ) for the fundamental (0), first (1),
second (2), third (3) and fourth (4) higher mode for the different iterations indicated in
color, the reference is the run with 3000 iterations

quency) and, thus, they display information on the entire probability density func-
tion. The ensemble of shear wave velocity models and their corresponding misfits
obtained from the sampling stage of the NA, do not corresponddirectly to the
probability density function and do not give a full indication of the statistical
properties of the ensemble. The same was found by Sambridge (1999a, figure 8).
The marginal distribution from the NA ensemble differs fromthe corresponding
marginals determined by the resampling algorithm, indicating that the ensemble
of models obtained in the sampling stage of the NA is not distributed according to
the posterior probability distribution.

This test clearly indicates that we need to calculate the posterior probability
density function to obtain meaningful phase velocity measurements and standard
deviations.
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Figure 2.19:Phase velocities of the best model from NA (dashed line), theaverage model
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Figure 2.20:Standard deviation of a number of models (#M) for the (a) fundamental mode
at 70 s, (b) first higher mode at 70s, (c) second higher mode at 70 s, (d) third higher mode
at 60s and (e) fourth higher mode at 35s. Solid lines indicatethe standard deviation from
the Bayesian stage of the NA, dashed lines the standard deviations from a number of best
fitting models (#M) of the sampling stage of the NA.

2.17 The prior

As seen in equation 2.18, the posterior probability densityfunction depends on
the prior and the likelihood, where the prior depends on the parameterisation, the
search boundaries (model space size) and the forward theory. We tested the ef-
fect of the search boundaries on the phase velocity measurements and standard
deviations. We selected search intervals of±2.5%,±4%,±7% and±10% and
performed the waveform inversion. The results are shown in figure 2.21 and 2.22.
Figure 2.21 shows that the differences in phase velocity aresmall in general but
largest for the largest model space size, which is not surprising since the variation
of ±10% around PREM is so large it is questionable whether we should use the
Fréchet derivatives. Comparing the phase velocity measurements with the stan-
dard deviations (figure 2.22) we find that the differences in phase velocity are well
within their standard deviations. The effect of the model space size on the stan-
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Figure 2.21:Differences in phase velocity (∆c) with the size of the model space. Black
is a model space of± 2.5%, red of± 4%, blue of± 7% and green of±10% for (a) the
fundamental mode, (b) the first higher mode, (c) the second higher mode, (d) the third
higher mode, (e) the fourth higher mode and (f) the fifth higher mode.

dard deviations however is large (figure 2.21). The standarddeviations increase
in size with increasing model space size. This is due to Central Limit Theorem,
which states that the sum ofn independent equally distributed random variables
will approach a normally distributed random variable asn increases. The result-
ing standard deviation (but not the mean) is dependent on thestandard deviations
of then random variables. The phase velocity marginals are a sum over all shear
wave velocity marginals and thus tend to Gaussian distributions with a robust
mean. The standard deviation of the phase velocity marginaldepends on the stan-
dard deviations of the shear wave velocity marginals, and hence the a priori size
of the model space. We are thus not able to obtain absolute standard deviations
but the relative uncertainties are consistent between the modes and between seis-
mograms. We compared the standard deviations for differentsearch intervals for
the fundamental mode measurements to the standard deviations of Trampert and
Woodhouse (2001). They showed that uncertainties obtainedby cluster analysis
are in agreement with uncertainties obtained for comparingmodel predictions to
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Figure 2.22:Values of the standard deviationσ with size of the model space. Black is
a model space of± 2.5%, red of± 4%, blue of± 7% and green of±10% for (a) the
fundamental mode, (b) the first higher mode, (c) the second higher mode, (d) the third
higher mode, (e) the fourth higher mode and (f) the fifth higher mode.

real seismograms. We finally chose a model space size of±2%, which is large
enough for the model space search, since the chosen reference model is the best
model from AMI and hence (close to) our best model, and gives us standard de-
viations for the phase velocity measurements which are close to the standard de-
viations obtained by cluster analysis. This anchoring willturn the self consistent
relative uncertainties between modes in realistic absolute uncertainties.

2.18 How many overtones?

In principle, we can calculate the phase velocity for any mode from the one-
dimensional shear wave velocity model. The important question is thus how many
modes are constrained by each seismogram. To obtain a measure of the higher
mode information in each seismogram, we investigate the unexplained variance
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Figure 2.23:Unexplained variance (V(m)) as a function of the number of modes in the
synthetic seismogram (m). The red line gives the 25% range value.

V as a function of the number of modesm in the synthetic seismogram defined as

V (m) =

∑T
i=1[di − si(m)]2

∑T
i=1 d

2
i

,m = 0, 1, ..., 30, (2.21)

whereT is the number of time samples in the window (see equation 2.17). m
is allowed to vary from the fundamental mode only (m=0) to up to 30 higher
modes. The unexplained variance is only evaluated in the time-frequency window,
which contains the most higher mode information and the least fundamental mode
information (figure 2.16b (first time window only), c and f), because we want to
obtain a measure of the higher mode information available inthe seismogram.
The unexplained variance with up tom modesV (m) generally decreases with
increasingm. The number of overtones constrained by a seismogram is defined
as the smallest number of the modes which bringsV (m) below 25% of its range,
where the range is defined as the difference between the maximum (V (0)) and
the minimum (V (30)) value. This empirical threshold was chosen after visual
inspection of the variance curves for numerous seismograms. Figure 2.23 shows
an example. In this case we would select up to six higher modes.

In two cases we decide to measure the fundamental mode only: if we obtain
a bad fit for the higher modes (V (30) > 0.5), or if there is no significant higher
mode information in the seismogram (V (0) < 0.2). A final test calculates the
unexplained variance (V (30)) for all three time-frequency windows. If more than
60% of the seismogram (V (30) > 0.4) remains unexplained the seismogram is
discarded.
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Global Love wave overtone
measurements

Love wave phase velocities for fundamental and higher modesare difficult to mea-
sure because the different modes cannot easily be separated. Following Yoshizawa
and Kennett (2002), we generate suites of path specific one-dimensional shear
wave velocity profiles using the Neighbourhood Algorithm (Sambridge, 1999a).
From this family ofO(104) models both fundamental and higher mode phase ve-
locities with mutually consistent uncertainties are calculated. We have fully auto-
mated the method and analysed over forty thousand Love wave seismograms from
the GDSN and GEOSCOPE global networks from 1994-2004. Our phase veloc-
ity measurements agree remarkably well with previous studies, but we have been
able to enlarge the available dataset dramatically. We present global Love wave
phase velocity maps (up to the fifth overtone) with unprecedented resolution due
to the improved path coverage. Comparing these maps to existing tomographic
models, we discern evidence of significant anisotropy in thelower mantle around
a depth of 1000 km in the Pacific.

3.1 Introduction

Phase velocity maps have mainly been constructed for fundamental mode surface
waves. The sensitivity of fundamental modes, at commonly used periods up to
200 seconds, is limited to the upper 400 km. Surface wave tomography using

This chapter has been published as: K. Visser, S. Lebedev, J.Trampert and B. L. N. Ken-
nett, Global Love wave overtone measurements,Geophysical Research Lettters34, L03302,
doi:10.1029/2006GL028671, 2007.
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such modes, therefore, suffers from a limited depth penetration. The obvious way
to increase depth penetration is to add higher mode information. The sensitivities
of higher modes extend well below the transition zone and into the lower man-
tle. Techniques to measure higher mode surface wave phase velocities are mostly
based on the separation of modes in the seismogram and can be roughly divided
into two groups: methods that use clustering of stations (Nolet, 1975; Cara, 1979)
or events (Stutzmann and Montagner, 1993; Beucler et al., 2003) and methods that
use single seismograms (Van Heijst and Woodhouse, 1999; Yoshizawa and Ken-
nett, 2002). The disadvantage of using clusters is that the distribution and number
of phase velocity measurements is geographically very limited. Van Heijst and
Woodhouse (1999) used a mode branch stripping technique to obtain phase ve-
locity measurements of the fundamental and higher mode surface waves. This
method is effective for seismograms with longer paths wherethe modes are rea-
sonably well separated, and hence is difficult to apply to Love waves where funda-
mental and higher modes travel closely together. Yoshizawaand Kennett (2002)
used a fully non-linear waveform inversion to obtain regional path specific mul-
timode dispersion measurements. This method samples the model space for a
depth dependent shear wave velocity model that fits the observations best. This
best fitting shear wave model, not meant to be a direct representation of the Earth
model, is interpreted as providing implicit information onthe multimode disper-
sion for the given source-receiver path. In carefully chosen frequency windows,
mode coupling for the first few modes can be restricted (Kennett, 1995). Further-
more, a direct interpretation of the path specific models is only valid for small lat-
eral perturbation along the path, whereas less constrictive conditions apply to the
corresponding multimode dispersion curves (Kennett and Yoshizawa, 2002). Yo-
shizawa and Kennett (2002) obtained approximate standard deviations by com-
paring the dipersion curves of the 1000 best shear velocity models. From the best
fitting model, phase velocities are calculated without any mode separation, in a
fully non-linear framework. We develop a fully automated implementation of this
approach and improve the uncertainty analysis by calculating complete probabil-
ity density functions for all phase velocities. This enables us to make multimode
dispersion measurements with mutually consistent error estimates. The method is
applied to measure fundamental and higher mode Love wave phase velocities on
a global scale.
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3.2 Method

In principle, the model space search to invert the seismogram for a 1D velocity
model could include the full non-linearity of the forward problem. In practise,
time constraints force us to limit the search around a reference model. The use
of Fréchet derivatives introduces a dependence of the finalresult upon the refer-
ence model which we obtain from the Automated Multimode Inversion method
(AMI, Lebedev et al. (2005)). This is a waveform inversion technique that uses
multiple time and frequency windows to obtain a shear wave velocity model that
explains both the fundamental mode as well as the higher modes in the seismo-
gram. The safeguards build into AMI guarantee that the JWKB approximation is
valid for all seismograms which provide measurements. The shear wave velocity
model from AMI is used to calculate all eigenfunctions and Fréchet derivatives
for the model space search. For the search itself we use the Neighbourhood Al-
gorithm (NA, Sambridge (1999a,b)). NA involves two separate steps. The first
step is a guided Monte Carlo sampling. A relative least squares misfitM guides
the model space search to areas of better fit where the difference between the
data (d) and the synthetic seismograms (s) is considered relative to the maximum
amplitude in a specific window (dmax(w)):

M =
N∑

w=1

L∑

i=1

(di − si)
2

(dmax(w))2
(3.1)

whereN is the number of time-frequency windows. andL is the number of time
samples in each window. The time-frequency windows are chosen such that the
fundamental mode is mainly excited in the lower frequency windows (5-20 mHz)
and the higher modes are mainly excited in the higher frequency windows (20-50
mHz)(Figure 3.1a-c). The lower time limit in the first two windows corresponds
to the group arrival with a velocity of 3.8 km/s, which shouldcapture the complete
Love wave fundamental mode as long as the perturbations withrespect to PREM
are not too large. The lower time limit of the third window corresponds to a group
velocity of 4.3 km/s to include the higher modes and exclude the fundamental
mode. The higher time limit in all windows depends on the epicentral distance,
below 35◦ the time is set just before the arrival of the S wavetrain. Between 35◦

and 70◦ the time is set just after the S and before the SS wavetrain etc. For the
determination of the left window boundaries, the S and multiple S arrival times
are computed using the AK135 model (Kennett et al., 1995).
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Figure 3.1:Fit of the data with the synthetics (dashed lines) in three time-frequency win-
dows (a:5-10 mHz, b:10-20 mHz, c:20-50 mHz) and the corresponding shear velocity
model for the best fitting model with the spline parameterization (d). The time-windows
are indicated by the vertical bars.

The synthetic seismograms(ω) in the frequency domain is calculated as a
sum of modesm using the JWKB approximation:

s(ω) =
∑

m

Am(ω)exp[iω∆/(C0
m(ω) + δCm(ω))], (3.2)

whereAm(ω) is the complex amplitude of the modes,∆ is the source-receiver dis-
tance,C0

m(ω) is the Love wave phase velocity in the reference model andδCm(ω)
is a Love wave phase velocity perturbation

δCm(ω) =

∫ a

0
[
∂C0

m(ω)

∂Vs(r)
δVs(r) +

∂C0
m(ω)

∂ρ(r)
δρ(r)]dr. (3.3)

The Fréchet derivatives∂C0
m(ω)/∂Vs(r) and∂C0

m(ω)/∂ρ(r) relate the change in
shear wave velocity and density from the reference model to changes in the phase
velocity. a is the radius of the Earth. The density perturbations are of secondary
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importance and are scaled to the shear wave velocity perturbations. The scaling
relation (ξ = ∂lnρ/∂lnVs) is taken from Deschamps et al. (2001). We checked
that different scaling relations did not alter our results.The attenuation is that of
PREM. The change in shear wave velocityδVs(r) is parameterized through a set
of 1-D basis functionshi(r):

δVs(r) =
12∑

i=1

γihi(r), (3.4)

where theγi are the coefficients to be found in the model space search. The
boundaries of the model space are chosen such that±2% changes (justification
below) are allowed around the reference model.

The functionshi(r) are twelve natural cubic spline basis functions that span
the shear velocity model in the crust, upper mantle and lowermantle up to a depth
of 1500 km (figure 3.1d). The basis functions are spaced more densely in the crust
and upper mantle to match the expected depth resolution of surface waves. We
typically sample 5100 models per seismogram (ns=10,nr=5, 500 iterations, 100
initial models).

From this first sampling, no stable measurements can be estimated. The sec-
ond part of the Neighbourhood Algorithm (Sambridge, 1999b)resamples the ini-
tial ensemble of models and constructs a conditional posterior probability density
function given the seismogramsd.

P (m|d) = κρ(m)L(m|d), (3.5)

whereρ(m) is the prior probability distribution (depending on the parameteriza-
tion, eq. 3.4; search boundaries,± 2%; and the forward theory, eq. 3.2 and 3.3)
andL(m|d) = exp(−1

2M/c) is a likelihood function which represents a fit to the
observations.M is defined in eq. 3.1.κ andc are normalization constants.

The statistical properties of the ensemble are defined in a Bayesian framework
and are evaluated using Monte Carlo integration (Sambridge, 1999b). We resam-
ple using 1500 models which is sufficient for convergence of the integrals. The
results are presented as one-dimensional marginal probabilities for each model
parameter by integrating over all other dimensions of the probability density func-
tion. The marginal probability densities for the coefficients γi (eq. 3.4) can eas-
ily be transformed into marginal probability densities forphase velocities of any
mode at any period using equations (3.3) and (3.4). Because of the central limit
theorem, we observe that the marginals for phase velocitiesare close to Gaussian,
which can conveniently be described by its mean and standarddeviation.
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3.2.1 How Many Overtones?

In principle, we can calculate the phase velocity of any modefrom the 1D Earth
model, the important question is thus how many modes are constrained by each
seismogram. To obtain a measure of the higher mode information in each seismo-
gram, we investigate the unexplained varianceV as a function of the number of
modesK in the synthetic seismogram:

V (K) =

∑L
i=1[di − si(K)]2

∑T
i=1 d

2
i

,K = 0, 1, ..., 30, (3.6)

K is allowed to vary from the fundamental mode only (K=0) to up to 30 higher
modes. The unexplained variance is only evaluated in the time-frequency window,
which contains the most higher mode information and the least fundamental mode
information (figure 3.1c), because we want to obtain a measure of the higher mode
information available in the seismogram. The unexplained variance with up toK
modesV (K) generally decreases with increasingK. The number of overtones
constrained by a seismogram is defined as the smallest numberof the modes which
bringsV (K) below 25% of its range, where the range is defined as the difference
between the maximum (V (0)) and the minimum (V (30)) value. This empirical
threshold was chosen after visual inspection of the variance curves for numerous
seismograms.

In two cases we decide to measure the fundamental mode only: if we obtain
a bad fit for the higher modes (V (30) > 0.5), or if there is no significant higher
mode information in the seismogram (V (0) < 0.2). A final test calculates the
unexplained variance (V (30)) for all three time-frequency windows. If more than
60% of the seismogram (V (30) > 0.4) remains unexplained, the seismogram
is discarded. From a total of 310,000 seismograms, we measured 14.5% funda-
mental mode, 11.1% first, 10.1% second, 7.7% third, 4.8% fourth and 2.7% fifth
higher mode dispersion curves.

3.3 Dispersion Measurements

We measured minor arc Love wave phase velocities using data from the GEO-
SCOPE and GDSN global networks from 1994 to 2004. Figure 3.1a-c shows an
example of the waveform fit obtained in three different time-frequency windows
for the best fitting model (figure 3.1d) given by the model space search. The corre-
sponding phase velocity measurements are shown in figure 3.2for the fundamen-
tal mode and the first, second and third higher modes. The measurements agree
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Figure 3.2:Comparison of phase velocity measurements with respect to PREM for the
fundamental mode (a), the first higher mode (b), the second higher mode (c) and the third
higher mode(d). Indicated in red are measurements of Van Heijst and Woodhouse (1999)
with standard deviations according to cluster analysis andin green measurements with
AMI as in (Lebedev et al., 2006).

well with existing measurements made by Van Heijst and Woodhouse (1999) (fig-
ure 3.2 and 3.3) and those made with AMI by Lebedev et al. (2006)(figure 3.2).
We calculated uncertainties for Van Heijst’s measurementsby cluster analysis.

Our standard deviations do not depend on the quality of the original seismo-
gram because of the definition of the misfit function (eq. 3.1); they depend mainly
on the size of the modelspace. This is again a result of the central limit theorem,
which states that the sum ofn independent equally distributed random variables
will approach a normally distributed random variable asn increases. The result-
ing standard deviation (but not the mean) is dependent on thestandard deviations
of then random variables. The phase velocity marginals are a sum over all shear
wave velocity marginals and thus tend towards Gaussian distributions, with a ro-
bust mean. The standard deviation of the phase velocity marginal depends on the
standard deviations of the shear wave velocity marginals, and hence thea priori
size of the modelspace. We can thus not obtain absolute uncertainties from NA,
but the relative uncertainties betweeen modes are self consistent. We define the
boundaries of the modelspace (±2% around the AMI reference model) such that
the resulting standard deviations for the fundamental modematch the standard
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Figure 3.3:Histogram comparing overtone phase velocity measurements(first, second
and third overtone branch) of Van Heijst and Woodhouse (1999) ((dc/c0)H ) with this
study (dc/c0) scaled by our standard deviations (σ(dc/c0)). 16,756 (≈ 65%) out of a
total of 25,908 overlapping measurements fall within one standard deviation.

mode period [s] number of χ2
initial χ2

final

in PREM measurements
3 46.95 24,102 4.21 3.28
4 62.77 15,065 2.00 1.75
5 56.29 8,515 2.16 1.96

Table 3.1:Details for the phase velocity maps of figure 3.4

deviations obtained by cluster analysis by Trampert and Woodhouse (2001). They
showed that uncertainties for cluster analysis are in agreement with uncertainties
obtained for comparing model predictions to real seismograms. The anchoring
will thus turn the self consistent relative uncertainties between modes in realistic
absolute uncertainties.

A compact representation of the measurements is to construct phase velocity
maps. Figure 3.4b,d and f show global minor arc phase velocity maps for Love
waves for the third, fourth and fifth overtone. The phase velocity maps were
expanded on a spherical harmonic basis up to degree and order20, following the
same procedure as described in Trampert and Woodhouse (1995). The number
of measurements, initial and finalχ2 of the phase velocity maps are given in
table 3.1. The derivative damping was chosen to allow an easycomparison with
predictions for the model S20RTS of Ritsema et al. (1999) where the crust was
added using CRUST5.1 (Mooney et al., 1998) (Figure 3.4a,c and e). Even for
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Figure 3.4:Deviations in Love wave phase velocitydc/c0 calculated for model S20RTS
and the new Love wave measurements. (a),(b) third higher mode at 46.95s; (c),(d) fourth
higher mode at 62.77s; (e),(f) fifth higher mode at 56.29s. Tothe right of the figure the
sensitivity curves (red forVs and blue forρ) for the specific modes are displayed.

the fifth overtone, the ray density is higher and more uniformthen that given
by Trampert and Woodhouse (1995). The resolution is then at least as good
as that of figure 7a of Trampert and Woodhouse (1995). Some phase velocity
maps (with bulk sensitivities shallower than 1000 km) agreewell with the S20RTS
prediction see (figure 3.4a and b), even though the S20RTS model does not contain
Love wave information. For higher modes, with main sensitivities around 1000
to 1500 km, there is a discrepancy between the Love wave phasevelocity maps
and the S20RTS phase velocity maps (Figure 3.4c-d and 3.4e-f) in the Pacific.
The S20RTS model is based on mainly Rayleigh equivalent surface waves. This
discepancy indicates a difference between SH and SV around 1000 to 1500 km,
an indication of anisotropy.
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3.4 Concluding Remarks

We measured higher mode Love wave phase velocities up to the fifth higher mode
with corresponding uncertainties using a new, fully automatic procedure. The use
of a model space sampling allows us to derive mutually consistent estimates of
relative standard deviations between different overtone branches and from mea-
surement to measurement. The phase velocities agree well with existing mea-
surements (Van Heijst and Woodhouse, 1999; Lebedev et al., 2006), especially
for the fundamental modes. The higher modes agree well within their standard
deviation. The differences between the different techniques are caused by differ-
ent theoretical formulations; branch stripping (van Heijst) or multiple frequency
and time windows (Lebedev). The resulting phase velocity maps agree well with
phase velocity maps predicted by the model S20RTS (Ritsema et al., 1999). Love
wave phase velocity maps with high sensitivities between 1000 and 1500 km dif-
fer from the Rayleigh wave based S20RTS, giving an indication of anisotropy in
the Pacific around the Pacfic superplume. The use of high quality overtone mea-
surements should improve the resolution in the mid-mantle where the differences
between existing models are largest (Romanowicz, 2003).
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Chapter 4

Global anisotropic phase velocity
maps for higher mode Love and
Rayleigh waves

It is well established that the Earth’s uppermost mantle is anisotropic, but there
are no clear observations of anisotropy in the deeper parts of the mantle. Surface
waves are well suited to observe anisotropy since they carryinformation about
both radial and azimuthal anisotropy. Fundamental mode surface waves, for com-
monly used periods up to 200 s, are sensitive to structure in the first few hundred
kilometers and therefore do not provide information on anisotropy below. Higher
mode surface waves have sensitivities that extend to and beyond the transition
zone, and should thus give insight about azimuthal anisotropy at greater depths.
We have measured higher mode Love and Rayleigh phase velocities using a model
space search approach, which provides us with consistent relative uncertainties
from measurement to measurement and from mode to mode. From these phase
velocity measurements, we constructed global anisotropicphase velocity maps.
Prior to inversion, we determine the optimum relative weighting for anisotropy.
We present global azimuthal phase velocity maps for higher mode Rayleigh waves
(up to the sixth higher mode) and Love waves (up to the fifth higher mode) with
corresponding average model uncertainties. The anisotropy we derive is robust
within the uncertainties for all modes. Given the ray theoretical sensitivity ker-
nels of Rayleigh and Love wave modes, the source of anisotropy is complex, but

This chapter has been accepted for publication as: K. Visser, J. Trampert and B. L. N. Kennett,
Global anisotropic phase velocity maps for higher mode Loveand Rayleigh waves,Geophysical
Journal International, 2008.
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mainly located in the asthenosphere and deeper. Our models show a good corre-
spondence with other studies for the fundamental mode, but we have been able to
achieve higher resolution.

4.1 Introduction

It is widely established that the Earth’s upper mantle is anisotropic. The first ob-
servation of radial anisotropy was the discrepancy betweenRayleigh and Love
wave dispersion observed by Anderson (1961), Aki & Kaminuma(1963) and
McEvilly (1964). Anisotropy was also observed in the azimuthal dependence of
Pn velocities (Hess, 1964) and S-wave splitting in teleseismic SKS waves (Vin-
nik and Romanowicz, 1989). The first observation of azimuthal anisotropy, the
azimuthal variation of phase velocities, was noted by Forsyth (1975) in the Pa-
cific ocean. Radial and azimuthal anisotropy are both observed by surface waves,
which is why these waves are well suited to study anisotropy.Radial and az-
imuthal anisotropy are the result of the same underlying anisotropy of the Earth’s
interior and were linked in a common mathematical frameworkby Montagner &
Nataf (1986). The alignment (lattice preferred orientation or LPO) of intrinsically
anisotropic minerals under strain in the mantle is assumed to be the major cause
of upper mantle anisotropy (Karato, 1998a; Montagner, 1998). Anisotropy is thus
an indicator of mantle deformation and flow. Therefore, it iscritical to image
anisotropy to understand the dynamics of the mantle.

Fundamental mode surface waves are well suited to provide information about
anisotropy in the upper mantle (Tanimoto and Anderson, 1984; Nataf et al., 1984;
Montagner and Tanimoto, 1991; Ekström and Dziewonski, 1998). The sensitivity
of fundamental mode surface waves for commonly used periodsup to 200 s is
however limited to the upper 400 km of the Earth’s mantle. Theuse of higher
mode surface waves should increase our knowledge of anisotropy into the lower
part of the upper mantle and the upper part of the lower mantledue to their greater
sensitivity at depth compared to fundamental mode surface waves. In the last few
years higher mode surface waves have been added to studies ofanisotropy (De-
bayle and Kennett, 2000; Simons et al., 2002; Trampert and van Heijst, 2002;
Maggi et al., 2006; Beucler and Montagner, 2006). The numberof higher modes
used in these studies varies due to the difficulty of measuring higher mode phase
velocity, especially for Love waves since the higher modes arrive simultaneously
with the fundamental mode. Trampert & van Heijst (2002) and Beucler & Mon-
tagner (2006) use phase velocities up to the second higher mode and Debayle &
Kennett (2000) and Maggi et al. (2006) use phase velocities up to the fourth higher
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mode. The number of measurements are often few (Debayle and Kennett, 2000)
sometimes imposed by the clustering of events (Beucler and Montagner, 2006;
Maggi et al., 2006; Sebai et al., 2006) and the geographical coverage is limited.

This study presents global azimuthal anisotropic phase velocity maps for fun-
damental and higher mode Love and Rayleigh waves up to the sixth higher mode
consisting of a large number of measurements with consistent standard deviations.
The phase velocities were measured using a model space search approach (Visser
et al., 2007a; Yoshizawa and Kennett, 2002) which provides realistic consistent
uncertainties on the phase velocity measurements. Following Trampert & Wood-
house (2003), we determine the optimum relative weighting of anisotropy prior to
inversion and present global azimuthal anisotropic phase velocity maps up to the
fifth higher mode for Love and up to the sixth higher mode for Rayleigh.

Finally, we analyse the resolution of the azimuthal anisotropic phase velocity
maps and look at spectral leakage and trade-offs in particular. Spectral leakage
is the effect of mapping small-scale structure not accounted for in the model ex-
pansion into the inverted low-degree structure. It arises as a result of uneven data
coverage (Snieder et al., 1991). We suppress spectral leakage by using Laplacian
damping, which increases the damping with increasing degree. This process ef-
fectively decreases the spectral leakage (Spetzler and Trampert, 2003) but also
decreases resolution for higher and higher degrees. By looking at the off-diagonal
terms of the resolution matrix, we find that the trade-off between parameters re-
mains acceptably small.

4.2 Phase velocity measurements

We follow the approach of Yoshizawa & Kennett (2002) and measure phase ve-
locities using a model space approach (Visser et al., 2007a). In principle, the
model space search to invert for a 1-D velocity model could include the full
non-linearity of the forward problem. This is very time consuming and there-
fore we chose to linearize the forward problem by centering the model space
search around a reference model and using the Fréchet derivatives of this ref-
erence model to calculate the synthetic seismograms. This inherently introduces
a dependence on the chosen reference model and the requirement that the cho-
sen reference model should be close to our final model. We use the automated
multimode inversion (AMI, Lebedev et al, 2005) to obtain a reference model for
the model space search. AMI is a non-linear waveform inversion in multiple time
and frequency windows which obtains the best shear wave velocity model that fits
the seismogram. The time and frequency windows are chosen such that both the
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Figure 4.1:Minor arc Rayleigh wave azimuthal coverage for first higher mode (a), second
higher mode (b), third higher mode (c), fourth higher mode (d), fifth higher mode (e) and
sixth higher mode (f).

fundamental mode and the higher modes are fitted. AMI also applies strict data
quality criteria and ensures the validity of the JWKB approximation. The shear
velocity model from AMI is close to the best shear wave velocity model which we
find in the model space search. Differences between both models are small and
largely due to the use of different parameterizations for the shear wave velocity
models. AMI uses around 18 boxcar and triangle functions up to 1500 km and we
use 12 natural cubic spline functions that span the crust, upper mantle and lower
mantle up to a depth of 1500 km. We have experimented with the number and
position of the spline functions and found that this parameterization is sufficient
to resolve up to the fifteenth higher mode. We do not expect to resolve more than
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Figure 4.2:Minor arc Love wave azimuthal coverage for first higher mode (a), second
higher mode (b), third higher mode (c), fourth higher mode (d) and fifth higher mode (e).

six higher modes which makes this parameterization more than sufficient for our
purpose. The parameterization is more dense in the crust andupper mantle to
match the expected depth resolution of surface waves. The difference between
AMI and the model space search is that the first gives us one best fitting shear
wave velocity model and the second gives us the whole ensemble of shear wave
velocity models compatible with the seismograms which enables us to determine
uncertainties. If we were only interested in the best fittingmodel, AMI would be
sufficient. It is important to understand that AMI solves an ill-posed non-linear
inverse problem. A solution is found by careful regularisation, but other solutions
exist compatible within the data errors. A Monte Carlo search around the AMI
solution finds all those other models and allows us to determine meaningful un-
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windows (t,ω)
f (mHz) Rayleigh (km/s) Love (km/s)
5 - 10 3.7± 0.75 b - 3.8

10 - 20 3.75± 0.55 b - 3.8
b - 4.3

20 - 50 b - 4.3 b - 4.3

Table 4.1: Definition of frequency-time windows for Rayleigh and Love seismograms.
The time windows are defined using the group velocity (km/s).

certainties for the best fitting model. Usually, a model space search is used to
solve highly non-linear problems. We use it to map the nullspace of a linearized
problem instead.

For the model space search we use the Neighbourhood Algorithm (NA, Sam-
bridge, 1999a ). We search for the best fitting shear wave velocity model using
a least squares misfit between the data and the synthetic seismogram defined in
multiple time and frequency windows, see table 4.1. The frequency and time
windows are chosen such that the fundamental and higher modes are included
in the windows. For Love waves, it is not possible to separatethe fundamental
and higher modes since the group velocities are similar, thus we use a single time
window for both waveforms. For Rayleigh waves, we separatedthe fundamental
and higher mode waveforms in different time windows. The time b in table 4.1
depends on the epicentral distance, below 35◦ the time is set just before the arrival
of the S wavetrain, between 35◦ and 70◦ the time is set just after the S and before
the SS wavetrain etc. The synthetic seismograms are calculated using the JWKB
approximation and the Fréchet derivatives which relate the change in compres-
sional wave velocity, shear wave velocity and density from the reference model to
a change in phase velocity. The compressional wave perturbations and the density
perturbations are of secondary importance, thus we decidedto scale these pertur-
bations to the shear wave velocity perturbations thereby reducing the amount of
parameters needed for the model space search. This choice significantly speeds
up the model space search. For Rayleigh waves, we scale the compressional wave
perturbations to the shear wave velocity perturbations with the scaling relation
(R = ∂Vs/∂Vp) from Ritsema & van Heijst (2002).R increases linearly from
1.25 at the surface to 3.0 at the CMB. For Love and Rayleigh waves, the density
perturbations are scaled to the shear wave perturbations using (ξ = ∂lnρ/∂lnVs)
from Deschamps et al. (2001).ξ varies between -0.1 to 0.2. The attenuation
model employed is that of PREM (Dziewonski and Anderson, 1981).
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The model space search provides us with an ensemble of shear wave velocity
models and their fit to the data. This ensemble is resampled and transformed into
a probability density surface in the second part of the NA (Sambridge, 1999b).
The resampling algorithm can also be used to evaluate Bayesian indicators of
any transformed parameters, that are a combination of the original parameters,
in an identical manner to the original variables. We introduce phase velocity pa-
rameters defined for certain modes and periods since phase velocities may be
obtained by integrating a shear wave velocity model using the sensitivity kernels
for the specific mode and period. The sensitivity kernels arecalculated for the
reference model, which is the best shear wave velocity modelthat we obtained
from AMI. We thus obtain a probability density surface for our original (shear
wave velocity) parameters and transformed (phase velocity) parameters. From
the probability density surface we can obtain one-dimensional marginals for each
original/transformed parameter by integrating over all other original/transformed
parameters. The advantage of our approach is that now we are able to solve for
phase velocities for multiple modes and periods without having to separate the
modes and without too much computation time. The shape of thephase velocity
marginals is Gaussian, and therefore, we represent the one-dimensional marginals
as a mean phase velocity and a standard deviation. The phase velocities are pre-
sented as changes with respect to PREM for convenience.

In the resampling process, we introduced specific phase velocity parameters
which are obtained by integrating each resampled shear wavevelocity model us-
ing the corresponding sensitivity kernel. In theory, we could obtain phase veloc-
ities for every higher mode and period. In practise, we know that not all higher
modes are constrained by the seismogram. To evaluate the number of modes
constrained in each seismogram we calculated the unexplained variance which is
defined as the least squares misfit between the data and the synthetic normalized
by the data. The unexplained variance is calculated as a function of the number
of modes used in the synthetic seismogram calculation. For aperfect match be-
tween data and synthetic, the unexplained variance is zero.Since we calculate the
unexplained variance only in the higher mode windows (table4.1: two windows
for Rayleigh, the middle and highest frequency band; and onewindow for Love,
the highest frequency band), the unexplained variance is unity for a fundamental
mode synthetic seismogram and should decrease to zero for a perfect full synthetic
seismogram. The unexplained variance therefore is a function which, in practise,
has its maximum for the fundamental mode only and decreases to some constant
value for increasing higher modes. This determines the number of modes needed
to explain the specific seismogram. The number of higher modes we measure



72 Chapter 4

Number of measurements
Rayleigh Love

fundamental mode 63,628 45,179
first higher mode 54,035 34,859
second higher mode 52,457 31,704
third higher mode 48,762 24,102
fourth higher mode 40,606 15,065
fifth higher mode 31,637 8,514
sixth higher mode 21,626

Table 4.2:Number of minor arc phase velocity measurements for Rayleigh and Love wave
fundamental and higher modes.

is defined as the smallest number of higher modes which bringsthe unexplained
variance below 25% of its range, where the range is defined as the difference be-
tween the largest and the smallest unexplained variance. Further details may be
found in Visser et al. (2007).

The unexplained variance is also used to check when we obtainan overall bad
fit for the higher modes and whether the seismogram contains no significant higher
mode information. In such cases we decide to only measure thefundamental
mode. Finally, if we obtain a bad fit for the whole seismogram (unexplained
variance larger than 0.4), we discard the measurements.

We measured phase velocities for fundamental and higher mode Love and
Rayleigh waves for seismograms that were recorded at the stations of the GDSN
and GEOSCOPE networks from 1994 to 2004. The azimuthal coverage for the
higher mode Rayleigh and Love wave measurements are shown infigures 4.1
and 4.2. We do not show the azimuthal coverage for the fundamental mode since
it is similar to the minor arc coverage given by Trampert & Woodhouse (2002) for
Rayleigh and Love waves. The number of measurements obtained for the funda-
mental and each of the higher modes is shown in table 4.2. We obtain the highest
number of measurements for the fundamental mode followed bythe first, sec-
ond, third etc. higher modes. As explained above, the unexplained variance will
decrease as the number of higher modes increases. For a seismogram with less
higher mode information the unexplained variance decreases more rapidly and the
number of higher modes we decide to measure is less. Also, noisier seismograms
will lead to less higher modes that will be measured due to thefaster decrease of
the unexplained variance to an almost constant value. The almost constant value
for higher modes indicates that we are trying to measure overtones not constrained
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by the seismogram which is why we have to restrict the number of higher modes
we measure. Finally, the number of seismograms with significant second higher
mode information will be less than the number of seismogramswith significant
first higher mode information and so on. This is mainly due to the smaller am-
plitudes of the higher modes which makes the contribution tothe unexplained
variance smaller. We also obtain more measurements for Rayleigh than for Love
waves, because of the higher noise levels for Love wave seismograms.

4.3 Azimuthal anisotropy

In a slightly anisotropic medium the azimuthal dependence of the local phase
velocities of Rayleigh and Love surface waves is described as (Smith & Dahlen,
1973, 1975; Romanowicz & Snieder, 1998; Larson et. al., 1998).

dc

c0
(ω,ψ) = α0(ω) + α1(ω) cos(2ψ) + α2(ω) sin(2ψ)

+α3(ω) cos(4ψ) + α4(ω) sin(4ψ), (4.1)

wheredc/c0 is the relative phase velocity perturbation with respect toa spheri-
cally symmetric Earth model,ω the radial frequency andψ is the azimuth along
the path. We follow the approach of Trampert & Woodhouse (2003) where the
local phase velocity perturbation is expanded in terms of generalized spherical
harmonics. This reduces equation 4.1 to

d = Gm. (4.2)

Hered are the path-averaged phase velocity measurements,m = (m0,m2,m4)
T

is the model vector corresponding to the spherical harmoniccoefficients of the
0ψ, 2ψ and 4ψ terms. G = diag(G0,G2,G4) is the block diagonal matrix of
the path-averaged spherical harmonics, for the 0ψ, 2ψ and 4ψ terms. The number
of unknowns is(L+ 1)2 for the 0ψ terms,(2L+ 6)(L− 1) for the 2ψ terms and
(2L+ 10)(L − 3) for the 4ψ terms. We choose L=40 for the isotropic term (0ψ)
and L=20 for the azimuthal terms (2ψ,4ψ), resulting in 3405 unknowns.

The inverse problem is solved by minimizing the cost function

C = (d− Gm)T C
−1
d (d− Gm) + m

T
C

−1
m m, (4.3)

whereCd is the diagonal data covariance matrix which consists of thesquared
standard deviations of the phase velocity measurements which are obtained from
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N-M
χ2 7500 10,000 15,000 20,000 30,000 40,000 50,000 65,000
1.0 0.029 0.025 0.021 0.018 0.015 0.013 0.011 0.010
1.5 0.044 0.038 0.032 0.027 0.022 0.019 0.017 0.015
2.0 0.059 0.051 0.042 0.036 0.029 0.025 0.023 0.020
2.5 0.073 0.063 0.053 0.045 0.037 0.032 0.029 0.025
3.0 0.088 0.076 0.063 0.054 0.044 0.038 0.034 0.030
3.5 0.103 0.089 0.074 0.063 0.051 0.044 0.040 0.035
4.0 0.117 0.101 0.084 0.072 0.059 0.051 0.048 0.040

Table 4.3:The difference inχ2 at the 99% significance level determined by the F-testa s
a function of theχ2 and the number of independent parameters (N-M).

the model space search.Cm is the diagonal model covariance, used to impose
Laplacian smoothing. In its partitioned form the expressions are

(Cmo
)jj =

1

λ

1

[l(l + 1)]2
(4.4)

(Cm2
)jj =

θ2
λ

1

[l(l + 1)]2
(4.5)

(Cm4
)jj =

θ4
λ

1

[l(l + 1)]2
(4.6)

whereλ is an overall damping parameter which controls the trade-off between the
data misfit and smoothness. The parametersθ2 andθ4 control the relative strength
of the anisotropy. For example, a value of 0.1 would give 10 times more weight
to the isotropic terms relative to the anisotropic terms. Different values forθ2 and
θ4 can be used to determine whether the data has a preference foranisotropy and
if so, a preference for the2ψ terms or for the4ψ terms or for both. To compare
inversions with different regularisations, we define, a reducedχ2 as

χ2 =
1

N −M
(d − Gm)T C

−1
d (d− Gm). (4.7)

WhereN is the number of data andM the trace of the resolution matrix. As
the overall dampingλ decreases, the trace of the resolution matrix (number of
independent parameters) will increase and the reducedχ2 will decrease, even if
the misfit does not. A standard F-test (Bevington and Robinson, 1992) determines
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if the difference between twoχ2 values is significant. Table 4.3 shows for a given
χ2 and number of free parameters (N −M ) the associated significant difference
in χ2 at the 99% confidence level. The meaning is that if for a givenN −M , two
χ2 differ by more than this value, we are 99% sure that the misfit is better and that
this inversion should be preferred.

4.4 Misfit curves for the higher modes

Following Trampert & Woodhouse (2003), we calculated misfitcurves system-
atically changingλ for a fixedθ2 andθ4 for each of the higher modes to deter-
mine if the higher modes require anisotropy and if we can distinguish between
the different anisotropic terms. The misfit curves (figures 4.3 and 4.4) show that
for a small number of independent parameters, the isotropicparameterization
(θ2, θ4 = 10−5) explains the data best. As the number of independent param-
eters increases, the anisotropic parameterizations (θ2, θ4 > 10−5) start to explain
the data better than the isotropic parameterization. At around 500 independent
parameters, the isotropic misfit curves flatten out, indicating that anisotropy is in-
deed required by the data, because they give a better misfit with a high confidence
level. The F-test (Bevington and Robinson, 1992) gives the level of confidence
with which the differences between the misfit curves is significant. For exam-
ple, the first higher mode Rayleigh has a total of about 50,000free parameters
(the number of measurements - the trace of the resolution matrix) and aχ2 of
around 2.0 (figure 4.3a). According to table 4.3 the 99% significant difference is
0.023. At a trace of 1000, the difference between the isotropic and anisotropic
misfit curves is 0.024, indicating indeed that we need anisotropy to explain our
results. Beyond a trace of about 500, the differences between the isotropic and
anisotropic misfit curves for all Rayleigh wave modes (figure4.3) are significant
with a high confidence level, indicating that anisotropy is needed to explain the
phase velocity measurements. There are differences in misfit curves for different
levels of anisotropic scaling, but these differences are not significant with a high
confidence level.

As for Rayleigh waves, the difference between the isotropicand anisotropic
misfit curves is 99% significant for all Love wave modes (figure4.4). Again
the data cannot distinguish between different levels of anisotropic scaling. For
fundamental mode Love waves, we would expect a preference for the 4ψ term
of anisotropy since the amplitude of the 4ψ sensitivity is much higher than the
one for 2ψ. For higher mode Love waves, we do not expect a preference of one
anisotropic term over the other since higher mode Love wavesare sensitive to
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Figure 4.3:Misfit curves for Rayleigh (a) first higher mode at 148.56 s, (b) second higher
mode at 40.028 s, (c) third higher mode at 77.795 s, (d) fourthhigher mode at 35.078 s,
(e) fifth higher mode at 56.074 s and (f) sixth higher mode at 35.141 s. The legend shows
different values forθ2 andθ4.
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Figure 4.4:Misfit curves for Love (a) fundamental mode at 153.46 s, (b) first higher mode
at 153.07 s, (c) second higher mode at 40.02 s, (d) third higher mode at 78.66 s, (e) fourth
higher mode at 35.06 s and (f) fifth higher mode at 35.12 s.The legend shows different
values forθ2 andθ4.
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Figure 4.5:Correlation as a function of spherical harmonic degree for minor and major
arc vs. minor arc coverage.

both the 2ψ as well as the 4ψ term of anisotropy. Earlier, a strong 2ψ term of
anisotropy for fundamental Love waves has been found by Montagner & Tani-
moto (1990). They ascribed this strong 2ψ term to Rayleigh-Love coupling, since
fundamental mode sensitivity curves for Love waves only predict a strong 4ψ
term of anisotropy. Trampert & Woodhouse (2003) found no statistical reason to
include a 2ψ term and omitted it, based on asymptotic expectations. Since then,
Sieminski et al. (2007) showed that Rayleigh-Love couplingis important (as spec-
ulated by Montagner & Tanimoto, 1990) and results in a high near source sensitiv-
ity for azimuthal parameters B-H. Furthermore, tilted uppermantle minerals with
respect to the geographical reference system can result in high apparent values of
B-H (Sieminski, personal communication, 2007). Although we find, similar to
Trampert & Woodhouse (2003), no significant indication in favor of a 2ψ term,
we choose to keep it based on a plausible reason for its existence. An important
issue is to check whether the use of minor arc data alone (which results in poorer
azimuthal coverage in the southern hemisphere) could bias our misfit curves. We
computed synthetic data for a random anisotropic model (containing an isotropic,
2ψ and 4ψ term) and tested how well the random model could be retrievedby
using a minor arc ray coverage alone and a minor and major arc ray coverage. We
used the minor and major arc paths of Trampert & Woodhouse (2003). For the
minor arc ray coverage we only took their minor arc paths. Figure 4.5 shows the
correlation between the model retrieved by the minor and major arc coverage and
the model retrieved by the minor arc coverage only. The correlations are very high
(>0.95), indicating that essentially the same model is retrieved using both the mi-
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Figure 4.6:Relative isotropic phase velocity maps with respect to PREMfor Rayleigh (a)
first higher mode at 148.56 s, (b) second higher mode at 40.028s, (c) third higher mode
at 77.795 s, (d) fourth higher mode at 35.078 s, (e) fifth higher mode at 56.074 s and (f)
sixth higher mode at 35.141 s.

nor and major arc coverage and using the minor arc coverage only. We further
established the important point that including the 2ψ term does not change the
4ψ models. In summary, beyond 500 independent model parameters, azimuthal
anisotropy is required by the data for all modes of Love and Rayleigh waves con-
sidered here. The prior strength of anisotropy cannot be determined from the data
and has to be fixed by other arguments.

4.5 Azimuthally anisotropic phase velocity maps

We constructed azimuthally anisotropic phase velocity maps up to the first five
higher mode Love and the first six higher mode Rayleigh wave phase velocities.
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Figure 4.7:Relative isotropic phase velocity maps with respect to PREMfor Love (a) first
higher mode at 153.07 s, (b) first higher mode at 40.16 s, (c) second higher mode at 40.02
s, (d) third higher mode at 78.66 s, (e) fourth higher mode at 35.06 s and (f) fifth higher
mode at 35.12 s.

The exact number of measurements used for the phase velocitymaps is shown in
table 4.2 and the rms uncertainty of a sample of the data is shown in table 4.4.

As seen in the previous paragraph, the data require azimuthal anisotropy but
cannot decide upon its exact scaling. There is also no compelling reason to favor
2ψ or 4ψ terms only. An Occam-type argument guided us to choose a modest
amount of anisotropy usingθ2 = θ4 = 0.1. It should be noted that this is a
prior constraint which will be overruled if the data requirethis locally. Because
for fundamental modes our data quality seems superior compared to that used in
Trampert & Woodhouse (2003), (smallerχ2 for similar uncertainties in both data
sets), we chose less overall damping to allow approximately1000 independent pa-
rameters in the Rayleigh fundamental mode models. We have chosen an overall
damping such that the relative model uncertainty remains constant for all modes.
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Rayleigh
mode period σdc/c0(%) σdc(m/s) trace(R) 0ψ 2ψ 4ψ

000s097 100.393 0.48 19.56 1008 695 146 167
000s197 51.259 0.60 23.54 965 665 140 160
001s068 99.650 0.53 31.16 947 651 139 156
001s156 50.855 0.56 28.24 938 644 138 156
002s056 99.258 0.48 34.00 961 660 141 160
002s137 50.849 0.56 32.16 930 639 137 154
003s120 51.059 0.56 36.46 918 631 135 152
003s201 35.014 0.57 32.35 929 638 137 154
004s109 51.052 0.56 40.06 889 610 132 147
004s183 35.078 0.59 36.51 880 604 130 146
005s101 50.921 0.58 44.59 841 576 126 139
005s168 35.115 0.60 40.87 832 571 124 137
006s096 50.822 0.61 49.99 768 526 116 126
006s157 35.141 0.59 42.49 772 528 117 127

Love
mode period σdc/c0(%) σdc(m/s) trace(R) 0ψ 2ψ 4ψ

000t085 100.81 0.50 23.31 956 644 148 164
000t174 51.01 0.70 31.47 895 604 139 152
001t068 100.08 0.55 32.05 858 586 130 142
001t154 51.19 0.61 31.00 839 573 127 139
002t054 99.92 0.65 47.66 809 532 123 134
002t136 51.41 0.58 32.85 831 567 126 138
003t120 51.32 0.65 41.83 751 514 114 123
003t200 35.05 0.59 33.58 766 524 116 126
004t107 51.06 0.69 50.65 646 443 99 104
004t184 35.06 0.63 39.13 659 453 100 106
005t098 51.27 0.77 61.04 536 370 82 84
005t168 35.12 0.66 44.70 555 383 85 87

Table 4.4:Relative and absolute rms data uncertainties (σdc/c0
andσdc), the total number

of independent parameters (trace(R)) and the number of independent parameters for the
isotropic (0ψ), 2ψ and 4ψ models.
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As a result, the phase velocity maps will have a decreasing resolution with increas-
ing data uncertainty and/or decreasing number of data (see table 4.4). This choice
is somewhat arbitrary. In view of a future depth inversion, ideally, we should have
chosen for a constant resolution. The difference in the number of data between
modes, however, is so large that the corresponding decreasein overall damping
would have led to unrealistic amplitudes in some higher modemaps. The other
extreme would have been to opt for an increasing uncertaintybecause the number
of data constraints decreases. This would lead to seriouslyoverdamped higher
mode maps. A constant relative uncertainty in the phase velocity maps is an ac-
ceptable compromise between the two extremes. The isotropic phase velocity
maps were expanded up to degree and order 40, while the azimuthal anisotropic
phase velocity maps were expanded up to degree and order 20.

The isotropic models for Rayleigh and Love waves are shown infigures 4.6
and 4.7 for a number of different higher modes at the indicated periods. The fun-
damental mode maps are very similar to those of Trampert & Woodhouse (2003)
with correlations of 0.91 (Rayleigh 40 seconds), 0.70 (Rayleigh 150 seconds),
0.87 (Love 40 seconds) and 0.79 (Love 150 seconds), and henceto other mod-
els by different research groups (see Becker et al. 2007, fora recent compari-
son). While the overtones generally show the strongest sensitivity to deeper man-
tle structure, it is interesting to note that high frequencyRayleigh waves of the
fifth and sixth overtone are very sensitive to crustal structures. In general there
is a good visual comparison between our maps and those of van Heijst (1997).
Visser et. al. (2007) showed that higher modes can easily be measured with our
technique. They showed isotropic degree 20 maps for illustration purposes. The
correlation with our maps here up to degree 20 is around 0.80 for all Love wave
overtones. The differences can be attributed to the neglectof anisotropy in the
earlier paper.

The anisotropic contributions for the same higher modes andperiods are shown
in figures 4.8 and 4.9 for the 2ψ term and figures 4.10 and 4.11 for the 4ψ term.
Figure 4.12 shows the rms amplitude averaged over the sphereof the 2ψ and 4ψ
maps for Rayleigh and Love waves for the fundamental up to thesixth higher
mode with corresponding uncertainties. The amplitudes of the 2ψ and 4ψ term
are similar within their standard deviations. Most importantly, the amplitude re-
mains positive within the uncertainties, indicating that the anisotropic models are
robust and indeed required, for the chosen optimal scaling.The 2ψ amplitudes
even remain robust within two standard deviations. Figures4.13 and 4.14 show
some chosen 2ψ correlations and the corresponding ray theoretical sensitivity ker-
nels (Larson et al., 1998). For Rayleigh waves, the correlation of the fundamental
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Figure 4.8:Azimuthally anisotropic 2ψ phase velocity maps for Rayleigh. The grey scale
in the background corresponds to the peak-to-peak amplitude of anisotropy expressed
relative to the average phase velocity calculated from PREM. The black lines represent
the fast directions which are also scaled to the amplitude shown in the background. The
plate boundaries and hotspots are indicated in white. Panels (a) to (f) show the different
modes and periods as indicated in figure 4.6.

mode models with the first higher mode ones is high (figure 4.13a). In fact, the
correlation of the fundamental mode with increasingly higher modes consistently
shows high values. The corresponding sensitivities show that the B-H sensitivity
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Figure 4.9:Azimuthally anisotropic 2ψ phase velocity maps for Love higher modes. Pan-
els (a) to (f) show the different modes and periods as indicated in figure 4.7.

is mostly shallow for all modes while the G sensitivity changes with depth. This
could indicate that B-H anisotropy is important for Rayleigh waves. We also find
high correlations for modes where the most overlap is for deeper G, probably the
transition zone anisotropy observed by Trampert & van Heijst (2002). For Love
waves we obtain high correlations for G in the asthenosphere(figure 4.14). The
correlation between the 2ψ models of the fundamental mode and first higher mode
Love wave is quite low (< 0.5), which is not surprising since G sensitivity for the
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Figure 4.10:Azimuthally anisotropic 4ψ phase velocity maps for Rayleigh higher modes.
Panels (a) to (f) show the different modes and periods as indicated in figure 4.6.

fundamental mode is almost zero while it is non-zero for the first higher mode.
The most likely source of 2ψ anisotropy in fundamental mode Love waves is B-
H (Sieminski et al., 2007), while for the overtones G dominates, hence a plausible
low correlation. These few examples illustrate how complexthe depth distribu-
tion of azimuthal anisotropy possibly is, and only a depth inversion will provide
detailed information about the specific distribution of theanisotropy. This will
require finite frequency kernels (Sieminski et al., 2007) that capture the strong
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Figure 4.11:Azimuthally anisotropic 4ψ phase velocity maps for Love higher modes.
Panels (a) to (f) show the different modes and periods as indicated in figure 4.7.

influence of path dependence and mode coupling for anisotropic parameters.
The fundamental mode 2ψ Rayleigh models visually agree at long wavelength

with the models by Trampert & Woodhouse (2003), Ekström (2000) and in the
Pacific with results obtained by Smith et al. (2004). Up to degree 8, we have
a correlation of 0.49 with the 2ψ map of Trampert & Woodhouse (2003) for
Rayleigh waves at 40 seconds. The first quantitative comparison between dif-
ferent azimuthally anisotropy models and geodynamic flow models was done by
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Figure 4.12:The rms amplitude per unit sphere of the phase velocity maps of figures 4.8 to
figure 4.11 for (a) the fundamental mode, (b) the first higher mode, (c) the second higher
mode, (d) the third higher mode, (e) the fourth higher mode, (f) the fifth higher mode and
(g) the sixth higher mode. The bands correspond to± one standard deviation of the fixed
average posterior uncertainty.
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Figure 4.13:Rayleigh 2ψ correlation (a-d) and 2ψ sensitivity kernels (e-h) of the fun-
damental mode at 151 s (solid) with the first higher mode at 149s (dashed) (a,e), the
first higher mode at 149 s (solid) with the second higher mode at 99 s (dashed) (b,f), the
first higher mode at 40 s (solid) with the second higher mode at40 s (dashed) (c,g) and
the third higher mode at 35 s (solid) with the fourth higher mode at 35 s (dashed) (d,h).
Sensitivity to H is not shown since it is similar to B sensitivity but opposite in sign.

Becker et al. (2007). They found typical correlations between 0.18 and 0.47 in-
dicating that our results are not at odds with any of these models. No comparison
has been done for overtones. Only a detailed depth inversioncan shed light on the
geodymanic consequences of our 2ψ and 4ψ overtone maps.

Inverting for the azimuthal terms as well as the isotropic terms makes the
isotropic maps become smoother for a given trace of the resolution. Decreasing
overall damping will decrease the smoothness for both the isotropic, 2ψ and 4ψ
phase velocity maps. We can split the total trace of the resolution matrix into the
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Figure 4.14:Love 2ψ correlation (a,b) and 2ψ sensitivity kernels (c,d) of the first higher
mode at 153 s (solid) with the second higher mode at 100 s (dashed) (a,c) and the third
higher mode at 35 s (solid) with the fourth higher mode at 35 s (dashed) (b,d).

trace for the isotropic, 2ψ and 4ψ terms separately (figure 4.15). These individual
values are more meaningful for the phase velocity maps than the total trace. The
number of independent parameters for the isotropic, 2ψ and 4ψ terms varies as a
function of overall damping. For small numbers of independently inverted param-
eters, the isotropic parameters dominate. As the number of independently inverted
parameters increases, the number of inverted 2ψ and 4ψ parameters increases.
Table 4.4 shows the total number of independently inverted parameters and the
number of isotropic, 2ψ and 4ψ parameters for some chosen Rayleigh and Love
wave fundamental and higher modes. For the fundamental modemodels, we can
resolve on average up to 25 spherical harmonic degrees for the isotropic models,
8 spherical harmonic degrees for the 2ψ models and 9 spherical harmonic degrees
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Figure 4.15:The relation between the total trace of the resolution matrix and the trace
of the resolution matrix separated for the isotropic, 2ψ and 4ψ terms for the fundamental
mode Rayleigh wave at 151 seconds.

for the 4ψ models. For the higher modes, the number of degrees we can resolve
decreases to degree 18 for the isotropic models, degree 5 forthe 2ψ models and
degree 6 for the 4ψ models.

Shapiro & Ritzwoller (2002) use a rms data misfit as a measure of uncertainty
for the phase velocity maps. They obtain values around 25 m/sfor fundamental
mode Rayleigh and between 25 and 40 m/s for the fundamental mode Love wave
phase velocity maps. The rms data misfit values we obtain for the fundamental
mode are between 24 m/s and 31 m/s for Rayleigh and 31 m/s to 45 m/s for Love
waves. The rms data misfit values for the higher modes are somewhat larger. They
vary for Rayleigh waves between 35 and 65 m/s and for Love waves between 45
and 75 m/s.

We are not so much interested in the posterior data uncertainties as in the
posterior model uncertainties, which we need for a future depth inversion. The
posterior model uncertainty is given by the posterior modelcovariance, defined as

Cm̃ = (I − R)Cm(I − R)T + LCdL
T . (4.8)

WhereCm̃ is the posterior model covariance,Cm is the prior model covariance
(equation 4.4 to 4.6),Cd is the data covariance,R is the resolution matrix andL is
the inverse operator which gives the estimated modelm̃ = Ld. The square roots
of the diagonal elements of the posterior model covariance can be interpreted as
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error bars of the posterior values of the model parameters. An average posterior
model uncertainty for a phase velocity map is obtained by taking the square root
of the total power of the diagonal of the 0ψ, 2ψ and 4ψ terms averaged over
the sphere. As explained above, we have chosen the overall damping (λ in Cm)
so that the average model uncertainty for̃dc/c0 is constant. The value has been
chosen so as to invert for 1000 independent parameters for 100 s fundamental
mode Rayleigh waves. This gives average relative model uncertaintiesσ

d̃c/c0
of

0.45%, 0.18% and 0.15% for the 0ψ, 2ψ and 4ψ maps (figure 4.16), respectively.
The relative model uncertainty is much lower for the 2ψ and 4ψ maps due to the
prior choice of a modest amount of anisotropy (θ2 = θ4 = 0.1). It is important to
realise that a large part ofCm̃ comes from the prior information, therefore fixing
Cm̃ will require differentλ in Cm depending onCd and the number of data,
which will changeR correspondingly.

The absolute uncertainties (σ
d̃c

, figure 4.16) in the fundamental mode Ray-
leigh isotropic models range from 15 m/s at short periods to 20 m/s at longer
periods, the uncertainty of the 2ψmodels range from 5 to 8 m/s and the uncertainty
of the 4ψ models range from 5 to 7 m/s. For Love waves, the corresponding
absolute uncertainties for the fundamental mode isotropicmaps ranges from 14
to 20 m/s, for the 2ψ models from 5 to 8 m/s and the 4ψ models from 4 to 7
m/s. The rms data misfit values given earlier show uncertainties for both Love
and Rayleigh wave azimuthal anisotropic models in the orderof 25 m/s to 45 m/s
for the fundamental mode. The absolute model uncertaintiesare a bit smaller but
of the same order of magnitude as the rms data misfits, justifying the intuition of
Shapiro & Ritzwoller(2002) to use the data misfits as averagemodel uncertainties.
The reason for this good correspondence is that the data misfit incorporates the
prior information in equation 4.8 implicitly.

4.6 Resolution and Trade-off

The fifth higher mode Love wave data set has the lowest number of measurements.
The number of measurements increases with lower overtone number (table 4.2).
Nevertheless the pattern of ray density for the fifth higher mode Love wave is quite
similar to the fundamental mode Rayleigh wave which contains the highest num-
ber of measurements. Trampert & Woodhouse (2003) convertedthe resolution
matrix into averaging kernels. The relative phase velocityperturbation at a spe-
cific point on the Earth is an average of the true model over thewhole Earth with
weights (the averaging kernels). For a complete picture of resolution the averag-
ing kernels have to be calculated at each point on the Earth’ssurface. Trampert
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Figure 4.16:Absolute standard deviations (σ
d̃c

) for the fundamental and first six higher
mode Rayleigh wave isotropic (top left), 2ψ (middle left) and 4ψ (bottom left) phase
velocity maps. The same for the fundamental and first five higher mode Love waves on
the right.

& Woodhouse (2003) chose to represent the averaging kernelsby the radius of
the central peak and called the maps resolving radii maps. The resolving radii
are only dependent upon path coverage and the overall damping (λ) and give a
good representation of the lateral resolution that can be achieved. The number of
measurements of the fifth higher mode Love wave correspond tothe number of
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figures, where black is the trace of the resolution matrix, red is the rms of the isotropic
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measurements of the fundamental Love waves in Trampert & Woodhouse (1995)
and the corresponding resolving radii map (figure7a in Trampert and Woodhouse,
1995) corresponds to the resolving radii map of the fifth higher mode Love wave
(our worst data coverage). There is a high correspondence with the ray density
map but the resolving radii test gives a better indication ofthe structures we are
able to solve for.

There are three different issues that affect the resolution; spectral leakage,
trade-off between the isotropic and anisotropic terms and damping. Spectral leak-
age is caused by the mapping of small-scale structure not accounted for in the
model expansion into the inverted low-degree structure andis a result of uneven
data coverage (Snieder et al., 1991). Spectral leakage can be suppressed by a time
consuming operator (Trampert and Snieder, 1996) or approximately by Laplacian
damping (Spetzler and Trampert, 2003) as in equations 4.4 to4.6 ( 1

[l(l+1)]2 ). The
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price to pay for this Laplacian damping is that the higher thedegree, the less it
will be resolved and the diagonal peak of the resolution matrix will also broaden.
Finally there will be trade-offs between the isotropic and anisotropic parameters.
The resolution matrix provides information on the trade-offs and the broaden-
ing (figure 4.17). The diagonal of the resolution matrix shows the price we pay
for the use of Laplacian damping. For higher degrees, the diagonal values of
the resolution matrix decrease. The choice of the relative strength of anisotropy
(θ2, θ4 = 0.1, 0.1) causes the sharper decay for the 2ψ and 4ψ parameters. Ta-
ble 4.4 shows the number of resolved parameters for certain modes given our
choice of overall damping described above. The off-diagonal terms of the resolu-
tion matrix in figure 4.17 show the amount of broadening and trade-off between
parameters. Fortunately, these values are small compared to the diagonal values.
This holds for all higher modes.

4.7 Conclusions

We present global azimuthal anisotropic phase velocity maps for the fundamental
modes and up to the sixth overtone for Rayleigh waves and up tothe fifth over-
tone for Love waves. Phase velocities for fundamental and higher mode Love
and Rayleigh waves were measured using a model space search approach (Visser
et al., 2007a). The use of a model space search approach enables us to obtain real-
istic and consistent uncertainties on the phase velocities. The phase velocities are
inverted to extract azimuthal anisotropic phase velocity maps. Following Tram-
pert & Woodhouse (2003), we determine the optimum relative weighting prior to
inversion. Both Love and Rayleigh fundamental and higher mode phase veloci-
ties require anisotropy according to the misfit curves. The relative weighting was
chosen (in agreement with the significant difference of misfit curves) such that
anisotropy is needed and equal for the 2ψ and the 4ψ terms of anisotropy. We
have chosen the overall damping such that the relative uncertainty is constant in
all maps. This causes the resolution to decrease with increasing data uncertainty
and/or decreasing number of data.

The rms data misfits of the azimuthal anisotropic models for fundamental
mode Rayleigh and Love waves are similar to values found by Shapiro & Ritz-
woller (2002). The rms misfits for the higher modes are largerand vary between
35 and 65 m/s for Rayleigh and between 45 and 75 m/s for Love waves. The
model uncertainties are smaller than the rms data misfits butof the same order.
For the fundamental mode isotropic models, we obtain uncertainties up to 20 m/s
and for the anisotropic models we obtain uncertainties up to8 m/s.
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The isotropic maps visually compare well with the isotropichigher mode
maps of van Heijst (1997). We found a high correlation with the fundamental
mode anisotropic maps of Trampert & Woodhouse (2003) and hence with equiva-
lent work from other research groups (Becker et al., 2007). Indications are that the
source of azimuthal anisotropy is complex and a detailed depth inversion, using
finite frequency kernels, is needed to clarify this. Our efforts to provide maps for
many overtones, should facilitate this final step in the search of deep anisotropy.
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Chapter 5

Probability of radial anisotropy
in the deep mantle

It is well established that the Earth’s uppermost mantle is anisotropic, but obser-
vations of anisotropy in the deeper mantle have been more ambiguous. Radial
anisotropy, the discrepancy between Love and Rayleigh waves, was included in
the top 220 km of PREM, but there is no consensus whether anisotropy is present
below that depth. Fundamental mode surface waves, for commonly used periods
up to 200 s, are sensitive to structure in the first few hundredkilometers and there-
fore do not provide information on anisotropy below. Highermode surface waves,
however, have sensitivities that extend to and below the transition zone and should
thus give insight into anisotropy at greater depths, but they are very difficult to
measure. We previously developed a new technique to measurehigher mode sur-
face wave phase velocities with consistent uncertainties.These data are used here
to construct probability density functions of a radially anisotropic Earth model. In
the uppermost mantle, we obtain a high probability of fasterhorizontally polar-
ized shear wave speed, likely to be related to plate motion. In the asthenosphere
and transition zone, however, we find a high probability of faster vertically polar-
ized shear wave speed, an indication of overall vertical flow. In the lower mantle,
we see no significant shear wave anisotropy. This is consistent with results from
laboratory measurements which show that lower mantle minerals are anisotropic
but LPO is unlikely to develop in the pressure-temperature conditions present in
the lower mantle.

This chapter has been submitted for publication by K. Visser, J. Trampert, S. Lebedev and B.
L. N. Kennett toEarth and Planetary Science Letters.

97
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5.1 Introduction

Radial and azimuthal anisotropy are different expressionsof the underlying gen-
eral anisotropy of the Earth’s interior. The source of anisotropy in the mantle
is usually assumed to be the alignment (lattice preferred orientation or LPO) of
intrinsically anisotropic minerals under strain in the mantle (Karato, 1998a; Mon-
tagner, 1998). When detected, anisotropy can be an indicator of mantle strain and
flow and improve our understanding of the dynamics of the mantle. Evidence
for radial anisotropy was first inferred from the discrepancy between Rayleigh
and Love waves by Anderson (1961), Aki and Kaminuma (1963) and McEvilly
(1964). These observations prompted the inclusion of radial anisotropy in the
upper 220 km, also referred to as the anisotropic zone, of theglobal reference
Earth model PREM (Dziewonski and Anderson, 1981). It is now commonly ac-
cepted that the Earth is radially anisotropic at shallow depths (up to∼200 km).
There is, however, no consensus on whether radial anisotropy is present beyond
the anisotropic zone. While earlier studies of radial anisotropy used fundamental
mode surface waves (Tanimoto and Anderson, 1984; Nataf et al., 1984; Montag-
ner and Tanimoto, 1991; Ekström and Dziewonski, 1998; Shapiro and Ritzwoller,
2002), in recent years higher mode surface waves have been added to studies of
radial anisotropy (Debayle and Kennett, 2000; Gung et al., 2003; Beghein et al.,
2006; Maggi et al., 2006; Panning and Romanowicz, 2006; Sebai et al., 2006;
Marone et al., 2007) with a potential to yield constraints ondeeper mantle dynam-
ics, down to the transition zone and lower mantle. Radially anisotropic shear wave
velocity models tend to agree at long wavelengths only (Panning and Romanow-
icz, 2006), suggesting large uncertainties in these models. These uncertainties
depend on the regularisation, parameterisation, inverse method, data uncertainties
etc. Model space search methods provide a way to obtain a fullprobability density
function for the parameters through the mapping of the entire model space rather
than just one preferred central value.

A previous (linearized) Monte Carlo model space search for radial anisotropy
in seismic reference models of the mantle (Beghein et al., 2006) found no sig-
nificant spherically averaged radial anisotropy beyond theanisotropic zone, while
spherically averaged radial anisotropy was found up to 1000km in an earlier study
by Montagner and Kennett (1996). Panning and Romanowicz (2006) inverted for
a three-dimensional radial anisotropic model and found faster vertically polarized
shear wave speed associated with subducted slab material inthe transition zone.
There is a large consensus between the one-dimensional and three-dimensional ra-
dially anisotropic studies that the lower mantle is isotropic, except in D” (Kendall
and Silver, 1996; Karato, 1998b; Panning and Romanowicz, 2004). An isotropic
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lower mantle can be explained in terms of superplastic flow (Karato, 1998a),
which does not result in any preferred orientation of minerals, even though, the
minerals themselves are still highly anisotropic.

In this paper, we inverted the fundamental and higher mode phase, azimuthally
averaged, velocity maps of Visser et al. (2007b) for a globalradially anisotropic
shear wave velocity model using a fully non-linear model space search approach.
We use Rayleigh wave phase velocity maps for the fundamentaland up to the
sixth higher mode and Love wave phase velocity maps for the fundamental and
up to the fifth higher mode. This provides us with a large dataset of higher modes,
especially in comparison with previous radially anisotropic studies (Debayle and
Kennett, 2000; Maggi et al., 2006; Panning and Romanowicz, 2006; Marone et al.,
2007), where the number of higher mode measurements are often few and up to
a relatively low higher mode (second to fourth higher mode).The use of a model
space search approach in the inversion for shear wave velocities should provide us
with realistic uncertainties. The phase velocity measurements were obtained using
a model space search approach, yielding consistent uncertainties between all the
measurements. These uncertainties have been propagated inthe construction of
the phase velocity maps (Visser et al., 2007b) and used as prior information here.
The combination of a model space search and the large number of higher mode
measurements should provide us with a global radially anisotropic model with an
improved depth resolution and consistent uncertainties which in turn should give
us insight into the mantle dynamics at larger depths in the mantle.

We invert Rayleigh and Love wave phase velocities separately to obtain global
horizontally and vertically polarized shear wave velocitymodel. These models
are then combined into a global radially anisotropic shear wave velocity model.
While other studies (Ekström and Dziewonski, 1998; Debayle and Kennett, 2000;
Maggi et al., 2006) have also used two separate inversions for the Rayleigh and
Love wave data, they used a linearised approach. Ekström and Dziewonski (1998)
showed that no significant bias was introduced by the use of isotropic sensitiv-
ity kernels and two separate inversions forVSH andVSV . Since we perform a
fully non-linear model space search, we first need to validate the assumption of
inverting the Rayleigh and Love wave phase velocities separately.

5.2 Depth inversion

This study presents the last stage of a three stage inversionas proposed by Kennett
and Yoshizawa (2002). A traditional two-stage approach of multimode waveform
tomography consists of obtaining one-dimensional velocity perturbations through
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waveform fitting and inverting them, using the path average assumption, for a
three-dimensional velocity model. The three stage approach consists of obtaining
one-dimensional dispersion models through waveform fitting in the first stage,
building multimode phase velocity models as a function of frequency using the
path average assumption in the second stage and an inversionfor local wave speed
properties to obtain the three-dimensional velocity modelin the third stage. The
one-dimensional dispersion model in the first stage is regarded as a representation
of the character of multimode dispersion along the source-receiver path. This is
not as limiting an assumption as the path average assumptionin the two stage
approach. Yoshizawa and Kennett (2002) showed that multiple one-dimensional
shear wave velocity models obtained through waveform fitting with a slight dif-
ference in misfit share the same dispersion characteristicsindicating that the one-
dimensional velocity model in the first stage may be regardedas a representation
of the multimode dispersion characteristics along the source-receiver path.

In the first stage, we applied waveform fitting using a model space search
approach (using the Neighbourhood Algorithm; Sambridge, 1999a,b) to obtain
the fundamental and higher mode Love and Rayleigh wave phasevelocity mea-
surements (Visser et al., 2007a). In the second stage (Visser et al., 2007b), we
inverted the fundamental and higher mode Love and Rayleigh wave phase veloc-
ity measurements for global isotropic and azimuthally anisotropic phase velocity
models. The isotropic parts of the phase velocity models arenow used in the third
stage to obtain a radially anisotropic shear wave velocity model. Montagner and
Nataf (1986) showed that radial anisotropy is dependent on the Love parameters
(A, C, L, N, F) (Love, 1927) which describe a transversely isotropic medium,
while azimuthal anisotropy is dependent on the other elastic parameters (B, H, E,
G). By using the isotropic phase velocity models of the second stage (Visser et al.,
2007b), we only have to worry about the five Love parameters. We perform a fully
non-linear point-by-point depth inversion using a model space search approach.
To keep the number of parameters low in this Monte Carlo search and inspired by
previous work, we invert the Love and Rayleigh wave phase velocity models sep-
arately. Ekström and Dziewonski (1998) validated this approach for a linearised
inversion. In the case of a fully non-linear approach, however, the validity of this
approximation has not been shown. Therefore we first performed a test where
we calculated Love and Rayleigh wave phase velocities for the anisotropic PREM
model. We then separated the anisotropic PREM model in a horizontally polarized
model (VPH , VSH ) and a vertically polarized model (VPV , VSV ) and calculated
the Love and Rayleigh wave phase velocities separately assuming isotropy. We
found that the resulting phase velocity differences are within the uncertainties of
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Figure 5.1:The difference between the Love and Rayleigh phase velocities calculated as-
suming anisotropic and isotropic profiles for a location in the Baltic Shield (58◦N, 17◦E).
The dashed lines indicate the uncertainties for the phase velocity models of Visser et al.
(2007b). For Love, the isotropic model hasVS andVP equal toVSH andVPH of the
anisotropic model, for Rayleigh the isotropic model hasVS andVP equal toVSV and
VPV of the anisotropic model.

the phase velocity models of Visser et al. (2007b). Since anisotropic PREM con-
tains only shallow anisotropy, we performed the same test for the results of our
depth inversion at a few locations on the Earth. The differences in the phase ve-
locities calculated assuming isotropy or anisotropy are within the uncertainties of
the phase velocity models (Fig. 5.1), indicating no significant difference between
the two approaches. Therefore, we can invert Love and Rayleigh wave phase ve-
locities separately resulting in a considerable gain in CPUtime (days rather than
weeks).

We selected 492 locations, covering the Earth’s surface according to a 6-fold
triangular tessellation (equal area representation, Wangand Dahlen (1995)). For
each point, we calculated the local phase velocities for selected fundamental and
higher mode isotropic Love and Rayleigh wave phase velocitymaps. The sam-
pling of the Earth’s surface is comparable to that of a spherical harmonic expan-
sion of degree and order 20 (Wang and Dahlen, 1995), which is similar to the
resolution of the phase velocity maps of Visser et al. (2007b). The phase velocity
measurements used for the building of the phase velocity maps were obtained us-
ing a model space search approach. This provided us with consistent uncertainties
on the measurements as well as on the phase velocity maps as described in Visser
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Figure 5.2:Twelve natural cubic spline basis functions. The splines are numbered one to
twelve from the top to the bottom (1500 km).

et al. (2007b). At each location, we invert the local phase velocities of different
modes, with the corresponding uncertainties. This will provide us with consis-
tent posterior uncertainties given these prior uncertainties. The objective of the
model space search is to find, for each location, theVSH andVSV model and the
Moho depth that fits the observed phase velocities for Love and Rayleigh waves,
respectively.

5.2.1 Parameterisation

We parameterize the shear wave velocity model using the same12 natural cubic
spline basis functions which have been used in the measurement stage (Fig. 5.2).
The position and number of the spline basis functions were obtained after sev-
eral tests with different parameterizations. A Backus-Gilbert resolution analysis
showed that the twelve spline parameterization is optimal for the modes used here.
The splines are more densely spaced in the upper mantle compared to the lower
mantle to match the depth resolution of surface waves. As in Visser et al. (2007b),
we scaled the compressional wave velocity and density to theshear wave velocity
model. For the compressional wave velocity, we chose the scaling relation of Rit-
sema and Van Heijst (2002) and for the density the scaling relation of Deschamps
et al. (2001). Scaling relations are often used in depth inversions (See for exam-
ple, Ekström and Dziewonski, 1998; Shapiro and Ritzwoller, 2002; Gung et al.,
2003; Panning and Romanowicz, 2006) to reduce the number of parameters in
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the inverse problem to the best resolved parameters (VSH , VSV ). Multiple stud-
ies (Ekström and Dziewonski, 1998; Gung et al., 2003) have shown that specific
scaling relations did not affect the resulting velocity models much.

Crustal corrections are very important in surface wave tomography (Montag-
ner and Jorbert, 1988; Mooney et al., 1998; Zhou et al., 2006;Marone et al., 2007;
Bozdag and Trampert, 2007). Bozdag and Trampert (2007) showed that accurate
crustal corrections are more difficult for Love waves, due tothe higher sensitivity
to crustal structure. Radially anisotropic shear wave velocity models (combina-
tions of Rayleigh (VSV ) and Love (VSH ) data) are, therefore, most affected by
improper crustal corrections. We therefore follow Li and Romanowicz (1996)
and do not perform crustal corrections but add Moho depth as one additional pa-
rameter to the inversion. The initial crustal model is from Meier et al. (2007), who
obtained a crustal model by inverting fundamental mode phase velocities using a
neural network approach. The crustal model consists of an average shear wave
velocity for the crust and a Moho depth. For the frequencies we use, Moho depth
is the important parameter and crustal velocities matter little (Meier et al., 2007).
We therefore keep the crustal velocities fixed and vary Moho depth only. The first
spline coefficient is therefore fixed. The second spline is defined at the specific
Moho depth for the tesselation location. So, our final velocity parameterisation
consists of eleven splines from the Moho down to 1500 km and one extra param-
eter which is Moho depth. Both theVSH as well as theVSV inversion should
provide similar Moho depths. Figure 5.3 shows that this is indeed the case for the
VSV andVSH models. The Moho depths resulting from both inversions are con-
sistent. The best fitting line through the points is forMohoSV = MohoSH+0.5
km and the standard deviation is 0.4 km. This range is well within the mean stan-
dard deviations of the Moho depths (3.0 km) from Meier et al. (2007), indicating
that the differences between the Moho depths are not significant and the separate
VSH andVSV inversions are consistent with each other.

For each tesselation point, we construct a shear wave velocity model, search-
ing in a certain range around PREM (Dziewonski and Anderson,1981), from the
Moho down to 1500 km and adapt the Moho depth, searching around the model
of Meier et al. (2007). The topography and the bathymetry, for the tesselation
location, are fixed and taken from CRUST2.0 (Bassin et al., 2000). Below 1500
km, we assume PREM.

5.2.2 Model space search

For the model space search we use the Neighbourhood Algorithm (Sambridge,
1999a,b). The first part of the NA is a Monte Carlo search that uses the misfit
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Figure 5.3:Moho depths resulting from the inversion forVSV (Rayleigh wave data) and
the inversion forVSH (Love wave data) for the 492 tesselation points.

to guide the model space search to areas of better fit. Theχ2 misfit between the
observed absolute phase velocities and the calculated phase velocities for each
velocity model is defined as

χ2 =
1

N

N∑

i=1

(cL,R
obs,i − cL,R

i )2

(σL,R
obs,i)

2
, (5.1)

where cL,R
obs are the observed phase velocities for Love (L) and Rayleigh (R)

respectively andσL,R
obs are the model uncertainties for the phase velocity maps

(Visser et al., 2007b).cL,R
i are the calculated phase velocities.

The nature of the model space search is determined by a few tuning parame-
ters: the number of initial models (ni), the number of iterations (niter), the number
of new models sampled at each iteration (ns) and the number of best misfit models
at each iteration (nr). At each iteration, the existing models are ranked accord-
ing to their fit. In the Voronoi cells (nearest neighbourhoodcells) of thenr best fit
models,ns new models are randomly chosen after which all the models areranked
again according to their fit. The tuning parameters (nr andns) determine how the
model space is sampled. A large number forns and a small number fornr leads to
a very focused search, where the disadvantage is that some areas of good fit may
be missed by this search. A large number fornr (for example, equal tons) leads
to a much broader (but also slower) search. For each point in the model space,



5.2 Depth inversion 105

a velocity model is constructed using the coefficients for the shear wave velocity
splines, the change in Moho depth and the scaling relations between the shear
wave velocity and the compressional wave velocity and density. For this velocity
model, we compute the exact local eigenfunctions for the specific surface wave
modes in our data and obtain the phase velocities for these modes. The problem is
highly non-linear and, therefore, we need a very broad search (ni=100,niter=500,
ns=100 andnr=100) so as not to miss any well fitting areas. The total numberof
sampled models is 50100 per inversion.

The model space is searched around a reference model. The reference model
is PREM with the crust of the specific latitude-longitude location taken from Meier
et al. (2007) and the topography and bathymetry informationtaken from CRUST-
2.0 (Bassin et al., 2000). In the upper mantle we allow a change of±10%, in the
transition zone a change of±5% and in the lower mantle a change of±2.5% with
respect to the reference model. We, further, allow the Moho depth to vary by±5.0
km. The decrease in the model space size with depth is motivated by results from
previous shear wave velocity modelling (Su and Dziewonski,1997; Ritsema et al.,
1999; Panning and Romanowicz, 2006). This first part of the Neighbourhood Al-
gorithm produces an ensemble of velocity models with their corresponding fit
(equation 5.1) to the observed phase velocities.

5.2.3 Bayesian information

The second part of the NA (Sambridge, 1999b) extracts information from the
whole ensemble of models. It computes the conditional posterior probability den-
sity function (P (m|d)) of the model (m) given the data (d) as

P (m|d) = κρ(m)L(m|d), (5.2)

whereρ(m) is the prior probability distribution which depends on the parameter-
isation, the search boundaries and the forward theory,κ is a normalisation con-
stant andL(m|d) is a likelihood function representing the fit to the observations
defined asL(m|d) = exp(−1/2χ2). The NA first constructs an approximate pos-
terior probability density (PPD) for the ensemble of modelsby assuming constant
known PPD values in the Voronoi cells and then performs a couple of random
walks using a Gibbs sampler (Geman and Geman, 1984; Rothmann, 1986). After
multiple random walks, the distribution will asymptotically resemble the approx-
imate posterior probability density function. This resampled ensemble can be
used in a Bayesian framework to infer information from the ensemble such as one
or two-dimensional marginals and the covariance matrix. The one-dimensional
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Figure 5.4:One-dimensional marginals indicating the change inVSH inversion parame-
ters (Fig. 5.2) from the reference model at the Baltic Shield(58◦N, 17◦E) location. The
limits on the x-axis give the limit of the prior marginal.

marginals of the separateVSH andVSV inversions can be jointly resampled to ob-
tain one-dimensional marginals of anisotropic and isotropic anomalies. We define
the Voight average isotropic shear wave velocity (Babuska and Cara, 1991) as

V 2
S =

2V 2
SV + V 2

SH

3
, (5.3)

and the shear wave anisotropy as

ξ =
V 2

SH

V 2
SV

. (5.4)

5.3 A detailed example

We illustrate our approach with an example for a location on the Baltic Shield
(58◦N, 17◦E). We perform the Rayleigh and Love wave inversions and obtain
one and two dimensional marginals that provide the full information on the en-
tire ensemble of shear wave velocity models. Figures 5.4 and5.5 show the one-
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Figure 5.5:One-dimensional marginals indicating the change inVSV inversion parame-
ters (Fig. 5.2) from the reference model at the Baltic Shield(58◦N, 17◦E) location. The
limits on the x-axis give the limit of the prior marginal.

dimensional marginals for theVSH andVSV inversions, respectively. The one-
dimensional marginals show how well we are able to resolve the individual spline
coefficients (Fig. 5.2). Spline coefficients three to six arerelatively well resolved,
there are clearly defined areas of higher probability, whilespline coefficients ten
to twelve are completely unresolved (flat). From this we can infer that at this lo-
cation, we are able to resolveVSH andVSV best from 75 km to 400 km, but we
are unable to resolve shear wave velocity from 800 km to 1500 km. Comparing
the one-dimensional marginals for theVSH andVSV inversions, we notice that the
areas of highest probability are quite similar for both inversion indicating modest
anisotropy. The two-dimensional marginals (Fig. 5.6) are important to identify
trade-offs which show as diagonal alignments. Trade-offs exist, but they are weak
compared to our inability to resolve shear wave speed at certain depths. In gen-
eral, the one-dimensional marginals (Fig. 5.4, 5.5) are notGaussian, and not even
symmetric which reflects the non-linearity of the problem. This means that we
cannot represent them by a simple mean and a standard deviation.

We jointly resample the one-dimensional marginals forVSH andVSV to ob-
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Figure 5.6: Two-dimensional marginals for the inversion forVSV at the Baltic Shield
(58◦N, 17◦E) location. The contour lines indicate 1σ,2σ and 3σ. Darker shading means
higher probability. The limits on the axis give the limit of the prior marginal. The refer-
ence is the reference model for the specific point.

tain the one-dimensional marginals for the isotropic shearwave velocity and ra-
dial anisotropy (equations 5.3 and 5.4). Figure 5.7 shows the one-dimensional
marginals for anisotropy at the example location. Comparing the prior marginals
(limits of the x-axis) with the posterior marginals, we havenow obtained infor-
mation on all spline coefficients (all marginals of the spline coefficients show a
clearly defined maximum). This may seem surprising since theseparate marginals
for VSH andVSV show no information gain (flat marginals) for spline coefficients
ten to twelve. The theorem for the association of probability density functions
(see statistical textbooks) explain this. A particular case of association is the sum
which is governed by the Central Limit Theorem. Here, the formation ofξ is more
complicated and non-linear. Nevertheless, general properties remain the same:
the result is a peaked probability density and its moments depend strongly on the
individual spreads. It is difficult to have an intuition for the results, but for an un-
resolved spline forVSH andVSV (e.q. #9 in Fig. 5.7) the standard devivation for
ξ in percent is more than twice the initial sampling interval.For a resolved spline
(e.g. #3) the standard deviation forξ in percent is the same as the initial sampling
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interval. The standard deviations are not too meaningful, since most marginals
are skewed, except for the ones corresponding to unresolvedparameters. Still this
gives a feeling of what to expect.

5.4 Spherically averaged anisotropy

We performed the depth inversion and obtained the one-dimensional marginals
for anisotropy for all tesselation locations. The one-dimensional marginals at
each location are now averaged to compute the spherically averaged anisotropy
at each depth. We performed the sum by resampling the individual marginals.
The result is governed by the Central Limit Theorem and therefore the average
probability density at each depth is nearly Gaussian. It is thus meaningful to rep-
resent its mean and standard deviation. Figure 5.8 shows thespherically averaged
anisotropy. In the anisotropic zone, the positive (VSH > VSV ) spherically aver-
aged anisotropy corresponds quite well to anisotropic PREMas well as the results
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Figure 5.8:Spherically averaged anisotropy. Also indicated are the 95% confidence levels
(two standard deviations) and the anisotropic PREM model (Dziewonski and Anderson,
1981).

obtained by previous studies (Montagner and Kennett, 1996;Beghein et al., 2006;
Zhou et al., 2006). At 220 km, we observe a sign change in the average anisotropy
from positive (VSH > VSV ) to negative (VSV > VSH) anisotropy, which was also
observed by Montagner and Kennett (1996); Beghein et al. (2006); Zhou et al.
(2006), although Beghein et al. (2006) concluded that it is not significant due
to the large uncertainties in their linearised inversion. We find significant (95%
confidence or larger than two standard deviations) negativeaverage anisotropy
from 220 km down to the transition zone. The change in the signof anisotropy
could indicate a change from predominantly horizontal flow in the lithosphere
and asthenosphere to predominantly vertical flow in the deeper mantle assum-
ing that anisotropy is caused by the lattice preferred orientation of intrinsically
anisotropic mantle minerals by finite strain due to mantle flow. The peak in neg-
ative anisotropy around 300 km was also observed by Zhou et al. (2006). The
significant negative anisotropy continues through the transition zone which dis-
agrees with Montagner and Kennett (1996) who found positiveanisotropy in the
transition zone. In the lower mantle, we find no significant average anisotropy in
agreement with previous studies.
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Figure 5.9:Maps of probability of anisotropy (VSH > VSV ).

5.5 How probable is laterally varying anisotropy?

Our individual posterior probability density functions for ξ are clearly skewed
(Fig. 5.7), which makes it difficult to represent them by a mean and a standard
deviation. But our posterior probability density functions allow us to calculate the
probability thatVSH is larger thanVSV , for instance, which is the area under the
curve of the one-dimensional marginal for whichξ is larger than one. Figure 5.9
shows the distribution of the total probability of positive(VSH > VSV ) anisotropy
for various depths. Since the total area under a probabilitydensity function is
one (P (ξ > 1) + P (ξ < 1) = 1), the low probabilities of positive anisotropy
(Fig. 5.9) show the high probabilities of negative (VSH < VSV ) anisotropy. In the
anisotropic zone, we find a high probability of positive (VSH > VSV ) anisotropy,
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Figure 5.10:The probability that the amplitude of anisotropy is larger than 1% for differ-
ent tectonic areas. The definition of the tectonic areas is taken from 3SMAC (Nataf and
Richard, 1996). Young oceans correspond to oceanic crust younger than 50Ma, middle
oceans correspond to oceanic crust between 50Ma and 100Ma and old oceans corre-
spond to oceanic crust older than 100Ma. The probability of ahigher than 1% positive
anisotropy for cratonic, tectonic and platform areas (a), young, middle and old oceans
(c) and the probability of a higher than 1% negative anisotropy for cratonic, tectonic and
platform areas (d), young, middle and old oceans (d).

except for the cratonic areas. At 300 km, we see a change to a high probabil-
ity for negative anisotropy associated mainly with subduction zones and mid-
ocean ridges. Below the transition zone, we find a high probability of negative
anisotropy, but this does not give any details about the amplitude of anisotropy.
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Figure 5.11:The probability that the amplitude of anisotropy is larger than 2% for differ-
ent tectonic areas. The definition of the tectonic areas is taken from 3SMAC (Nataf and
Richard, 1996). Young oceans correspond to oceanic crust younger than 50Ma, middle
oceans correspond to oceanic crust between 50Ma and 100Ma and old oceans corre-
spond to oceanic crust older than 100Ma. The probability of ahigher than 2% positive
anisotropy for cratonic, tectonic and platform areas (a), young, middle and old oceans
(c) and the probability of a higher than 2% negative anisotropy for cratonic, tectonic and
platform areas (b), young, middle and old oceans (d).

Just as easily, our marginals allow us to compute the probability that anisotropy is
larger than 1% (P (|ξ| > 1.01)) or larger than 2% (P (|ξ| > 1.02)). Figures 5.10
and 5.11 show the probability of anisotropy with an amplitude larger than 1%
and 2%, respectively for different tectonic regions (defined from 3SMAC, Nataf
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and Richard, 1996). We computed the average probabilities over these regions by
resampling the one-dimensional marginals. From this averaged one-dimensional
marginal for the region, we computed the probability of anisotropy with an am-
plitude larger than 1% and 2%. Overall, we find the same pattern as for the aver-
age anisotropy; a high probability of positive anisotropy in the anisotropic zone,
and a high probability of negative anisotropy down through the transition zone
with two peaks around 300 km and 550 km. The probability of a high amplitude
(>2%) positive anisotropy in the anisotropic zone is high (>0.95) (Fig. 5.11).
The anisotropy in the transition zone is likely smaller in amplitude since only the
probability of negative anisotropy with an amplitude larger than 1% is as high as
0.6-0.8. In the lower mantle, the probability that the amplitude of anisotropy is
larger than 1% is exceedingly low. If present, the amplitudeof anisotropy in the
lower mantle is too small to be mapped with any confidence.

5.6 Discussion

In the uppermost mantle we find a high probability of anisotropy with fast horizon-
tally polarized shear waves in the oceans and continents (Fig. 5.9). The amplitude
of the anisotropy is likely to be large (>2%, figure 5.11). The probability of a
large amplitude of anisotropy shows a difference between different regions. The
oceanic areas show the highest probabilities, while the cratonic areas show the
lowest probabilities down to 200 km (Fig. 5.10a, 5.11a). From 200 to 400 km, the
cratonic areas and old oceans show a higher probability of positive (VSH > VSV )
anisotropy. This corresponds roughly to an earlier observation by Gung et al.
(2003), who found fast horizontally polarized shear wave anisotropy underneath
oceans from 80 to 250 km and underneath cratons from 250 to 400km. They
explained this by a low-viscosity asthenospheric channel at different depths un-
derneath oceans and continents.

From 200 km to 400 km we find prominent features of fast vertically polarized
shear wave anisotropy at mid-ocean ridges and subduction zones (Fig. 5.9). The
tectonic regions (Fig. 5.10, 5.11) and young oceanic regions show indeed much
higher probability of negative (VSV > VSH) anisotropy from 200 to 400 km.
The probability of a significant amplitude (>1%/2%) of negative (VSV > VSH)
anisotropy (Fig. 5.10, 5.11) shows a peak at 300 km, for all tectonic areas. The
probability that the amplitude of negative anisotropy is more than 1% is more
than 0.8 for the young oceans and tectonic areas. The probability that the am-
plitude is larger than 2% is 0.6 for the mid-ocean ridges and 0.7 for the tectonic
areas, indicating a possible amplitude difference betweenthe mid-ocean ridges
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and subduction zones. This agrees with the models of Gung et al. (2003); Panning
and Romanowicz (2006); Zhou et al. (2006) who also found negative anisotropy
associated with mid-ocean ridges and subduction zones at these depths. Zhou
et al. (2006) found negative anisotropy at mid-ocean ridgesvisible from 120 km
down to the transition zone. Figure 5.10d shows that the probability of negative
anisotropy, with an amplitude larger than 1%, is different for young oceans and
middle aged oceans from about 120 km down to the transition zone. This corre-
sponds to the finding of Zhou et al. (2006).

If we assume that anisotropy is caused by the lattice preferred orientation of
intrinsically anisotropic minerals under strain in the mantle, we observe evidence
of predominantly horizontal flow in the anisotropic zone andpredominantly ver-
tical flow below. The horizontal flow in the lithosphere has probably been frozen
in at the time of the formation of the lithosphere or at the last major episode of
its deformation while the horizontal flow in the asthenosphere is probably due to
plate motion. Down from about 120 km we observe evidence of vertical flow at
mid-ocean ridges, and down from about 200 km we also observe evidence of ver-
tical flow at subduction zones. The vertical flow associated with the mid-ocean
ridges and subduction zones extends at least down to the transition zone.

In the transition zone we find in general a high probability ofradial anisotropy
with fast vertically polarized shear waves (P<0.40, Fig. 5.9). Panning and Ro-
manowicz (2006) found anisotropy with fast vertically polarized shear waves as-
sociated with subduction zones in the transition zone. The total probability of
large (>2%) anisotropy (Fig. 5.11b,d) shows a peak at 550 km, but is atmost 0.5.
The amplitude of anisotropy in the transition zone is likelybetween 1% and 2%
(compare Fig. 5.10b,d and 5.11b,d). Also, the amplitude of negative anisotropy
seems to be lower for the oceanic areas. The observed anisotropy in the transition
zone could be explained by quasi vertical flow in the subduction zones. The mech-
anism of the anisotropy could be the alignment of spinel crystals or the alignment
of pockets of strongly contrasting garnetite from oceanic crust (Karato, 1998a).

Although figure 5.9 shows a large probability of fast vertically polarized shear
wave anisotropy, the probability of a significant amplitude(>1%) is low (Fig. 5.10
b,d). The lower mantle is most likely isotropic, which corresponds to earlier find-
ings of Panning and Romanowicz (2006) and Meade et al. (1995). An isotropic
lower mantle could be explained by superplastic flow (Karato, 1998a), because
in superplastic flow the minerals do not align in preferred orientations. Even
though the minerals themselves are highly anisotropic, seismic waves would see
an isotropic lower mantle.
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5.7 Conclusions

We performed the last step in a three-stage inversion (Yoshizawa and Kennett,
2002) for radially anisotropic structure of the mantle. In the first stage, we applied
waveform fitting using a model space search approach to obtain fundamental and
higher mode Love and Rayleigh wave phase velocity measurements (Visser et al.,
2007a). The second stage (Visser et al., 2007b) consisted ofinverting the fun-
damental and higher mode Love and Rayleigh phase velocity measurements to
obtain global isotropic and azimuthally anisotropic phasevelocity maps. In the
third stage, presented here, we invert the isotropic phase velocity maps, includ-
ing their uncertainties, for Love and Rayleigh waves separately to obtain a global
VSH andVSV model. We invert the phase velocity maps using a fully non-linear
model space search approach. We tested that we could invert Love and Rayleigh
wave phase velocities separately. The model space search provides us with the
whole ensemble ofVSV andVSH models and we resample these ensembles to
obtain an ensemble of isotropic and anisotropic models. Since we know not only
the best anisotropic model but the whole ensemble of models we can compute the
total probability of positive (VSH > VSV ) or negative (VSV > VSH) anisotropy as
well as compute the probability that the amplitude of anisotropy is above a certain
amplitude (1%,2%).

We find a high probability of anisotropy with fast horizontally propagating
shear waves (horizontal flow), in the upper mantle down to 200km. For cratons,
this fast horizontally propagating shear wave anisotropy (horizontal flow) is found
down to 400 km. The amplitude of positive anisotropy in the uppermost mantle
is likely to be large (>2%) in the lithosphere and decreases down to 200 km. In
the lithosphere, the observed anisotropy could be related to anisotropy frozen in
at the time of formation or last significant deformation. From about 120 km, we
find a high likelihood of fast vertically polarized shear wave anisotropy (vertical
flow) associated with mid-ocean ridges and from about 200 km the fast vertically
polarized shear wave anisotropy is also associated with subduction zones. This
extends down to the transition zone. The amplitude of this anisotropy just above
the transition zone (300 km) is probably large (>2%). The transition zone is dom-
inated by fast vertically polarized shear wave anisotropy (vertical flow), although
the amplitude is likely lower (between 1% and 2%). The lower mantle appears
isotropic.
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Chapter 6

Summary and Conclusions

In this thesis we present all three stages of the inversion approach proposed by Ken-
nett and Yoshizawa (2002). The three stage inversion approach consists of obtain-
ing fundamental and higher mode Love and Rayleigh wave phasevelocity mea-
surements through waveform fitting in the first stage, combining them into mul-
timode phase velocity models using the path average assumption in the second
stage and an inversion for local shear wave speed propertiesto obtain a three-
dimensional shear wave velocity model in the third stage. Yoshizawa and Ken-
nett (2002) showed that multiple one-dimensional shear wave velocity models ob-
tained through waveform fitting with a slight difference in misfit share the same
dispersion characteristics, indicating that the phase velocity measurements may
be regarded as a representation of the multimode dispersioncharacteristics along
the source-receiver path. This is not as restricting as the assumption of the path
average approximation in a regular two stage inversion approach where the shear
wave velocity model is regarded as an average over the sourcereceiver path. At
each stage, particular care has been taken to assess the uncertainties.

In chapter 2, we present the first stage of the three stage inversion approach,
which consists of measuring fundamental and higher mode Love and Rayleigh
wave phase velocity measurements through waveform fitting.We present the
fully automated procedure to measure the phase velocities and all the tests we
performed to validate the procedure. For the waveform inversion we use a model
space search approach. The advantage of a model space searchapproach is that
it enables us to obtain consistent uncertainties for the phase velocity measure-
ments. The model space is given by twelve natural cubic spline functions that
together represent a one-dimensional shear wave velocity model. The synthetic
seismogram, calculated from this shear wave velocity model, is compared to the

119
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observed seismogram using a certain misfit criteria. For themodel space search
we use the Neighbourhood Algorithm (Sambridge, 1999a,b). The Neighbourhood
Algorithm samples preferentially in areas of better fit. In the end, the model space
search provides us not just with one one-dimensional shear wave velocity model
but with an ensemble of one-dimensional shear wave velocitymodels and their
corresponding fit to the seismogram. This ensemble is used toconstruct the pos-
terior probability density function for phase velocities of specific modes. The
one-dimensional marginals are Gaussian shaped, and we can therefore represent
the phase velocity measurements by a mean and a standard deviation. We tested
each step of the method extensively as described in chapter two. For example, we
studied the parameterization (theoretical resolution, number and shape of the basis
functions), misfit criteria, convergence of the model spacesearch, prior informa-
tion, use of Bayesian statistics and so on. An important issue is the dependence of
the standard deviations on the range of the model space. Thisis solved by choos-
ing the range of the model space such that our standard deviations agree with
those from cluster analysis. Trampert and Woodhouse (2001)showed that uncer-
tainties obtained by cluster analysis are in agreement withuncertainties obtained
for comparing model predictions to real seismograms. This anchoring turns the
consistent relative uncertainties to consistent absoluteuncertainties.

Chapter three presents the Love wave phase velocity measurements. Love
wave higher mode phase velocity measurements are more difficult to measure
since the fundamental mode and higher modes travel closely together which caus-
es an overlap of the fundamental mode and higher mode waveforms. The higher
mode phase velocity measurements compare well to other studies (Van Heijst and
Woodhouse, 1999; Lebedev et al., 2006), with 65% of our higher mode phase ve-
locity measurements falling within one standard deviationcompared to the mea-
surements of Van Heijst and Woodhouse (1999). The resultingphase velocity
maps agree well with the S20RTS model by Ritsema et al. (1999), except in the
Pacific ocean between 1000 and 1500 km. Since S20RTS is based on Rayleigh
equivalent waves this could indicate radial anisotropy (VSH < VSV ) around the
Pacific superplume.

In chapter four, we present the second stage of the three stage approach,
where we build multimode phase velocity maps as a function offrequency us-
ing the path average assumption. We invert the fundamental and higher mode
Love and Rayleigh wave phase velocities for global isotropic and azimuthally
anisotropic phase velocity maps. Prior to inversion, we determine the optimum
relative weighting for the isotropic and azimuthally anisotropic terms. We found
that all fundamental and higher mode measurements require anisotropy. Spe-
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cial care was taken to obtain the posterior model uncertainties, needed for the
depth inversion in the next chapter. The isotropic higher mode models compare
well to the models of Van Heijst and Woodhouse (1999) and the fundamental
mode azimuthally anisotropic models correlate well with the models of Tram-
pert and Woodhouse (2003) and hence with equivalent work from other research
groups (Becker et al., 2007). We further examined the effectof spectral leakage,
trade-offs between the isotropic and anisotropic terms anddamping on the resolu-
tion matrix and found that the trade-offs are small. The average resolution for the
isotropic models is of degree 25, the 2ψ models of degree 8 and the 4ψ models of
degree 9. Indications are that the source of azimuthal anisotropy is complex and
a detailed depth inversion is needed to clarify this.

Finally in chapter five, we present the last stage and invert the phase veloc-
ity maps to obtain a radially anisotropic shear wave velocity model using a model
space search approach. For 492 locations on the Earth (equivalent to spherical har-
monic degree 20), we invert the local azimuthally averaged phase velocity maps
for radial anisotropy taking the full non-linearity into account. We separately in-
verted the Rayleigh wave phase velocities for a vertically polarized shear wave
velocity model and the Love wave phase velocities for a horizontally polarized
shear wave velocity model and combine the shear wave velocity models to obtain
an isotropic and radially anisotropic shear wave velocity model. We checked that
this separation was permissible. Since we use a model space search approach, we
not only find the best model but the whole ensemble of models, giving the pos-
terior probability density functions for the vertically and horizontally polarized
shear wave velocity model and the isotropic and radially anisotropic shear wave
velocity model. The one-dimensional marginals are not Gaussian and, therefore,
cannot be represented by an average and a standard deviation. For the anisotropic
model, we decided to compute the total probability of radialanisotropy and like-
wise that the amplitude of anisotropy is above 1% or 2%. We finda lithosphere
dominated by fast horizontally polarized shear wave anisotropy (horizontal flow),
with a significant amplitude (>2%) except underneath cratons. This anisotropy is
probably frozen in at the time of the formation of the lithosphere. The astheno-
sphere is dominated by fast vertically polarized shear waveanisotropy (vertical
flow), with a probability of more than 70% that the amplitude is large (>2%) at
300 km. The fast vertically polarized shear wave anisotropyis associated with
mid-ocean ridges (from 120 km) and subduction zones (from 200 km). The tran-
sition zone is also dominated by fast vertically polarized shear wave anisotropy
(vertical flow), although the amplitudes are likely smaller(1%-2%). Finally, the
lower mantle appears to be mostly isotropic (or anisotropicwith a very low am-
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plitude,<1%), which corresponds to earlier findings.
This seems contrary to the observation in chapter three of radial anisotropy

(VSV > VSH) in the Pacific. If we, however, compute the probability thatVSV >
VSH for the Pacific area shown in chapter 3, we find a high probability (75 - 80 %)
that this area is radially anisotropic. The probability that the amplitude of this ra-
dial anisotropy is larger than 1% is 30% at 1000 km and decreases to 20% at 1500
km. These probabilities are higher than the probabilities shown in figure 5.10 for
other tectonic areas. Therefore the results in chapter five do not exclude radial
anisotropy in the Pacific as observed in chapter three, a large amplitude (>1%) is
however not very likely (30%). Furthermore, the isotropic model in chapter 3 is
an average velocity model and can be seen as one realization,while the radially
anisotropic model in chapter 5 represents a posterior probability density function
which contains all possible anisotorpic velocity models.

So, in conclusion we have shown that measuring higher modes for single seis-
mograms is possible up to the sixth higher mode using a waveform inversion.
We obtained a large dataset of higher mode measurements (>350,000), using a
fully automated approach and inverted them to obtain isotropic and azimuthally
anisotropic phase velocity maps. We have also shown that we can invert the
azimuthally averaged phase velocity maps to obtain a radially anisotropic shear
wave velocity model, using a fully non-linear approach which was possible with
up-to-date computing power. Throughout the whole study we have paid careful
attention to the uncertainties, which proved vital in the search for significant ra-
dial anisotropy. For future work, we suggest to apply a detailed depth inversion
using finite frequency kernels to the azimuthal anisotropicphase velocity maps to
provide more information on the depth extent of significant azimuthal anisotropy.
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Appendix A

Isotropic phase velocity maps

This appendix shows some of the isotropic phase velocity models which we ob-
tained in chapter 4. We show the phase velocity models at selected periods for
the fundamental mode up to the sixth higher mode Rayleigh andthe fundamental
mode up to the fifth higher mode Love surface waves.

Figure A.1: Color scale of figures in appendix A, the maximum amplitude isgiven in
percent above each figure.
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Figure A.2: Relative isotropic phase velocity maps with respect to PREMfor the fun-
damental mode Rayleigh at the indicated periods. The maximum amplitude of the color
scale is indicates in percent.
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Figure A.3: Relative isotropic phase velocity maps with respect to PREMfor the first
higher mode Rayleigh at the indicated periods. The maximum amplitude of the color
scale is indicates in percent.
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Figure A.4:Relative isotropic phase velocity maps with respect to PREMfor the second
higher mode Rayleigh at the indicated periods. The maximum amplitude of the color scale
is indicates in percent.
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Figure A.5: Relative isotropic phase velocity maps with respect to PREMfor the third
higher mode Rayleigh at the indicated periods. The maximum amplitude of the color
scale is indicates in percent.
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Figure A.6: Relative isotropic phase velocity maps with respect to PREMfor the fourth
higher mode Rayleigh at the indicated periods. The maximum amplitude of the color scale
is indicates in percent.
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Figure A.7: Relative isotropic phase velocity maps with respect to PREMfor the fifth
higher mode Rayleigh at the indicated periods. The maximum amplitude of the color
scale is indicates in percent.
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Figure A.8: Relative isotropic phase velocity maps with respect to PREMfor the sixth
higher mode Rayleigh at the indicated periods. The maximum amplitude of the color
scale is indicates in percent.
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Figure A.9:Relative isotropic phase velocity maps with respect to PREMfor the funda-
mental mode Love at the indicated periods. The maximum amplitude of the color scale is
indicates in percent.
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Figure A.10:Relative isotropic phase velocity maps with respect to PREMfor the first
higher mode Love at the indicated periods. The maximum amplitude of the color scale is
indicates in percent.
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Figure A.11:Relative isotropic phase velocity maps with respect to PREMfor the second
higher mode Love at the indicated periods. The maximum amplitude of the color scale is
indicates in percent.
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Figure A.12:Relative isotropic phase velocity maps with respect to PREMfor the third
higher mode Love at the indicated periods. The maximum amplitude of the color scale is
indicates in percent.
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Figure A.13:Relative isotropic phase velocity maps with respect to PREMfor the fourth
higher mode Love at the indicated periods. The maximum amplitude of the color scale is
indicates in percent.
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Figure A.14:Relative isotropic phase velocity maps with respect to PREMfor the fifth
higher mode Love at the indicated periods. The maximum amplitude of the color scale is
indicates in percent.



Appendix B

Anisotropic phase velocity maps

This appendix shows the azimuthally anisotropic 2ψ and 4ψ phase velocity maps
obtained in chapter 4. We show the azimuthally anisotorpic phase velocity mod-
els at selected periods for the fundamental up to the sixth higher mode Rayleigh
and the fundamental up to the fifth higher mode Love waves. In each figure, the
grey scale in the background corresponds to the peak-to-peak amplitude of aniso-
torpy expressed relative to the average phase velocity calculated from PREM. The
black lines correspond to the fast directions which are alsoscaled to the ampli-
tude shown in the background. The plate boundaries and hotspots are indicated in
white.

Figure B.1:Color scale of figures in appendix B
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Figure B.2: Azimuthal anisotropic 2ψ phase velocity maps for the fundamental mode
Rayleigh at the indicated periods.
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Figure B.3: Azimuthal anisotropic 2ψ phase velocity maps for the first higher mode
Rayleigh at the indicated periods.
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Figure B.4: Azimuthal anisotropic 2ψ phase velocity maps for the second higher mode
Rayleigh at the indicated periods.
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Figure B.5: Azimuthal anisotropic 2ψ phase velocity maps for the third higher mode
Rayleigh at the indicated periods.
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Figure B.6: Azimuthal anisotropic 2ψ phase velocity maps for the fourth higher mode
Rayleigh at the indicated periods.
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Figure B.7: Azimuthal anisotropic 2ψ phase velocity maps for the fifth higher mode
Rayleigh at the indicated periods.
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Figure B.8: Azimuthal anisotropic 2ψ phase velocity maps for the sixth higher mode
Rayleigh at the indicated periods.
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Figure B.9:Azimuthal anisotropic 2ψ phase velocity maps for the fundamental mode Love
at the indicated periods.
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Figure B.10:Azimuthal anisotropic 2ψ phase velocity maps for the first higher mode Love
at the indicated periods.
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Figure B.11:Azimuthal anisotropic 2ψ phase velocity maps for the second higher mode
Love at the indicated periods.
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Figure B.12:Azimuthal anisotropic 2ψ phase velocity maps for the third higher mode
Love at the indicated periods.
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Figure B.13:Azimuthal anisotropic 2ψ phase velocity maps for the fourth higher mode
Love at the indicated periods.
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Figure B.14:Azimuthal anisotropic 2ψ phase velocity maps for the fifth higher mode Love
at the indicated periods.
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Figure B.15:Azimuthal anisotropic 4ψ phase velocity maps for the fundamental mode
Rayleigh at the indicated periods.
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Figure B.16: Azimuthal anisotropic 4ψ phase velocity maps for the first higher mode
Rayleigh at the indicated periods.
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Figure B.17:Azimuthal anisotropic 4ψ phase velocity maps for the second higher mode
Rayleigh at the indicated periods.
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Figure B.18:Azimuthal anisotropic 4ψ phase velocity maps for the third higher mode
Rayleigh at the indicated periods.
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Figure B.19:Azimuthal anisotropic 4ψ phase velocity maps for the fourth higher mode
Rayleigh at the indicated periods.
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Figure B.20: Azimuthal anisotropic 4ψ phase velocity maps for the fifth higher mode
Rayleigh at the indicated periods.
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Figure B.21: Azimuthal anisotropic 4ψ phase velocity maps for the sixth higher mode
Rayleigh at the indicated periods.
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Figure B.22:Azimuthal anisotropic 4ψ phase velocity maps for the fundamental mode
Love at the indicated periods.
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Figure B.23:Azimuthal anisotropic 4ψ phase velocity maps for the first higher mode Love
at the indicated periods.
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Figure B.24:Azimuthal anisotropic 4ψ phase velocity maps for the second higher mode
Love at the indicated periods.
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Figure B.25:Azimuthal anisotropic 4ψ phase velocity maps for the third higher mode
Love at the indicated periods.
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Figure B.26:Azimuthal anisotropic 4ψ phase velocity maps for the fourth higher mode
Love at the indicated periods.
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Figure B.27:Azimuthal anisotropic 4ψ phase velocity maps for the fifth higher mode Love
at the indicated periods.
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Appendix C

Shear wave velocity maps

This appendix shows aVSH , VSV and an isotropic velocity model obtained in
chapter 5. As the velocity models are taken from the mean of the one-dimensional
marginals, they represent one realization of the velocity models out of many pos-
sibilities. The low amplitudes are caused by the choice of plotting the mean of
the one-dimensional marginal. They would be higher when plotting the maximum
probability models (drawn from the maximum of the one-dimensional marginals).
This relation between the mean and maximum probability models can be seen in
figure 5.7. The patterns of higher and lower velocity are verysimilar to results ob-
tained by Ferreira et al. (2007), the main difference is a lower resolution (spher-
ical harmonic degree 20) and lower amplitudes (mean of the one-dimensional
marginals). The velocity models are plotted with respect tothe global mean at the
indicated depths. On top of each panel we indicate the depth (km), the reference
mean velocity (m/s) and the variation with respect to this mean (%).

Figure C.1: Color scale of figures in appendix C, the maximum amplitude isgiven in
percent above each figure.
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Figure C.2:Relative horizontally polarized shear wave velocity maps with respect to the
mean as indicated. The maximum amplitude of the color scale is indicates in percent.
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Figure C.3: Relative vertically polarized shear wave velocity maps with respect to the
mean as indicated. The maximum amplitude of the color scale is indicates in percent.
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Figure C.4: Relative isotropic shear wave velocity maps with respect tothe mean as
indicated. The maximum amplitude of the color scale is indicates in percent.



Samenvatting en conclusies
(Summary and conclusions in
Dutch)

Overal op de wereld worden aardbevingen geregistreerd met seismometers. De
golven die door de aarde reizen na een aardbeving geven informatie over het ge-
steente waar ze doorheen hebben gereisd. Dus als wij hier in Utrecht een aard-
beving registeren die plaatsvond in Japan, dan geeft het seismogram informatie
over het hele pad dat de golven hebben afgelegd van Japan tot in Utrecht. Er
zijn verschillende aardbevingsgolven die op verschillende tijden aankomen in het
seismogram. Eerst komen de drukgolven aan die door de aarde heen reizen; we
noemen deze de P golven. Deze worden gevolgd door transversale golven die ook
door de aarde heen reizen, de S golven. Deze golven worden op enige afstand
gevolg door de oppervlaktegolven. De oppervlaktegolven reizen langs het aard-
oppervlak en hebben de grootste amplitude, waardoor ze ook de meeste schade
aanrichten na een aardbeving. De oppervlaktegolven die in het horizontale vlak
geregistreerd worden op de seismometer worden Love-golvengenoemd en de op-
pervlakte golven die op het vertikale vlak van de seismometer geregistreerd wor-
den, worden Rayleigh-golven genoemd. Oppervlaktegolven zijn dispersief, wat
wil zeggen dat elke frequentie op een andere tijd aankomt. Delage frequenties
komen eerst aan, gevolgd door de hoge frequenties. De snelheid waarmee elke
frequentie reist wordt de fasesnelheid genoemd. De oppervlaktegolven noemen
we ook wel de grondtoon. De boventonen van oppervlaktegolven komen in het
seismogram aan net voor de grondtoon en reizen dus met een hogere snelheid. De
meeste energie van de grondtoon reist door de bovenste 400 kmvan de aarde, ter-
wijl de energie van de boventonen door diepere structuren heenreist, afhankelijk
van de frequentie van de boventoon. Boventonen geven dus meer informatie over
diepere structuren.

In dit proefschrift presenteren we de drie stadia inversiebenadering zoals voor-
gesteld door Kennett en Yoshizawa (200). Het doel van deze inversiebenadering
is het verkrijgen van een S-snelheidsmodel met de diepte. Een simpel voorbeeld
van een inversie is de som x=2y. Als je y weet, kan je meteen x berekenen, maar
als je x weet en je wilt eigenlijk y weten moet je de inverse berekenen, namen-
lijk y=1/2x. In het eerste stadium verkrijgen we de fasesnelheidsmetingen van
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de grondtoon en boventonenen van Love- en Rayleigh-golven door middel van
een golfvorminversie. Deze metingen worden gebruikt in hettweede stadium om
fasesnelheidskaarten te maken. Daarbij nemen we aan dat de gemeten fasesnel-
heden per seismogram de gemiddelde fasesnelheden aangevenvan het pad tussen
de oorsprong (aardbeving) en de ontvanger (seismometer). Het derde stadium is
een inversie van de fasesnelheidskaarten voor een S-snelheidsmodel met de diepte,
ook wel een diepte-inversie genoemd. In een normale twee stadia inversiebenader-
ing geeft het eerste stadium de meting van S-snelheidsprofielen met de diepte per
seismogram en het tweede stadium de inversie voor een S-snelheidsmodel met
de diepte. In deze benadering word aangenomen dat de S-snelheid gemeten per
seismogram de gemiddelde S-snelheid is tussen de oorsprongen de ontvanger.
Deze aanname is echter niet altijd waar. Yoshizawa en Kennett (2002) hebben
laten zien dat verschillende S-snelheidsprofielen in het eerste stadium dezelfde
fasesnelheden hebben. De gemiddelde pad aanname in de drie stadia inversie is
daarom veel beter dan in een normale twee stadia inversiebenadering.

In hoofdtuk twee presenteren we het eerste stadium van de inversie: het meten
van fasesnelheden voor de grondtoon en boventonen van Love en Rayleigh op-
pervlaktegolven. Het is heel moeilijk om de fasesnelheid van de boventonen
te meten, omdat ze een veel kleinere amplitude hebben in vergelijking met de
grondtoon en vaak (bijna) tegelijkertijd met de grondtoon aankomen. De sig-
nalen van de grondtoon en boventonen kun je dus vaak niet van elkaar schei-
den. Om de fasesnelheden te meten gebruiken we een golfvorminversie. In dit
geval weten we de golfvorm maar we willen de fasesnelheid weten. De manier
waarop wij dit oplossen is door middel van een Monte Carlo zoektechniek. In
een Monte Carlo zoektechniek doorzoek je de modelruimte vanje probleem. Elk
punt in onze model ruimte correspondeerd met een golfvorm die we vergelijken
met onze geobserveerde golfvorm, door middel van een misfit criterium. Als
we de golfvorm vinden die (bijna) gelijk is aan onze geobserveerde golfvorm
(minimale misfit tussen de geobserveerde en berekende golfvorm) dan hebben we
ook de fasesnelheden ontdekt van de geobserveerde golfvorm. Het mooie van
het gebruik van een modelruimte-onderzoek is dat je niet alleen weer waar je
beste model in de model ruimte zit, maar je weet ook alle andere modellen in de
model ruimte met hun misfit. Nu kunnen we (Bayesiaanse) statistiek toepassen
op de modelruimte en hieruit kunnen we de waarschijnlijkheid van waardes van
elke dimensie van de modelruimte berekenen. Dus voor elke van onze fasesnel-
heden krijgen we een waarschijnlijkheidscurve van de waardes van de fasesnel-
heid. Deze waarschijnlijksheidscurves zijn vrij Gaussisch van vorm en daarom
kunnen we de fasesnelheden weergeven met een gemiddelde waarde (die gelijk is
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aan de maximale waarschijnlijkheid) en een standaarddeviatie (een variatie). Dus
een typische gemeten fasesnelheid is bijvoorbeeld 4 km/s±40 m/s. Het bereke-
nen van de waarschijnlijkheidscurve is nog nooit gedaan voor fasesnelheden en zo
krijgen we dus niet alleen de fasesnelheden maar ook de onzekerheden die erbij
horen. Omdat we de hele golfvorm gebruiken krijgen we niet alleen de fasesnel-
heden voor de grondtoon maar ook die van de boventonen. Hoofstuk twee legt
uit hoe deze volledig geautomatiseerde methode werkt en laat alle testen zien (de
validatie van de methode).

Omdat de fasesnelheden voor de hogere ordes oppervlaktegolven voor Love-
golven nog veel moeilijker te meten zijn dan die voor Rayleigh, gaat hoofdstuk
drie speciaal over de gemeten fasesnelheden van de Love-boventonen. De fase-
snelheden worden vergeleken met vorige studies en we concluderen dat 65% van
onze fasesnelheden binnen één standaarddeviatie vallenin vergelijking met de
metingen van Van Heijst en Woodhouse (1999). De gemeten fasesnelheden per
seismogram bevatten informatie over het pad dat de golven hebben afgelegd van
de bron (de aardbeving) naar de ontvanger (seismometer). Als je de fasesnelheden
meet van een grote hoeveelheid seismogrammen, kun je deze combineren tot fase-
snelheidskaarten van de aarde. Deze fasesnelheidskaartenhebben we vergeleken
met een eerder gepubliceerd S-snelheidsmodel (S20RTS) en we vinden een goede
overeenkomst.

In een anisotroop medium hangt de snelheid van seismische golven die reizen
door dit medium af van de richting waarin de seismische golven reizen. Een sim-
pel geval is een horizontaal gelaagd medium. De snelheid vanseismische golven
die hier verticaal doorheenreizen (bijvoorbeeld Rayleigh-golven) zal kleiner zijn
dan de snelheid van seismische golven die hier horizontaal (bijvoorbeeld Love-
golven) doorheen reizen. Dit wordt ook wel radiale anisotropie genoemd. De
anisotropie is onafhankelijk van de bewegingsrichting in het horizontale vlak. Als
we dit gelaagd medium een beetje schuin zetten, zullen de seismische golven die
horizontaal door het medium heenreizen nog steeds sneller zijn, maar de snelheid
zal nu ook afhangen van de richting van de horizontale seismische golven door het
medium. Dit wordt ook wel azimutale (hoek) anisotropie genoemd. De snelheid
van de seismische golven hangt nu ook af van het azimut (de hoek) van voortplan-
ting door het medium. De oorzaak van anisotropie in de aarde is waarschijnlijk de
orientatie van mineralen in de aarde. Als mineralen onder spanning staan, gaan
ze zich zo richten dat de snelle richtingen oplijnen in de richting van de span-
ning. Een snelle vertikale snelheid wordt zo waarschijnlijk veroorzaakt door een
vertikale stroming, en een snelle horizontale snelheid wordt waarschijnlijk veroor-
zaakt door een horizontale stroming. In het geval van azimutale anisotropie hangt
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de (hoge) horizontale snelheid af van de richting van de horizontale stroming.
In de plaattektoniek worden aardplaten gecreëerd bij mid-oceanische ruggen en
zinken ze in de aardmantel bij de subductiezones. De stroming in de ondiepe
aardmantel is dus van de mid-oceanische rug naar de subductiezone. Een hor-
izontale snelheid met deze stroming mee zal hoger zijn dan een loodrecht erop
vanwege de oriëntatie van de mineralen in de stroming.

In hoofdstuk vier presenteren we het tweede stadium van de inversie: het
maken van de isotrope en azimutale anisotrope fasesnelheidskaarten van de aarde
door middel van een inversie van de gemeten fasesnelheden van hoofdstuk twee.
Voor de inversie bepalen we de onderlinge verhoudingen voorde isotrope en az-
imutale anisotrope termen. We vinden dat de fasesnelheden van de grondtoon
en boventonen alleen verklaard kunnen worden met azimutaleanisotropie. Verder
hebben we veel aandacht geschonken aan het bepalen van de modelonzekerheden,
omdat we deze nodig hebben in het volgende hoofdstuk voor de diepte-inversie.
De isotrope boventoon fasesnelheidskaarten en de azimuthale anisotrope fasesnel-
heidskaarten van de grondtoon komen overeen met die van andere studies. Als
laatste kijken we naar de eventuele lekkage van de isotrope informatie in de az-
imutale anisotrope kaarten en andersom en we vinden dat dit effect verwaarloos-
baar is.

In hoofdstuk vijf presenteren we het derde stadium van de inversie: het inver-
teren van de fasesnelheidskaarten van hoofdstuk vier om eenS-snelheidsmodel te
verkrijgen met de diepte. Voor 492 locaties op de aarde inverteren we de fase-
snelheidskaarten waar de azimuthale anisotropie eruit gehaald is voor een radi-
aal anisotroop diepteprofiel met een volledig niet-lineareinversie. De Rayleigh-
fasesnelheidskaarten worden geı̈nverteerd voor een SV profiel (een vertikaal gepo-
larizeerd S-snelheidsprofiel) en de Love-fasesnelheidskaarten worden geı̈nverteerd
voor een SH profiel (horizontaal gepolarizeerd S-snelheidsprofiel). De SV en SH
profielen worden gecombineerd in een isotroop en anisotroopprofiel. We ge-
bruiken weer een modelruimte-onderzoek, wat ons niet alleen het beste model
oplevert, maar ook andere modellen in de modelruimte met hunmisfit. De waar-
schijnlijkheidscurves zijn dit keer echter niet Gaussisch, waardoor we de profie-
len niet kunnen presenteren als een gemiddelde en een standaarddeviatie. Daarom
hebben we besloten om de waarschijnlijkheid van radiale anisotropie te berekenen
voor verschillende tektonische gebieden op aarde (oceaan,continent, tektonische
gebieden, cratons, platforms), evenals de waarschijnlijkheid dat de amplitude van
de radiale anisotropie boven de 1% of 2% uitkomt. De lithosfeer (0-100 km) wordt
gedomineerd door snelle horizontaal gepolarizeerde S-anisotropie (horizontale
stroming), met een significante amplitude (>2%), behalve onder cratons. Deze
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anisotropie werd waarschijnlijk veroorzaakt door de vorming van de lithosfeer en
is nu ’bevroren’. De asthenosfeer (100-220 km) wordt gedomineerd door snelle
vertikaal gepolarizeerde S-anisotropie (vertikale stroming). Ook vinden we een
waarschijnlijkheid van meer dan 70% dat de amplitude van de anisotropie boven
de 2% ligt op 300 km. De snelle vertikaal gepolarizeerde S-anisotropie wordt
geassocieerd met de mid-oceanische ruggen, waar materiaaluit de aardmantel
naar boven komt, en subductie zones, waar materiaal in de aardmantel zinkt. De
transitiezone (400-670 km) wordt ook gedomineerd door snelle vertikaal gepolar-
izeerde S-anisotropie, maar de amplitudes zijn waarschijnlijk kleiner (1%-2%).
De ondermantel (670 - 1500 km) lijkt vooral isotroop (of anisotroop met een zeer
kleine amplitude). Dit komt overeen met eerdere studies.

We hebben laten zien dat we boventonen kunnen meten voor enkele seis-
mogrammen tot de zesde boventoon met een golfvorminversie.De grote hoe-
veelheid metingen (>350,000), verkregen met een volledig geautomatiseerde be-
nadering, worden geı̈nverteerd voor isotrope en azimutaleanisotrope fasesnel-
heidskaarten. Verder hebben we laten zien dat we deze fasesnelheidskaarten
kunnen inverteren voor een radiaal anisotroop model gebruik makende van een
volledig niet-lineaire benadering, wat alleen mogelijk was met moderne compu-
terkracht. Verder hebben we veel aandacht geschonken aan deonzekerheden, die
heel belangrijk bleken in de zoektocht naar significante radiale anisotropie. In de
toekomst zou het interessant zijn om een diepte-inversie toe te passen op de az-
imuthale anisotropie fasesnelheidskaarten om meer informatie te verkrijgen over
het dieptebereik van de azimuthale anisotorpie.
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