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Chapter 1

Introduction

1.1 Seismic Tomography

Seismic tomography was developed in the mid 1970s (Aki efl@l/7; Dziewon-
ski et al., 1977; Dziewonski, 1984; Woodhouse and Dziewipri€84) as a way
to infer information about the Earth’s three-dimensionaliure from seismic
waves. Since then, body waves have been used to map the Halvtilygand
regionally (van der Hilst et al., 1997; Kennett et al., 1998diyantoro et al.,
1999; Bijwaard and Spakman, 2000; Masters et al., 2000as¢ar and van der
Hilst, 2001; Amaru, 2007) while surface waves have maingrbased to map the
crustal and upper mantle structure (Ekstrom et al., 19@ZwRller and Levshin,
1998; Debayle and Kennett, 2000; Shapiro and Ritzwolled22@®Romanowicz,
2003; Trampert and Woodhouse, 2003). Over the years, t@apbigr maps have
improved due to the increase in data and computing power Hsag/énprove-
ments in the theory. In the 1970s, global models were onlg &blresolve the
largest wavelengths~3000-5000km, corresponding to spherical harmonic de-
gree 6-8) while now lateral resolutions may be obtainedesponding to wave-
lengths of less than 1000km and in some places less than 50@knography has
provided many sharp images of fast velocity slabs, or suiituplates (van der
Hilst et al., 1997; Widiyantoro et al., 1999; Bijwaard andagman, 2000), and
showed that some slabs penetrate the lower mantle whilesotippear to lie flat
(e.g. Fukao, 1992 ,van der Hilst et al, 1997 ). There is alsgeece of plumes
(regions of low velocity), for example underneath Iceland &awaii (Bijwaard
and Spakman, 1999; Zhao, 2001; Montelli et al., 2004). Seisomography has
also been extended to anisotropy (Tanimoto and Anders@h; Montagner and
Tanimoto, 1990; Ekstrom and Dziewonski, 1998; Trampedt\aan Heijst, 2002;

11



12 Chapter 1

Panning and Romanowicz, 2006), attenuation (Durek et @3 1Romanowicz,
1995; Selby and Woodhouse, 2002) and density (Ishii and prdré99, 2001).
Furthermore, tomographic images have been used to obfaitmiation about the
temperature and composition of the Earth (van der Hilst aach8on, 1999; De-
schamps et al., 2002; Godey et al., 2004).

1.2 Limitations of seismic tomography

The two types of tomography, body wave and surface wave toapbg, are more
or less complementary. This is because they see differetst githe Earth at dif-
ferent scales of resolution. Body wave tomography lackslugen in the oceanic
parts of the Earth due to the uneven geographical coveragmiofes and stations.
It is however well suited to study subducting slabs in gregaidl (due to the many
sources in the subducting slab). Surface wave tomographyeoother hand, has
good coverage in oceanic areas but suffers from limitedrdeggolution due to
the use of mainly fundamental mode surface waves.

Another issue is anisotropy. Most tomography assumes &iojso Earth for
theoretical and computational convenience. By now howdthere is consider-
able evidence for both radial and azimuthal anisotropy atrgety of depths in
the Earth. Radial anisotropy, the discrepancy betweeneRfybnd Love waves,
was first observed by Anderson (1961); Aki and Kaminuma (LOBBEvilly
(1964) and was later included in the upper 200km of the globf@rence Earth
model PREM (Dziewonski and Anderson, 1981). Azimuthal @inépy, the az-
imuthal variation of phase velocity, was first observed byskth (1975). Ra-
dial and azimuthal anisotropy are different expressionhefunderlying general
anisotropy of the Earth’s interior. The source of anisogropthe mantle is usu-
ally assumed to be the alignment (lattice preferred ortemtaor LPO) of intrinsi-
cally anisotropic minerals under strain in the mantle (kard998a; Montagner,
1998). Nataf et al. (1986) first inverted radial anisotropy eelated the results to
mantle flow. They found evidence for veritical flow beneatlggs and subduction
zones and horizontal flow beneath lithospheric plates.matd and Anderson
(1985) first inverted for azimuthal anisotropy at differg@triods and found that
the fast directions correlate with plate motions at the ktweavelengths. These
studies were follwed by joint inversions for radial and aaihal anisotropy (Mon-
tagner and Nataf, 1986; Montagner, 1986; Nishimura andyford989). Al-
though anisotropy was first found to be limited to the uppenthea Montagner
and Kennett (1996), using normal modes, and Vinnik and R&)Lsing receiver
functions, first found evidence for anisotropy in the tréosi zone. Finally the
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forward problem

true model 4\

appraisal problem
) estimation problem

estlmated model

Figure 1.1:Definition of the forward and inverse problem viewed as a daatibn of the
estimation problem and the appraisal problem from Sniedetr Brampert (2000).

use of higher mode phase velocities allowed Trampert andHejst (2002) to
construct the first global model of azimuthal anisotropyhi& transition zone.

Seismic tomography is based on solving an inverse problguréil.1). The
data are observables obtained from seismograms such ektimaes, phase veloc-
ities and splitting measurements and the objective is totfiacEarth’s structure
(true model’). Due to the limited number of data and the medegrees of free-
dom necessary to reconstruct an Earth model, the inverdédepnds not unique.
There are many models that explain the data equally well. iibéel obtained
through inversion is therefore not equal to the true modetdpresents some es-
timated model. The appraisal problem tries to relate thienastd model to the
true model. There are two reasons why the estimated modefgffom the true
model. One is the non-uniqueness mentioned above and teeistthe propaga-
tion of uncertainties present in the data. In the appraisablpm, therefore, we
need to find which properties of the true model are retrievelbehat uncertainties
are attached to them. An example of non-uniqueness in tapbgris shown in
figure 1.2, taken from Deal et al. (1999). Deal et al. (1998} fibtained an initial
tomographic model by inverting delay time data. They thefindd a theoretical
slab model by finding velocity profiles that were obtainedrfran assumed slab
temperature model. The initial tomographic model satidfiesdelay time data,
the theoretical slab model does not. They then projectedlifference between
the initial model and the theoretical slab model onto the spdice (the area of
the model space not constrained by the data of their initablpm). The result-
ing enhanced tomographic image now has a comparable fit wefag time data
as the initial tomographic image but contains null space pmmrents that were
introduced by the theoretical slab model. Even though thmlimodel and the
enhanced model fit the delay time data equally well by con8tm, the models
themselves are quite different. In the initial model (figtir), the slab seems to



14 Chapter 1

(a) Initial (b) Theoretical slab (c) Enhanced

Figure 1.2:Non-uniqueness in tomography taken from Deal et. al. 1998. ehhanced
tomography result is obtain by putting the difference betwthe initial model and the
theoretical slab into the null space. The final image has lstemgly biased towards the
theoretical slab model and only deviates from it as requbgdhe seismic data.

lie flat and may even penetrate the 670km discontinuity wihiddearly does not
in the enhanced tomography result, illustrating the probdé non-uniqueness.

To illuminate the importance of model uncertainty we showfigure 1.3
two phase velocity models for the fundamental mode Rayleigh50 seconds.
Although the long wavelength features are very similar thedlets display dif-
ferences. Differences in tomographic maps are caused kigeshin the inver-
sion algorithm (exact, iterative), assumptions in the th€great circle arc prop-
agation, 'fat’ rays), regularisation (norm damping, geadidamping), parame-
terisation (spherical harmonics, latitude-longitudedgand type of data (body
waves, surface waves, normal modes) (Boschi and Dziewoh389; Romanow-
icz, 2003). Without appropriate uncertainties we canntgrmene whether tomo-
graphic models are similar or different.

1.3 Dealing with the limitations

As already mentioned, one of the limitations of surface waweography is the
depth resolution due to the use of mainly fundamental modac waves. To
increase the resolution of surface wave tomography at deptieed to use higher
mode surface waves (Nolet, 1975; Cara, 1979; Stutzmann amdadgner, 1993;
Van Heijst, 1997; Yoshizawa and Kennett, 2002; Beucler e2803). For sim-
ilar periods, higher modes are sensitive to larger depthshis i§ illustrated in
figures 1.4 and 1.5 which show several spheroidal (Rayleigbejvand toroidal
(Love wave) shear wave sensitivity curves. For the periogjezof 35s to 200s,
the sensitivities for higher modes extend well into the lomantle which should
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Visser et al. (2007)

Percent

Figure 1.3: Rayleigh wave phase velocity models at a period of 150s fampert &
Woodhouse (2003) and Visser et. al. (2007).

significantly improve the depth resolution of surface wawantte models.

Waveform inversion technigues inherently use higher maoftaination whe-
ther by direct use of the seismograms (Nolet et al., 1986pyahe use of sec-
ondary observables based on cross-correlations betweeobgerved and syn-
thetic seismograms (Cara and Leveque, 1987). The relatitwelen the seismo-
grams and the underlying velocity model is highly non-lineshich is the rea-
son that waveform inversion is often linearized. In most &faxm inversion ap-
proaches, the one-dimensional velocity model obtained dyeform fitting is in-
terpreted as the average structure along the source-eeqeith. This assumption
breaks down for high frequency higher modes (Marquering @miéder, 1996)
since they represent body waves with a sensitivity alondptitly wave path. This
may be avoided by introducing mode coupling, however akelaxgmputational
costs (Li and Romanowicz, 1996; Capdeville et al., 2000)is Thaditional two
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fundamental mode first higer mode fourth higer mode
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Figure 1.4:Spheroidal shear wave sensitivities for the fundamentalexfoom a period
of 35s to 175s, first higher mode from 35s to 175s and fourthdrignode from 35s to
65s. The sensitivities are normalized.

fundamental mode first higer mode fourth higer mode

500

depth [km]

1000

1500
0 05 1 0 05 1 0 05 1

normalized sensitivity

Figure 1.5:Toroidal shear wave sensitivities for the fundamental mioal®m a period of
35s to 175s, first higher mode from 35s to 175s and fourth higioele from 35s to 65s.
The sensitivities are normalized.

stage inversion consists of obtaining one-dimensionaboigl models through
waveform fitting and inverting them, using the path averaggumption, for a
three-dimensional velocity model. Kennett and Yoshiza@0R) proposed a
three stage approach in stead of the regular two stage ayppndgdach we adopt in
this work. The three stage approach consists of obtainiegdimensional veloc-
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ity models through waveform fitting, building multimode geavelocity models
as a function of frequency using the path average assumgmio final inversion
for local wave speed properties to obtain a three-dimeasiaglocity model. The
one-dimensional velocity model in the first stage is now regd as a representa-
tion of the character of multimode dispersion along the s®ueceiver path. This
three stage approach is flexible due to the ability to usemifft methods: wave-
form inversion (Nolet, 1990; Lebedev et al., 2005), modeping (Van Heijst
and Woodhouse, 1999), roller-coaster technique (Beutlar,e2003) and differ-
ent types of information (Rayleigh waves, Love waves, psddion information)
to obtain the one-dimensional velocity model in the firsgstalt is also a robust
method. Yoshizawa and Kennett (2002) showed that multipk-dimensional
shear wave velocity models obtained through waveform dittiith a slight dif-
ference in misfit share the same dispersion characteristidsating that the one-
dimensional velocity model in the first stage may be regaeded representation
of the multimode dispersion characteristics along theamuoeceiver path.

Rather than assuming isotropy we invert for azimuthal adéfanisotropy as
well. Radial and azimuthal anisotropy are both observedibiase waves which
is why these are well suited to study anisotropy. The aligntnlattice preferred
orientation or LPO) of intrinsically anisotropic mineralader strain in the mantle
is assumed to be the major cause of upper mantle anisotropyitédner, 1998;
Karato, 1998a). Anisotropy is thus an indicator of mantléodaation and flow.
Adding higher mode information, also in the azimuthally aadially anisotropic
tomographic maps, will increase our understanding of thedyics of the mantle,
especially in the transition zone and lower mantle.

A very important aspect of any inversion are the uncertsnfthe appraisal
problem). There have been many attempts to assign undersaiao tomographic
models. For this study, we focus on uncertainties of funddad@nd higher mode
phase velocity measurements and the uncertainties of thietiiree-dimensional
shear wave speed models. In general, the standard desiaifahe phase ve-
locity measurements (and therefore also of the phase Welowdels) and the
shear wave velocity models are not known. The focus is mord@mesolution
of shear wave velocity models which is often assessed byeiiattests (for ex-
ample, checkerboard tests) (Bijwaard et al., 1998) or mezently by calculating
the model resolution matrix (Boschi, 2003; Soldati and B@s2005). The syn-
thetic tests check whether an input model will be retrieveidgithe same source
station geometry as for the real data. This is dependentemput model and
the source station geometrydéque et al., 1993). The calculation of the model
resolution matrix, on the other hand, is computationallpyvdemanding. Un-
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certainties for the (fundamental mode) phase velocity oreasents have mostly
been obtained using cluster analysis (Ritzwoller and Lieyg998; Trampert and

Woodhouse, 2001; Shapiro and Ritzwoller, 2002), wherelainpiaths are used
to obtain the standard deviations. Trampert and Woodha@@1j showed that
phase velocity standard deviations obtained with clustelyais are in agreement
with uncertainties obtained for comparing model prediwito real seismograms.
Higher mode phase velocity uncertainties have been impgesg obtain using

cluster analysis since higher modes are very difficult tosneausing traditional

techniques and there are too few measurements to reliablgluster analysis.

Van Heijst (1997) assigned a reliability measure for hisheigmode measure-
ments based on the amount of higher mode information in tlesgram and

the fit between the seismogram and the synthetic predicfiagheoseismogram.

Yoshizawa and Kennett (2002) measured fundamental anétigbde phase ve-
locities with a model space search and took the 1000 bestmigm models to

calculated approximate standard deviations.

In this study, we follow the three stage approach of Kennedt ¥oshizawa
(2002) and measure phase velocities using a model spach sggoroach, as Yo-
shizawa and Kennett (2002). In a model space search eachipdhlre model
space represents a set of parameters describing some glhysiperty of the
Earth, for example velocity. The objective of the searclo irtd the (set of) mod-
els that minimizes an objective function, which in geopbgkinverse problem
is usually a measure of misfit between the observations agatdtical predic-
tions. Contrary to Yoshizawa and Kennett (2002), we use thelavensemble
of models obtained with the model space search to obtain dayestatistical
inferences about the ensemble. In this way we obtain not th@ybest model
but also consistent and reliable uncertainties. Theseriaiicges are used in the
second stage to invert the phase velocity measurementdologlgsotropic and
azimuthally anisotropic phase velocity maps. After ini@iswe obtain the pos-
terior uncertainties of the phase velocity models. In thalfinversion for the
radially anisotropic shear wave velocity model, we use tmasp velocity model
uncertainties to obtain consistent posterior uncertsmin the anisotropic model.

1.4 Overview

In chapter 2 we present the fully automated waveform ineersnethod to ob-
tain fundamental and higher mode phase velocity measutem@éfe follow Yo-

shizawa and Kennett (2002), and measure phase velociiieg asnodel space
search approach which enables us to obtain consistentasthddviations for the
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phase velocity measurements. Chapter 2 also presentsthgkehave performed
to validate the method (convergence of the model spacelse¢aning parameters,
parameterisation, approximations). In chapter 3 we ptaberLove wave higher
mode measurements specifically since they are more diffioutheasure than
Rayleigh wave higher modes due to their overlap with the &mmeihtal mode and
the, in general, noisier seismograms for Love waves. Chdppeesents global
isotropic and azimuthally anisotropic phase velocity nisder the fundamental
up to the sixth higher mode for Rayleigh and up to the fifth kigimode for Love
waves. Finally, the isotropic phase velocity models areritad for a global depth
dependent radially anisotropic shear wave velocity madehapter 5. We obtain
the radially anisotropic shear wave velocity model usingoaleh space search ap-
proach, which takes the full non-linearity of the problertoiaccount and allows
us to obtain consistent uncertainties and probabilitiesdifl anisotropy. Finally,
in chapter 6 we present the general conclusion.
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Chapter 2

Measuring phase velocities for
fundamental and higher mode
surface waves

In this chapter we explain the method we used to obtain furddah and higher
mode phase velocity measurements and corresponding aimties for Rayleigh
and Love waves and discuss all the tests we performed tcatalitie automated
procedure.

2.1 Separation of higher modes

One of the problems of surface wave tomography is the laclepftdresolution
due to the use of mainly fundamental mode surface waves. dromonly used
periods of 50s to 200s, the fundamental mode surface waeeseasitive to the
upper 400km of the Earth. Adding higher mode surface wavesdg the depth
resolution to the transition zone and lower mantle.

Figure 2.1 shows the PREM (Dziewonski and Anderson, 198a¥®lt) and
group () velocities for the fundamental and higher mode Rayleigti bave
waves. For the spheroidal modes at a phase velocity clos&nw/'8(figure 2.1,
top), the Stonely wave at the CMB cuts across the sequencardhes. Especial-
ly at short periods, the group velocities for the higher nsodely slightly differ
from each other indicating that these higher modes wilvaralmost simulta-
neously in the seismogram. At longer periodslQ0s) for Rayleigh waves, the
fundamental mode group velocities differ significantlyrfrtéhe first higher mode

21
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Figure 2.1:Rayleigh and Love fundamental and higher mode dispersioresudor phase
(c, solid lines) and group (u, dotted lines) velocity.

group velocities such that the fundamental mode can beatepirom the higher
modes. For Love waves at all periods, the group velocity eftindamental mode
and the first higher mode do not differ a lot, which makes itlehging to sep-
arate the fundamental mode from the higher modes. This dsilistrated in
figure 2.2, where we show the contribution per higher modg o6 a synthetic
seismogram for Rayleigh and for Love waves. For Rayleighesathe funda-
mental mode waveform (as shown withh = 0 in figure 2.2) does not change,
the higher modes only add information in time before the &medntal mode, due
to their higher group velocities. The fundamental mode imgletely separated
in time from the higher modes. For Love waves, the fundanhientale wave-
form (m = 0) changes if you add higher modes to the seismogram, ilkestra
by the changes around 2000s when adding higher modes (fompdstacompare
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Rayleig Love
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Figure 2.2: Rayleigh and Love synthetic seismogram (filtered betweesn#050 sec-
onds) build with only the fundamental mode (m=0), the funelatad and first higher
mode (m=0,1) up to full synthetic seismogram (full). For Bayleigh seismogram the
epicentral distance is 7584 km and the depth is 33.8 km. F®Lthve seismogram the
epicentral distance is 9332 km and the depth is 15.0 km.

m = 0 with m = 0 — 3 around 2000s). The fundamental mode and higher modes
arrive almost simultaneously, which makes it challengingeparate the funda-
mental mode from the higher modes. In spite of this, most ouslihat measure
higher modes are based on the separation of modes in theoggam Over-
tones were separated in the frequency-wavenurbgt) domain, first by Nolet
(1975, 1977) and later by Cara (1978), Mitchel (1980) andl@kd Jo (1987) us-
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ing an array of seismometers. Cluster based techniquest{N&75; Cara, 1979;
Stutzmann and Montagner, 1993; Beucler et al., 2003) ukereit clustering of
stations (Nolet, 1975; Cara, 1979) or of events (Stutzmawin\dontagner, 1993;
Beucler et al., 2003), which reduces the number of paths @sore phase ve-
locities and the geographical ray coverage. The geographay coverage will

be high in areas with lots of events, for example the Pacificisation zone, or
lots of stations, for example the continents. The modelgarerally valid only

in regions of good ray coverage. The advantage of such amagipiis that the
clusters will have a better signal to noise ratio and phataciies will be easier

to measure.

Van Heijst and Woodhouse (1999) and Yoshizawa and Kenn@é®2(2used
single seismograms to measure phase velocities, thuswoiganore measure-
ments with better geographical coverage. Van Heijst and dvoose (1999)
used a mode branch stripping technique which measures #we plelocities of
the fundamental and first few higher modes. It relies on tiparsdion of modes
in the seismogram and it thus can only measure seismograthssufficiently
long paths where the modes are well separated. YoshizawKemett (2002)
used a fully non-linear waveform inversion to obtain patbgfic multimode dis-
persion measurements for Rayleigh and Love waves. The ahetbarches the
model space for the shear wave velocity model that explamseismogram best.
This shear wave velocity model is interpreted as providmglicit information
on the multimode dispersion of the specific source receiath,pbut it is not
meant as a direct representation of the Earth. A directpnegation of path spe-
cific shear wave velocity models is only valid for small lalgwerturbations along
the path, whereas less constrictive conditions apply tarthkimode dispersion
curves (Kennett and Yoshizawa, 2002). We follow Yoshizana kkennett (2002)
and perform a waveform inversion using a model space seamioach. So our
estimation problem is to obtain velocity models that expliie data (single ob-
served seismograms) after which we need to solve the apppablem to make
inferences about the uncertainties. For the appraisallgmmgb Yoshizawa and
Kennett (2002) used the best 1000 dispersion models andlagdd approximate
standard deviations. In contrast, we use the whole enseofibf®dels obtained
with the model space search to obtain Bayesian statistiferences about the en-
semble. In this way we obtain not only the best model but sbesi uncertainties
as well.



Figure 2.3:flowchart of the method. Red block correspond to main prograjreen to input blocks and
blue blocks correspond to measurements.
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2.2 Overview: method and tests

Figure 2.3 gives an overview of all the ingredients of thehodtto obtain the
phase velocity measurements. We will first briefly discukthalingredients and
later discuss them in detail.

In a waveform inversion, the objective is to find the velocitpdel that gives
a synthetic seismogram explaining the data best. The aaldtetween the ve-
locity model and the synthetic seismogram is highly noedin Therefore, we
calculate the synthetic seismogram using linearized madestion. For this
linearisation, we need a reference velocity model andHetéderivatives of the
reference model. The Fréchet derivatives are the derégbf the phase veloc-
ity of the reference model with respect to the compressiorak velocity, shear
wave velocity and density of the reference model. A changleervelocity model
(in terms of a change in compressional, shear wave veloaitydansity) can then
be expressed, using the Fréchet derivatives, as a chamgege velocity. This
procedure relies heavily on the reference model chosenrefdre, we use the
best possible reference velocity model for the specifiaseigam obtained with
AMI (Lebedev et al., 2005). We perform waveform inversioingsa model space
search approach. The dimensions of the model space arenifetdrby the pa-
rameterisation of the velocity model. We find the best pdsgilarameterisation
by calculating the resolution kernels for different parégrieations and determine
the number and shape of the basis functions. Since we use @ spate search
approach, we need to define a search interval for every paeanivée define each
search interval as a certain percentage of change with aetpehe reference
model. The model space search is guided to areas where thpteshuelocity
models give synthetic seismograms that fit the data well bysditnariteria be-
tween the data and the synthetics. Finally, the tuning petars of the model
space search determine whether we perform a slow but ex¢esisarch or a fast
converging search. Since we want to apply this method tosdnuds of seismo-
grams we need to find the tuning parameters that give a faseliable, ensemble
of velocity models. At this stage, we have solved the estomgtroblem.

For the appraisal problem, we resample the ensemble ofityelmodels to
obtain the posterior probability density function of thesemble of velocity mod-
els and, at the same time, we obtain the posterior probad#itsity function for
specific surface wave mode phase velocities. This is passihte the relation
between the velocity models and the phase velocities is kn@®thase velocities
are obtained by integrating the velocity model using saitsikernels for specific
surface wave modes. We obtain one-dimensional marginatpérific phase ve-
locity parameters by integrating the posterior probabdiensity function over all



2.3 Theory 27

other phase velocity parameter using Bayesian statisfies.posterior probabil-

ity density function depends on the prior information (paeserisation, search
boundaries, forward theory) and the likelihood (misfit). eféfore, we examine
the effect of the prior information on the inversion. Fialwe decide on the num-
ber of higher modes that are constrained by the seismogramoiie-dimensional

marginals for the phase velocity parameters are Gaussiediwhich enables us
to represent the phase velocity measurement by a mean aandaist deviation.

In the end, we have obtained phase velocity measurementeddundamental

mode as well as a number of higher modes including infereabest the uncer-

tainties of the phase velocity measurements.

2.3 Theory

Waveform inversion is a highly non-linear problem due to ¢oenplicated rela-
tion between the synthetic seismogram and the Earth modgynthetic seismo-
gram (s) can be calculated as a sum of modes (ising the JWKB approxima-
tion (Dahlen and Tromp, 1998) in the frequency domaij (

s(w) = ZAm(w)exp[iwA/cm(w)], (2.1)

where A, (w) is the complex amplitude of the mode4, is the source-receiver
distance and,,(w) is the phase velocity of mode. A part of the non-linearity
of equation 2.1 is in the calculation of the phase velocityegian earth model.
This can be linearized using an expansion for the phaseityeloc

1
em(W) = &, (w) + dem (W) + §5cfn(w) + ... (2.2)
Ignoring the second order terms and higher, equation 2.drbes

s(w) = Z A (w)expliwA /(& (W) + dem(w))], (2.3)

Wherec?, (w) is the phase velocity in the reference model éng(w) is the phase
velocity perturbation defined as

@ A (w A (w
dem(w) = / {ami()5vp(f)+8m( )5VS(T) (2.4)

o | OVp(r) oVs(r)

acgn(w) . .
T a0(r) )}d |
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Y (w)/OVp(r), O (w)/0Vs(r) anddc?, (w)/dp(r) are the Fréchet derivatives
which relate the change in compressional, shear wave Welaod density from
the reference model to changes in the phase velocitysaisathe radius of the
Earth. We normalise the amplitude of the synthetic seisarag4d,,, (w)) to the
real seismogram and solve mainly for the phase of the seismog The only
unknown in equation 2.3 is now the phase velocity pertuobatdc,,(w)) and
the waveform inversion is now reduced to finding the phasecitgl perturbation
given an Earth model. In this equation we recognise the diefinof a linear
inverse problemd = Gm, where the datad) is given by the phase veloctity
perturbationsic,, (w) as a function of moden, the model fn) is given by the
perturbations i/p, Vg andp (6Vp, dVs, dp) as a function of depth-j andG the
Fréchet derivatives. We use a model space search to sidviintrarized inverse
problem. Usually a model space search is used to solve neatliproblems,
we use it to map the nullspace of a linear problem instead. eBoh sampled
Earth model, we calculate the corresponding perturbaiiopbase velocity. The
perturbations in phase velocity are used to compute thehsiiatseismogram
which is then compared to the observed seismogram. In thetlemdhodel space
search provides us with an ensemble of Earth models andabe&sponding fit
to the observed seismogram.

2.4 Isotropic reference model

We have assumed an isotropic reference model and isotrepiarpations to this
reference model mainly for computational reasons. We wsesversely polar-
ized seismograms to estimate Love wave phase velocitiegetidally recorded
seismograms to estimate Rayleigh wave phase velocitigs.ig,hin theory, only
correct for an isotropic medium. We therefore examined tretve would obtain
the same phase velocity measurements assuming a trargvers®pic medium.
We first calculated Love and Rayleigh wave phase velocitiedhfe anisotropic
PREM model (Dziewonski and Anderson, 1981). We then sepéittht anisotro-
pic PREM model in a horizontally polarized mod®Hy;, Vsyr) and a vertically
polarized model ¥ry/, Vsy) and calculated the Love and Rayleigh wave phase
velocities separately assuming isotropy. Since aniswrBREM contains only
shallow anisotropy, we performed the same test for a rgdéadisotropic model
taken from chapter 5, located in the Baltic Shield (figure.2Fgure 2.4 shows
the differences in phase velocity assuming isotropy andhkashisotropy. For
both tests the differences in the phase velocities cakdilassuming isotropy or
anisotropy are small. Therefore we conclude that as lonp@standard devi-
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Figure 2.4:The difference between the Love and Rayleigh fundamentahigier
mode phase velocities calculated assuming anisotropicisoiopic profiles (see
figure 2.5). For Love, the isotropic model his and Vp equal toVsy andVpy of
the anisotropic model, for Rayleigh the isotropic model Wasand Vp equal toVsy,
andVpy of the anisotropic model.
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Figure 2.5:The radially anisotropic model taken from chapter five atBiadtic shield
location plotted with the anisotropic PREM model.
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ations on the phase velocity measurements are larger tean thifferences it is
justified to assume isotropy.

2.5 Why do we need to linearise the phase velocity?

In principle, we could include the full non-linearity of therward problem and
solve equation 2.1. In practise, this is a very time-conggnirocess since we
would have to recalculate the eigenfunctions for each madekample in the
model space search. Each model space search typically esutmgusands of
models per seismogram and we want to perform the model spacehson hun-
dreds of thousands of seismograms, which makes it impesibhclude the full
non-linearity of the problem. Therefore we chose to lineatthe inversion by
using the Fréchet derivatives. This enables us to caketifet phase velocity per-
turbations at each point in the model space using a bestrefermodel and the
perturbation to the reference model. It does introduce anidgnce on the refer-
ence model. We will only be able to obtain a global minimumuf éinal model
is close to the reference model. Therefore we choose theenefe model to be
the best shear wave velocity model that results from the rhated Multimode
Inversion (AMI, Lebedev et al. , 2005) method. AMI is a nondar waveform
inversion method that uses carefully chosen time and frezyuerindows to ob-
tain a shear wave velocity model that explains both the fomatdal as well as the
higher modes in the seismogram. The resulting shear waeeityeimodel acts
as our reference model but is in fact already the best shear waocity model
which we would find using the model space search. Our best st velocity
model is (close to) the AMI best shear wave velocity modek $imall differences
between the models can be explained by different pararsatiens and window-
ing. AMI also acts as a data quality control and rejects seggams that are too
noisy, are invalid according to the JWKB approximation, i@ elose to the nodes
of the fundamental or higher mode radiation pattern.

2.6 Scaling the density and the compressional wave ve-
locity

The phase velocity perturbation depends on the changeseatdimpressional
wave velocity, shear wave velocity and density. For Rayleigives the sensitiv-
ity to shear wave velocity is highest, followed by the conggienal wave velocity
and density. For Love waves the shear wave velocity seitgii highest fol-
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lowed by that of density. In principle, all variations (corapsional wave velocity,
shear wave velocity and density) could be allowed in thersiva. In practice,
computational resources force us to limit the number ofatams allowed in the
inversion since the number of parameters would triple foyl&gh if we take
variations in compressional wave velocity, shear waveoigland density into
account. In general, a model space is empty and an increabke mumber of
dimensions severely increases the time needed for a tHos®aych of the model
space. Since we will use the Neighbourhood Algorithm (Saagle; 1999a,b), the
computation time needed for increasing number of paraseteuld grow expo-
nentially. The Neighbourhood Algorithm is efficient onlyrfa small number of
parameters<30) and since we want to obtain a relatively fast model spaarch
to apply to hundreds of thousands of seismograms, we needila rsamber of
parameters. The density and compressional wave veloatpfasecondary im-
portance (due to the lower sensitivities compared to tharshave velocity) and
thus we decided to scale them to the shear wave velocityrpatians using the
scaling relation of Ritsema and Van Heijst (2008) & 0V, /0V},) for the com-
pressional wave perturbations and Deschamps et al. (2061 {np/0inVs) for
the density perturbations. The scaling relation for the p@ssional wave veloc-
ity from Ritsema and Van Heijst (2002), increases fr&m= 1.25 at the surface
to R = 3.0 at the core mantle boundary. This positive correlation betwthe
compressional wave velocity and the shear wave velocityobas found earlier
by other studies (Su and Dziewonski, 1997; Vasco and Johri€198; Masters
et al., 2000; Saltzer et al., 2001; Resovsky and Trampe@3R20The increase
with depth for the scaling relation is found up to 2000 km (8=l et al., 2001;
Resovsky and Trampert, 2003). We are interested in thengcedlation up to a
depth of 1500 km, since this is the limit of our one-dimenalovelocity model,
so the increasing scaling relation is appropriate. For tiadiry of the density
with the shear wave velocity, there is no consensus, buthusrface waves are
not very sensitive to density due to the strong oscillatiornthe density sensitivity
curves with depth. This lack of consensus is illustrated bgdvsky and Trampert
(2003), who used probabilistic seismic tomography to testthe velocity-density
relationships. While the relation between the compressiorave velocity and
the shear wave velocity is clearly constrained and positive scaling relation
between the density and shear wave velocity is not as weditcined with the
probability of a positive or negative scaling relation rearo at all depths.
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2.7 The effect of scaling the density

Since there is no consensus on a scaling relation for densityneed to check
the effect of the scaling relation on our results. We use ¢thérgy relation of De-
schamps et al. (2001} (= 0inp/dInVy) which is derived from an inversion of
gravity and S-wave velocities. They propose differentiagatelations for sub-
oceanic and sub-continental paths. Therefore, for easimsgiram we extracted
the ocean/continental information from CRUST2.1 (Mooneglg 2004). An al-
ternative density scaling relation is given by Kaban andwsetzer (2001), who
inverted a global shear wave velocity model and residuateree gravity anoma-
lies to obtain a sub-oceanic scaling relation that extentts the lower mantle.
There are significant differences between the two scalifegioas under oceans.
The scaling relation of Kaban and Schwintzer (2001) is laiigéhe top 60 km of
the model and at depths greater than 250 km.

We applied the waveform inversion using no density scalingscaling rela-
tion of Deschamps et al. (2001) and the scaling relation dfafeand Schwintzer
(2001) and compared the phase velocity measurements. Hse pklocity mea-
surements are very similar and the difference is well wittim standard devia-
tions. In the case where we assume no density scaling, thbatush modes we
are able to measure is slightly smaller (see section 2.18).

This test suggests that it does not matter which densityngcedlation we use
as long as we use a density scaling relation.

2.8 Parameterisation

After scaling equation 2.5 simplifies to
@9 (w)
dem(w) = | —=2=—=06Vgs(r)dr. 2.5
em(@) = | G Vs rdr (2.5)

We parameterise the shear wave velocity perturbatidngr) as a set of one-
dimensional basis functioris (r):

N
§Vs(r) = yihi(r), (2.6)
=1
where they; are the coefficients to be found in the waveform inversion &nithe

number of basis functions. Combining equations 2.5 and 2.6ltain

f oY (w)
N Vs(r)

N
0cm (w) Z ~ihi(r)dr (2.7
i=1
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N Y (w)
;% / S ) 2.8)

Where we finally find the expression for the theory that liflesdata to the model
in the inverse problentx = [ %cvgg((“:)) hi(r)dr.

An overparameterisation (larg¥) will capture all details of the one-dimen-
sional shear wave velocity models but will also significatiicrease the compu-
tation time needed for the model space search due to theaseiia the number
of dimensions. On the other hand, an underparameteriséimall V) affects
the depth resolution and causes a bias in our phase veloeigumements while
providing us with a fast model space search. Since the résolof surface waves
decreases with depth we expect to be able to solve for thiagers at the top of
our model and for thicker layers as the depth increases. Werped a Backus-
Gilbert resolution test to identify the optimal number amgths of the basis func-
tions.
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Figure 2.6:Resolving a layer from 400 km to 600 km using only the fundéah@nb) or
the fundamental and higher modes (c,d) for the Spheroide) énd Toroidal (b,d) target
sensitivity kernels. In grey the target sensitivity keraetl in red the best fit resolution
kernel for the shear wave sensitivity.
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Figure 2.7:Resolving thin layers for the Spheroidal (a,c) and Toroi(tatl) target sensi-
tivity kernels. In grey the target sensitivity kernel anded the best fit resolution kernel
for the shear wave sensitivity.

2.9 Backus-Gilbert

We tested how well we can resolve shear wave velocity forgetattepth layer.
We use ray theoretical toroidal and spheroidal sensitikétsnels up to the sixth
higher mode in the period range between 35s and 200s. Thel&eare calcu-
lated in PREM (Dziewonski and Anderson, 1981). We furthengee surface
wave modes with sensitivity in the core and the Stoneley malfe start with
equation 2.5 and define the change in phase velocity as

Y (w)
Vg (r)

dInVg(r) (2.9)

[ Y (w)
dlney,(w) = /(){BVP(T)(SanP(T)+

Y (w)
(1) dinp(r) } dr.

The compressional wave velocity and density are again gealthe shear wave
velocity using the scaling relations of Ritsema and Van $1€2002) and De-

_l’_
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Figure 2.8:Best fit resolution kernels (red) for the Spheroidal (a,cll dwroidal (b,d)
target sensitivity kernels (grey).

schamps et al. (2001). This reduced equation 2.10 to

_ [0 (w)
dlnem (w) = : W&ang(T)dr. (2.10)

For convenience, we write the shear wave sensitivity keaael

Kg = 0c (w)/0Vs(r). (2.11)
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A target shear wave velocityinVs(r?) centered at radius’ can be found by

N
SInVs(r?) = Zaiélnq(w) (2.12)
2;1 )
= Zai/ K56InVs(r)dr (2.13)
=1 70
_ /G(ZaiKg)MnVs(r)dr, (2.14)
0

whereN is the total number of surface wave modas.are the coefficients and
> ;K is the resolution kernel. We need to find the coefficienty éuch that
dinVy(r®) — 3" o; K¢ is minimized. This can be done by a classical least-squares
optimization. The resolution kernel can be used to illustthe fit to any target
depth layer. First we checked the influence of higher modetherresolution
kernel for both the spheroidal as well as the toroidal modeasexpected, higher
modes are indispensable if we want to resolve layers atrldeggths (for example
in the transition zone in figure 2.6). Also, it is impossibterésolve thin layers
both at shallow as well as at larger depths (figure 2.7). Tealigdarameterisation
is able to fit small layers at shallow depths. At larger depths layers should
increase in size, as illustrated in figure 2.8.

# Spline Toroidal [%] Spheroidal [%0]
1 62 43

0
2 61 58
3 85 86
4 88 85
5 93 86 E 500
6 90 82 =
7 91 84 g
8 89 74 © 1000
9 01 73
10 89 61
11 81 25 1500
12 41 0 10 1 2

Figure 2.9:Variance reduction in percent of recovery (left) for thegir depth layer
corresponding to the twelve spline parameterisation (figising spheroidal and
toroidal modes. The splines are numbered from the top (Hedbdttom (12).
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In the end, we have chosen twelve natural cubic splines éop#tameterisa-
tion with a more dense layering at shallow depth and lessedankrger depths
(figure 2.9). We are able to resolve this parameterizatiorbéoh Rayleigh and
Love waves quite well. This is illustrated by the variancguetions for the spline
parameterisation (figure 2.9). The variance reduction @llest for the spline at
1500 km, this is due to the decrease in resolution at thesthsleanges for the
higher modes. The first spline also has a relatively smalamae reduction for
the spheroidal modes. This spline is situated in the crustevthe toroidal modes
are more sensitive hence the larger variance reductionhfortdroidal modes.
The best resolved splines are situated in the 60km to 800kt dange. In this
range, we are able to resolve more than 85% for Love waves2dar Rayleigh
waves. We obtain better variance reductions at larger dgpfiline 8 to 12) for
the toroidal modes than for the spheroidal modes. This caxplained by look-
ing at the shapes of the sensitiviy curves for the toroidal spheroidal higher
modes that are sensitive to these depths. The spheroidadrhigodes have their
maximum sensitivity at shallow depths and a very broad peakitvity around
500 to 1500 km. The toroidal higher modes, on the other hasnk their max-
imum sensitivity at larger depths (depending on the spenificle from 500 to
1200 km) and the peak of this sensitivity is narrower. Thididates that it is
easier to find coefficients for the toroidal modes to fit thgeasensitivity kernel
than for the spheroidal modes at larger depths, which enxgplhie better variance
reductions.

2.10 Number of basis functions

In the resolution test we have seen that we need a dense pareat#on at shal-
low depths and a less dense parameterisation at largersdeptie number of
basis functions has an effect on the depth resolution of tlearswave velocity
models. A fine parameterisation inherently allows a higlegtll resolution than
a coarse parameterisation, but also results in a larger ewofltbasis functions
(dimensions) in the model space search. As the number ofrdiires increases,
the computation time for the Neighbourhood Algorithm irases dramatically.
Also, a fine parameterisation at every depth is not neededadtie decreasing
resolution with depth of surface waves as illustrated inptieious section. From
the Backus-Gilbert resolution test, we selected twelvénsplthat give resolu-
tion kernels close to the target depth kernels indicatingwildoe able to resolve
shear wave velocity with that parameterisation. We stilhted to see the effect
of this choice and tested three other parameterisationsr€fig. 10) ; a 24 spline
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Figure 2.10:Three spline parameterisations with depth, a 9 spline patanisation (a),
a 18 spline parameterisation (b) and a 24 spline paramedgias (c).

parameterisation, a 18 spline parameterisation, and aiffesphrameterisation.
The parameterisations have thin layers at shallow depttisttdoker layers as
the depth increases to match the expected depth resoldtenface waves (see
previous section).

First, we perturbed PREM using 9, 18 or 24 splines and cakdilthe exact
synthetic seismogram of the perturbed model using mode siimm Second,
we assumed PREM as a reference model and performed a modelsgsch to
find the best fitting shear wave velocity models to the exaisirsggrams. The
model space search used either 9, 18 or 24 basis functionseMted the best
100 shear wave velocity models that resulted from the mauketes search and
calculated the mean misfit and standard deviation of the tisfihe position
of the exact perturbed model in the model space is known andaweherefore
also calculate the relative distance to the solution sheaewelocity model. We
choose to express the relative distance in terms of pettarissfrom PREM, since
the perturbations for the solution models are exactly knolie relative distance
is defined as
0 _

d:—ivjM (2.15)
N&Z ()2 7

whered is the relative distancey is the number of basis functions! are the
perturbations for the solution shear wave velocity model am@re the perturba-
tions for one of the 100 best shear wave velocity models wectsd from the
model space search. We calculate the relative distancelf&ab@ models and
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Figure 2.11:(a) The relative distance to the solution and (b) the misfiadanction of
the number of modes in the synthetic seismogram for a pexti2d spline model (black),
a perturbed 18 spline model (red) and a perturbed 9 splineehflalue) fitted using 9
splines. Solid lines give the mean and the dashed linesaheatd deviation.

compute the mean and standard deviation. We only show teseeesults in this
section since the results of the other tests are similaurgig.11 shows the rel-
ative distance and misfit as a function of the number of highedes used in the
synthetic seismogram calculation for the perturbed 9, 1Bi@pline model fitted
using 9 splines. As the number of modes in the synthetic sgjsam increases,
the misfit and distance to the solution model decrease toveiiin the standard
deviations, which means that we are able to find the exactisoluThe figure

also shows that for all three tests, the behaviour is quitdasi. It is initially sur-

prising that we can fit a perturbed 24 spline model using orpar@meters. This
can be explained by examining the eigenfunction curves afesd 0 through 15
(figure 2.12). These modal eigenfunctions display two Idhdéke 1000 to 1500
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Figure 2.12:Modal eigenfunctions for the indicated modes. The solid fepresent the
vertical component U and the dashed line the horizontal comept V.

km depth range. Even the 9 spline parameterisation has litlbes in the same
depth range. Most seismograms contain a significant amdumfioornation only
below mode 10, which is why all the parameterisations we asedood enough.
They are all capable of solving up to the fifteenth higher matich we do not
expect to be able to measure due to its low amplitude.

2.11 Shape of the basis functions

The parameterisation we chose according to the Backusikesolution tests is
given by twelve natural cubic splines. Other choices forghape of the param-
eterisation are also possible. Here we compared the differan phase velocity
for a twelve spline parameterisation and a twelve trianglexmeterisation (fig-
ure 2.13f,g) The triangles are defined such that their maximalue is positioned
at the same depths as the splines maxima and their segdiviero at the depths
where the splines contain sidelobes. We chose this pardasatien to exclude

changes in the position of the basis functions affectingtéisé Figure 2.13a-e
shows the difference in phase velocity for the fundamemdl fast four higher

modes between a triangle and spline parameterisation., Aleandicated the
standard deviations obtained for these measurements. fdse elocity mea-
surements are well within the standard deviations and afacinvery close to

zero. Therefore we conclude that the shape of the basisdasaioes not signif-
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Figure 2.13Difference between phase velocity measurements usimgegflior triangle
(g9) basis functions for the fundamental (a), first higher en@a), second higher mode (c),
third higher mode (d), fourth higher mode (e). The grey limelcate the corresponding
standard deviation.

icantly influence the phase velocity measurements.

2.12 Neighbourhood Algorithm

Central in this research is the use of the Neighbourhooditiga (NA) by (Sam-
bridge, 1999a,b). The Neighbourhood Algorithm consistenaf parts. The first
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Figure 2.14:quasi uniform random points and their Voronoi cells (right)e Voronoi
cells about the first 100 (middle) and 1000 (left) sampleegaed by a Gibbs sampler
using the neighbourhood approximation (from Sambridg&9%9.

part is a Monte Carlo sampling of the model space which make®tia geomet-
rical construct known as the Voronoi cell to drive the sedrcthe model space.
The Voronoi cells are defined as nearest neighbour regidng assuitable dis-
tance norm. The objective of the Neighbourhood Algorithtoind an ensemble
of models that preferentially samples the good data fittegjans in the model
space, rather than a single optimal model. The NA first umifgr(or otherwise)
generates an initial set of models;) in the parameter space and calculates the
misfit corresponding to these models and their Voronoi c&lfie models are then
ranked by lowest misfitn, new models are generated by performing a uniform
random walk (using a Gibbs sampler, see Geman and Geman){ F@&hmann
(1986) for extensive explanations) in the Voronoi cellsuaidthen,. lowest misfit
models. Then the models are ranked again according to tveést misfit and the
Voronoi cells are recalculated. This is repeated for a sediecumber of iterations
(nser). Figure 2.14 shows an example of the sampling of the modeiespsing
the NA. The higher density of the Voronoi cells indicatesioag of better fit in
the model space.

The second part of the NA consists of the appraisal problemather words,
how to infer information from the ensemble of models. The Nétftonstructs an
approximate posterior probability density (PPD) usingaghsumption of constant
known PPD values in each Voronoi cell of the input ensemblsinga Gibbs
sampler, multiple random walks are performed in the modatsp The random
walk starts at some point (for example the best fit model) akelt a series of steps
along each parameter axis in turn to obtain the next modeimRhis model, a
new series of steps along each parameter axis in turn isrpetbto obtain the
next model. This is repeated until the specified number ofetsos reached.
After multiple random walks the distribution will asympislly resemble the



2.13 Model space search 43

Table 2.1:frequency-time windows
windows (tw)
f(mHz) Rayleigh (km/s) Love (km/s)

5-10 3.7+ 0.75 b-3.8

10-20 3.75+ 0.55 b-3.8
b-4.3

20-50 b-4.3 b-4.3

Definition of frequency-time windows for Rayleigh and Laiemograms. The
time windows are defined using the group velocity (km/s).

approximate PPD (importance sampling). This resampledreble can be used
in a Bayesian framework to construct statistical propsrtiethe ensemble such
as one or two dimensional marginals and the covariance xmatri

2.13 Model space search

Usually a model space search is used to solve highly noadipeblems. Our
problem is linearized (equation 2.3) and we use the modelespaarch to map
the nullspace of the linear problem instead. The dimensfaheomodel space
is determined by the number of spline coefficieftsf equation 2.6 (in this case
N = 12, since we use twelve natural cubic splines for the paraisatam). The
Neighbourhood Algorithm performs a guided Monte Carlo tgpenpling of the
model space using the values of the misfit between the reghers/nthetic seis-
mogram. The data and the synthetic are compared in difféireatand frequency
windows (table 2.1). The windows are chosen such that theaimental mode
and the higher modes are included in the windows. The britetable 2.1 de-
pends on the epicentral distance. Below°3be timeb corresponds to the time
just before the arrival of the S wavetrain, betweefi 86d 70 the timeb corre-
sponds to the time just after the S and before the SS wavettainThe misfit
guides the model space search to area’s of better fit. Werpaefelative least
squares misfit since we expect it to be able to fit the higherandetter than an
absolute misfit definition. The relative misfit is defined as

N .
Y= 2 & e 19
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whered is the seismogramy,,.. the maximum amplitude of the seismogram
for the windoww and s the synthetic seismogram. The number of windows is
N and the number of time samples in each window.isThe definition of the
misfit influences the sampling of the Neighbourhood AlganithTherefore we
considered another misfit function.

The absolute misfit is defined as

N L
Maps = D> (di — )%, (2.17)

w=1i=1

whered is the seismogram angis the synthetic seismogram computed for all
windows N and all time samples in the windows We use the same time and
frequency windowing as in table 2.1. The relative misfit im&iipn 2.16 should
weight the higher modes more since the misfit is defined vel&ti the maximum
amplitude in the window which reduces effect of higher atmplés for the fun-
damental mode. The absolute misfit should favor the fundéhemde since it
gives more weight to higher amplitudes. We performed theefawmn inversion
for a test dataset using the relative and absolute misfititlefis and compared
the best-fitting synthetic seismograms to the real seisamogyr Figure 2.15 shows
the effect of the absolute and relative misfit for one seigiawg Especially in the
second frequency window (compare figure 2.15b with 2.152htgher mode fit
is less when the absolute misfit is used. Although the diffegdas only small we
prefer to use the relative misfit which improves the highedenfit.

Figure 2.16 shows two examples of the best fitting waveformaf@ertical
(Rayleigh) and horizontal (Love) seismogram obtained qusive relative misfit
in the model space search. Also indicated are the diffeiereg ind frequency
windows for Rayleigh and Love waves. We have chosen two tirimeloews in
the second frequency window for Rayleigh, since for Rayleige are able to
separate the fundamental mode from the higher modes. THisnvprrove the
relative misfit for these windows, since we use the maximunplinde in the
window to scale the misfit. For Love waves, we use only one tiimelow since
the fundamental mode and higher modes cannot be separdiecfféct for the
higher mode misfit is clearly shown in figure 2.16d. The Loversvhigher mode
fitis not as good as the Rayleigh higher mode fit. Also, Loveerssismograms
are noisier, which affects the fit.
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a) 5-10 mHz d) 5-10 mHz
600 800 1000 1200 1400 600 800 1000 1200 1400

b) 10 - 20 mHz e) 10 - 20 mHz
600 800 1000 1200 1400 600 800 1000 1200 1400

20 - 50 mHz f) 20 - 50 mHz

600 800 1000 1200 1400 600 800 1000 1200 1400
time [s] time [s]

Figure 2.15:Fit between the data (solid) and the synthetic seismograah(@d) for the
relative misfit (a)-(c) and absolute misfit (d)-(f) for theduency and time windows indi-
cated in red.

2.14 Bayesian statistics

In the second part of the NA (Sambridge, 1999b), the enseaflsleear wave ve-
locity models is resampled using importance sampling tstrant a conditional
posterior probability density function defined as

P(m|d) = kp(m)L(m|d), (2.18)

wherep(m) is the prior probability distribution (depending on the graeterisa-
tion, equation 2.6; the model space size; and the forwardryhequations 2.3
and 2.5),x is a normalisation constant atdis a likelihood function which rep-
resents the fit to the observations. For Gaussian errostitatihe likelihood is
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a) 5-10 mHz d) 5-10 mHz
\
800 1000 1200 1400 2400 2600 2800 3000 3200 3400
b) 10 - 20 mHz e) 10 - 20 mHz

800 1000 1200 1400 2400 2600 2800 3000 3200 3400
c) 20 - 50 mHz f) 20 - 50 mHz

800 1000 1200 1400 2400 2600 2800 3000 3200 3400
time [s] time [s]

Figure 2.16:Fit of the data with the synthetic for the (a)-(c) Rayleighfaoe waves
and (d)-(f) for Love surface waves in three frequency wirsld),(d) 5-10mHz, (b),(e)
10-20mHz and (c),(f) 20-50mHz. The time windows are inditat red.

defined as
L(m|d) — exp[—%(d ~ Gm)’C;'(d - Gm)) (2.19)

whereC, is the data covariance matrix describing noise statisticghis equa-
tion we recognise thg? misfit (x> = (d — Gm)"C;*(d — Gm)). The misfit

M as defined in equation 2.16 is nok@& misfit. For ay? misfit we would need
to know the data covariance matrix which is not obvious. Tifiécdlty in ob-
taining the data covariance mati@; is that there are many sources of noise for
real seismograms. Examples of noise are uncertaintieseirsalrce location,
source mechanism, receiver, scattered waves or in gemgralaves that are not
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accounted for in the theory. Therefore we define the likelthas
L(m|d) = exp(—%M/k:). (2.20)

Where M is the misfit as defined in equation 2.16 @@ a normalisation con-
stant, which is chosen as the minimum misfit. In this way weiagesthe data
covariance matrix is not known and our (scaled) minimum misfnow one and
all other misfits are larger than one. This resemblgs definition.

The ensemble of models is resampled using random walksghriie model
space. The number of walks and the number of steps in eachasalkuning
parameters for the Bayesian stage of the Neighbourhoodrittign We tested
different values for the tuning parameters and selectezbtivalks of 500 mod-
els each which makes a total of 1500 resampled models, whishfficient for
the convergence to the posterior probability density fiomct The resampling
algorithm can also be used to evaluate Bayesian indicafoasotransformed
parameters, that are a combination of the original parasétean identical man-
ner to the original variables. We introduce phase velocisameters defined for
certain modes and periods, since phase velocities may b&ettby integrating
a shear wave velocity model (defined by the coefficiepfasing the sensitivity
kernels for the specific mode and period using equationsri®2#. The sensi-
tivity kernels are calculated for the reference model, Wiicthe best shear wave
velocity model that we obtained from AMI. We thus obtain alyability density
surface for our original (shear wave velocity) parameteisteansformed (phase
velocity) parameters. From the probability density swefage can obtain one-
dimensional marginals for one original/transformed pastanby integrating over
all other original/transformed parameters. The Neighboad Algorithm also al-
lows us to obtain two-dimensional marginals, correlatiod aovariances which
show the relations between different parameters. The anergional marginals
for the phase velocities are Gaussian shaped, which is wirgpvesent our phase
velocity measurements as mean phase velocities and stiasheldations.

2.15 Tuning the Neighbourhood Algorithm

The sampling stage of the Neighbourhood Algorithm only segedouple of tun-
ing parameters; the number of initial modets)( the number of iterations;.,),

the number of new models sampled at each iteratiqh dnd the number of best
misfit models £,.) needed to guide the model space search. The initial mordels a
generated at random in the model space. A large number @ imibdels means

a more extensive preliminary search. The number of iterat&hould be large
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enough for convergence of the model space search. The tpa@gnetersr{,
andn) determine how the model space is sampled. A large number,fand a
small number of:, means the Neighbourhood Algorithm will converge quickly
onto the area’s of better fit (but you might miss an area). gdarumber fom,.
and a small number fot, makes the model space search much broader.

We tested different values for the tuning parametersapdn), from a very
broad search to a very focused search and we selegted5 andn, = 10 as the
tuning parameters that provide us with efficient and retigiiiase velocity mea-
surements. We also decided to use 100 initial modelsgs a more preliminary
search should give a good indication about the region oéb#tting models. The
number of iterations has a large effect on the computatiore theeded for the
Neighbourhood Algorithm. Therefore, we would prefer a dmamber of iter-
ations but still sample enough models to be sure of convesgeWe performed
the waveform inversion for our test dataset using modelesgaarches with 100,
500, 1000, 2000 and 3000 iterations. Figure 2.17 and 2.1& #he difference
in phase velocity and standard deviation for the waveforverision runs. The
results are shown for the fundamental and first four highedleador one specific
seismogram, but other seismograms of our test dataset dhaiwdar results.
The differences in phase velocity are small and well withie standard devia-
tions. Also, the standard deviations do not change signifizaFrom this test,
we concluded that we could use as few as 100 iterations dhdtgtin the same
phase velocity measurements and standard deviations. vegwee selected 500
iterations as a conservative choice, keeping in mind thetl®0 iteration case
displays the largest differences.

With these tuning parameterg;(= 100,ns; = 10,n, = 5, njer = 500)
we sample 5100 models (100 initial models, 10 new models tpeation, 500
iterations) for each waveform inversion. In contrast withes direct search meth-
ods, the Neighbourhood Algorithm characterizes the whange of models in the
model space, not only the best fitting ones.

2.16 Do we need to resample the ensemble?

The resampling stage of the Neighbourhood Algorithm is @& ta@nsuming pro-
cess, which leads to the question whether we need to resahgpnsemble of
shear wave velocity models to obtain standard deviationthé&phase velocities,
or take the approach of Yoshizawa and Kennett (2002) androtita standard
deviations from the 1000 best models sampled in the firsigbéine NA. We com-
pared the phase velocity for the best shear wave velocityelrindhe sampling
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Figure 2.17:The difference in phase velocit¢) for the fundamental (0), first (1), second
(2), third (3) and fourth (4) higher mode for the differentmibber of iterations indicated
in color, the reference is the run with 3000 iterations

stage, the average phase velocity of the 1000 best sheanwgity models in
the sampling stage and the most likely phase velocity obthly the Bayesian
stage of the Neighbourhood Algorithm (see figure 2.19). KEgw2.19 and 2.20
give the result for one seismogram. The differences betweerphase veloc-
ity measurements are larger than one standard deviatiomtfie second higher
mode on. We also compared the standard deviations obtain¢aelBayesian
stage and the number of best shear wave velocity modeld) obtained from
the sampling stage of the Neighbourhood Algorithm (figur20p. Even for a
very thorough search of the model space (30,000 models) wanobnderesti-
mated standard deviations using only the ensemble of steaar velocity models
from the sampling stage. We also compared the phase vekeitid standard
deviations for other seismograms and found similar results

The one-dimensional marginals are projections of the foidibadensity sur-
face onto the corresponding axis (the phase velocity for@icemode and fre-
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Figure 2.18:The difference in standard deviatioA§) for the fundamental (0), first (1),
second (2), third (3) and fourth (4) higher mode for the défg iterations indicated in
color, the reference is the run with 3000 iterations

guency) and, thus, they display information on the enticdability density func-
tion. The ensemble of shear wave velocity models and theiesponding misfits
obtained from the sampling stage of the NA, do not correspdirettly to the
probability density function and do not give a full indiaati of the statistical
properties of the ensemble. The same was found by Sambri@§84, figure 8).
The marginal distribution from the NA ensemble differs fréime corresponding
marginals determined by the resampling algorithm, indicathat the ensemble
of models obtained in the sampling stage of the NA is notidisted according to
the posterior probability distribution.

This test clearly indicates that we need to calculate théepios probability
density function to obtain meaningful phase velocity measents and standard
deviations.
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Figure 2.19:Phase velocities of the best model from NA (dashed linegubeage model
of NA of 1000 models (dotted) and the most likely model franBthyesian part of the NA
(line) for the (a) fundamental mode at 70 s, (b) first highedmat 70s, (c) second higher
mode at 70 s, (d) third higher mode at 60s and (e) fourth highede at 35s
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Figure 2.20Standard deviation of a number of models (#M) for the (a) &mental mode
at 70 s, (b) first higher mode at 70s, (c) second higher mod® at @) third higher mode
at 60s and (e) fourth higher mode at 35s. Solid lines inditiaestandard deviation from
the Bayesian stage of the NA, dashed lines the standardtissdrom a number of best
fitting models (#M) of the sampling stage of the NA.

2.17 The prior

As seen in equation 2.18, the posterior probability derfsibction depends on
the prior and the likelihood, where the prior depends on #rameterisation, the
search boundaries (model space size) and the forward thédeytested the ef-
fect of the search boundaries on the phase velocity measuatsrand standard
deviations. We selected search intervalst®.5%, £4%, +=7% and+10% and

performed the waveform inversion. The results are showryurdi2.21 and 2.22.
Figure 2.21 shows that the differences in phase velocitysaral in general but
largest for the largest model space size, which is not singrisince the variation
of £10% around PREM is so large it is questionable whether weldhme the

Fréchet derivatives. Comparing the phase velocity measents with the stan-
dard deviations (figure 2.22) we find that the differenceshiage velocity are well
within their standard deviations. The effect of the modelcgpsize on the stan-
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Figure 2.21:Differences in phase velocit\¢) with the size of the model space. Black
is a model space aof 2.5%, red of+ 4%, blue of+ 7% and green of-10% for (a) the
fundamental mode, (b) the first higher mode, (c) the secogigehimode, (d) the third
higher mode, (e) the fourth higher mode and (f) the fifth highede.

dard deviations however is large (figure 2.21). The standawations increase
in size with increasing model space size. This is due to @ehimit Theorem,
which states that the sum afindependent equally distributed random variables
will approach a normally distributed random variablenaimcreases. The result-
ing standard deviation (but not the mean) is dependent ostémelard deviations
of then random variables. The phase velocity marginals are a sumath&hear
wave velocity marginals and thus tend to Gaussian distabstwith a robust
mean. The standard deviation of the phase velocity mardeaénds on the stan-
dard deviations of the shear wave velocity marginals, amdé¢he a priori size
of the model space. We are thus not able to obtain absoluteasth deviations
but the relative uncertainties are consistent between tidemand between seis-
mograms. We compared the standard deviations for diffesegutch intervals for
the fundamental mode measurements to the standard desiatidlrampert and
Woodhouse (2001). They showed that uncertainties obtdigeruster analysis
are in agreement with uncertainties obtained for comparingel predictions to
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Figure 2.22:Values of the standard deviatienwith size of the model space. Black is
a model space of 2.5%, red of+ 4%, blue of+ 7% and green of-10% for (a) the
fundamental mode, (b) the first higher mode, (c) the secogidehimode, (d) the third
higher mode, (e) the fourth higher mode and (f) the fifth highede.

real seismograms. We finally chose a model space size2é6, which is large

enough for the model space search, since the chosen redereodel is the best
model from AMI and hence (close to) our best model, and giwestandard de-
viations for the phase velocity measurements which areedtmshe standard de-
viations obtained by cluster analysis. This anchoring tuilh the self consistent
relative uncertainties between modes in realistic absalatertainties.

2.18 How many overtones?

In principle, we can calculate the phase velocity for any enfldm the one-
dimensional shear wave velocity model. The important goless thus how many
modes are constrained by each seismogram. To obtain a raeafstire higher
mode information in each seismogram, we investigate theplaimed variance
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Figure 2.23:Unexplained variance (V(m)) as a function of the number ofl@sadn the
synthetic seismogram (m). The red line gives the 25% ranigeva

V' as a function of the number of modesin the synthetic seismogram defined as

i ldi — si(m))?
S d?

whereT is the number of time samples in the window (see equation) 2.4/
is allowed to vary from the fundamental mode only=0) to up to 30 higher
modes. The unexplained variance is only evaluated in the-fiequency window,
which contains the most higher mode information and the feasliamental mode
information (figure 2.16b (first time window only), ¢ and fedause we want to
obtain a measure of the higher mode information availabléhnénseismogram.
The unexplained variance with up ta modesV (m) generally decreases with
increasingm. The number of overtones constrained by a seismogram isedefin
as the smallest number of the modes which brivigs:) below 25% of its range,
where the range is defined as the difference between the roaxif¥i(0)) and
the minimum §/(30)) value. This empirical threshold was chosen after visual
inspection of the variance curves for numerous seismogré&igsire 2.23 shows
an example. In this case we would select up to six higher modes

In two cases we decide to measure the fundamental mode dnlg dbtain
a bad fit for the higher moded/(30) > 0.5), or if there is no significant higher
mode information in the seismograri¥ (0) < 0.2). A final test calculates the
unexplained variancé/{(30)) for all three time-frequency windows. If more than
60% of the seismogram/((30) > 0.4) remains unexplained the seismogram is
discarded.

V(im) = ,m=0,1,...,30, (2.21)
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Global Love wave overtone
measurements

Love wave phase velocities for fundamental and higher madedifficult to mea-
sure because the different modes cannot easily be sepafFaiéniving Yoshizawa
and Kennett (2002), we generate suites of path specific onergional shear
wave velocity profiles using the Neighbourhood Algorithnaiftridge, 1999a).
From this family ofO(10%) models both fundamental and higher mode phase ve-
locities with mutually consistent uncertainties are clted. We have fully auto-
mated the method and analysed over forty thousand Love vedstmagrams from
the GDSN and GEOSCOPE global networks from 1994-2004. Qasekeloc-
ity measurements agree remarkably well with previous esjdiut we have been
able to enlarge the available dataset dramatically. Weepteglobal Love wave
phase velocity maps (up to the fifth overtone) with unprentteresolution due
to the improved path coverage. Comparing these maps tarexistmographic
models, we discern evidence of significant anisotropy irldtaeer mantle around
a depth of 1000 km in the Pacific.

3.1 Introduction

Phase velocity maps have mainly been constructed for fuadtahmode surface
waves. The sensitivity of fundamental modes, at commonéd yseriods up to
200 seconds, is limited to the upper 400 km. Surface wave goaphy using

This chapter has been published as: K. Visser, S. Lebed@vathpert and B. L. N. Ken-
nett, Global Love wave overtone measuremer@gophysical Research Lettte8!, L03302,
doi:10.1029/2006GL028671, 2007.
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such modes, therefore, suffers from a limited depth petietral he obvious way
to increase depth penetration is to add higher mode infoomat he sensitivities
of higher modes extend well below the transition zone anal thé lower man-
tle. Techniques to measure higher mode surface wave phisdities are mostly
based on the separation of modes in the seismogram and candigyr divided
into two groups: methods that use clustering of stationsldtN&975; Cara, 1979)
or events (Stutzmann and Montagner, 1993; Beucler et @3)2dhd methods that
use single seismograms (Van Heijst and Woodhouse, 199%i2éwa and Ken-
nett, 2002). The disadvantage of using clusters is thatigitielaition and number
of phase velocity measurements is geographically verytditni Van Heijst and
Woodhouse (1999) used a mode branch stripping techniqubt&inophase ve-
locity measurements of the fundamental and higher modasirivaves. This
method is effective for seismograms with longer paths whieeemodes are rea-
sonably well separated, and hence is difficult to apply toelwaves where funda-
mental and higher modes travel closely together. YoshizawhaKennett (2002)
used a fully non-linear waveform inversion to obtain regiopath specific mul-
timode dispersion measurements. This method samples tdelmmpace for a
depth dependent shear wave velocity model that fits the wdtgems best. This
best fitting shear wave model, not meant to be a direct repiasen of the Earth
model, is interpreted as providing implicit information thre multimode disper-
sion for the given source-receiver path. In carefully cinosequency windows,
mode coupling for the first few modes can be restricted (Kenh@95). Further-
more, a direct interpretation of the path specific modelsig @alid for small lat-
eral perturbation along the path, whereas less consgictimditions apply to the
corresponding multimode dispersion curves (Kennett arghivawa, 2002). Yo-
shizawa and Kennett (2002) obtained approximate standan@tibns by com-
paring the dipersion curves of the 1000 best shear veloadityats. From the best
fitting model, phase velocities are calculated without amdenseparation, in a
fully non-linear framework. We develop a fully automatedoleamentation of this
approach and improve the uncertainty analysis by calogatomplete probabil-
ity density functions for all phase velocities. This enahlis to make multimode
dispersion measurements with mutually consistent ertonates. The method is
applied to measure fundamental and higher mode Love waveeplaocities on
a global scale.
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3.2 Method

In principle, the model space search to invert the seisrmodcat a 1D velocity
model could include the full non-linearity of the forwardoptem. In practise,
time constraints force us to limit the search around a reterenodel. The use
of Fréchet derivatives introduces a dependence of thersailt upon the refer-
ence model which we obtain from the Automated Multimode isie method
(AMI, Lebedev et al. (2005)). This is a waveform inversiooheique that uses
multiple time and frequency windows to obtain a shear wavecity model that
explains both the fundamental mode as well as the higher snodihe seismo-
gram. The safeguards build into AMI guarantee that the JWg@@imation is
valid for all seismograms which provide measurements. Tiearswave velocity
model from AMI is used to calculate all eigenfunctions anédhet derivatives
for the model space search. For the search itself we use tighidérirhood Al-
gorithm (NA, Sambridge (1999a,b)). NA involves two separsieps. The first
step is a guided Monte Carlo sampling. A relative least sspianisfit)/ guides
the model space search to areas of better fit where the differbetween the
data () and the synthetic seismogram3 ic considered relative to the maximum
amplitude in a specific windowl(, . (w)):

M= 2 Ut .

whereN is the number of time-frequency windows. ahds the number of time
samples in each window. The time-frequency windows areashasich that the
fundamental mode is mainly excited in the lower frequenaydeivs (5-20 mHz)
and the higher modes are mainly excited in the higher frequarindows (20-50
mHz)(Figure 3.1a-c). The lower time limit in the first two wliows corresponds
to the group arrival with a velocity of 3.8 km/s, which shoulipture the complete
Love wave fundamental mode as long as the perturbationsresitect to PREM
are not too large. The lower time limit of the third window msponds to a group
velocity of 4.3 km/s to include the higher modes and exclude fundamental
mode. The higher time limit in all windows depends on the epiral distance,
below 3% the time is set just before the arrival of the S wavetrain.wgen 35
and 70 the time is set just after the S and before the SS wavetrainFetcthe
determination of the left window boundaries, the S and i@t arrival times
are computed using the AK135 model (Kennett et al., 1995).
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Figure 3.1:Fit of the data with the synthetics (dashed lines) in threeetifrequency win-
dows (a:5-10 mHz, b:10-20 mHz, ¢:20-50 mHz) and the cornedjmy shear velocity
model for the best fitting model with the spline parametdidra(d). The time-windows
are indicated by the vertical bars.

The synthetic seismogras(w) in the frequency domain is calculated as a
sum of modesn using the JWKB approximation:

s(w) = Z A (w)expliwA/(CO (w) + 6Cp (w))], (3.2)

whereA,, (w) is the complex amplitude of the mode'sjs the source-receiver dis-
tanceCY (w) is the Love wave phase velocity in the reference modebangl(w)
is a Love wave phase velocity perturbation
a 900 (w) 909 (w)
0Cm(w) = — 26V ) dr. 3.3
Cnlw) = [ G aValr) + g S sp(r) (3.9

The Fréchet derivative3C?, (w) /0V(r) anddCY (w) /dp(r) relate the change in
shear wave velocity and density from the reference moddianges in the phase
velocity. a is the radius of the Earth. The density perturbations arecdsdary
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importance and are scaled to the shear wave velocity pattans. The scaling
relation € = 0inp/0InVs) is taken from Deschamps et al. (2001). We checked
that different scaling relations did not alter our resultbe attenuation is that of
PREM. The change in shear wave velocily; (r) is parameterized through a set
of 1-D basis functions;(r):

12
§Vi(r) = > yihi(r), (3.4
i=1

where thev; are the coefficients to be found in the model space search. The
boundaries of the model space are chosen suchttB& changes (justification
below) are allowed around the reference model.

The functionsh;(r) are twelve natural cubic spline basis functions that span
the shear velocity model in the crust, upper mantle and lomaartle up to a depth
of 1500 km (figure 3.1d). The basis functions are spaced nenedaly in the crust
and upper mantle to match the expected depth resolutionrfzfceuwaves. We
typically sample 5100 models per seismograry=10, n,.=5, 500 iterations, 100
initial models).

From this first sampling, no stable measurements can beastinThe sec-
ond part of the Neighbourhood Algorithm (Sambridge, 199@samples the ini-
tial ensemble of models and constructs a conditional posterobability density
function given the seismogranas

P(mld) = rp(m)L(m]d), (35)

wherep(m) is the prior probability distribution (depending on the graeteriza-
tion, eq. 3.4; search boundaries,2%; and the forward theory, eqg. 3.2 and 3.3)
andL(m|d) = exp(—1M/c) is alikelihood function which represents a fit to the
observations/ is defined in eq. 3.1k andc are normalization constants.

The statistical properties of the ensemble are defined iryafian framework
and are evaluated using Monte Carlo integration (Sambyitig@9b). We resam-
ple using 1500 models which is sufficient for convergencehefintegrals. The
results are presented as one-dimensional marginal piitesbfor each model
parameter by integrating over all other dimensions of tiedability density func-
tion. The marginal probability densities for the coeffidgen; (eq. 3.4) can eas-
ily be transformed into marginal probability densities fidrase velocities of any
mode at any period using equations (3.3) and (3.4). Becdube @entral limit
theorem, we observe that the marginals for phase veloeiteslose to Gaussian,
which can conveniently be described by its mean and starciavidtion.
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3.2.1 How Many Overtones?

In principle, we can calculate the phase velocity of any miode the 1D Earth
model, the important question is thus how many modes ardreimsd by each
seismogram. To obtain a measure of the higher mode infoomatieach seismo-
gram, we investigate the unexplained variamtas a function of the number of
modeskK in the synthetic seismogram:

L 2
ldi — si(K
V(K) = Zizl ; 22( ) , K =0,1,...,30, (3.6)
=1

K is allowed to vary from the fundamental mode only<0) to up to 30 higher
modes. The unexplained variance is only evaluated in the-trequency window,
which contains the most higher mode information and the feaslamental mode
information (figure 3.1c), because we want to obtain a meesitthe higher mode
information available in the seismogram. The unexplairatiance with up tax
modesV (K') generally decreases with increasiAig The number of overtones
constrained by a seismogram is defined as the smallest naritbermodes which
bringsV (K') below 25% of its range, where the range is defined as the eliffer
between the maximumi{(0)) and the minimum ¥ (30)) value. This empirical
threshold was chosen after visual inspection of the vaeiancves for numerous
seismograms.

In two cases we decide to measure the fundamental mode dnlg dbtain
a bad fit for the higher moded/(30) > 0.5), or if there is no significant higher
mode information in the seismograri¥ (0) < 0.2). A final test calculates the
unexplained variancé/(30)) for all three time-frequency windows. If more than
60% of the seismogrami/(30) > 0.4) remains unexplained, the seismogram
is discarded. From a total of 310,000 seismograms, we maddi4.5% funda-
mental mode, 11.1% first, 10.1% second, 7.7% third, 4.8%tHcamd 2.7% fifth
higher mode dispersion curves.

3.3 Dispersion Measurements

We measured minor arc Love wave phase velocities using data the GEO-
SCOPE and GDSN global networks from 1994 to 2004. Figure-84laows an
example of the waveform fit obtained in three different tifreguency windows
for the best fitting model (figure 3.1d) given by the model spsearch. The corre-
sponding phase velocity measurements are shown in figufert2e fundamen-
tal mode and the first, second and third higher modes. Theurezasnts agree
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Figure 3.2:Comparison of phase velocity measurements with respecREMPfor the
fundamental mode (@), the first higher mode (b), the secagtiehimode (c) and the third
higher mode(d). Indicated in red are measurements of Vajstiid Woodhouse (1999)
with standard deviations according to cluster analysis &amgreen measurements with
AMI as in (Lebedev et al., 2006).

well with existing measurements made by Van Heijst and Woadh (1999) (fig-
ure 3.2 and 3.3) and those made with AMI by Lebedev et al. (@f6re 3.2).
We calculated uncertainties for Van Heijst's measurembytsuster analysis.

Our standard deviations do not depend on the quality of tlggnat seismo-
gram because of the definition of the misfit function (eq.;3Hgy depend mainly
on the size of the modelspace. This is again a result of thieatdimit theorem,
which states that the sum afindependent equally distributed random variables
will approach a normally distributed random variablenaimcreases. The result-
ing standard deviation (but not the mean) is dependent ostémelard deviations
of then random variables. The phase velocity marginals are a sumath&hear
wave velocity marginals and thus tend towards Gaussiariligons, with a ro-
bust mean. The standard deviation of the phase velocityinardepends on the
standard deviations of the shear wave velocity marginalgd,reence the priori
size of the modelspace. We can thus not obtain absolute taimtérs from NA,
but the relative uncertainties betweeen modes are selistens We define the
boundaries of the modelspace2% around the AMI reference model) such that
the resulting standard deviations for the fundamental nmodich the standard
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Figure 3.3: Histogram comparing overtone phase velocity measuren{érds second
and third overtone branch) of Van Heijst and Woodhouse (1998:/co)x) with this
study (c/cp) scaled by our standard deviations((c/cp)). 16,756 & 65%) out of a
total of 25,908 overlapping measurements fall within o@dard deviation.

mode | period [s]| number of | X7iar | XFina
in PREM | measurements

3 46.95 24,102 421 3.28
4 62.77 15,065 2.00 1.75
5 56.29 8,515 2.16 1.96

Table 3.1:Details for the phase velocity maps of figure 3.4

deviations obtained by cluster analysis by Trampert anddioose (2001). They
showed that uncertainties for cluster analysis are in ageaéwith uncertainties
obtained for comparing model predictions to real seismmgraThe anchoring
will thus turn the self consistent relative uncertaintieswieen modes in realistic
absolute uncertainties.

A compact representation of the measurements is to cohgtinase velocity
maps. Figure 3.4b,d and f show global minor arc phase vglotitps for Love
waves for the third, fourth and fifth overtone. The phase aiglomaps were
expanded on a spherical harmonic basis up to degree andz2trdiilowing the
same procedure as described in Trampert and Woodhouse) (1888 number
of measurements, initial and fing? of the phase velocity maps are given in
table 3.1. The derivative damping was chosen to allow an eas\parison with
predictions for the model S20RTS of Ritsema et al. (1999)revtiee crust was
added using CRUST5.1 (Mooney et al., 1998) (Figure 3.4ajcegn Even for
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Figure 3.4:Deviations in Love wave phase veloaily/ ¢y calculated for model S20RTS
and the new Love wave measurements. (a),(b) third higheerabd6.95s; (c),(d) fourth
higher mode at 62.77s; (e),(f) fifth higher mode at 56.29sth&aright of the figure the
sensitivity curves (red fov, and blue forp) for the specific modes are displayed.

the fifth overtone, the ray density is higher and more uniféh@n that given
by Trampert and Woodhouse (1995). The resolution is theeastlas good
as that of figure 7a of Trampert and Woodhouse (1995). Somsepbelocity
maps (with bulk sensitivities shallower than 1000 km) agve# with the S20RTS
prediction see (figure 3.4a and b), even though the S20RT &Irdods not contain
Love wave information. For higher modes, with main senisiéig around 1000
to 1500 km, there is a discrepancy between the Love wave pledseity maps
and the S20RTS phase velocity maps (Figure 3.4c-d and Bifetlie Pacific.
The S20RTS model is based on mainly Rayleigh equivalenasenfvaves. This
discepancy indicates a difference between SH and SV arod®@d tb 1500 km,
an indication of anisotropy.
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3.4 Concluding Remarks

We measured higher mode Love wave phase velocities up tdtheifiher mode
with corresponding uncertainties using a new, fully autterarocedure. The use
of a model space sampling allows us to derive mutually ctersisestimates of
relative standard deviations between different overtamedhes and from mea-
surement to measurement. The phase velocities agree vibllewisting mea-
surements (Van Heijst and Woodhouse, 1999; Lebedev etGflg)2 especially
for the fundamental modes. The higher modes agree wellnwitieir standard
deviation. The differences between the different techesgare caused by differ-
ent theoretical formulations; branch stripping (van Hgigg multiple frequency
and time windows (Lebedev). The resulting phase velocitpsregree well with
phase velocity maps predicted by the model S20RTS (Rits¢éaa €999). Love
wave phase velocity maps with high sensitivities betwedd0ldhd 1500 km dif-
fer from the Rayleigh wave based S20RTS, giving an indicatibanisotropy in
the Pacific around the Pacfic superplume. The use of hightguaiertone mea-
surements should improve the resolution in the mid-mankiere the differences
between existing models are largest (Romanowicz, 2003).
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Global anisotropic phase velocity
maps for higher mode Love and
Rayleigh waves

It is well established that the Earth’s uppermost mantlenisaropic, but there
are no clear observations of anisotropy in the deeper patteanantle. Surface
waves are well suited to observe anisotropy since they éafoymation about
both radial and azimuthal anisotropy. Fundamental modaseikvaves, for com-
monly used periods up to 200 s, are sensitive to structureeiffiitst few hundred
kilometers and therefore do not provide information on atnigpy below. Higher
mode surface waves have sensitivities that extend to andnbdethe transition
zone, and should thus give insight about azimuthal anipgtet greater depths.
We have measured higher mode Love and Rayleigh phase vetaciing a model
space search approach, which provides us with consistitiveeuncertainties
from measurement to measurement and from mode to mode. Resa phase
velocity measurements, we constructed global anisotrppiése velocity maps.
Prior to inversion, we determine the optimum relative wéigi for anisotropy.

We present global azimuthal phase velocity maps for higteeterRayleigh waves
(up to the sixth higher mode) and Love waves (up to the fiftthéignode) with

corresponding average model uncertainties. The anigotna@pderive is robust
within the uncertainties for all modes. Given the ray théoat sensitivity ker-

nels of Rayleigh and Love wave modes, the source of anispisopomplex, but

This chapter has been accepted for publication as: K. Vi§s&rampert and B. L. N. Kennett,
Global anisotropic phase velocity maps for higher mode Lané Rayleigh wavesGeophysical
Journal International 2008.
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mainly located in the asthenosphere and deeper. Our mdumisa good corre-
spondence with other studies for the fundamental mode, biltave been able to
achieve higher resolution.

4.1 Introduction

It is widely established that the Earth’s upper mantle isatmopic. The first ob-
servation of radial anisotropy was the discrepancy betwRayleigh and Love
wave dispersion observed by Anderson (1961), Aki & Kaminui@63) and
McEvilly (1964). Anisotropy was also observed in the azihaltdependence of
P, velocities (Hess, 1964) and S-wave splitting in teleseis8KS waves (Vin-
nik and Romanowicz, 1989). The first observation of azimutimsotropy, the
azimuthal variation of phase velocities, was noted by Rar§¥975) in the Pa-
cific ocean. Radial and azimuthal anisotropy are both oleskloy surface waves,
which is why these waves are well suited to study anisotrdRgdial and az-
imuthal anisotropy are the result of the same underlyingaropy of the Earth’s
interior and were linked in a common mathematical framewaylviontagner &
Nataf (1986). The alignment (lattice preferred orientatio LPO) of intrinsically
anisotropic minerals under strain in the mantle is assurméx tthe major cause
of upper mantle anisotropy (Karato, 1998a; Montagner, L988isotropy is thus
an indicator of mantle deformation and flow. Therefore, itiiical to image
anisotropy to understand the dynamics of the mantle.

Fundamental mode surface waves are well suited to provideiation about
anisotropy in the upper mantle (Tanimoto and Anderson, 188&4af et al., 1984;
Montagner and Tanimoto, 1991; Ekstrom and Dziewonski81.9%he sensitivity
of fundamental mode surface waves for commonly used perpd® 200 s is
however limited to the upper 400 km of the Earth’'s mantle. Tke of higher
mode surface waves should increase our knowledge of amigointo the lower
part of the upper mantle and the upper part of the lower manieto their greater
sensitivity at depth compared to fundamental mode surfasesy In the last few
years higher mode surface waves have been added to studiessofropy (De-
bayle and Kennett, 2000; Simons et al., 2002; Trampert andHsijst, 2002;
Maggi et al., 2006; Beucler and Montagner, 2006). The nurobbigher modes
used in these studies varies due to the difficulty of meagurigher mode phase
velocity, especially for Love waves since the higher modesesimultaneously
with the fundamental mode. Trampert & van Heijst (2002) aedi@er & Mon-
tagner (2006) use phase velocities up to the second higheée mred Debayle &
Kennett (2000) and Maggi et al. (2006) use phase velocifi¢e the fourth higher
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mode. The number of measurements are often few (Debayle andédtt, 2000)
sometimes imposed by the clustering of events (Beucler aodtagner, 2006;
Maggi et al., 2006; Sebai et al., 2006) and the geograph@adrage is limited.

This study presents global azimuthal anisotropic phasecitgimaps for fun-
damental and higher mode Love and Rayleigh waves up to thelsigher mode
consisting of a large number of measurements with consistandard deviations.
The phase velocities were measured using a model spacé sggmoach (Visser
et al., 2007a; Yoshizawa and Kennett, 2002) which provi@eadistic consistent
uncertainties on the phase velocity measurements. FoltpiMiampert & Wood-
house (2003), we determine the optimum relative weightirangsotropy prior to
inversion and present global azimuthal anisotropic phasecity maps up to the
fifth higher mode for Love and up to the sixth higher mode foylRigh.

Finally, we analyse the resolution of the azimuthal antutr phase velocity
maps and look at spectral leakage and trade-offs in paatic@pectral leakage
is the effect of mapping small-scale structure not accalfdein the model ex-
pansion into the inverted low-degree structure. It arisea wesult of uneven data
coverage (Snieder et al., 1991). We suppress spectralgediausing Laplacian
damping, which increases the damping with increasing @egfréis process ef-
fectively decreases the spectral leakage (Spetzler amdpknd, 2003) but also
decreases resolution for higher and higher degrees. Byrgait the off-diagonal
terms of the resolution matrix, we find that the trade-offimsn parameters re-
mains acceptably small.

4.2 Phase velocity measurements

We follow the approach of Yoshizawa & Kennett (2002) and rmeaphase ve-
locities using a model space approach (Visser et al., 200faprinciple, the
model space search to invert for a 1-D velocity model coulduite the full
non-linearity of the forward problem. This is very time cangng and there-
fore we chose to linearize the forward problem by centerlng model space
search around a reference model and using the Fréchettiersr of this ref-
erence model to calculate the synthetic seismograms. fihééntly introduces
a dependence on the chosen reference model and the requiirdraethe cho-
sen reference model should be close to our final model. Wehgsautomated
multimode inversion (AMI, Lebedev et al, 2005) to obtain gerence model for
the model space search. AMlI is a non-linear waveform inearsi multiple time
and frequency windows which obtains the best shear waveitelmodel that fits
the seismogram. The time and frequency windows are chosgmtisat both the
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Figure 4.1:Minor arc Rayleigh wave azimuthal coverage for first higheda (a), second
higher mode (b), third higher mode (c), fourth higher modg fiith higher mode (e) and
sixth higher mode (f).

fundamental mode and the higher modes are fitted. AMI alstiespgtrict data
quality criteria and ensures the validity of the JWKB appmtation. The shear
velocity model from AMI is close to the best shear wave vejogiodel which we
find in the model space search. Differences between both Immade small and
largely due to the use of different parameterizations ferghear wave velocity
models. AMI uses around 18 boxcar and triangle functionou®b00 km and we
use 12 natural cubic spline functions that span the crugigmumantle and lower
mantle up to a depth of 1500 km. We have experimented with timeber and
position of the spline functions and found that this paramzation is sufficient
to resolve up to the fifteenth higher mode. We do not expeatgolve more than
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Figure 4.2:Minor arc Love wave azimuthal coverage for first higher moal $§econd
higher mode (b), third higher mode (c), fourth higher modes(ud fifth higher mode (e).

six higher modes which makes this parameterization mome shéicient for our
purpose. The parameterization is more dense in the crustigper mantle to
match the expected depth resolution of surface waves. Tifexatice between
AMI and the model space search is that the first gives us ontefittesy shear
wave velocity model and the second gives us the whole enseafilshear wave
velocity models compatible with the seismograms which &sabs to determine
uncertainties. If we were only interested in the best fitimgdel, AMI would be
sufficient. It is important to understand that AMI solves Buposed non-linear
inverse problem. A solution is found by careful regulaitmat but other solutions
exist compatible within the data errors. A Monte Carlo skamund the AMI
solution finds all those other models and allows us to detegmieaningful un-
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windows (tw)
f(mHz) Rayleigh (km/s) Love (km/s)

5-10 3.7+ 0.75 b-3.8

10-20 3.75+ 0.55 b-3.8
b-4.3

20-50 b-4.3 b-4.3

Table 4.1: Definition of frequency-time windows for Rayleigh and Logismograms.
The time windows are defined using the group velocity (km/s).

certainties for the best fitting model. Usually, a model spsearch is used to
solve highly non-linear problems. We use it to map the naltgpof a linearized
problem instead.

For the model space search we use the Neighbourhood Algo(iiA, Sam-
bridge, 1999a ). We search for the best fitting shear wavecitglmodel using
a least squares misfit between the data and the synthetinagriam defined in
multiple time and frequency windows, see table 4.1. Theueegy and time
windows are chosen such that the fundamental and higher srerdeincluded
in the windows. For Love waves, it is not possible to sepattaefundamental
and higher modes since the group velocities are similas, Weiuse a single time
window for both waveforms. For Rayleigh waves, we separtitedundamental
and higher mode waveforms in different time windows. Theetiin table 4.1
depends on the epicentral distance, beloftB8 time is set just before the arrival
of the S wavetrain, between 3&nd 70 the time is set just after the S and before
the SS wavetrain etc. The synthetic seismograms are celdulaing the JWKB
approximation and the Fréchet derivatives which relatedhange in compres-
sional wave velocity, shear wave velocity and density framreference model to
a change in phase velocity. The compressional wave petioingeand the density
perturbations are of secondary importance, thus we detidschle these pertur-
bations to the shear wave velocity perturbations theretiyaieg the amount of
parameters needed for the model space search. This chgidécsintly speeds
up the model space search. For Rayleigh waves, we scaleniressional wave
perturbations to the shear wave velocity perturbations Wit scaling relation
(R = 0V,/0V,) from Ritsema & van Heijst (2002)R increases linearly from
1.25 at the surface to 3.0 at the CMB. For Love and Rayleighesiathe density
perturbations are scaled to the shear wave perturbatiang (§s= dinp/dInVy)
from Deschamps et al. (2001) varies between -0.1 to 0.2. The attenuation
model employed is that of PREM (Dziewonski and Anderson, 1198
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The model space search provides us with an ensemble of sheanelocity
models and their fit to the data. This ensemble is resamplédransformed into
a probability density surface in the second part of the NAT{Bi@dge, 1999b).
The resampling algorithm can also be used to evaluate Bayeésdicators of
any transformed parameters, that are a combination of tigenar parameters,
in an identical manner to the original variables. We intmalphase velocity pa-
rameters defined for certain modes and periods since phdsaties may be
obtained by integrating a shear wave velocity model usiegstinsitivity kernels
for the specific mode and period. The sensitivity kernelscateulated for the
reference model, which is the best shear wave velocity mibdelwe obtained
from AMI. We thus obtain a probability density surface forr ariginal (shear
wave velocity) parameters and transformed (phase vejopdyameters. From
the probability density surface we can obtain one-dimevaimarginals for each
original/transformed parameter by integrating over dileotoriginal/transformed
parameters. The advantage of our approach is that now webkrdocasolve for
phase velocities for multiple modes and periods withoutrigato separate the
modes and without too much computation time. The shape dftthse velocity
marginals is Gaussian, and therefore, we represent thdiorensional marginals
as a mean phase velocity and a standard deviation. The pblsities are pre-
sented as changes with respect to PREM for convenience.

In the resampling process, we introduced specific phaseitelparameters
which are obtained by integrating each resampled shear waweity model us-
ing the corresponding sensitivity kernel. In theory, weldabtain phase veloc-
ities for every higher mode and period. In practise, we knioat tot all higher
modes are constrained by the seismogram. To evaluate thbemuwsh modes
constrained in each seismogram we calculated the unerglaariance which is
defined as the least squares misfit between the data and tietymormalized
by the data. The unexplained variance is calculated as aidanaof the number
of modes used in the synthetic seismogram calculation. parfect match be-
tween data and synthetic, the unexplained variance is &noe we calculate the
unexplained variance only in the higher mode windows (tdble two windows
for Rayleigh, the middle and highest frequency band; andvdndow for Love,
the highest frequency band), the unexplained varianceiig for a fundamental
mode synthetic seismogram and should decrease to zerodoiezfull synthetic
seismogram. The unexplained variance therefore is a fumethich, in practise,
has its maximum for the fundamental mode only and decreasssne constant
value for increasing higher modes. This determines the eummbmodes needed
to explain the specific seismogram. The number of higher smede measure
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Number of measurements

Rayleigh Love

fundamental mode 63,628 45,179
first higher mode 54,035 34,859
second higher mode 52,457 31,704
third higher mode 48,762 24,102
fourth higher mode 40,606 15,065
fifth higher mode 31,637 8,514
sixth higher mode 21,626

Table 4.2:Number of minor arc phase velocity measurements for Rdybeig Love wave
fundamental and higher modes.

is defined as the smallest number of higher modes which btirgganexplained
variance below 25% of its range, where the range is defineldeaditference be-
tween the largest and the smallest unexplained varianceahdfudetails may be
found in Visser et al. (2007).

The unexplained variance is also used to check when we cdmadwerall bad
fit for the higher modes and whether the seismogram contaisgnificant higher
mode information. In such cases we decide to only measurdéutitdtamental
mode. Finally, if we obtain a bad fit for the whole seismogrameiplained
variance larger than 0.4), we discard the measurements.

We measured phase velocities for fundamental and higheerhode and
Rayleigh waves for seismograms that were recorded at thierstaf the GDSN
and GEOSCOPE networks from 1994 to 2004. The azimuthal ageefor the
higher mode Rayleigh and Love wave measurements are shofiguires 4.1
and 4.2. We do not show the azimuthal coverage for the fundeahmode since
it is similar to the minor arc coverage given by Trampert & \Whouse (2002) for
Rayleigh and Love waves. The number of measurements obtéin¢éhe funda-
mental and each of the higher modes is shown in table 4.2. \féénaine highest
number of measurements for the fundamental mode followethéyfirst, sec-
ond, third etc. higher modes. As explained above, the uaimgu variance will
decrease as the number of higher modes increases. For agesmwith less
higher mode information the unexplained variance decszasee rapidly and the
number of higher modes we decide to measure is less. Alssiengeismograms
will lead to less higher modes that will be measured due tdabier decrease of
the unexplained variance to an almost constant value. Thesilconstant value
for higher modes indicates that we are trying to measurgaves not constrained
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by the seismogram which is why we have to restrict the numbbigher modes
we measure. Finally, the number of seismograms with sigmfisecond higher
mode information will be less than the number of seismogreauitis significant

first higher mode information and so on. This is mainly duehi® $maller am-
plitudes of the higher modes which makes the contributiothéounexplained
variance smaller. We also obtain more measurements foeiaythan for Love

waves, because of the higher noise levels for Love wave sgisams.

4.3 Azimuthal anisotropy

In a slightly anisotropic medium the azimuthal dependenicthe local phase
velocities of Rayleigh and Love surface waves is descrilse(Saith & Dahlen,
1973, 1975; Romanowicz & Snieder, 1998; Larson et. al., 1998

@(w’¢) = op(w) + ai(w) cos(2¢) + az(w) sin(2¢)

co
+ag(w) cos(4v) + au(w) sin(4y)), (4.1)

wheredc/cy is the relative phase velocity perturbation with respec &pheri-
cally symmetric Earth model, the radial frequency and is the azimuth along
the path. We follow the approach of Trampert & Woodhouse 820Ghere the
local phase velocity perturbation is expanded in terms okegadized spherical
harmonics. This reduces equation 4.1 to

d = Gm. 4.2)

Hered are the path-averaged phase velocity measuremants,(mg, mg, my)”
is the model vector corresponding to the spherical harmooédficients of the
0y, 2y and 4) terms. G = diag(Go, G2, G4) is the block diagonal matrix of
the path-averaged spherical harmonics, for theZd and 4) terms. The number
of unknowns ig L + 1)? for the @) terms,(2L + 6)(L — 1) for the 2) terms and
(2L + 10)(L — 3) for the 4) terms. We choose L=40 for the isotropic term§0
and L=20 for the azimuthal terms2)), resulting in 3405 unknowns.

The inverse problem is solved by minimizing the cost functio

C=(d-Gm)'C;'(d - Gm)+m’C,'m, (4.3)

whereC, is the diagonal data covariance matrix which consists ofstiueared
standard deviations of the phase velocity measurementshveiné obtained from
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N-M
x> 7500 10,000 15,000 20,000 30,000 40,000 50,000 65,000
1.0 0029 0.025 0.021 0.018 0.015 0.013 0.011 0.010
15 0.044 0.038 0.032 0.027 0.022 0.019 0.017 0.015
20 0.059 0.051 0.042 0.036 0.029 0.025 0.023 0.020
25 0.073 0.063 0.053 0.045 0.037 0.032 0.029 0.025
3.0 0.088 0.076 0.063 0.054 0.044 0.038 0.034 0.030
3.5 0.103 0.089 0.074 0.063 0.051 0.044 0.040 0.035
40 0.117 0.101 0.084 0.072 0.059 0.051 0.048 0.040

Table 4.3:The difference in? at the 99% significance level determined by the F-testa s
a function of they? and the number of independent parameters (N-M).

the model space searclC,,, is the diagonal model covariance, used to impose
Laplacian smoothing. In its partitioned form the expressiare

1 1

(nebss =S+ 1P 9
B2 1

(Coma)ii = Y705 2 (4.5)
04 1

(s =S+ TP o

where) is an overall damping parameter which controls the tradbeeifveen the
data misfit and smoothness. The parameteendd, control the relative strength
of the anisotropy. For example, a value of 0.1 would give frfe§ more weight
to the isotropic terms relative to the anisotropic termgfedént values fot, and
f4 can be used to determine whether the data has a preferermeidotropy and
if so, a preference for they terms or for thely terms or for both. To compare
inversions with different regularisations, we define, austy? as

o1
N-M

Where N is the number of data antlf the trace of the resolution matrix. As
the overall damping\ decreases, the trace of the resolution matrix (hnumber of
independent parameters) will increase and the redyéedlill decrease, even if
the misfit does not. A standard F-test (Bevington and Rohins®92) determines

X (d -~ Gm)"C;'(d — Gm). (4.7)
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if the difference between twg? values is significant. Table 4.3 shows for a given
x2 and number of free paramete™ ( M) the associated significant difference
in x? at the 99% confidence level. The meaning is that if for a given M, two

x? differ by more than this value, we are 99% sure that the mssketter and that
this inversion should be preferred.

4.4 Misfit curves for the higher modes

Following Trampert & Woodhouse (2003), we calculated midfitves system-
atically changing\ for a fixed#, andé, for each of the higher modes to deter-
mine if the higher modes require anisotropy and if we canirgjsish between
the different anisotropic terms. The misfit curves (figuresahd 4.4) show that
for a small number of independent parameters, the isotrppiameterization
(62,604 = 107°) explains the data best. As the number of independent param-
eters increases, the anisotropic parameterizationg( > 10~°) start to explain
the data better than the isotropic parameterization. Atiraddb00 independent
parameters, the isotropic misfit curves flatten out, indigathat anisotropy is in-
deed required by the data, because they give a better misfievhiigh confidence
level. The F-test (Bevington and Robinson, 1992) gives ¢hellof confidence
with which the differences between the misfit curves is $igant. For exam-
ple, the first higher mode Rayleigh has a total of about 50f088 parameters
(the number of measurements - the trace of the resolutionixnand ay? of
around 2.0 (figure 4.3a). According to table 4.3 the 99% §izanit difference is
0.023. At a trace of 1000, the difference between the isatrapd anisotropic
misfit curves is 0.024, indicating indeed that we need arapgtto explain our
results. Beyond a trace of about 500, the differences betezisotropic and
anisotropic misfit curves for all Rayleigh wave modes (figli® are significant
with a high confidence level, indicating that anisotropy éeded to explain the
phase velocity measurements. There are differences int iglisfies for different
levels of anisotropic scaling, but these differences atesigmificant with a high
confidence level.

As for Rayleigh waves, the difference between the isotrapid anisotropic
misfit curves is 99% significant for all Love wave modes (figdtd). Again
the data cannot distinguish between different levels o$@rpic scaling. For
fundamental mode Love waves, we would expect a preferencthdod) term
of anisotropy since the amplitude of the 4ensitivity is much higher than the
one for 2). For higher mode Love waves, we do not expect a preferencaef o
anisotropic term over the other since higher mode Love wavessensitive to
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Figure 4.3:Misfit curves for Rayleigh (a) first higher mode at 148.56 $séxond higher
mode at 40.028 s, (c) third higher mode at 77.795 s, (d) foligher mode at 35.078 s,
(e) fifth higher mode at 56.074 s and (f) sixth higher mode at8bs. The legend shows
different values fofl; andd,.
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Figure 4.4:Misfit curves for Love (a) fundamental mode at 153.46 s, (&)Higher mode
at 153.07 s, (c) second higher mode at 40.02 s, (d) third ligtozle at 78.66 s, (e) fourth
higher mode at 35.06 s and (f) fifth higher mode at 35.12 s.&penld shows different

values forf, andd,.
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Figure 4.5:Correlation as a function of spherical harmonic degree fonon and major
arc vs. minor arc coverage.

both the 2 as well as the 4 term of anisotropy. Earlier, a strong)2erm of
anisotropy for fundamental Love waves has been found by &mer & Tani-
moto (1990). They ascribed this strong rm to Rayleigh-Love coupling, since
fundamental mode sensitivity curves for Love waves onlydjatea strong 4
term of anisotropy. Trampert & Woodhouse (2003) found ntistteal reason to
include a 2 term and omitted it, based on asymptotic expectations. eSimen,
Sieminski et al. (2007) showed that Rayleigh-Love coupi&igportant (as spec-
ulated by Montagner & Tanimoto, 1990) and results in a higlr seurce sensitiv-
ity for azimuthal parameters B-H. Furthermore, tilted uppantle minerals with
respect to the geographical reference system can resughirapparent values of
B-H (Sieminski, personal communication, 2007). Althougé find, similar to
Trampert & Woodhouse (2003), no significant indication imofaof a 2) term,
we choose to keep it based on a plausible reason for its egesteAn important
issue is to check whether the use of minor arc data alone Kwkgults in poorer
azimuthal coverage in the southern hemisphere) could biessfit curves. We
computed synthetic data for a random anisotropic modeltéiming an isotropic,
2¢) and 4) term) and tested how well the random model could be retridyed
using a minor arc ray coverage alone and a minor and majoagmoverage. We
used the minor and major arc paths of Trampert & Woodhous@3)20For the
minor arc ray coverage we only took their minor arc pathsufggt.5 shows the
correlation between the model retrieved by the minor anebnaac coverage and
the model retrieved by the minor arc coverage only. The troms are very high
(>0.95), indicating that essentially the same model is regdeusing both the mi-
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Figure 4.6:Relative isotropic phase velocity maps with respect to PR&NRayleigh (a)
first higher mode at 148.56 s, (b) second higher mode at 4Gs0@8§ third higher mode
at 77.795 s, (d) fourth higher mode at 35.078 s, (e) fifth highede at 56.074 s and (f)
sixth higher mode at 35.141 s.

nor and major arc coverage and using the minor arc coverdge e further
established the important point that including thé rm does not change the
4p models. In summary, beyond 500 independent model parasnetemuthal
anisotropy is required by the data for all modes of Love angégh waves con-
sidered here. The prior strength of anisotropy cannot berahted from the data
and has to be fixed by other arguments.

4.5 Azimuthally anisotropic phase velocity maps

We constructed azimuthally anisotropic phase velocity snap to the first five
higher mode Love and the first six higher mode Rayleigh waaselvelocities.
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Figure 4.7:Relative isotropic phase velocity maps with respect to PRENMove (a) first
higher mode at 153.07 s, (b) first higher mode at 40.16 s, @rs#higher mode at 40.02
s, (d) third higher mode at 78.66 s, (e) fourth higher mode%08 s and (f) fifth higher
mode at 35.12 s.

The exact number of measurements used for the phase vaiogjiy is shown in
table 4.2 and the rms uncertainty of a sample of the data isrshotable 4.4.

As seen in the previous paragraph, the data require azitranisotropy but
cannot decide upon its exact scaling. There is also no cdimgpe¢ason to favor
21 or &) terms only. An Occam-type argument guided us to choose a shode
amount of anisotropy using, = 6, = 0.1. It should be noted that this is a
prior constraint which will be overruled if the data requihés locally. Because
for fundamental modes our data quality seems superior cadpa that used in
Trampert & Woodhouse (2003), (smallef for similar uncertainties in both data
sets), we chose less overall damping to allow approximdi@d@ independent pa-
rameters in the Rayleigh fundamental mode models. We haygechan overall
damping such that the relative model uncertainty remainstemt for all modes.
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Rayleigh
mode period oge/c, (%) og.(M/S) trace(R) 0y 2¢ 4
000s097 100.393 0.48 19.56 1008 695 146 167
000s197  51.259 0.60 23.54 965 665 140 160
001s068  99.650 0.53 31.16 947 651 139 156
001s156  50.855 0.56 28.24 938 644 138 156
002s056  99.258 0.48 34.00 961 660 141 160
002s137 50.849 0.56 32.16 930 639 137 154
003s120 51.059 0.56 36.46 918 631 135 152
003s201  35.014 0.57 32.35 929 638 137 154
004s109 51.052 0.56 40.06 889 610 132 147
004s183  35.078 0.59 36.51 880 604 130 146
005s101  50.921 0.58 44.59 841 576 126 139
005s168  35.115 0.60 40.87 832 571 124 137
006s096  50.822 0.61 49.99 768 526 116 126
006s157 35.141 0.59 42.49 772 528 117 127
Love
mode period o4./,(%) og(M/S) trace(R) 0y 2 49
000t085  100.81 0.50 23.31 956 644 148 164
0ooot174 51.01 0.70 31.47 895 604 139 152
001t068  100.08 0.55 32.05 858 586 130 142
001t154 51.19 0.61 31.00 839 573 127 139
002t054 99.92 0.65 47.66 809 532 123 134
002t136 51.41 0.58 32.85 831 567 126 138
003t120 51.32 0.65 41.83 751 514 114 123
003t200 35.05 0.59 33.58 766 524 116 126
004t107 51.06 0.69 50.65 646 443 99 104
004t184 35.06 0.63 39.13 659 453 100 106
005t098 51.27 0.77 61.04 536 370 82 84
005t168 35.12 0.66 44.70 555 383 85 87

Table 4.4 Relative and absolute rms data uncertaintieg.(., ando,.), the total number
of independent parameters-¢ce(R)) and the number of independent parameters for the
isotropic (Q)), 2¢) and 4) models.
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As a result, the phase velocity maps will have a decreasswution with increas-
ing data uncertainty and/or decreasing number of data &e4.4). This choice
is somewhat arbitrary. In view of a future depth inversia®ailly, we should have
chosen for a constant resolution. The difference in the raurobdata between
modes, however, is so large that the corresponding decieaserall damping
would have led to unrealistic amplitudes in some higher mmodes. The other
extreme would have been to opt for an increasing uncertaietause the number
of data constraints decreases. This would lead to seria@ydamped higher
mode maps. A constant relative uncertainty in the phaseipglmaps is an ac-
ceptable compromise between the two extremes. The isotgimse velocity
maps were expanded up to degree and order 40, while the d@ihartisotropic
phase velocity maps were expanded up to degree and order 20.

The isotropic models for Rayleigh and Love waves are showfigures 4.6
and 4.7 for a number of different higher modes at the inditaeriods. The fun-
damental mode maps are very similar to those of Trampert &dioose (2003)
with correlations of 0.91 (Rayleigh 40 seconds), 0.70 (Bigyl 150 seconds),
0.87 (Love 40 seconds) and 0.79 (Love 150 seconds), and herather mod-
els by different research groups (see Becker et al. 2007a fecent compari-
son). While the overtones generally show the strongesttaéiysto deeper man-
tle structure, it is interesting to note that high frequeRayleigh waves of the
fifth and sixth overtone are very sensitive to crustal stmesg. In general there
is a good visual comparison between our maps and those of egst {L997).
Visser et. al. (2007) showed that higher modes can easilydasuned with our
technique. They showed isotropic degree 20 maps for iltistr purposes. The
correlation with our maps here up to degree 20 is around @i8allf Love wave
overtones. The differences can be attributed to the negfeahisotropy in the
earlier paper.

The anisotropic contributions for the same higher modegandds are shown
in figures 4.8 and 4.9 for they2term and figures 4.10 and 4.11 for the term.
Figure 4.12 shows the rms amplitude averaged over the sphéne 2/ and 4)
maps for Rayleigh and Love waves for the fundamental up tosiki higher
mode with corresponding uncertainties. The amplitudehef2) and 4) term
are similar within their standard deviations. Most impotha the amplitude re-
mains positive within the uncertainties, indicating the inisotropic models are
robust and indeed required, for the chosen optimal scalirige 2/ amplitudes
even remain robust within two standard deviations. Figdré8 and 4.14 show
some chosen2correlations and the corresponding ray theoretical seitgiker-
nels (Larson et al., 1998). For Rayleigh waves, the coroglaif the fundamental
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Figure 4.8:Azimuthally anisotropic 2 phase velocity maps for Rayleigh. The grey scale
in the background corresponds to the peak-to-peak am@itfdanisotropy expressed
relative to the average phase velocity calculated from PREM black lines represent
the fast directions which are also scaled to the amplitudanshin the background. The
plate boundaries and hotspots are indicated in white. Paf&) to (f) show the different
modes and periods as indicated in figure 4.6.

mode models with the first higher mode ones is high (figurea.1t fact, the
correlation of the fundamental mode with increasingly kigimodes consistently
shows high values. The corresponding sensitivities shaivttie B-H sensitivity
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Figure 4.9:Azimuthally anisotropic 2 phase velocity maps for Love higher modes. Pan-
els (a) to (f) show the different modes and periods as inditat figure 4.7.

is mostly shallow for all modes while the G sensitivity chaagvith depth. This
could indicate that B-H anisotropy is important for Rayleigaves. We also find
high correlations for modes where the most overlap is fopde&, probably the
transition zone anisotropy observed by Trampert & van Hé5602). For Love
waves we obtain high correlations for G in the asthenospfiiyere 4.14). The
correlation between the/2Zmodels of the fundamental mode and first higher mode
Love wave is quite low< 0.5), which is not surprising since G sensitivity for the
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Figure 4.10:Azimuthally anisotropic ¢ phase velocity maps for Rayleigh higher modes.
Panels (a) to (f) show the different modes and periods asated in figure 4.6.

fundamental mode is almost zero while it is non-zero for thet fiigher mode.

The most likely source of«2 anisotropy in fundamental mode Love waves is B-
H (Sieminski et al., 2007), while for the overtones G donmaésahence a plausible

low correlation. These few examples illustrate how complexdepth distribu-

tion of azimuthal anisotropy possibly is, and only a deptreision will provide
detailed information about the specific distribution of #r@sotropy. This will
require finite frequency kernels (Sieminski et al., 2008t tbapture the strong
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Figure 4.11: Azimuthally anisotropic 4 phase velocity maps for Love higher modes.
Panels (a) to (f) show the different modes and periods asated in figure 4.7.

influence of path dependence and mode coupling for anisotpapameters.

The fundamental mode/2Rayleigh models visually agree at long wavelength
with the models by Trampert & Woodhouse (2003), Ekstrom0@®0and in the
Pacific with results obtained by Smith et al. (2004). Up tordeg8, we have
a correlation of 0.49 with the2 map of Trampert & Woodhouse (2003) for
Rayleigh waves at 40 seconds. The first quantitative cormgarbetween dif-
ferent azimuthally anisotropy models and geodynamic flovdef®was done by
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Figure 4.12:The rms amplitude per unit sphere of the phase velocity midfgiwes 4.8 to
figure 4.11 for (a) the fundamental mode, (b) the first highedej (c) the second higher
mode, (d) the third higher mode, (e) the fourth higher mofjehé fifth higher mode and
(g) the sixth higher mode. The bands correspontt tone standard deviation of the fixed
average posterior uncertainty.
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Figure 4.13:Rayleigh 2 correlation (a-d) and 2> sensitivity kernels (e-h) of the fun-
damental mode at 151 s (solid) with the first higher mode at 448ashed) (a,e), the
first higher mode at 149 s (solid) with the second higher mad®®a (dashed) (b,f), the
first higher mode at 40 s (solid) with the second higher mod&at (dashed) (c,g) and
the third higher mode at 35 s (solid) with the fourth higherdaat 35 s (dashed) (d,h).
Sensitivity to H is not shown since it is similar to B sengitibbut opposite in sign.

Becker et al. (2007). They found typical correlations betw6.18 and 0.47 in-
dicating that our results are not at odds with any of theseatsodNo comparison
has been done for overtones. Only a detailed depth invecsioshed light on the
geodymanic consequences of oyr@nd 4) overtone maps.

Inverting for the azimuthal terms as well as the isotropiente makes the
isotropic maps become smoother for a given trace of theutisnl Decreasing
overall damping will decrease the smoothness for both thteogic, 2/ and 4)
phase velocity maps. We can split the total trace of the uéisol matrix into the
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Figure 4.14:Love 2) correlation (a,b) and 2 sensitivity kernels (c,d) of the first higher
mode at 153 s (solid) with the second higher mode at 100 s édgh,c) and the third
higher mode at 35 s (solid) with the fourth higher mode at 3%asked) (b,d).

trace for the isotropic, 2 and 4) terms separately (figure 4.15). These individual
values are more meaningful for the phase velocity maps thaitotal trace. The
number of independent parameters for the isotropica@d 4) terms varies as a
function of overall damping. For small numbers of indepenilyenverted param-
eters, the isotropic parameters dominate. As the numbadepiendently inverted
parameters increases, the number of invertedad 4) parameters increases.
Table 4.4 shows the total number of independently invert@meters and the
number of isotropic, 2 and 4/ parameters for some chosen Rayleigh and Love
wave fundamental and higher modes. For the fundamental models, we can
resolve on average up to 25 spherical harmonic degreesdasatropic models,

8 spherical harmonic degrees for thg @iodels and 9 spherical harmonic degrees
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Figure 4.15:The relation between the total trace of the resolution nxaamd the trace
of the resolution matrix separated for the isotropig; @nd 4/ terms for the fundamental
mode Rayleigh wave at 151 seconds.

for the 4) models. For the higher modes, the number of degrees we calnees
decreases to degree 18 for the isotropic models, degreetbef@) models and
degree 6 for thed models.

Shapiro & Ritzwoller (2002) use a rms data misfit as a meaduaaertainty
for the phase velocity maps. They obtain values around 25anfsindamental
mode Rayleigh and between 25 and 40 m/s for the fundamenid¢ inove wave
phase velocity maps. The rms data misfit values we obtairhfofundamental
mode are between 24 m/s and 31 m/s for Rayleigh and 31 m/s tdsifonm_ove
waves. The rms data misfit values for the higher modes arevgbatdéarger. They
vary for Rayleigh waves between 35 and 65 m/s and for Love svheéveen 45
and 75 m/s.

We are not so much interested in the posterior data unceesias in the
posterior model uncertainties, which we need for a futungtldéversion. The
posterior model uncertainty is given by the posterior magehriance, defined as

C. =(I-R)C,(I-R)T+LC,L". (4.8)

WhereC is the posterior model covarianc€,,, is the prior model covariance
(equation 4.4 to 4.6).; is the data covarianc® is the resolution matrix anH is

the inverse operator which gives the estimated maget Ld. The square roots
of the diagonal elements of the posterior model covariaagebe interpreted as
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error bars of the posterior values of the model parametensavkrage posterior
model uncertainty for a phase velocity map is obtained bintpthe square root
of the total power of the diagonal of the)p 2y and 4) terms averaged over
the sphere. As explained above, we have chosen the ovenaflidg ( in C,,)

so that the average model uncertainty doy ¢, is constant. The value has been
chosen so as to invert for 1000 independent parameters s fdndamental
mode Rayleigh waves. This gives average relative modelrtaicteso s of

0.45%, 0.18% and 0.15% for the)02y and 4) maps (figure 4.16), respectively.
The relative model uncertainty is much lower for the @xd 4) maps due to the
prior choice of a modest amount of anisotrogly £ 6, = 0.1). It is important to
realise that a large part @ ~. comes from the prior information, therefore fixing
C~ will require differentA in C,, depending onC, and the number of data,
which will changeR. correspondingly.

The absolute uncertainties £, figure 4.16) in the fundamental mode Ray-
leigh isotropic models range from 15 m/s at short periodsQar?s at longer
periods, the uncertainty of the/aZnodels range from 5 to 8 m/s and the uncertainty
of the 4) models range from 5 to 7 m/s. For Love waves, the correspgndin
absolute uncertainties for the fundamental mode isotrogps ranges from 14
to 20 m/s, for the 2 models from 5 to 8 m/s and thejdmodels from 4 to 7
m/s. The rms data misfit values given earlier show uncetairfor both Love
and Rayleigh wave azimuthal anisotropic models in the ocofl@b m/s to 45 m/s
for the fundamental mode. The absolute model uncertaiaties bit smaller but
of the same order of magnitude as the rms data misfits, jusiifyne intuition of
Shapiro & Ritzwoller(2002) to use the data misfits as averagéel uncertainties.
The reason for this good correspondence is that the data misfrporates the
prior information in equation 4.8 implicitly.

4.6 Resolution and Trade-off

The fifth higher mode Love wave data set has the lowest nunileeasurements.
The number of measurements increases with lower overtombeu(table 4.2).
Nevertheless the pattern of ray density for the fifth highedeLove wave is quite
similar to the fundamental mode Rayleigh wave which costétiie highest num-
ber of measurements. Trampert & Woodhouse (2003) convénedesolution
matrix into averaging kernels. The relative phase velop#gturbation at a spe-
cific point on the Earth is an average of the true model ovewthae Earth with
weights (the averaging kernels). For a complete picturesblution the averag-
ing kernels have to be calculated at each point on the Eastinface. Trampert



92 Chapter 4

Rayleigh Love

40 40
e
n 12
~ o ~
é 20 1 é 20
©Q 2 ©Q
& sl &

10 4 10

5
6
0 0
50 100 150 50 100 150

15 15
~ ~
) )
g 5 g 5
S S

0 0

50 100 150 50 100 150

15 15
) )
g 5 g 5
S S

0 0

50 100 150 50 100 150
period [s] period [s]

Figure 4.16:Absolute standard deviationsjc) for the fundamental and first six higher
mode Rayleigh wave isotropic (top lefty dmiddle left) and 4 (bottom left) phase
velocity maps. The same for the fundamental and first fiveehigitode Love waves on
the right.

& Woodhouse (2003) chose to represent the averaging keloyetise radius of
the central peak and called the maps resolving radii map® ré&solving radii
are only dependent upon path coverage and the overall dgnipirand give a
good representation of the lateral resolution that can hieed. The number of
measurements of the fifth higher mode Love wave correspotidetmumber of
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Figure 4.17:The resolution matrix for the fundamental mode Rayleigh (&dt figure)
and the fifth higher mode Love (bottom left figure). The figaréhe right shows how the
left figures are related to the resolution matrix. Each rowtleé matrix is shown in the
figures, where black is the trace of the resolution matrixl iethe rms of the isotropic
parameters (not including the diagonal) for that row, greepresents the rms of the/2
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row. The off-diagonal terms within one parameter family green by the lighter shaded
colors, red for the isotropic parameters, green for thé Rarameters and blue for the
4y parameters. The darker shaded lines represent the tratdleebiveen isotropic/@/4:)
terms.

measurements of the fundamental Love waves in Trampert &hmase (1995)
and the corresponding resolving radii map (figure7a in Trentrgnd Woodhouse,
1995) corresponds to the resolving radii map of the fifth ighode Love wave
(our worst data coverage). There is a high correspondeniteting ray density
map but the resolving radii test gives a better indicatiothefstructures we are
able to solve for.

There are three different issues that affect the resolutspectral leakage,
trade-off between the isotropic and anisotropic terms amdping. Spectral leak-
age is caused by the mapping of small-scale structure nouated for in the
model expansion into the inverted low-degree structureisuadresult of uneven
data coverage (Snieder et al., 1991). Spectral leakageecaumipressed by a time
consuming operator (Trampert and Snieder, 1996) or appairly by Laplacian
damping (Spetzler and Trampert, 2003) as in equations %tqm). The
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price to pay for this Laplacian damping is that the higherdbgree, the less it
will be resolved and the diagonal peak of the resolution atill also broaden.

Finally there will be trade-offs between the isotropic anisatropic parameters.
The resolution matrix provides information on the tradis-aind the broaden-
ing (figure 4.17). The diagonal of the resolution matrix shdie price we pay
for the use of Laplacian damping. For higher degrees, thgodia values of
the resolution matrix decrease. The choice of the relatiength of anisotropy
(02,04 = 0.1,0.1) causes the sharper decay for the @&d 4/ parameters. Ta-
ble 4.4 shows the number of resolved parameters for certagemgiven our
choice of overall damping described above. The off-diagterans of the resolu-
tion matrix in figure 4.17 show the amount of broadening aaderoff between
parameters. Fortunately, these values are small compated tliagonal values.
This holds for all higher modes.

4.7 Conclusions

We present global azimuthal anisotropic phase velocityafapthe fundamental
modes and up to the sixth overtone for Rayleigh waves and tipetdifth over-
tone for Love waves. Phase velocities for fundamental agtiéni mode Love
and Rayleigh waves were measured using a model space sparoach (Visser
etal., 2007a). The use of a model space search approaclesnatib obtain real-
istic and consistent uncertainties on the phase velocitiee phase velocities are
inverted to extract azimuthal anisotropic phase velocigpm Following Tram-
pert & Woodhouse (2003), we determine the optimum relatie@gtting prior to
inversion. Both Love and Rayleigh fundamental and highedenghase veloci-
ties require anisotropy according to the misfit curves. Etative weighting was
chosen (in agreement with the significant difference of mafrves) such that
anisotropy is needed and equal for thé @nd the 4 terms of anisotropy. We
have chosen the overall damping such that the relative taiasr is constant in
all maps. This causes the resolution to decrease with isicrgaata uncertainty
and/or decreasing number of data.

The rms data misfits of the azimuthal anisotropic models fodamental
mode Rayleigh and Love waves are similar to values found lapish & Ritz-
woller (2002). The rms misfits for the higher modes are lagget vary between
35 and 65 m/s for Rayleigh and between 45 and 75 m/s for Loveesvaifhe
model uncertainties are smaller than the rms data misfitetiite same order.
For the fundamental mode isotropic models, we obtain uaitgigs up to 20 m/s
and for the anisotropic models we obtain uncertainties wgrus.
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The isotropic maps visually compare well with the isotropigher mode
maps of van Heijst (1997). We found a high correlation wite fhndamental
mode anisotropic maps of Trampert & Woodhouse (2003) andeheith equiva-
lent work from other research groups (Becker et al., 200Wichtions are that the
source of azimuthal anisotropy is complex and a detailedhdiepersion, using
finite frequency kernels, is needed to clarify this. Our gffdo provide maps for
many overtones, should facilitate this final step in thedeaf deep anisotropy.
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Chapter 5

Probabillity of radial anisotropy
In the deep mantle

It is well established that the Earth’s uppermost mantlenisaropic, but obser-
vations of anisotropy in the deeper mantle have been morégamis. Radial
anisotropy, the discrepancy between Love and Rayleigh syavas included in
the top 220 km of PREM, but there is no consensus whethertamigois present
below that depth. Fundamental mode surface waves, for cortynosed periods
up to 200 s, are sensitive to structure in the first few hunéiletheters and there-
fore do not provide information on anisotropy below. Higheyde surface waves,
however, have sensitivities that extend to and below thesiian zone and should
thus give insight into anisotropy at greater depths, bwy e very difficult to
measure. We previously developed a new technique to mehigver mode sur-
face wave phase velocities with consistent uncertainfieese data are used here
to construct probability density functions of a radiallyisotropic Earth model. In
the uppermost mantle, we obtain a high probability of faktmizontally polar-
ized shear wave speed, likely to be related to plate motiorthe asthenosphere
and transition zone, however, we find a high probability stéa vertically polar-
ized shear wave speed, an indication of overall vertical.flovthe lower mantle,
we see no significant shear wave anisotropy. This is consigtith results from
laboratory measurements which show that lower mantle rmin@re anisotropic
but LPO is unlikely to develop in the pressure-temperatameditions present in
the lower mantle.

This chapter has been submitted for publication by K. Visieframpert, S. Lebedev and B.
L. N. Kennett toEarth and Planetary Science Letters

97
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5.1 Introduction

Radial and azimuthal anisotropy are different expressadriee underlying gen-
eral anisotropy of the Earth’s interior. The source of amgguy in the mantle
is usually assumed to be the alignment (lattice preferréshtation or LPO) of
intrinsically anisotropic minerals under strain in the mhaiiKarato, 1998a; Mon-
tagner, 1998). When detected, anisotropy can be an indichtoantle strain and
flow and improve our understanding of the dynamics of the lranEvidence
for radial anisotropy was first inferred from the discrepabetween Rayleigh
and Love waves by Anderson (1961), Aki and Kaminuma (1968)) MoEvilly
(1964). These observations prompted the inclusion of radisotropy in the
upper 220 km, also referred to as the anisotropic zone, oflibieal reference
Earth model PREM (Dziewonski and Anderson, 1981). It is nommonly ac-
cepted that the Earth is radially anisotropic at shallowtlaggup to~200 km).
There is, however, no consensus on whether radial anigotsgpresent beyond
the anisotropic zone. While earlier studies of radial anigry used fundamental
mode surface waves (Tanimoto and Anderson, 1984; Nataf, €t9%4; Montag-
ner and Tanimoto, 1991; Ekstrom and Dziewonski, 1998; Bhamd Ritzwoller,
2002), in recent years higher mode surface waves have bekea aol studies of
radial anisotropy (Debayle and Kennett, 2000; Gung et BD32Beghein et al.,
2006; Maggi et al., 2006; Panning and Romanowicz, 2006; iSstbal., 2006;
Marone et al., 2007) with a potential to yield constraintsleaper mantle dynam-
ics, down to the transition zone and lower mantle. Radialigatropic shear wave
velocity models tend to agree at long wavelengths only (Panand Romanow-
icz, 2006), suggesting large uncertainties in these modelese uncertainties
depend on the regularisation, parameterisation, inveethod, data uncertainties
etc. Model space search methods provide a way to obtain prabiability density
function for the parameters through the mapping of the emtiodel space rather
than just one preferred central value.

A previous (linearized) Monte Carlo model space searchddiat anisotropy
in seismic reference models of the mantle (Beghein et a6Rfund no sig-
nificant spherically averaged radial anisotropy beyondattisotropic zone, while
spherically averaged radial anisotropy was found up to 00t an earlier study
by Montagner and Kennett (1996). Panning and Romanowid262ibverted for
a three-dimensional radial anisotropic model and foungefagertically polarized
shear wave speed associated with subducted slab matetied transition zone.
There is a large consensus between the one-dimensiondiraeddimensional ra-
dially anisotropic studies that the lower mantle is isottppxcept in D” (Kendall
and Silver, 1996; Karato, 1998b; Panning and Romanowid24R0An isotropic
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lower mantle can be explained in terms of superplastic flowrgto, 1998a),
which does not result in any preferred orientation of milsgraven though, the
minerals themselves are still highly anisotropic.

In this paper, we inverted the fundamental and higher modegtazimuthally
averaged, velocity maps of Visser et al. (2007b) for a gloadially anisotropic
shear wave velocity model using a fully non-linear modekspsearch approach.
We use Rayleigh wave phase velocity maps for the fundamentlup to the
sixth higher mode and Love wave phase velocity maps for thddmental and
up to the fifth higher mode. This provides us with a large detaghigher modes,
especially in comparison with previous radially anisoicogtudies (Debayle and
Kennett, 2000; Maggi et al., 2006; Panning and Romanowi@62Marone et al.,
2007), where the number of higher mode measurements arefefteand up to
a relatively low higher mode (second to fourth higher moddie use of a model
space search approach in the inversion for shear wave tiefoshould provide us
with realistic uncertainties. The phase velocity measemswere obtained using
a model space search approach, yielding consistent uimtiErsabetween all the
measurements. These uncertainties have been propagdtexidanstruction of
the phase velocity maps (Visser et al., 2007b) and used @sipfdrmation here.
The combination of a model space search and the large nurfilbégheer mode
measurements should provide us with a global radially &mip@ model with an
improved depth resolution and consistent uncertaintieisiwin turn should give
us insight into the mantle dynamics at larger depths in thetima

We invert Rayleigh and Love wave phase velocities separai@btain global
horizontally and vertically polarized shear wave velocitpdel. These models
are then combined into a global radially anisotropic sheaveavelocity model.
While other studies (Ekstrom and Dziewonski, 1998; Debayld Kennett, 2000;
Maggi et al., 2006) have also used two separate inversiarnthdéoRayleigh and
Love wave data, they used a linearised approach. Ekstrdnbaiewonski (1998)
showed that no significant bias was introduced by the useotifoigic sensitiv-
ity kernels and two separate inversions gy and Vgy. Since we perform a
fully non-linear model space search, we first need to vadidia¢ assumption of
inverting the Rayleigh and Love wave phase velocities sdpht

5.2 Depth inversion

This study presents the last stage of a three stage invexsiproposed by Kennett
and Yoshizawa (2002). A traditional two-stage approach wtimode waveform
tomography consists of obtaining one-dimensional vejga#rturbations through



100 Chapter 5

waveform fitting and inverting them, using the path averagsumption, for a
three-dimensional velocity model. The three stage approansists of obtaining
one-dimensional dispersion models through waveform dittimthe first stage,
building multimode phase velocity models as a function efjfrency using the
path average assumption in the second stage and an invéaslonal wave speed
properties to obtain the three-dimensional velocity madé¢he third stage. The
one-dimensional dispersion model in the first stage is teghas a representation
of the character of multimode dispersion along the soueceiver path. This is
not as limiting an assumption as the path average assumiptitire two stage
approach. Yoshizawa and Kennett (2002) showed that mailtipk-dimensional
shear wave velocity models obtained through waveform djttirith a slight dif-
ference in misfit share the same dispersion characteristigsating that the one-
dimensional velocity model in the first stage may be regaesed representation
of the multimode dispersion characteristics along thecmuoeceiver path.

In the first stage, we applied waveform fitting using a modelcspsearch
approach (using the Neighbourhood Algorithm; Sambrid@994,b) to obtain
the fundamental and higher mode Love and Rayleigh wave pleseity mea-
surements (Visser et al., 2007a). In the second stage (\$sd., 2007b), we
inverted the fundamental and higher mode Love and Raylemleywhase veloc-
ity measurements for global isotropic and azimuthally @in@pic phase velocity
models. The isotropic parts of the phase velocity modelsaneused in the third
stage to obtain a radially anisotropic shear wave velocibgeh Montagner and
Nataf (1986) showed that radial anisotropy is dependenher_bve parameters
(A, C, L, N, F) (Love, 1927) which describe a transverseltrigoic medium,
while azimuthal anisotropy is dependent on the other elgstiameters (B, H, E,
G). By using the isotropic phase velocity models of the sdtage (Visser et al.,
2007hb), we only have to worry about the five Love parameteispvform a fully
non-linear point-by-point depth inversion using a modedcgpsearch approach.
To keep the number of parameters low in this Monte Carlo seand inspired by
previous work, we invert the Love and Rayleigh wave phasecitl models sep-
arately. Ekstrom and Dziewonski (1998) validated thisrapph for a linearised
inversion. In the case of a fully non-linear approach, havethe validity of this
approximation has not been shown. Therefore we first peddrantest where
we calculated Love and Rayleigh wave phase velocities attisotropic PREM
model. We then separated the anisotropic PREM model in adwuslly polarized
model (/py, Vsy) and a vertically polarized model’fy, Vi) and calculated
the Love and Rayleigh wave phase velocities separatelyrasgusotropy. We
found that the resulting phase velocity differences araiwithe uncertainties of
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Figure 5.1:The difference between the Love and Rayleigh phase ve®ciiculated as-
suming anisotropic and isotropic profiles for a locationlreBaltic Shield{8° NV, 17°E).
The dashed lines indicate the uncertainties for the phakxitg models of Visser et al.
(2007b). For Love, the isotropic model h&s and Vp equal toVsy and Vpy of the
anisotropic model, for Rayleigh the isotropic model Adsand V» equal toVsy and
Vpy of the anisotropic model.

the phase velocity models of Visser et al. (2007b). Sinceatrdpic PREM con-

tains only shallow anisotropy, we performed the same testhi® results of our

depth inversion at a few locations on the Earth. The diffeesnin the phase ve-
locities calculated assuming isotropy or anisotropy atliwithe uncertainties of
the phase velocity models (Fig. 5.1), indicating no sigaiiitcdifference between
the two approaches. Therefore, we can invert Love and Ryyleave phase ve-
locities separately resulting in a considerable gain in GRlé (days rather than
weeks).

We selected 492 locations, covering the Earth’s surfacerdig to a 6-fold
triangular tessellation (equal area representation, VeadgDahlen (1995)). For
each point, we calculated the local phase velocities facsedl fundamental and
higher mode isotropic Love and Rayleigh wave phase veloo#ys. The sam-
pling of the Earth’s surface is comparable to that of a sghéharmonic expan-
sion of degree and order 20 (Wang and Dahlen, 1995), whichmigas to the
resolution of the phase velocity maps of Visser et al. (200The phase velocity
measurements used for the building of the phase velocityswaipe obtained us-
ing a model space search approach. This provided us witlistensuncertainties
on the measurements as well as on the phase velocity mapsaibdd in Visser
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Figure 5.2:Twelve natural cubic spline basis functions. The splinesrambered one to
twelve from the top to the bottom (1500 km).

et al. (2007b). At each location, we invert the local phadeocites of different

modes, with the corresponding uncertainties. This willvide us with consis-
tent posterior uncertainties given these prior unceiiggntThe objective of the
model space search is to find, for each location,\thg and Vs, model and the
Moho depth that fits the observed phase velocities for LokRayleigh waves,
respectively.

5.2.1 Parameterisation

We parameterize the shear wave velocity model using the 42nmatural cubic
spline basis functions which have been used in the measotestagie (Fig. 5.2).
The position and number of the spline basis functions weteimdd after sev-
eral tests with different parameterizations. A Backu$h&il resolution analysis
showed that the twelve spline parameterization is optiraife modes used here.
The splines are more densely spaced in the upper mantle cedhfmathe lower
mantle to match the depth resolution of surface waves. Asssev et al. (2007b),
we scaled the compressional wave velocity and density tetthar wave velocity
model. For the compressional wave velocity, we chose thangaalation of Rit-
sema and Van Heijst (2002) and for the density the scaliradiosl of Deschamps
et al. (2001). Scaling relations are often used in depthréiwes (See for exam-
ple, Ekstrom and Dziewonski, 1998; Shapiro and Ritzwp@802; Gung et al.,
2003; Panning and Romanowicz, 2006) to reduce the numbearafrpeters in
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the inverse problem to the best resolved parametésg (Vsy). Multiple stud-
ies (Ekstrom and Dziewonski, 1998; Gung et al., 2003) h&asva that specific
scaling relations did not affect the resulting velocity ralsdmuch.

Crustal corrections are very important in surface wave gnayghy (Montag-
ner and Jorbert, 1988; Mooney et al., 1998; Zhou et al., 20@6Bpne et al., 2007;
Bozdag and Trampert, 2007). Bozdag and Trampert (2007)esthtivat accurate
crustal corrections are more difficult for Love waves, duthihigher sensitivity
to crustal structure. Radially anisotropic shear waveaigtanodels (combina-
tions of Rayleigh Vsy) and Love {sy) data) are, therefore, most affected by
improper crustal corrections. We therefore follow Li andnfmowicz (1996)
and do not perform crustal corrections but add Moho deptmasadditional pa-
rameter to the inversion. The initial crustal model is froraibt et al. (2007), who
obtained a crustal model by inverting fundamental mode @hatocities using a
neural network approach. The crustal model consists of arage shear wave
velocity for the crust and a Moho depth. For the frequenciesige, Moho depth
is the important parameter and crustal velocities mattiée [Meier et al., 2007).
We therefore keep the crustal velocities fixed and vary Madytidonly. The first
spline coefficient is therefore fixed. The second spline findd at the specific
Moho depth for the tesselation location. So, our final véjoparameterisation
consists of eleven splines from the Moho down to 1500 km amdextra param-
eter which is Moho depth. Both thEsy as well as thé/sy inversion should
provide similar Moho depths. Figure 5.3 shows that this deéed the case for the
Vsv andVsy models. The Moho depths resulting from both inversions are ¢
sistent. The best fitting line through the points is Mdwhogsy = Mohogy+0.5
km and the standard deviation is 0.4 km. This range is weliwithe mean stan-
dard deviations of the Moho depths (3.0 km) from Meier et200(7), indicating
that the differences between the Moho depths are not signtfiend the separate
Vs andVsy inversions are consistent with each other.

For each tesselation point, we construct a shear wave telocidel, search-
ing in a certain range around PREM (Dziewonski and Ander$e81), from the
Moho down to 1500 km and adapt the Moho depth, searching drthexmodel
of Meier et al. (2007). The topography and the bathymetry ttie tesselation
location, are fixed and taken from CRUST2.0 (Bassin et aDQ20Below 1500
km, we assume PREM.

5.2.2 Model space search

For the model space search we use the Neighbourhood Algofi#ambridge,
1999a,b). The first part of the NA is a Monte Carlo search tlsasuithe misfit
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Figure 5.3:Moho depths resulting from the inversion fidgy, (Rayleigh wave data) and
the inversion fol/s i (Love wave data) for the 492 tesselation points.

to guide the model space search to areas of better fit.y Fhmisfit between the
observed absolute phase velocities and the calculatead piedecities for each
velocity model is defined as

L (el - ey
2 obs,1 7
X =% Z LR ) (51)
N =1 (Uol;s,i)Q

where ¢2f are the observed phase velocities for Lovd and Rayleigh R)

obs
respectively ands’;"* are the model uncertainties for the phase velocity maps
(Visser et al., 2007b)ciL’R are the calculated phase velocities.

The nature of the model space search is determined by a fémgtparame-
ters: the number of initial models ), the number of iterations:;....), the number
of new models sampled at each iteratiag)(@nd the number of best misfit models
at each iterationr(.). At each iteration, the existing models are ranked accord-
ing to their fit. In the Voronoi cells (nearest neighbourhaedis) of then,. best fit
modelsns new models are randomly chosen after which all the modelsaied
again according to their fit. The tuning parametersdndn;) determine how the
model space is sampled. A large numberfoand a small number for,. leads to
a very focused search, where the disadvantage is that s@ag @frgood fit may
be missed by this search. A large numberdpr(for example, equal ta,) leads
to a much broader (but also slower) search. For each poifiteimiodel space,
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a velocity model is constructed using the coefficients ferghear wave velocity
splines, the change in Moho depth and the scaling relatiebsden the shear
wave velocity and the compressional wave velocity and dgnisor this velocity
model, we compute the exact local eigenfunctions for theifipesurface wave
modes in our data and obtain the phase velocities for thegesnd he problem is
highly non-linear and, therefore, we need a very broad bgare100,7:.,-=500,
ns=100 andn,=100) so as not to miss any well fitting areas. The total nurober
sampled models is 50100 per inversion.

The model space is searched around a reference model. Enenet model
is PREM with the crust of the specific latitude-longitudedtion taken from Meier
et al. (2007) and the topography and bathymetry informat&en from CRUST-
2.0 (Bassin et al., 2000). In the upper mantle we allow a charig-10%, in the
transition zone a change #5% and in the lower mantle a change+e2.5% with
respect to the reference model. We, further, allow the Mapitdto vary by+5.0
km. The decrease in the model space size with depth is madivat results from
previous shear wave velocity modelling (Su and Dziewor#9,7; Ritsema et al.,
1999; Panning and Romanowicz, 2006). This first part of thigieurhood Al-
gorithm produces an ensemble of velocity models with theiresponding fit
(equation 5.1) to the observed phase velocities.

5.2.3 Bayesian information

The second part of the NA (Sambridge, 1999b) extracts irdtion from the
whole ensemble of models. It computes the conditional piosterobability den-
sity function (P(m|d)) of the model fn) given the datad) as

P(mld) = £p(m)L(mld), (5.2)

wherep(m) is the prior probability distribution which depends on tteegmeter-
isation, the search boundaries and the forward theorg,a normalisation con-
stant andZ(m|d) is a likelihood function representing the fit to the obseorat
defined ad.(m|d) = exp(—1/2x?). The NA first constructs an approximate pos-
terior probability density (PPD) for the ensemble of modBl&issuming constant
known PPD values in the Voronoi cells and then performs a leoaprandom
walks using a Gibbs sampler (Geman and Geman, 1984; Rothrh886). After
multiple random walks, the distribution will asymptotilyatesemble the approx-
imate posterior probability density function. This resdedpensemble can be
used in a Bayesian framework to infer information from theeanble such as one
or two-dimensional marginals and the covariance matrixe ®he-dimensional
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Figure 5.4:0ne-dimensional marginals indicating the changé/lfy; inversion parame-
ters (Fig. 5.2) from the reference model at the Baltic Sh{gk? v, 17° F)) location. The
limits on the x-axis give the limit of the prior marginal.

marginals of the separalé y andVyy inversions can be jointly resampled to ob-
tain one-dimensional marginals of anisotropic and isatrapomalies. We define
the Voight average isotropic shear wave velocity (BabuskhGara, 1991) as

2V, + Viy

VE = 5.3
S 3 ) ( )
and the shear wave anisotropy as
2
= Vou (5.4)

V&
5.3 A detailed example

We illustrate our approach with an example for a location foa Baltic Shield
(58°N, 17°E). We perform the Rayleigh and Love wave inversions and obtai
one and two dimensional marginals that provide the full imfation on the en-
tire ensemble of shear wave velocity models. Figures 5.45am@how the one-
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Figure 5.5:0ne-dimensional marginals indicating the changé&/y, inversion parame-
ters (Fig. 5.2) from the reference model at the Baltic Sh{gk? v, 17° F)) location. The
limits on the x-axis give the limit of the prior marginal.

dimensional marginals for th&s;; and Vgy inversions, respectively. The one-
dimensional marginals show how well we are able to resolgerttiividual spline
coefficients (Fig. 5.2). Spline coefficients three to sixraatively well resolved,
there are clearly defined areas of higher probability, whiiline coefficients ten
to twelve are completely unresolved (flat). From this we cderithat at this lo-
cation, we are able to resol& y andVgy best from 75 km to 400 km, but we
are unable to resolve shear wave velocity from 800 km to 1500 Romparing
the one-dimensional marginals for thieg andVsy inversions, we notice that the
areas of highest probability are quite similar for both ns¥en indicating modest
anisotropy. The two-dimensional marginals (Fig. 5.6) anpdrtant to identify
trade-offs which show as diagonal alignments. Trade-ofifst,ebut they are weak
compared to our inability to resolve shear wave speed atioetepths. In gen-
eral, the one-dimensional marginals (Fig. 5.4, 5.5) arédatssian, and not even
symmetric which reflects the non-linearity of the problemhisTmeans that we
cannot represent them by a simple mean and a standard deviati

We jointly resample the one-dimensional marginals¥fef; and Vs to ob-
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Figure 5.6: Two-dimensional marginals for the inversion fufgy at the Baltic Shield
(58°N, 17° E) location. The contour lines indicater]20 and 3. Darker shading means
higher probability. The limits on the axis give the limit b&tprior marginal. The refer-
ence is the reference model for the specific point.

tain the one-dimensional marginals for the isotropic shere velocity and ra-
dial anisotropy (equations 5.3 and 5.4). Figure 5.7 showsotte-dimensional
marginals for anisotropy at the example location. Comgttire prior marginals
(limits of the x-axis) with the posterior marginals, we haw@v obtained infor-
mation on all spline coefficients (all marginals of the splirpefficients show a
clearly defined maximum). This may seem surprising sincedparate marginals
for Vs andVsy show no information gain (flat marginals) for spline coeéitis
ten to twelve. The theorem for the association of probgbdinsity functions
(see statistical textbooks) explain this. A particularecabassociation is the sum
which is governed by the Central Limit Theorem. Here, thetation of¢ is more
complicated and non-linear. Nevertheless, general ptiegeremain the same:
the result is a peaked probability density and its momenpemie strongly on the
individual spreads. It is difficult to have an intuition fdret results, but for an un-
resolved spline fols andVsy (e.q. #9 in Fig. 5.7) the standard devivation for
& in percent is more than twice the initial sampling intenfedr a resolved spline
(e.g. #3) the standard deviation fom percent is the same as the initial sampling
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Figure 5.7:One-dimensional posterior marginals for the anisotropargmeters at the
Baltic Shield §8°/V, 17° E) location. The red line indicates the maximum value, the blu
line indicates the mean and the dashed blue lines the miaame standard deviation. The
limits on the x-axis give the limit of the prior marginal.

interval. The standard deviations are not too meaningfaotesmost marginals
are skewed, except for the ones corresponding to unresphmdneters. Still this
gives a feeling of what to expect.

5.4 Spherically averaged anisotropy

We performed the depth inversion and obtained the one-diibeal marginals
for anisotropy for all tesselation locations. The one-digienal marginals at
each location are now averaged to compute the sphericatiaged anisotropy
at each depth. We performed the sum by resampling the ingilidharginals.

The result is governed by the Central Limit Theorem and foeeethe average
probability density at each depth is nearly Gaussian. hus meaningful to rep-
resent its mean and standard deviation. Figure 5.8 shoveptterically averaged
anisotropy. In the anisotropic zone, the positiVe > Vsy) spherically aver-

aged anisotropy corresponds quite well to anisotropic PREMell as the results
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Figure 5.8:Spherically averaged anisotropy. Also indicated are th#@®nfidence levels
(two standard deviations) and the anisotropic PREM modeii¢donski and Anderson,
1981).

obtained by previous studies (Montagner and Kennett, 1B8ghein et al., 2006;
Zhou et al., 2006). At 220 km, we observe a sign change in teage anisotropy
from positive (/s > Vgsy) to negative {sy > Vsgr) anisotropy, which was also
observed by Montagner and Kennett (1996); Beghein et aOG2®hou et al.

(2006), although Beghein et al. (2006) concluded that itas significant due

to the large uncertainties in their linearised inversione fd significant (95%
confidence or larger than two standard deviations) negatregage anisotropy
from 220 km down to the transition zone. The change in the sfganisotropy

could indicate a change from predominantly horizontal flomthie lithosphere
and asthenosphere to predominantly vertical flow in the elegmntle assum-
ing that anisotropy is caused by the lattice preferred taien of intrinsically

anisotropic mantle minerals by finite strain due to mantlev.flbhe peak in neg-
ative anisotropy around 300 km was also observed by Zhou €2@06). The

significant negative anisotropy continues through thesiteom zone which dis-
agrees with Montagner and Kennett (1996) who found poséivisotropy in the
transition zone. In the lower mantle, we find no significargrage anisotropy in
agreement with previous studies.
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Figure 5.9:Maps of probability of anisotropysy > Vsv).

5.5 How probable is laterally varying anisotropy?

Our individual posterior probability density functionsrfé are clearly skewed
(Fig. 5.7), which makes it difficult to represent them by a mead a standard
deviation. But our posterior probability density functioallow us to calculate the
probability thatVs is larger thanVsy,, for instance, which is the area under the
curve of the one-dimensional marginal for whi¢ls larger than one. Figure 5.9
shows the distribution of the total probability of posit{iés ; > Vsy/) anisotropy
for various depths. Since the total area under a probatlbtysity function is
one P > 1) + P(§ < 1) = 1), the low probabilities of positive anisotropy
(Fig. 5.9) show the high probabilities of negatiig{; < Vsy/) anisotropy. In the
anisotropic zone, we find a high probability of positiié; > Vsy/) anisotropy,
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Figure 5.10:The probability that the amplitude of anisotropy is largkah 1% for differ-
ent tectonic areas. The definition of the tectonic areaskenadrom 3SMAC (Nataf and
Richard, 1996). Young oceans correspond to oceanic crugiger than 50Ma, middle
oceans correspond to oceanic crust between 50Ma and 100Makhoceans corre-
spond to oceanic crust older than 100Ma. The probability digher than 1% positive
anisotropy for cratonic, tectonic and platform areas (apuyg, middle and old oceans
(c) and the probability of a higher than 1% negative anisptrdor cratonic, tectonic and
platform areas (d), young, middle and old oceans (d).

except for the cratonic areas. At 300 km, we see a change tghapnobabil-
ity for negative anisotropy associated mainly with subghicizones and mid-
ocean ridges. Below the transition zone, we find a high prtibabf negative
anisotropy, but this does not give any details about the itundel of anisotropy.
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Figure 5.11:The probability that the amplitude of anisotropy is largkah 2% for differ-
ent tectonic areas. The definition of the tectonic areaskenadrom 3SMAC (Nataf and
Richard, 1996). Young oceans correspond to oceanic crugiger than 50Ma, middle
oceans correspond to oceanic crust between 50Ma and 100Makhoceans corre-
spond to oceanic crust older than 100Ma. The probability digher than 2% positive
anisotropy for cratonic, tectonic and platform areas (apuyg, middle and old oceans
(c) and the probability of a higher than 2% negative anisptrdor cratonic, tectonic and
platform areas (b), young, middle and old oceans (d).

Just as easily, our marginals allow us to compute the prétyathiat anisotropy is
larger than 1% P(|¢| > 1.01)) or larger than 2% (|¢| > 1.02)). Figures 5.10
and 5.11 show the probability of anisotropy with an ampkudrger than 1%
and 2%, respectively for different tectonic regions (defifem 3SMAC, Nataf
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and Richard, 1996). We computed the average probabilitiestbese regions by
resampling the one-dimensional marginals. From this gestane-dimensional
marginal for the region, we computed the probability of atrigpy with an am-

plitude larger than 1% and 2%. Overall, we find the same pa#eifor the aver-

age anisotropy; a high probability of positive anisotropythe anisotropic zone,
and a high probability of negative anisotropy down throuigé transition zone
with two peaks around 300 km and 550 km. The probability ofghmplitude

(>2%) positive anisotropy in the anisotropic zone is higéD(95) (Fig. 5.11).

The anisotropy in the transition zone is likely smaller inpditnde since only the
probability of negative anisotropy with an amplitude larg®n 1% is as high as
0.6-0.8. In the lower mantle, the probability that the atuplée of anisotropy is
larger than 1% is exceedingly low. If present, the amplitaflanisotropy in the

lower mantle is too small to be mapped with any confidence.

5.6 Discussion

In the uppermost mantle we find a high probability of anigmyravith fast horizon-
tally polarized shear waves in the oceans and continergs §F). The amplitude
of the anisotropy is likely to be large-@%, figure 5.11). The probability of a
large amplitude of anisotropy shows a difference betwe#ardint regions. The
oceanic areas show the highest probabilities, while thwgia areas show the
lowest probabilities down to 200 km (Fig. 5.10a, 5.11a).nkF&@00 to 400 km, the
cratonic areas and old oceans show a higher probability sifipe (Vsy > Vsy)
anisotropy. This corresponds roughly to an earlier obsierveby Gung et al.
(2003), who found fast horizontally polarized shear wavis@ropy underneath
oceans from 80 to 250 km and underneath cratons from 250 tk@00They
explained this by a low-viscosity asthenospheric chanhdiferent depths un-
derneath oceans and continents.

From 200 km to 400 km we find prominent features of fast veljigeolarized
shear wave anisotropy at mid-ocean ridges and subductioesz®-ig. 5.9). The
tectonic regions (Fig. 5.10, 5.11) and young oceanic regg&hrow indeed much
higher probability of negativel{syy > Vsgr) anisotropy from 200 to 400 km.
The probability of a significant amplitude-1%/2%) of negative sy > Vsg)
anisotropy (Fig. 5.10, 5.11) shows a peak at 300 km, for atbtéc areas. The
probability that the amplitude of negative anisotropy isrenthan 1% is more
than 0.8 for the young oceans and tectonic areas. The ptitpdbat the am-
plitude is larger than 2% is 0.6 for the mid-ocean ridges afd@ the tectonic
areas, indicating a possible amplitude difference betwbkemmid-ocean ridges
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and subduction zones. This agrees with the models of Gurig(2083); Panning
and Romanowicz (2006); Zhou et al. (2006) who also found tikeganisotropy
associated with mid-ocean ridges and subduction zonesese ttlepths. Zhou
et al. (2006) found negative anisotropy at mid-ocean ridggble from 120 km
down to the transition zone. Figure 5.10d shows that theghitity of negative
anisotropy, with an amplitude larger than 1%, is differast young oceans and
middle aged oceans from about 120 km down to the transitioile.z@his corre-
sponds to the finding of Zhou et al. (2006).

If we assume that anisotropy is caused by the lattice pedfesrientation of
intrinsically anisotropic minerals under strain in the i@rwe observe evidence
of predominantly horizontal flow in the anisotropic zone gmeédominantly ver-
tical flow below. The horizontal flow in the lithosphere haslgably been frozen
in at the time of the formation of the lithosphere or at the fagjor episode of
its deformation while the horizontal flow in the asthenosphie probably due to
plate motion. Down from about 120 km we observe evidence dfocat flow at
mid-ocean ridges, and down from about 200 km we also obseigeree of ver-
tical flow at subduction zones. The vertical flow associatétt the mid-ocean
ridges and subduction zones extends at least down to thetioarnzone.

In the transition zone we find in general a high probabilityaafial anisotropy
with fast vertically polarized shear waves<(P.40, Fig. 5.9). Panning and Ro-
manowicz (2006) found anisotropy with fast vertically pidad shear waves as-
sociated with subduction zones in the transition zone. e probability of
large (>2%) anisotropy (Fig. 5.11b,d) shows a peak at 550 km, butrisost 0.5.
The amplitude of anisotropy in the transition zone is liketween 1% and 2%
(compare Fig. 5.10b,d and 5.11b,d). Also, the amplitudeegfative anisotropy
seems to be lower for the oceanic areas. The observed apgadtrthe transition
zone could be explained by quasi vertical flow in the subdactbnes. The mech-
anism of the anisotropy could be the alignment of spineltatgor the alignment
of pockets of strongly contrasting garnetite from oceanist(Karato, 1998a).

Although figure 5.9 shows a large probability of fast vetticpolarized shear
wave anisotropy, the probability of a significant amplitfdd %) is low (Fig. 5.10
b,d). The lower mantle is most likely isotropic, which capends to earlier find-
ings of Panning and Romanowicz (2006) and Meade et al. (199®)isotropic
lower mantle could be explained by superplastic flow (Kara&98a), because
in superplastic flow the minerals do not align in preferretbmations. Even
though the minerals themselves are highly anisotropisnsieiwaves would see
an isotropic lower mantle.
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5.7 Conclusions

We performed the last step in a three-stage inversion (Yasld and Kennett,
2002) for radially anisotropic structure of the mantle.He first stage, we applied
waveform fitting using a model space search approach torohtadamental and
higher mode Love and Rayleigh wave phase velocity measumsni¢isser et al.,
2007a). The second stage (Visser et al., 2007b) consistatating the fun-
damental and higher mode Love and Rayleigh phase velocigsaiements to
obtain global isotropic and azimuthally anisotropic pheskcity maps. In the
third stage, presented here, we invert the isotropic phakeity maps, includ-
ing their uncertainties, for Love and Rayleigh waves sdpérdo obtain a global
Vs andVgy model. We invert the phase velocity maps using a fully noedr
model space search approach. We tested that we could invegtdand Rayleigh
wave phase velocities separately. The model space searcilgs us with the
whole ensemble oVsy, and Vsy models and we resample these ensembles to
obtain an ensemble of isotropic and anisotropic modelsceSive know not only
the best anisotropic model but the whole ensemble of modelsan compute the
total probability of positive Vs > Vsy) or negative sy > Vsy) anisotropy as
well as compute the probability that the amplitude of amwy is above a certain
amplitude (1%,2%).

We find a high probability of anisotropy with fast horizomyapropagating
shear waves (horizontal flow), in the upper mantle down tol&@0 For cratons,
this fast horizontally propagating shear wave anisotrdyyizontal flow) is found
down to 400 km. The amplitude of positive anisotropy in theemnost mantle
is likely to be large £2%) in the lithosphere and decreases down to 200 km. In
the lithosphere, the observed anisotropy could be relateshisotropy frozen in
at the time of formation or last significant deformation. frabout 120 km, we
find a high likelihood of fast vertically polarized shear waanisotropy (vertical
flow) associated with mid-ocean ridges and from about 200Hafast vertically
polarized shear wave anisotropy is also associated withustilon zones. This
extends down to the transition zone. The amplitude of thiscopy just above
the transition zone (300 km) is probably large2®6). The transition zone is dom-
inated by fast vertically polarized shear wave anisotromytical flow), although
the amplitude is likely lower (between 1% and 2%). The lowemtte appears
isotropic.
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Chapter 6

Summary and Conclusions

In this thesis we present all three stages of the inversiproagh proposed by Ken-
nett and Yoshizawa (2002). The three stage inversion approansists of obtain-
ing fundamental and higher mode Love and Rayleigh wave phalseity mea-
surements through waveform fitting in the first stage, combgitthem into mul-
timode phase velocity models using the path average assumniptthe second
stage and an inversion for local shear wave speed propéotiebtain a three-
dimensional shear wave velocity model in the third stageshizawa and Ken-
nett (2002) showed that multiple one-dimensional sheaewalocity models ob-
tained through waveform fitting with a slight difference irisfit share the same
dispersion characteristics, indicating that the phasecitgl measurements may
be regarded as a representation of the multimode disperhnacteristics along
the source-receiver path. This is not as restricting as skamption of the path
average approximation in a regular two stage inversionaagmbr where the shear
wave velocity model is regarded as an average over the scecee/er path. At
each stage, particular care has been taken to assess thunties.

In chapter 2, we present the first stage of the three stagesiomeapproach,
which consists of measuring fundamental and higher mode lamd Rayleigh
wave phase velocity measurements through waveform fittg present the
fully automated procedure to measure the phase velocitidsalh the tests we
performed to validate the procedure. For the waveform sigarwe use a model
space search approach. The advantage of a model space agprohch is that
it enables us to obtain consistent uncertainties for thesg@hvalocity measure-
ments. The model space is given by twelve natural cubic eglinctions that
together represent a one-dimensional shear wave velodtien The synthetic
seismogram, calculated from this shear wave velocity masl@ompared to the
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observed seismogram using a certain misfit criteria. Fontbdel space search
we use the Neighbourhood Algorithm (Sambridge, 1999a,b& Neighbourhood
Algorithm samples preferentially in areas of better fit.Ha &€nd, the model space
search provides us not just with one one-dimensional shaae welocity model
but with an ensemble of one-dimensional shear wave velocdgels and their
corresponding fit to the seismogram. This ensemble is usedrsiruct the pos-
terior probability density function for phase velocitiek apecific modes. The
one-dimensional marginals are Gaussian shaped, and waaafidre represent
the phase velocity measurements by a mean and a standaatiateviVe tested
each step of the method extensively as described in chapteFor example, we
studied the parameterization (theoretical resolutiomimer and shape of the basis
functions), misfit criteria, convergence of the model spsearch, prior informa-
tion, use of Bayesian statistics and so on. An importaneissthe dependence of
the standard deviations on the range of the model spaceisT$idved by choos-
ing the range of the model space such that our standard idegaagree with
those from cluster analysis. Trampert and Woodhouse (20tityed that uncer-
tainties obtained by cluster analysis are in agreement wvittertainties obtained
for comparing model predictions to real seismograms. Th&haring turns the
consistent relative uncertainties to consistent absointertainties.

Chapter three presents the Love wave phase velocity measnte. Love
wave higher mode phase velocity measurements are moreuliffiic measure
since the fundamental mode and higher modes travel closgétier which caus-
es an overlap of the fundamental mode and higher mode wansfoFhe higher
mode phase velocity measurements compare well to otheest(ihn Heijst and
Woodhouse, 1999; Lebedev et al., 2006), with 65% of our highede phase ve-
locity measurements falling within one standard deviaiompared to the mea-
surements of Van Heijst and Woodhouse (1999). The resufiivage velocity
maps agree well with the S20RTS model by Ritsema et al. (199@Ept in the
Pacific ocean between 1000 and 1500 km. Since S20RTS is badedyeigh
equivalent waves this could indicate radial anisotropy < Vsy) around the
Pacific superplume.

In chapter four, we present the second stage of the three siajgroach,
where we build multimode phase velocity maps as a functiofreafuency us-
ing the path average assumption. We invert the fundamenthlhggher mode
Love and Rayleigh wave phase velocities for global isotapid azimuthally
anisotropic phase velocity maps. Prior to inversion, weiheine the optimum
relative weighting for the isotropic and azimuthally anispic terms. We found
that all fundamental and higher mode measurements requoiseteopy. Spe-
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cial care was taken to obtain the posterior model unceitainheeded for the
depth inversion in the next chapter. The isotropic highedenmodels compare
well to the models of Van Heijst and Woodhouse (1999) and timeldmental
mode azimuthally anisotropic models correlate well witk thodels of Tram-
pert and Woodhouse (2003) and hence with equivalent work fsther research
groups (Becker et al., 2007). We further examined the etféspectral leakage,
trade-offs between the isotropic and anisotropic termsiamaping on the resolu-
tion matrix and found that the trade-offs are small. The ageresolution for the
isotropic models is of degree 25, the thodels of degree 8 and thé 4nodels of
degree 9. Indications are that the source of azimuthal &of®pis complex and
a detailed depth inversion is needed to clarify this.

Finally in chapter five, we present the last stage and inhertphase veloc-
ity maps to obtain a radially anisotropic shear wave vejotibdel using a model
space search approach. For 492 locations on the Earth éepiivo spherical har-
monic degree 20), we invert the local azimuthally averadeasp velocity maps
for radial anisotropy taking the full non-linearity into@nt. We separately in-
verted the Rayleigh wave phase velocities for a verticatiiapzed shear wave
velocity model and the Love wave phase velocities for a lontizlly polarized
shear wave velocity model and combine the shear wave wlomtlels to obtain
an isotropic and radially anisotropic shear wave velocitydel. We checked that
this separation was permissible. Since we use a model spacghsapproach, we
not only find the best model but the whole ensemble of modéls)gythe pos-
terior probability density functions for the vertically dmorizontally polarized
shear wave velocity model and the isotropic and radiallg@nopic shear wave
velocity model. The one-dimensional marginals are not Gaunsand, therefore,
cannot be represented by an average and a standard deviadicthe anisotropic
model, we decided to compute the total probability of radidkotropy and like-
wise that the amplitude of anisotropy is above 1% or 2%. We ditithosphere
dominated by fast horizontally polarized shear wave aropgt(horizontal flow),
with a significant amplitudex2%) except underneath cratons. This anisotropy
probably frozen in at the time of the formation of the lithbepe. The astheno-
sphere is dominated by fast vertically polarized shear veaisotropy (vertical
flow), with a probability of more than 70% that the amplituddadrge ¢2%) at
300 km. The fast vertically polarized shear wave anisotrgpgssociated with
mid-ocean ridges (from 120 km) and subduction zones (frotnk20). The tran-
sition zone is also dominated by fast vertically polarizbdas wave anisotropy
(vertical flow), although the amplitudes are likely small&%-2%). Finally, the
lower mantle appears to be mostly isotropic (or anisotreyitb a very low am-

S
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plitude, <1%), which corresponds to earlier findings.

This seems contrary to the observation in chapter threedilranisotropy
(Vsyv > Vsg) in the Pacific. If we, however, compute the probability that >
Vsp for the Pacific area shown in chapter 3, we find a high proligi§i - 80 %)
that this area is radially anisotropic. The probabilityttthee amplitude of this ra-
dial anisotropy is larger than 1% is 30% at 1000 km and deesstms20% at 1500
km. These probabilities are higher than the probabilitresag in figure 5.10 for
other tectonic areas. Therefore the results in chapter fivead exclude radial
anisotropy in the Pacific as observed in chapter three, a Emplitude £1%) is
however not very likely (30%). Furthermore, the isotropiodal in chapter 3 is
an average velocity model and can be seen as one realizafidle, the radially
anisotropic model in chapter 5 represents a posterior pilityadensity function
which contains all possible anisotorpic velocity models.

So, in conclusion we have shown that measuring higher madesgle seis-
mograms is possible up to the sixth higher mode using a wawvefoversion.
We obtained a large dataset of higher mode measuremeB&0(000), using a
fully automated approach and inverted them to obtain ipatrand azimuthally
anisotropic phase velocity maps. We have also shown thatameirwert the
azimuthally averaged phase velocity maps to obtain a tgdiaisotropic shear
wave velocity model, using a fully non-linear approach whizas possible with
up-to-date computing power. Throughout the whole study exetpaid careful
attention to the uncertainties, which proved vital in tharsh for significant ra-
dial anisotropy. For future work, we suggest to apply a tedailepth inversion
using finite frequency kernels to the azimuthal anisotrghiase velocity maps to
provide more information on the depth extent of significanitrauthal anisotropy.
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Appendix A

|sotropic phase velocity maps

This appendix shows some of the isotropic phase velocityetsoghich we ob-
tained in chapter 4. We show the phase velocity models atte€lgeriods for
the fundamental mode up to the sixth higher mode Rayleightamfundamental
mode up to the fifth higher mode Love surface waves.

BT T T T T

Figure A.1: Color scale of figures in appendix A, the maximum amplitudgiven in
percent above each figure.
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35.099s (6%) 40.197s (6%)

Figure A.2: Relative isotropic phase velocity maps with respect to PR&Mhe fun-
damental mode Rayleigh at the indicated periods. The mawiamplitude of the color
scale is indicates in percent.
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35.095s (5.0%) 40.142s (5.0%)

Figure A.3: Relative isotropic phase velocity maps with respect to PR&Mhe first
higher mode Rayleigh at the indicated periods. The maximonplitude of the color
scale is indicates in percent.
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35.018s (4.0%) 40.028s (4.0%)

Figure A.4:Relative isotropic phase velocity maps with respect to PR&Mhe second
higher mode Rayleigh at the indicated periods. The maxinmaplitude of the color scale
is indicates in percent.
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35.014s (3.5%) 40.026s (3.5%)

Figure A.5: Relative isotropic phase velocity maps with respect to PR&Mhe third
higher mode Rayleigh at the indicated periods. The maximonplitude of the color
scale is indicates in percent.
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35.0784s (4.5%) 40.100s (5.0%)

Figure A.6: Relative isotropic phase velocity maps with respect to PR&Mhe fourth
higher mode Rayleigh at the indicated periods. The maxinmplitude of the color scale
is indicates in percent.

35.115s (5.5%) 40.019s (5.5%)

Figure A.7: Relative isotropic phase velocity maps with respect to PR&Mhe fifth
higher mode Rayleigh at the indicated periods. The maximonplitude of the color
scale is indicates in percent.
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35.1414s (5.5%) 39.889s (4.5%)

Figure A.8: Relative isotropic phase velocity maps with respect to PR&Mhe sixth
higher mode Rayleigh at the indicated periods. The maximonplitude of the color
scale is indicates in percent.
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35.062s (10.0%) 40.32s (9.0%)

Figure A.9: Relative isotropic phase velocity maps with respect to PR&Mhe funda-
mental mode Love at the indicated periods. The maximum ardplof the color scale is
indicates in percent.
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35.09s (6.0%) 40.16s (5.5%)

Figure A.10: Relative isotropic phase velocity maps with respect to PR&Mhe first
higher mode Love at the indicated periods. The maximum &mdgliof the color scale is
indicates in percent.
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35.03s (5.0%) 40.02s (5.0%)

Figure A.11:Relative isotropic phase velocity maps with respect to PR&Nhe second
higher mode Love at the indicated periods. The maximum &ndgliof the color scale is
indicates in percent.
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35.05s (4.0%) 40.11s (4.0%)

Figure A.12:Relative isotropic phase velocity maps with respect to PR&Mhe third
higher mode Love at the indicated periods. The maximum &ndgliof the color scale is
indicates in percent.
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35.065 (4.0%) 40.01s (4.0%)

Figure A.13:Relative isotropic phase velocity maps with respect to PR&Nhe fourth
higher mode Love at the indicated periods. The maximum &ndgliof the color scale is
indicates in percent.

35.12s (4.5%) 40.065 (4.0%)

Figure A.14: Relative isotropic phase velocity maps with respect to PR&Mhe fifth
higher mode Love at the indicated periods. The maximum &mdgliof the color scale is
indicates in percent.



Appendix B

Anisotropic phase velocity maps

This appendix shows the azimuthally anisotropicahd 4/ phase velocity maps
obtained in chapter 4. We show the azimuthally anisotorpisp velocity mod-
els at selected periods for the fundamental up to the sixthenimode Rayleigh
and the fundamental up to the fifth higher mode Love wavesath digure, the
grey scale in the background corresponds to the peak-togmaalitude of aniso-
torpy expressed relative to the average phase velocityleadtl from PREM. The
black lines correspond to the fast directions which are atsded to the ampli-
tude shown in the background. The plate boundaries anddtetape indicated in
white.

000 015 030 045 060 Q075 080 103 1.20 135 130

Pamcant

Figure B.1:Color scale of figures in appendix B
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35.099s 62.305s

0" 45° 90° 135° 180° 225° 270° 315° 360° 0° 45° 90° 135° 180° 225° 270° 315° 360°

Figure B.2: Azimuthal anisotropic @ phase velocity maps for the fundamental mode
Rayleigh at the indicated periods.

35.095s 61.866s

0" 45° 90° 135° 180° 225° 270° 315° 360° 0° 45° 90° 135° 180° 225° 270° 315° 360°

Figure B.3: Azimuthal anisotropic @ phase velocity maps for the first higher mode
Rayleigh at the indicated periods.
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Figure B.4: Azimuthal anisotropic 2 phase velocity maps for the second higher mode
Rayleigh at the indicated periods.
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Figure B.5: Azimuthal anisotropic 2 phase velocity maps for the third higher mode
Rayleigh at the indicated periods.
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Figure B.6: Azimuthal anisotropic 2 phase velocity maps for the fourth higher mode
Rayleigh at the indicated periods.
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Figure B.7: Azimuthal anisotropic @ phase velocity maps for the fifth higher mode
Rayleigh at the indicated periods.
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Figure B.8: Azimuthal anisotropic @ phase velocity maps for the sixth higher mode
Rayleigh at the indicated periods.
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Figure B.9:Azimuthal anisotropic® phase velocity maps for the fundamental mode Love

at the indicated periods.
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Figure B.10:Azimuthal anisotropic 2 phase velocity maps for the first higher mode Love

at the indicated periods.
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Figure B.13:Azimuthal anisotropic 2 phase velocity maps for the fourth higher mode
Love at the indicated periods.

0° 45" 90° 135° 180° 225° 270° 315" 360° 0° 45° 90° 135" 180° 225° 270° 315° 360°

Figure B.14:Azimuthal anisotropic 2 phase velocity maps for the fifth higher mode Love
at the indicated periods.
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Figure B.15: Azimuthal anisotropic 4 phase velocity maps for the fundamental mode
Rayleigh at the indicated periods.
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Figure B.16: Azimuthal anisotropic 4 phase velocity maps for the first higher mode
Rayleigh at the indicated periods.
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Figure B.17:Azimuthal anisotropic # phase velocity maps for the second higher mode
Rayleigh at the indicated periods.

90° 90°
R R A AP R
z e S - S P N sk

. |8 ...v”ég;ﬁ).xp INT 4 @T‘-w,Aﬁf.xm;‘%x.& .

45 PEES A B O 363 A =+ X Ko 45
AR dhex B w g a e o by q{*-/-!x)(,' * ‘!x-+~4‘x->~\{-t X XXX
AN x| x XA - .,QWUX.% PRAS: 5 Kx|X v A4 ke oo &'X”*k&

0° YXx x Plxx b A e o boxxxinTT dulwx % 2 % JXX %X sk Akt o b owx i Agla b 0
AW x IR IR R M P2 ) U ELE 3= X 4 & + s b v x T XA 4
E)’Au ~xﬁ§x;x~.u-xu 2% Q')’ X« hex %y(y.«»-\»v#-‘-‘xx S

. D coefeoxbede kox r.x)(xx;/-(xx- X . r. S d kA F r+.><><i< e .

- I EEN CHIN | x—s G -

45 [T | A e L — A ..._\-X%.;_kAx*..‘(-x. 45

-90° -90

0° 45° 90° 135° 180° 225° 270° 315° 360° 0° 45° 90° 135° 180° 225° 270° 315° 360°

Figure B.18: Azimuthal anisotropic ¢ phase velocity maps for the third higher mode
Rayleigh at the indicated periods.
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Figure B.19:Azimuthal anisotropic 4 phase velocity maps for the fourth higher mode
Rayleigh at the indicated periods.
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Figure B.20: Azimuthal anisotropic 4 phase velocity maps for the fifth higher mode
Rayleigh at the indicated periods.

90° 90°

~ lemd— =] g@gﬂy ~ e =] i}%”‘?
0 xapeeT . | o e g

- i S ANt ONE S TR RN G a5
> T = % > X X xR a3 ~EH F 3 X X T i
M w+’r..+,.....\*tmf.,x><x,f SR A T ”..)\{ga?;x,x.,
e XX ﬁx:t}.x%&v..»@x-.n, ~,-x*§i~ (40| PP SV My 3 Q&*"N‘

0° ﬁ.&r{/:x NEREN a.xxxit-\',q—.- 3 e g WEALFIE W PP Pt &= ,‘—4?17 0°
A MO XX = pr = - x x| X\ KX H * X« xx <+ 4 e XX xR x +
x;‘j) ..Uvaé ! ..*x},\—.zﬁ ;2;*‘ X ox % é s x %k oo kx&&'~j,.
x B o R SR R S B . X\,Z * x PRy - ﬁ#++)¢x-2&xxx

-45° N 5 - 1 % % R . 4 45
— R SRR A o PR I~~~ T R S R © S
T rou e | 5F

-90° -90°

0° 45° 90° 135" 180° 225° 270° 315° 360° 0° 45° 90° 135° 180° 225° 270° 315° 360°

Figure B.21: Azimuthal anisotropic 4 phase velocity maps for the sixth higher mode
Rayleigh at the indicated periods.
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Figure B.22: Azimuthal anisotropic 4 phase velocity maps for the fundamental mode
Love at the indicated periods.
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Figure B.24:Azimuthal anisotropic # phase velocity maps for the second higher mode
Love at the indicated periods.
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Figure B.25: Azimuthal anisotropic 4 phase velocity maps for the third higher mode
Love at the indicated periods.
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Figure B.26:Azimuthal anisotropic 4 phase velocity maps for the fourth higher mode
Love at the indicated periods.
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Figure B.27:Azimuthal anisotropic 4 phase velocity maps for the fifth higher mode Love
at the indicated periods.
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Appendix C

Shear wave velocity maps

This appendix shows &5y, Vsy and an isotropic velocity model obtained in
chapter 5. As the velocity models are taken from the meareabiie-dimensional
marginals, they represent one realization of the velocibgefs out of many pos-
sibilities. The low amplitudes are caused by the choice oftiplg the mean of
the one-dimensional marginal. They would be higher whettipgpthe maximum
probability models (drawn from the maximum of the one-digienal marginals).
This relation between the mean and maximum probability risockn be seen in
figure 5.7. The patterns of higher and lower velocity are wmilar to results ob-
tained by Ferreira et al. (2007), the main difference is eelomsolution (spher-
ical harmonic degree 20) and lower amplitudes (mean of treedimensional
marginals). The velocity models are plotted with respethéoglobal mean at the
indicated depths. On top of each panel we indicate the dépth, the reference
mean velocity (m/s) and the variation with respect to thismg@no).

Figure C.1: Color scale of figures in appendix C, the maximum amplitudgiven in
percent above each figure.
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50km, 4560.81m/s (5.0%) 100km, 4465.3m/s (5.0%)

_— = —

Figure C.2:Relative horizontally polarized shear wave velocity majib vespect to the
mean as indicated. The maximum amplitude of the color ssatalicates in percent.
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50km, 4441.06m/s (5.0%) 100km, 4366.41m/s (5.0%)

Figure C.3:Relative vertically polarized shear wave velocity map$iwitspect to the
mean as indicated. The maximum amplitude of the color ssatalicates in percent.
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50km, 4474.84m/s (5.0%) 100km, 4425.15m/s (5.0%)

Figure C.4: Relative isotropic shear wave velocity maps with respedhébomean as
indicated. The maximum amplitude of the color scale is aigis in percent.



Samenvatting en conclusies
(Summary and conclusions Iin
Dutch)

Overal op de wereld worden aardbevingen geregistreerd emnhemeters. De
golven die door de aarde reizen na een aardbeving gevemiatier over het ge-
steente waar ze doorheen hebben gereisd. Dus als wij hietrécht een aard-
beving registeren die plaatsvond in Japan, dan geeft hr@hegram informatie
over het hele pad dat de golven hebben afgelegd van Japam thtdécht. Er
zijn verschillende aardbevingsgolven die op verschilketiglen aankomen in het
seismogram. Eerst komen de drukgolven aan die door de aaedterbizen; we
noemen deze de P golven. Deze worden gevolgd door trankvgmaen die ook
door de aarde heen reizen, de S golven. Deze golven wordenigp afstand
gevolg door de oppervilaktegolven. De oppervlaktegolveérerelangs het aard-
oppervilak en hebben de grootste amplitude, waardoor ze eshkeakste schade
aanrichten na een aardbeving. De oppervlaktegolven dietitdrizontale viak
geregistreerd worden op de seismometer worden Love-ggleroemd en de op-
pervlakte golven die op het vertikale viak van de seismontptesgistreerd wor-
den, worden Rayleigh-golven genoemd. Opperviaktegohjendispersief, wat
wil zeggen dat elke frequentie op een andere tijd aankomtlafe frequenties
komen eerst aan, gevolgd door de hoge frequenties. De shellaarmee elke
frequentie reist wordt de fasesnelheid genoemd. De omddegolven noemen
we ook wel de grondtoon. De boventonen van oppervlaktegokeenen in het
seismogram aan net voor de grondtoon en reizen dus met eeretwgelheid. De
meeste energie van de grondtoon reist door de bovenste 40@rkde aarde, ter-
wijl de energie van de boventonen door diepere structurenrieést, afhankelijk
van de frequentie van de boventoon. Boventonen geven dusimieenatie over
diepere structuren.

In dit proefschrift presenteren we de drie stadia invesialering zoals voor-
gesteld door Kennett en Yoshizawa (200). Het doel van dezgsiebenadering
is het verkrijgen van een S-snelheidsmodel met de diepte.skEepel voorbeeld
van een inversie is de som x=2y. Als je y weet, kan je meteerrekbaen, maar
als je x weet en je wilt eigenlijk y weten moet je de inverseekenen, namen-
lijk y=1/2x. In het eerste stadium verkrijgen we de fasdseielsmetingen van
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de grondtoon en boventonenen van Love- en Rayleigh-goleen whiddel van

een golfvorminversie. Deze metingen worden gebruikt intlweede stadium om
fasesnelheidskaarten te maken. Daarbij nemen we aan datneten fasesnel-
heden per seismogram de gemiddelde fasesnelheden aangevest pad tussen
de oorsprong (aardbeving) en de ontvanger (seismometet)déide stadium is
een inversie van de fasesnelheidskaarten voor een S-glseltoelel met de diepte,
ook wel een diepte-inversie genoemd. In een normale twd@staersiebenader-
ing geeft het eerste stadium de meting van S-snelheidslemfieet de diepte per
seismogram en het tweede stadium de inversie voor een Besehodel met
de diepte. In deze benadering word aangenomen dat de Sishghmeten per
seismogram de gemiddelde S-snelheid is tussen de oorsprodg ontvanger.
Deze aanname is echter niet altijd waar. Yoshizawa en Ke(@2@®2) hebben
laten zien dat verschillende S-snelheidsprofielen in hetteestadium dezelfde
fasesnelheden hebben. De gemiddelde pad aanname in deadi@isversie is

daarom veel beter dan in een normale twee stadia inversidbeng.

In hoofdtuk twee presenteren we het eerste stadium van desiav het meten
van fasesnelheden voor de grondtoon en boventonen van lroRadeigh op-
pervliaktegolven. Het is heel moeilijk om de fasesnelheid da boventonen
te meten, omdat ze een veel kleinere amplitude hebben ireljkigg met de
grondtoon en vaak (bijna) tegelijkertijd met de grondto@mikomen. De sig-
nalen van de grondtoon en boventonen kun je dus vaak nietlkaareschei-
den. Om de fasesnelheden te meten gebruiken we een golfwarsie. In dit
geval weten we de golfvorm maar we willen de fasesnelheiccrveDe manier
waarop wij dit oplossen is door middel van een Monte Carldkimmhniek. In
een Monte Carlo zoektechniek doorzoek je de modelruimtgerarobleem. Elk
punt in onze model ruimte correspondeerd met een golfvoenwai vergelijken
met onze geobserveerde golfvorm, door middel van een mi#iriam. Als
we de golfvorm vinden die (bijna) gelijk is aan onze geobserde golfvorm
(minimale misfit tussen de geobserveerde en berekendeoguolfdan hebben we
ook de fasesnelheden ontdekt van de geobserveerde golfvideh mooie van
het gebruik van een modelruimte-onderzoek is dat je nieeallweer waar je
beste model in de model ruimte zit, maar je weet ook alle anderdellen in de
model ruimte met hun misfit. Nu kunnen we (Bayesiaanse)stitglti toepassen
op de modelruimte en hieruit kunnen we de waarschijnlijghgin waardes van
elke dimensie van de modelruimte berekenen. Dus voor elkenae fasesnel-
heden krijgen we een waarschijnlijkheidscurve van de wesx@dn de fasesnel-
heid. Deze waarschijnlijksheidscurves zijn vrij Gaudsisan vorm en daarom
kunnen we de fasesnelheden weergeven met een gemiddeldievdia gelijk is
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aan de maximale waarschijnlijkheid) en een standaardiileeen variatie). Dus
een typische gemeten fasesnelheid is bijvoorbeeld 4k#0an/s. Het bereke-
nen van de waarschijnlijkheidscurve is nog nooit gedaan fasesnelheden en zo
krijgen we dus niet alleen de fasesnelheden maar ook de ermalen die erbij
horen. Omdat we de hele golfvorm gebruiken krijgen we nileteal de fasesnel-
heden voor de grondtoon maar ook die van de boventonen. tdkdfsee legt
uit hoe deze volledig geautomatiseerde methode werkt ¢allegesten zien (de
validatie van de methode).

Omdat de fasesnelheden voor de hogere ordes opperviaktagaor Love-
golven nog veel moeilijker te meten zijn dan die voor Rayieigaat hoofdstuk
drie speciaal over de gemeten fasesnelheden van de Loestboen. De fase-
snelheden worden vergeleken met vorige studies en we a®@reln dat 65% van
onze fasesnelheden binnen één standaarddeviatie vallegrgelijking met de
metingen van Van Heijst en Woodhouse (1999). De gemetesrfakeden per
seismogram bevatten informatie over het pad dat de golviebdmeafgelegd van
de bron (de aardbeving) naar de ontvanger (seismometex)e Ak fasesnelheden
meet van een grote hoeveelheid seismogrammen, kun je dedémmren tot fase-
snelheidskaarten van de aarde. Deze fasesnelheidskaatiben we vergeleken
met een eerder gepubliceerd S-snelheidsmodel (S20RTS) gimden een goede
overeenkomst.

In een anisotroop medium hangt de snelheid van seismisdherngdie reizen
door dit medium af van de richting waarin de seismische goteizen. Een sim-
pel geval is een horizontaal gelaagd medium. De snelheid®®@mische golven
die hier verticaal doorheenreizen (bijvoorbeeld Rayleiglven) zal kleiner zijn
dan de snelheid van seismische golven die hier horizonbdjgbérbeeld Love-
golven) doorheen reizen. Dit wordt ook wel radiale anigmgogenoemd. De
anisotropie is onafhankelijk van de bewegingsrichtinganhtorizontale viak. Als
we dit gelaagd medium een beetje schuin zetten, zullen dmisgihe golven die
horizontaal door het medium heenreizen nog steeds snigitlienmaar de snelheid
zal nu ook afhangen van de richting van de horizontale se@migolven door het
medium. Dit wordt ook wel azimutale (hoek) anisotropie gand. De snelheid
van de seismische golven hangt nu ook af van het azimut (dg kae voortplan-
ting door het medium. De oorzaak van anisotropie in de aard@arschijnlijk de
orientatie van mineralen in de aarde. Als mineralen ondanisipg staan, gaan
ze zich zo richten dat de snelle richtingen oplijnen in détifg van de span-
ning. Een snelle vertikale snelheid wordt zo waarschignlgroorzaakt door een
vertikale stroming, en een snelle horizontale snelheiditwoaarschijnlijk veroor-
zaakt door een horizontale stroming. In het geval van azatawnisotropie hangt
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de (hoge) horizontale snelheid af van de richting van dezbotale stroming.

In de plaattektoniek worden aardplaten gecreéerd bijaohnische ruggen en
zinken ze in de aardmantel bij de subductiezones. De stgpimirde ondiepe

aardmantel is dus van de mid-oceanische rug naar de sutzhrd. Een hor-

izontale snelheid met deze stroming mee zal hoger zijn dariaeelrecht erop

vanwege de oriéntatie van de mineralen in de stroming.

In hoofdstuk vier presenteren we het tweede stadium van \azsie: het
maken van de isotrope en azimutale anisotrope fasesnsliaaiden van de aarde
door middel van een inversie van de gemeten fasesnelhedemoaddstuk twee.
Voor de inversie bepalen we de onderlinge verhoudingen g@easotrope en az-
imutale anisotrope termen. We vinden dat de fasesnelheaerde grondtoon
en boventonen alleen verklaard kunnen worden met azimaggetropie. Verder
hebben we veel aandacht geschonken aan het bepalen van elenzetterheden,
omdat we deze nodig hebben in het volgende hoofdstuk voorepeedinversie.
De isotrope boventoon fasesnelheidskaarten en de azitaaihigotrope fasesnel-
heidskaarten van de grondtoon komen overeen met die vameastiglies. Als
laatste kijken we naar de eventuele lekkage van de isotrdpamatie in de az-
imutale anisotrope kaarten en andersom en we vinden ddfetit gerwaarloos-
baar is.

In hoofdstuk vijf presenteren we het derde stadium van dergi: het inver-
teren van de fasesnelheidskaarten van hoofdstuk vier or8-asmelheidsmodel te
verkrijgen met de diepte. Voor 492 locaties op de aarde fexem we de fase-
snelheidskaarten waar de azimuthale anisotropie erudajeéhs voor een radi-
aal anisotroop diepteprofiel met een volledig niet-lineaversie. De Rayleigh-
fasesnelheidskaarten worden geinverteerd voor een SMIgeen vertikaal gepo-
larizeerd S-snelheidsprofiel) en de Love-fasesnelhestia worden geinverteerd
voor een SH profiel (horizontaal gepolarizeerd S-snelipeadiel). De SV en SH
profielen worden gecombineerd in een isotroop en anisotpofiel. We ge-
bruiken weer een modelruimte-onderzoek, wat ons niet rallet beste model
oplevert, maar ook andere modellen in de modelruimte menhisfit. De waar-
schijnlijkheidscurves zijn dit keer echter niet Gaussjsghardoor we de profie-
len niet kunnen presenteren als een gemiddelde en eenatddeeiatie. Daarom
hebben we besloten om de waarschijnlijkheid van radialeotimipie te berekenen
voor verschillende tektonische gebieden op aarde (oceaatinent, tektonische
gebieden, cratons, platforms), evenals de waarschijgigkdat de amplitude van
de radiale anisotropie boven de 1% of 2% uitkomt. De litheis{g-100 km) wordt
gedomineerd door snelle horizontaal gepolarizeerde $#tnopie (horizontale
stroming), met een significante amplitude2%), behalve onder cratons. Deze
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anisotropie werd waarschijnlijk veroorzaakt door de vargnvan de lithosfeer en
is nu 'bevroren’. De asthenosfeer (100-220 km) wordt gedeeaid door snelle
vertikaal gepolarizeerde S-anisotropie (vertikale strgn Ook vinden we een
waarschijnlijkheid van meer dan 70% dat de amplitude vanmnil&opie boven
de 2% ligt op 300 km. De snelle vertikaal gepolarizeerde iSedropie wordt
geassocieerd met de mid-oceanische ruggen, waar mateiiadd aardmantel
naar boven komt, en subductie zones, waar materiaal in denaatel zinkt. De
transitiezone (400-670 km) wordt ook gedomineerd doolsneltikaal gepolar-
izeerde S-anisotropie, maar de amplitudes zijn waardikikleiner (1%-2%).
De ondermantel (670 - 1500 km) lijkt vooral isotroop (of artieop met een zeer
kleine amplitude). Dit komt overeen met eerdere studies.

We hebben laten zien dat we boventonen kunnen meten vooteesdis-
mogrammen tot de zesde boventoon met een golfvorminveide grote hoe-

veelheid metingen>350,000), verkregen met een volledig geautomatiseerde be-

nadering, worden geinverteerd voor isotrope en azimwalsotrope fasesnel-
heidskaarten. Verder hebben we laten zien dat we deze &dkeriskaarten
kunnen inverteren voor een radiaal anisotroop model gelmaikende van een
volledig niet-lineaire benadering, wat alleen mogelijkswaet moderne compu-
terkracht. Verder hebben we veel aandacht geschonken aanzdkerheden, die
heel belangrijk bleken in de zoektocht naar significantéatadinisotropie. In de
toekomst zou het interessant zijn om een diepte-invergidetgpassen op de az-
imuthale anisotropie fasesnelheidskaarten om meer iradtente verkrijgen over
het dieptebereik van de azimuthale anisotorpie.
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