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S U M M A R Y
It is well established that the Earth’s uppermost mantle is anisotropic, but there are no clear
observations of anisotropy in the deeper parts of the mantle. Surface waves are well suited to
observe anisotropy since they carry information about both radial and azimuthal anisotropy.
Fundamental mode surface waves, for commonly used periods up to 200 s, are sensitive to
structure in the first few hundred kilometres, and therefore, do not provide information on
anisotropy below. Higher mode surface waves have sensitivities that extend to and beyond the
transition zone, and should thus give insight about azimuthal anisotropy at greater depths. We
have measured higher mode Love and Rayleigh phase velocities using a model space search
approach, which provides us with consistent relative uncertainties from measurement to mea-
surement and from mode to mode. From these phase velocity measurements, we constructed
global anisotropic phase velocity maps. Prior to inversion, we determine the optimum relative
weighting for anisotropy. We present global azimuthal phase velocity maps for higher mode
Rayleigh waves (up to the sixth higher mode) and Love waves (up to the fifth higher mode)
with corresponding average model uncertainties. The anisotropy we derive is robust within the
uncertainties for all modes. Given the ray theoretical sensitivity kernels of Rayleigh and Love
wave modes, the source of anisotropy is complex, but mainly located in the asthenosphere and
deeper. Our models show a good correspondence with other studies for the fundamental mode,
but we have been able to achieve higher resolution.

Key words: Inverse theory; Surface waves and free oscillations; Seismic anisotropy; Seismic
tomography.

1 I N T RO D U C T I O N

It is widely established that the Earth’s upper mantle is anisotropic.

The first observation of radial anisotropy was the discrepancy be-

tween Rayleigh and Love wave dispersion observed by Anderson

(1961), Aki & Kaminuma (1963) and McEvilly (1964). Anisotropy

was also observed in the azimuthal dependence of Pn velocities

(Hess 1964) and S-wave splitting in teleseismic SKS waves (Vinnik

& Romanowicz 1989). The first observation of azimuthal anisotropy,

the azimuthal variation of phase velocities, was noted by Forsyth

(1975) in the Pacific Ocean. Radial and azimuthal anisotropy are

both observed by surface waves, which is why these waves are well

suited to study anisotropy. Radial and azimuthal anisotropy are the

result of the same underlying anisotropy of the Earth’s interior and

were linked in a common mathematical framework by Montagner &

Nataf (1986). The alignment (lattice preferred orientation or LPO)

of intrinsically anisotropic minerals under strain in the mantle is

assumed to be the major cause of upper-mantle anisotropy (Karato

1998; Montagner 1998). Anisotropy is thus an indicator of mantle

deformation and flow. Therefore, it is critical to image anisotropy

to understand the dynamics of the mantle.

Fundamental mode surface waves are well suited to provide in-

formation about anisotropy in the upper mantle (Nataf et al. 1984;

Tanimoto & Anderson 1984; Montagner & Tanimoto 1991; Ekström

& Dziewonski 1998). The sensitivity of fundamental mode surface

waves for commonly used periods up to 200 s is however limited

to the upper 400 km of the Earth’s mantle. The use of higher mode

surface waves should increase our knowledge of anisotropy into the

lower part of the upper mantle and the upper part of the lower man-

tle due to their greater sensitivity at depth compared to fundamen-

tal mode surface waves. In the last few years higher mode surface

waves have been added to studies of anisotropy (Debayle & Kennett

2000; Simons et al. 2002; Trampert & van Heijst 2002; Beucler &

Montagner 2006; Maggi et al. 2006). The number of higher modes

used in these studies varies due to the difficulty of measuring higher

mode phase velocity, especially for Love waves since the higher

modes arrive simultaneously with the fundamental mode. Trampert

& van Heijst (2002) and Beucler & Montagner (2006) use phase ve-

locities up to the second higher mode and Debayle & Kennett (2000)

and Maggi et al. (2006) use phase velocities up to the fourth higher

mode. The number of measurements are often few (Debayle &

Kennett 2000) sometimes imposed by the clustering of events

1016 C© 2007 The Authors

Journal compilation C© 2007 RAS



Global anisotropic phase velocity maps 1017

(Beucler & Montagner 2006; Maggi et al. 2006; Sebai et al. 2006)

and the geographical coverage is limited.

This study presents global azimuthal anisotropic phase velocity

maps for fundamental and higher mode Love and Rayleigh waves

up to the sixth higher mode consisting of a large number of mea-

surements with consistent standard deviations. The phase velocities

were measured using a model space search approach (Yoshizawa &

Kennett 2002; Visser et al. 2007) which provides realistic consis-

tent uncertainties on the phase velocity measurements. Following

Trampert & Woodhouse (2003), we determine the optimum relative

weighting of anisotropy prior to inversion and present global az-

imuthal anisotropic phase velocity maps up to the fifth higher mode

for Love and up to the sixth higher mode for Rayleigh.

Finally, we analyse the resolution of the azimuthal anisotropic

phase velocity maps and look at spectral leakage and trade-offs

in particular. Spectral leakage is the effect of mapping small-scale

structure not accounted for in the model expansion into the inverted

low-degree structure. It arises as a result of uneven data coverage

(Snieder et al. 1991). We suppress spectral leakage by using Lapla-

cian damping, which increases the damping with increasing degree.

This process effectively decreases the spectral leakage (Spetzler &

Trampert 2003) but also decreases resolution for higher and higher

degrees. By looking at the off-diagonal terms of the resolution ma-

trix, we find that the trade-off between parameters remains accept-

ably small.

2 P H A S E V E L O C I T Y M E A S U R E M E N T S

We follow the approach of Yoshizawa & Kennett (2002) and measure

phase velocities using a model space approach (Visser et al. 2007).

In principle, the model space search to invert for a 1-D velocity

model could include the full non-linearity of the forward problem.

This is very time consuming, and therefore, we chose to linearize the

forward problem by centring the model space search around a refer-

ence model and using the Fréchet derivatives of this reference model

to calculate the synthetic seismograms. This inherently introduces

a dependence on the chosen reference model and the requirement

that the chosen reference model should be close to our final model.

We use the automated multimode inversion (AMI, Lebedev et al.
2005) to obtain a reference model for the model space search. AMI

is a non-linear waveform inversion in multiple time and frequency

windows which obtains the best shear wave velocity model that fits

the seismogram. The time and frequency windows are chosen such

that both the fundamental mode and the higher modes are fitted.

AMI also applies strict data quality criteria and ensures the validity

of the JWKB approximation. The shear velocity model from AMI

is close to the best shear wave velocity model which we find in the

model space search. Differences between both models are small and

largely due to the use of different parametrizations for the shear wave

velocity models. AMI uses around 18 boxcar and triangle functions

up to 1500 km and we use 12 natural cubic spline functions that span

the crust, upper mantle and lower mantle up to a depth of 1500 km.

We have experimented with the number and position of the spline

functions and found that this parametrization is sufficient to resolve

up to the fifteenth higher mode. We do not expect to resolve more

than six higher modes which makes this parametrization more than

sufficient for our purpose. The parametrization is more dense in the

crust and upper mantle to match the expected depth resolution of

surface waves. The difference between AMI and the model space

search is that the first gives us one best fitting shear wave velocity

model and the second gives us the whole ensemble of shear wave

Table 1. Frequency–time windows.

Windows (t, ω)

f (mHz) Rayleigh (km s−1) Love (km s−1)

5–10 3.7 ± 0.75 b - 3.8

10–20 3.75 ± 0.55 b - 3.8

b - 4.3

20–50 b - 4.3 b - 4.3

Note: Definition of frequency–time windows for Rayleigh and Love

seismograms. The time windows are defined using the group

velocity (km s−1).

velocity models compatible with the seismograms which enables us

to determine uncertainties. If we were only interested in the best

fitting model, AMI would be sufficient. It is important to under-

stand that AMI solves an ill-posed non-linear inverse problem. A

solution is found by careful regularization, but other solutions exist

compatible within the data errors. A Monte Carlo search around the

AMI solution finds all those other models and allows us to deter-

mine meaningful uncertainties for the best fitting model. Usually, a

model space search is used to solve highly non-linear problems. We

use it to map the nullspace of a linearized problem instead.

For the model space search we use the Neighbourhood Algorithm

(NA, Sambridge 1999a). We search for the best fitting shear wave

velocity model using a least-squares misfit between the data and

the synthetic seismogram defined in multiple time and frequency

windows, see Table 1. The frequency and time windows are cho-

sen such that the fundamental and higher modes are included in

the windows. For Love waves, it is not possible to separate the fun-

damental and higher modes since the group velocities are similar,

thus we use a single time window for both waveforms. For Rayleigh

waves, we separated the fundamental and higher mode waveforms

in different time windows. The time b in Table 1 depends on the

epicentral distance, below 35◦ the time is set just before the arrival

of the S wave train, between 35◦ and 70◦ the time is set just after the

S and before the SS wave train, etc. The synthetic seismograms are

calculated using the JWKB approximation and the Fréchet deriva-

tives which relate the change in compressional wave velocity, shear

wave velocity and density from the reference model to a change in

phase velocity. The compressional wave perturbations and the den-

sity perturbations are of secondary importance, thus we decided to

scale these perturbations to the shear wave velocity perturbations

thereby reducing the amount of parameters needed for the model

space search. This choice significantly speeds up the model space

search. For Rayleigh waves, we scale the compressional wave per-

turbations to the shear wave velocity perturbations with the scaling

relation (R = ∂Vs/∂Vp) from Ritsema & Van Heijst (2002). R
increases linearly from 1.25 at the surface to 3.0 at the CMB. For

Love and Rayleigh waves, the density perturbations are scaled to the

shear wave perturbations using (ξ = ∂lnρ/∂lnVs) from Deschamps

et al. (2001). ξ varies between −0.1 and 0.2. The attenuation model

employed is that of PREM (Dziewonski & Anderson 1981).

The model space search provides us with an ensemble of shear

wave velocity models and their fit to the data. This ensemble is re-

sampled and transformed into a probability density surface in the

second part of the NA (Sambridge 1999b). The resampling algo-

rithm can also be used to evaluate Bayesian indicators of any trans-

formed parameters that are a combination of the original parameters,

in an identical manner to the original variables. We introduce phase

velocity parameters defined for certain modes and periods since

phase velocities may be obtained by integrating a shear wave veloc-

ity model using the sensitivity kernels for the specific mode and
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period. The sensitivity kernels are calculated for the reference

model, which is the best shear wave velocity model that we obtained

from AMI. We thus obtain a probability density surface for our orig-

inal (shear wave velocity) parameters and transformed (phase veloc-

ity) parameters. From the probability density surface we can obtain

1-D marginals for each original/transformed parameter by integrat-

ing over all other original/transformed parameters. The advantage of

our approach is that now we are able to solve for phase velocities for

multiple modes and periods without having to separate the modes

and without too much computation time. The shape of the phase

velocity marginals is Gaussian, and therefore, we represent the 1-D

marginals as a mean phase velocity and a standard deviation. The

phase velocities are presented as changes with respect to PREM for

convenience.

In the resampling process, we introduced specific phase veloc-

ity parameters which are obtained by integrating each resampled

shear wave velocity model using the corresponding sensitivity ker-

nel. In theory, we could obtain phase velocities for every higher

mode and period. In practise, we know that not all higher modes are

constrained by the seismogram. To evaluate the number of modes

constrained in each seismogram we calculated the unexplained vari-

ance which is defined as the least-squares misfit between the data

and the synthetic normalized by the data. The unexplained variance

is calculated as a function of the number of modes used in the syn-

thetic seismogram calculation. For a perfect match between data and

synthetic, the unexplained variance is zero. Since we calculate the

unexplained variance only in the higher mode windows (Table 1: two

windows for Rayleigh, the middle and highest frequency band; and

one window for Love, the highest frequency band), the unexplained

variance is unity for a fundamental mode synthetic seismogram and

should decrease to zero for a perfect full synthetic seismogram. The

unexplained variance, therefore, is a function which, in practise, has

its maximum for the fundamental mode only and decreases to some

constant value for increasing higher modes. This determines the

number of modes needed to explain the specific seismogram. The

number of higher modes we measure is defined as the smallest num-

ber of higher modes which brings the unexplained variance below

25 per cent of its range, where the range is defined as the difference

between the largest and the smallest unexplained variance. Further

details may be found in Visser et al. (2007).

The unexplained variance is also used to check when we obtain

an overall bad fit for the higher modes and whether the seismogram

contains no significant higher mode information. In such cases we

decide to only measure the fundamental mode. Finally, if we obtain

a bad fit for the whole seismogram (unexplained variance larger than

0.4), we discard the measurements.

We measured phase velocities for fundamental and higher mode

Love and Rayleigh waves for seismograms that were recorded at

the stations of the GDSN and GEOSCOPE networks from 1994 to

2004. The azimuthal coverage for the higher mode Rayleigh and

Love wave measurements are shown in Figs 1 and 2. We do not

show the azimuthal coverage for the fundamental mode since it is

similar to the minor arc coverage given by Trampert & Woodhouse

(2003) for Rayleigh and Love waves. The number of measurements

Figure 1. Minor arc Rayleigh wave azimuthal coverage for first higher mode (a), second higher mode (b), third higher mode (c), fourth higher mode (d), fifth

higher mode (e) and sixth higher mode (f).
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Figure 2. Minor arc Love wave azimuthal coverage for first higher mode (a), second higher mode (b), third higher mode (c), fourth higher mode (d) and fifth

higher mode (e).

Table 2. Number of measurements.

Number of measurements

Rayleigh Love

Fundamental mode 63 628 45 179

First higher mode 54 035 34 859

Second higher mode 52 457 31 704

Third higher mode 48 762 24 102

Fourth higher mode 40 606 15 065

Fifth higher mode 31 637 8514

Sixth higher mode 21 626

Note: Number of minor arc phase velocity measurements

for Rayleigh and Love wave fundamental and higher modes.

obtained for the fundamental and each of the higher modes is shown

in Table 2. We obtain the highest number of measurements for the

fundamental mode followed by the first, second, third, etc., higher

modes. As explained above, the unexplained variance will decrease

as the number of higher modes increases. For a seismogram with

less higher mode information the unexplained variance decreases

more rapidly and the number of higher modes we decide to measure

is less. Also, noisier seismograms will lead to less higher modes

that will be measured due to the faster decrease of the unexplained

variance to an almost constant value. The almost constant value for

higher modes indicates that we are trying to measure overtones not

constrained by the seismogram which is why we have to restrict

the number of higher modes we measure. Finally, the number of

seismograms with significant second higher mode information will

be less than the number of seismograms with significant first higher

mode information and so on. This is mainly due to the smaller

amplitudes of the higher modes which makes the contribution to the

unexplained variance smaller. We also obtain more measurements

for Rayleigh than for Love waves, because of the higher noise levels

for Love wave seismograms.

3 A Z I M U T H A L A N I S O T RO P Y

In a slightly anisotropic medium the azimuthal dependence of the

local phase velocities of Rayleigh and Love surface waves is de-

scribed as (Smith & Dahlen 1973, 1975; Romanowicz & Snieder

1988; Larsen et al. 1998).

dc

c0

(ω, ψ) = α0(ω) + α1(ω) cos(2ψ) + α2(ω) sin(2ψ)

+ α3(ω) cos(4ψ) + α4(ω) sin(4ψ), (1)

where dc/c0 is the relative phase velocity perturbation with respect

to a spherically symmetric earth model, ω the radial frequency and

ψ is the azimuth along the path. We follow the approach of Trampert

& Woodhouse (2003) where the local phase velocity perturbation is

expanded in terms of generalized spherical harmonics. This reduces

eq. (1) to

d = Gm. (2)
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Table 3. Difference in χ2 at the 99 per cent significance level determined

by the F-test.

N − M
χ2 7500 10 000 15 000 20 000 30 000 40 000 50 000 65 000

1.0 0.029 0.025 0.021 0.018 0.015 0.013 0.011 0.010

1.5 0.044 0.038 0.032 0.027 0.022 0.019 0.017 0.015

2.0 0.059 0.051 0.042 0.036 0.029 0.025 0.023 0.020

2.5 0.073 0.063 0.053 0.045 0.037 0.032 0.029 0.025

3.0 0.088 0.076 0.063 0.054 0.044 0.038 0.034 0.030

3.5 0.103 0.089 0.074 0.063 0.051 0.044 0.040 0.035

4.0 0.117 0.101 0.084 0.072 0.059 0.051 0.048 0.040

Note: The difference in χ2 as a function of the χ2 and the number of

independent parameters (N − M).

Here d are the path-averaged phase velocity measurements, m =
(m0, m2, m4)T is the model vector corresponding to the spherical

harmonic coefficients of the 0ψ , 2ψ and 4ψ terms. G = diag (G0,

G2, G4) is the block diagonal matrix of the path-averaged spherical

harmonics, for the 0ψ , 2ψ and 4ψ terms. The number of unknowns

is (L + 1)2 for the 0ψ terms, (2L + 6)(L − 1) for the 2ψ terms

and (2L + 10)(L − 3) for the 4ψ terms. We choose L = 40 for the

isotropic term (0ψ) and L = 20 for the azimuthal terms (2ψ ,4ψ),

resulting in 3405 unknowns.

The inverse problem is solved by minimizing the cost function

C = (d − Gm)T C−1
d (d − Gm) + mT C−1

m m, (3)

where Cd is the diagonal data covariance matrix which consists of

the squared standard deviations of the phase velocity measurements

which are obtained from the model space search. Cm is the diago-

nal model covariance, used to impose Laplacian smoothing. In its

partitioned form the expressions are

(Cmo ) j j = 1

λ

1

[l(l + 1)]2
(4)

(Cm2
) j j = θ2

λ

1

[l(l + 1)]2
(5)

(Cm4
) j j = θ4

λ

1

[l(l + 1)]2
, (6)

where λ is an overall damping parameter which controls the trade-off

between the data misfit and smoothness. The parameters θ 2 and θ 4

control the relative strength of the anisotropy. For example, a value

of 0.1 would give 10 times more weight to the isotropic terms relative

to the anisotropic terms. Different values for θ 2 and θ 4 can be used

to determine whether the data has a preference for anisotropy and

if so, a preference for the 2ψ terms or for the 4ψ terms or for both.
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Figure 3. Misfit curves for Rayleigh (a) first higher mode at 148.56 s, (b) second higher mode at 40.028 s, (c) third higher mode at 77.795 s, (d) fourth higher

mode at 35.078 s, (e) fifth higher mode at 56.074 s and (f) sixth higher mode at 35.141 s. The legend shows different values for θ 2 and θ 4.
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To compare inversions with different regularizations, we define, a

reduced χ2 as

χ 2 = 1

N − M
(d − Gm)T C−1

d (d − Gm), (7)

where N is the number of data and M the trace of the resolution

matrix. As the overall damping λ decreases, the trace of the resolu-

tion matrix (number of independent parameters) will increase and

the reduced χ2 will decrease, even if the misfit does not. A standard

F-test (Bevington & Robinson 1992) determines if the difference

between two χ 2 values is significant. Table 3 shows for a given χ2

and number of free parameters (N − M) the associated significant

difference in χ 2 at the 99 per cent confidence level. The meaning is

that if for a given N − M , two χ2 differ by more than this value, we

are 99 per cent sure that the misfit is better and that this inversion

should be preferred.

4 M I S F I T C U RV E S F O R T H E H I G H E R

M O D E S

Following Trampert & Woodhouse (2003), we calculated misfit

curves systematically changing λ for a fixed θ 2 and θ 4 for each of the

higher modes to determine if the higher modes require anisotropy

and if we can distinguish between the different anisotropic terms.

The misfit curves (Figs 3 and 4) show that for a small number of

independent parameters, the isotropic parametrization (θ 2, θ 4 =

10−5) explains the data best. As the number of independent pa-

rameters increases, the anisotropic parametrizations (θ 2, θ 4 >10−5)

start to explain the data better than the isotropic parametrization.

At around 500 independent parameters, the isotropic misfit curves

flatten out, indicating that anisotropy is indeed required by the data,

because they give a better misfit with a high confidence level. The

F-test (Bevington & Robinson 1992) gives the level of confidence

with which the differences between the misfit curves is significant.

For example, the first higher mode Rayleigh has a total of about

50 000 free parameters (the number of measurements - the trace of

the resolution matrix) and a χ 2 of around 2.0 (Fig. 3a). Accord-

ing to Table 3 the 99 per cent significant difference is 0.023. At a

trace of 1000, the difference between the isotropic and anisotropic

misfit curves is 0.024, indicating indeed that we need anisotropy

to explain our results. Beyond a trace of about 500, the differences

between the isotropic and anisotropic misfit curves for all Rayleigh

wave modes (Fig. 3) are significant with a high confidence level,

indicating that anisotropy is needed to explain the phase velocity

measurements. There are differences in misfit curves for different

levels of anisotropic scaling, but these differences are not significant

with a high confidence level.

As for Rayleigh waves, the difference between the isotropic and

anisotropic misfit curves is 99 per cent significant for all Love wave

modes (Fig. 4). Again the data cannot distinguish between different

levels of anisotropic scaling. For fundamental mode Love waves,

we would expect a preference for the 4ψ term of anisotropy since
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Figure 4. Misfit curves for Love (a) fundamental mode at 153.46 s, (b) first higher mode at 153.07 s, (c) second higher mode at 40.02 s, (d) third higher mode

at 78.66 s, (e) fourth higher mode at 35.06 s and (f) fifth higher mode at 35.12 s.The legend shows different values for θ 2 and θ 4.
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Figure 5. Correlation as a function of spherical harmonic degree for minor

and major arc versus minor arc coverage.

the amplitude of the 4ψ sensitivity is much higher than the one for

2ψ . For higher mode Love waves, we do not expect a preference of

one anisotropic term over the other since higher mode Love waves

are sensitive to both the 2ψ as well as the 4ψ term of anisotropy.

Earlier, a strong 2ψ term of anisotropy for fundamental Love waves

has been found by Montagner & Tanimoto (1990). They ascribed

this strong 2ψ term to Rayleigh–Love coupling, since fundamental

mode sensitivity curves for Love waves only predict a strong 4ψ

term of anisotropy. Trampert & Woodhouse (2003) found no statis-

tical reason to include a 2ψ term and omitted it, based on asymp-

totic expectations. Since then, Sieminski et al. (2007) showed that

Rayleigh–Love coupling is important (as speculated by Montagner

& Tanimoto 1990) and results in a high near source sensitivity for

azimuthal parameters B–H. Furthermore, tilted upper-mantle min-

Table 4. The rms data uncertainty and resolution.

Mode Period σdc/c0 (per cent) σ dc(m s−1) trace(R) 0ψ 2ψ 4ψ

Rayleigh

000s097 100.393 0.48 19.56 1008 695 146 167

000s197 51.259 0.60 23.54 965 665 140 160

001s068 99.650 0.53 31.16 947 651 139 156

001s156 50.855 0.56 28.24 938 644 138 156

002s056 99.258 0.48 34.00 961 660 141 160

002s137 50.849 0.56 32.16 930 639 137 154

003s120 51.059 0.56 36.46 918 631 135 152

003s201 35.014 0.57 32.35 929 638 137 154

004s109 51.052 0.56 40.06 889 610 132 147

004s183 35.078 0.59 36.51 880 604 130 146

005s101 50.921 0.58 44.59 841 576 126 139

005s168 35.115 0.60 40.87 832 571 124 137

006s096 50.822 0.61 49.99 768 526 116 126

006s157 35.141 0.59 42.49 772 528 117 127

Love

000t085 100.81 0.50 23.31 956 644 148 164

000t174 51.01 0.70 31.47 895 604 139 152

001t068 100.08 0.55 32.05 858 586 130 142

001t154 51.19 0.61 31.00 839 573 127 139

002t054 99.92 0.65 47.66 809 532 123 134

002t136 51.41 0.58 32.85 831 567 126 138

003t120 51.32 0.65 41.83 751 514 114 123

003t200 35.05 0.59 33.58 766 524 116 126

004t107 51.06 0.69 50.65 646 443 99 104

004t184 35.06 0.63 39.13 659 453 100 106

005t098 51.27 0.77 61.04 536 370 82 84

005t168 35.12 0.66 44.70 555 383 85 87

Note: Relative and absolute rms data uncertainties (σdc/c0 and σ dc), the total number of independent

parameters [trace(R)] and the number of independent parameters for the isotropic (0ψ), 2ψ and 4ψ models.

erals with respect to the geographical reference system can result in

high apparent values of B–H (Sieminski, personal communication,

2007). Although we find, similar to Trampert & Woodhouse (2003),

no significant indication in favour of a 2ψ term, we choose to keep

it based on a plausible reason for its existence. An important issue

is to check whether the use of minor arc data alone (which results

in poorer azimuthal coverage in the southern hemisphere) could

bias our misfit curves. We computed synthetic data for a random

anisotropic model (containing an isotropic, 2ψ and 4ψ term) and

tested how well the random model could be retrieved by using a mi-

nor arc ray coverage alone and a minor and major arc ray coverage.

We used the minor and major arc paths of Trampert & Woodhouse

(2003). For the minor arc ray coverage we only took their minor arc

paths. Fig. 5 shows the correlation between the model retrieved by

the minor and major arc coverage and the model retrieved by the

minor arc coverage only. The correlations are very high (>0.95),

indicating that essentially the same model is retrieved using both

the minor and major arc coverage and using the minor arc coverage

only. We further established the important point that including the

2ψ term does not change the 4ψ models. In summary, beyond 500

independent model parameters, azimuthal anisotropy is required by

the data for all modes of Love and Rayleigh waves considered here.

The prior strength of anisotropy cannot be determined from the data

and has to be fixed by other arguments.

5 A Z I M U T H A L LY A N I S O T RO P I C

P H A S E V E L O C I T Y M A P S

We constructed azimuthally anisotropic phase velocity maps up to

the first five higher mode Love and the first six higher mode Rayleigh
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Figure 6. Relative isotropic phase velocity maps with respect to PREM for Rayleigh (a) first higher mode at 148.56 s, (b) second higher mode at 40.028 s,

(c) third higher mode at 77.795 s, (d) fourth higher mode at 35.078 s, (e) fifth higher mode at 56.074 s and (f) sixth higher mode at 35.141 s.

Figure 7. Relative isotropic phase velocity maps with respect to PREM for Love (a) first higher mode at 153.07 s, (b) first higher mode at 40.16 s, (c) second

higher mode at 40.02 s, (d) third higher mode at 78.66 s, (e) fourth higher mode at 35.06 s and (f) fifth higher mode at 35.12 s.
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wave phase velocities. The exact number of measurements used for

the phase velocity maps is shown in Table 2 and the rms uncertainty

of a sample of the data is shown in Table 4.

As seen in the previous paragraph, the data require azimuthal

anisotropy but cannot decide upon its exact scaling. There is also no

compelling reason to favour 2ψ or 4ψ terms only. An Occam-type

argument guided us to choose a modest amount of anisotropy using

θ 2 = θ 4 = 0.1. It should be noted that this is a prior constraint which

will be overruled if the data require this locally. Because for fun-

damental modes our data quality seems superior compared to that

used in Trampert & Woodhouse (2003), (smaller χ2 for similar un-

certainties in both data sets), we chose less overall damping to allow

approximately 1000 independent parameters in the Rayleigh funda-

mental mode models. We have chosen an overall damping such that

the relative model uncertainty remains constant for all modes. As a

result, the phase velocity maps will have a decreasing resolution with

increasing data uncertainty and/or decreasing number of data (see

Table 4). This choice is somewhat arbitrary. In view of a future depth

inversion, ideally, we should have chosen for a constant resolution.

The difference in the number of data between modes, however, is

so large that the corresponding decrease in overall damping would

have led to unrealistic amplitudes in some higher mode maps. The

other extreme would have been to opt for an increasing uncertainty

because the number of data constraints decreases. This would lead

to seriously overdamped higher mode maps. A constant relative un-

certainty in the phase velocity maps is an acceptable compromise

between the two extremes. The isotropic phase velocity maps were

expanded up to degree and order 40, while the azimuthal anisotropic

phase velocity maps were expanded up to degree and order 20.

The isotropic models for Rayleigh and Love waves are shown in

Figs 6 and 7 for a number of different higher modes at the indicated

periods. The fundamental mode maps are very similar to those of

Trampert & Woodhouse (2003) with correlations of 0.91 (Rayleigh

40 s), 0.70 (Rayleigh 150 s), 0.87 (Love 40 s) and 0.79 (Love 150 s),

and hence to other models by different research groups (see Becker

et al. 2007, for a recent comparison). While the overtones gener-

ally show the strongest sensitivity to deeper mantle structure, it is

interesting to note that high frequency Rayleigh waves of the fifth

Figure 8. Azimuthally anisotropic 2ψ phase velocity maps for Rayleigh. The grey scale in the background corresponds to the peak-to-peak amplitude of

anisotropy expressed relative to the average phase velocity calculated from PREM. The black lines represent the fast directions which are also scaled to the

amplitude shown in the background. The plate boundaries and hotspots are indicated in white. Panels (a)–(f) show the different modes and periods as indicated

in Fig. 6.
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Figure 9. Azimuthally anisotropic 2ψ phase velocity maps for Love higher modes. Panels (a)–(f) show the different modes and periods as indicated in Fig. 7.

and sixth overtone are very sensitive to crustal structures. In general

there is a good visual comparison between our maps and those of

Van Heijst (1997). Visser et al. (2007) showed that higher modes

can easily be measured with our technique. They showed isotropic

degree 20 maps for illustration purposes. The correlation with our

maps here up to degree 20 is around 0.80 for all Love wave over-

tones. The differences can be attributed to the neglect of anisotropy

in the earlier paper.

The anisotropic contributions for the same higher modes and pe-

riods are shown in Figs 8 and 9 for the 2ψ term and Figs 10 and

11 for the 4ψ term. Fig. 12 shows the rms amplitude averaged

over the sphere of the 2ψ and 4ψ maps for Rayleigh and Love

waves for the fundamental up to the sixth higher mode with cor-

responding uncertainties. The amplitudes of the 2ψ and 4ψ term

are similar within their standard deviations. Most importantly, the

amplitude remains positive within the uncertainties, indicating that

the anisotropic models are robust and indeed required, for the cho-

sen optimal scaling. The 2ψ amplitudes even remain robust within

two standard deviations. Figs 13 and 14 show some chosen 2ψ

correlations and the corresponding ray theoretical sensitivity ker-

nels (Larsen et al. 1998). For Rayleigh waves, the correlation of

the fundamental mode models with the first higher mode ones is

high (Fig. 13a). In fact, the correlation of the fundamental mode

with increasingly higher modes consistently shows high values. The

corresponding sensitivities show that the B–H sensitivity is mostly

shallow for all modes while the G sensitivity changes with depth.

This could indicate that B–H anisotropy is important for Rayleigh

waves. We also find high correlations for modes where the most

overlap is for deeper G, probably the transition zone anisotropy ob-

served by Trampert & van Heijst (2002). For Love waves we obtain

high correlations for G in the asthenosphere (Fig. 14). The corre-

lation between the 2ψ models of the fundamental mode and first

higher mode Love wave is quite low (<0.5), which is not surpris-

ing since G sensitivity for the fundamental mode is almost zero

while it is non-zero for the first higher mode. The most likely

source of 2ψ anisotropy in fundamental mode Love waves is B–

H (Sieminski et al. 2007), while for the overtones G dominates,

hence a plausible low correlation. These few examples illustrate how

complex the depth distribution of azimuthal anisotropy possibly is,

and only a depth inversion will provide detailed information about

the specific distribution of the anisotropy. This will require finite

frequency kernels (Sieminski et al. 2007) that capture the strong

influence of path dependence and mode coupling for anisotropic

parameters.
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Figure 10. Azimuthally anisotropic 4ψ phase velocity maps for Rayleigh higher modes. Panels (a)–(f) show the different modes and periods as indicated in

Fig. 6.

The fundamental mode 2ψ Rayleigh models visually agree at

long wavelength with the models by Trampert & Woodhouse (2003),

Ekström (2000) and in the Pacific with results obtained by Smith

et al. (2004). Up to degree 8, we have a correlation of 0.49 with the

2ψ map of Trampert & Woodhouse (2003) for Rayleigh waves at

40 s. The first quantitative comparison between different azimuthally

anisotropy models and geodynamic flow models was done by Becker

et al. (2007). They found typical correlations between 0.18 and 0.47

indicating that our results are not at odds with any of these models.

No comparison has been done for overtones. Only a detailed depth

inversion can shed light on the geodymanic consequences of our 2ψ

and 4ψ overtone maps.

Inverting for the azimuthal terms as well as the isotropic terms

makes the isotropic maps become smoother for a given trace of the

resolution. Decreasing overall damping will decrease the smooth-

ness for both the isotropic, 2ψ and 4ψ phase velocity maps. We

can split the total trace of the resolution matrix into the trace for the

isotropic, 2ψ and 4ψ terms separately (Fig. 15). These individual

values are more meaningful for the phase velocity maps than the

total trace. The number of independent parameters for the isotropic,

2ψ and 4ψ terms varies as a function of overall damping. For small

numbers of independently inverted parameters, the isotropic param-

eters dominate. As the number of independently inverted parameters

increases, the number of inverted 2ψ and 4ψ parameters increases.

Table 4 shows the total number of independently inverted parame-

ters and the number of isotropic, 2ψ and 4ψ parameters for some

chosen Rayleigh and Love wave fundamental and higher modes.

For the fundamental mode models, we can resolve on average up to

25 spherical harmonic degrees for the isotropic models, 8 spheri-

cal harmonic degrees for the 2ψ models and 9 spherical harmonic

degrees for the 4ψ models. For the higher modes, the number of de-

grees we can resolve decreases to degree 18 for the isotropic models,

degree 5 for the 2ψ models and degree 6 for the 4ψ models.

Shapiro & Ritzwoller (2002) use a rms data misfit as a mea-

sure of uncertainty for the phase velocity maps. They obtain values

around 25 m s−1 for fundamental mode Rayleigh and between 25

and 40 m s−1 for the fundamental mode Love wave phase velocity

maps. The rms data misfit values we obtain for the fundamental

mode are between 24 and 31 m s−1 for Rayleigh and 31–45 m s−1

for Love waves. The rms data misfit values for the higher modes

are somewhat larger. They vary for Rayleigh waves between 35 and

65 m s−1 and for Love waves between 45 and 75 m s−1. [Correction

added after online publication 22 January 2008: units of km s−1 in

the preceding sentence were corrected to m s−1.]
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Figure 11. Azimuthally anisotropic 4ψ phase velocity maps for Love higher modes. Panels (a)–(f) show the different modes and periods as indicated in Fig. 7.

We are not so much interested in the posterior data uncertainties

as in the posterior model uncertainties, which we need for a future

depth inversion. The posterior model uncertainty is given by the

posterior model covariance, defined as

Cm̃ = (I − R)Cm(I − R)T + LCd LT , (8)

where Cm̃ is the posterior model covariance, Cm is the prior model

covariance (eqs 4–6), Cd is the data covariance, R is the resolution

matrix and L is the inverse operator which gives the estimated model

m̃ = Ld. The square roots of the diagonal elements of the posterior

model covariance can be interpreted as error bars of the posterior

values of the model parameters. An average posterior model un-

certainty for a phase velocity map is obtained by taking the square

root of the total power of the diagonal of the 0ψ , 2ψ and 4ψ terms

averaged over the sphere. As explained above, we have chosen the

overall damping (λ in Cm) so that the average model uncertainty

for ˜dc/c0 is constant. The value has been chosen so as to invert for

1000 independent parameters for 100 s fundamental mode Rayleigh

waves. This gives average relative model uncertainties σ ˜dc/c0
of 0.45,

0.18 and 0.15 per cent for the 0ψ , 2ψ and 4ψ maps (Fig. 16), respec-

tively. The relative model uncertainty is much lower for the 2ψ and

4ψ maps due to the prior choice of a modest amount of anisotropy

(θ 2 = θ 4 = 0.1). It is important to realise that a large part of Cm̃

comes from the prior information, therefore, fixing Cm̃ will require

different λ in Cm depending on Cd and the number of data and this

will change R correspondingly.

The absolute uncertainties (σd̃c, Fig. 16) in the fundamental mode

Rayleigh isotropic models range from 15 m s−1 at short periods to

20 m s−1 at longer periods, the uncertainty of the 2ψ models range

from 5 to 8 m s−1 and the uncertainty of the 4ψ models range from

5 to 7 m s−1. For Love waves, the corresponding absolute uncertain-

ties for the fundamental mode isotropic maps ranges from 14 to

20 m s−1, for the 2ψ models from 5 to 8 m s−1 and the 4ψ models

from 4 to 7 m s−1. The rms data misfit values given earlier show un-

certainties for both Love and Rayleigh wave azimuthal anisotropic

models in the order of 25–45 m s−1 for the fundamental mode. The

absolute model uncertainties are a bit smaller but of the same or-

der of magnitude as the rms data misfits, justifying the intuition

of Shapiro & Ritzwoller (2002) to use the data misfits as average

model uncertainties. The reason for this good correspondence is

that the data misfit incorporates the prior information in eq. (8)

implicitly.
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Figure 12. The rms amplitude per unit sphere of the phase velocity maps of Figs 8 to 11 for (a) the fundamental mode, (b) the first higher mode, (c) the second

higher mode, (d) the third higher mode, (e) the fourth higher mode, (f) the fifth higher mode and (g) the sixth higher mode. The bands correspond to ± one

standard deviation of the fixed average posterior uncertainty.

6 R E S O L U T I O N A N D T R A D E - O F F

The fifth higher mode Love wave data set has the lowest number of

measurements. The number of measurements increases with lower

overtone number (Table 2). Nevertheless the pattern of ray density

for the fifth higher mode Love wave is quite similar to the funda-

mental mode Rayleigh wave which contains the highest number of

measurements. Trampert & Woodhouse (1995) converted the res-

olution matrix into averaging kernels. The relative phase velocity

perturbation at a specific point on the Earth is an average of the true

model over the whole Earth with weights (the averaging kernels). For

a complete picture of resolution the averaging kernels have to be cal-

culated at each point on the Earth’s surface. Trampert & Woodhouse

(1995) chose to represent the averaging kernels by the radius of the

central peak and called the maps resolving radii maps. The resolv-

ing radii are only dependent upon path coverage and the overall

damping (λ) and give a good representation of the lateral resolu-

tion that can be achieved. The number of measurements of the fifth

higher mode Love wave correspond to the number of measurements

of the fundamental Love waves in Trampert & Woodhouse (1995)

and the corresponding resolving radii map (fig. 7a in Trampert &

Woodhouse 1995) corresponds to the resolving radii map of the

fifth higher mode Love wave (our worst data coverage). There is

a high correspondence with the ray density map but the resolving
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Figure 15. The relation between the total trace of the resolution matrix and

the trace of the resolution matrix separated for the isotropic, 2ψ and 4ψ

terms for the fundamental mode Rayleigh wave at 151 s.

radii test gives a better indication of the structures we are able to

solve for.

There are three different issues that affect the resolution; spectral

leakage, trade-off between the isotropic and anisotropic terms and

damping. Spectral leakage is caused by the mapping of small-scale

structure not accounted for in the model expansion into the inverted

low-degree structure and is a result of uneven data coverage (Snieder

et al. 1991). Spectral leakage can be suppressed by a time consuming

operator (Trampert & Snieder 1996) or approximately by Laplacian

damping (Spetzler & Trampert 2003) as in eqs (4)–(6) { 1
[l(l+1)]2 }.

The price to pay for this Laplacian damping is that the higher the
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Figure 16. Absolute standard deviations for the fundamental and first six higher mode Rayleigh wave isotropic (top left-hand panel), 2ψ (middle left-hand

panel) and 4ψ (bottom left-hand panel) phase velocity maps. The same for the fundamental and first five higher mode Love waves on the right-hand side.

degree, the less it will be resolved and the diagonal peak of the

resolution matrix will also broaden. Finally there will be trade-offs

between the isotropic and anisotropic parameters. The resolution

matrix provides information on the trade-offs and the broadening

(Fig. 17). The diagonal of the resolution matrix shows the price

we pay for the use of Laplacian damping. For higher degrees, the

diagonal values of the resolution matrix decrease. The choice of

the relative strength of anisotropy (θ 2, θ 4 = 0.1, 0.1) causes the

sharper decay for the 2ψ and 4ψ parameters. Table 4 shows the

number of resolved parameters for certain modes given our choice of

overall damping described above. The off-diagonal terms of the

resolution matrix in Fig. 17 show the amount of broadening and

trade-off between parameters. Fortunately, these values are small

compared to the diagonal values. This holds for all higher modes.

7 C O N C L U S I O N S

We present global azimuthal anisotropic phase velocity maps for the

fundamental modes and up to the sixth overtone for Rayleigh waves

and up to the fifth overtone for Love waves. Phase velocities for fun-

damental and higher mode Love and Rayleigh waves were measured

using a model space search approach (Visser et al. 2007). The use

of a model space search approach enables us to obtain realistic and

consistent uncertainties on the phase velocities. The phase velocities

are inverted to extract azimuthal anisotropic phase velocity maps.

Following Trampert & Woodhouse (2003), we determine the opti-

mum relative weighting prior to inversion. Both Love and Rayleigh

fundamental and higher mode phase velocities require anisotropy

according to the misfit curves. The relative weighting was chosen

(in agreement with the significant difference of misfit curves) such

that anisotropy is needed and equal for the 2ψ and the 4ψ terms of

anisotropy. We have chosen the overall damping such that the rela-

tive uncertainty is constant in all maps. This causes the resolution to

decrease with increasing data uncertainty and/or decreasing number

of data.

The rms data misfits of the azimuthal anisotropic models for

fundamental mode Rayleigh and Love waves are similar to val-

ues found by Shapiro & Ritzwoller (2002). The rms misfits for the

higher modes are larger and vary between 35 and 65 m s−1 for

Rayleigh and between 45 and 75 m s−1 for Love waves. [Correction

added after online publication 22 January 2008: a unit of km s−1

in the preceding sentence was corrected to m s−1.] The model

uncertainties are smaller than the rms data misfits but of the same

order. For the fundamental mode isotropic models, we obtain un-

certainties up to 20 m s−1 and for the anisotropic models we obtain

uncertainties up to 8 m s−1.

The isotropic maps visually compare well with the isotropic

higher mode maps of Van Heijst (1997). We found a high corre-

lation with the fundamental mode anisotropic maps of Trampert &

Woodhouse (2003) and hence with equivalent work from other re-

search groups (Becker et al. 2007). Indications are that the source

of azimuthal anisotropy is complex and a detailed depth inversion,

using finite frequency kernels, is needed to clarify this. Our efforts

to provide maps for many overtones, should facilitate this final step

in the search of deep anisotropy.
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