
Elements of Thermodynamics 

Indispensable link between 
seismology and mineral physics 



Physical quantities are needed to describe the  
state of a system: 

• Scalars: Volume, pressure, number of moles 

• Vectors: Electric or magnetic field  

• Tensors: Stress, strain 



We distinguish extensive (size dependent) and 
intensive (size independent) quantities. 

Conjugate quantities: product has the dimension 
of energy or energy per unit volume. 

Temperature T Entropy S 

Pressure P Volume V 

Chemical potential µ	

 Number of moles n 

Electrical field E Displacement D 

Stress σ	

 Strain ε	



intensive extensive 



By analogy with the expression for mechanical 
work as the product of force times displacement, 

Intensive quantities à generalized forces 

Extensive quantities à generalized displacements 



Consider a system of n extensive quantities ek and 
n intensive quantities ik, the differential increase 
in energy for a variation of ek is: 

dE = Σk=1,n ik dek 

The intensive quantities can thus be defined as the 
partial derivative of the energy with respect their 
conjugate quantities: 

ik = ∂E/ ∂ ek 



To define the extensive quantities we have to 
introduce the Gibbs potential: 

G = E -  Σ ik ek 

dG = - Σ ek dik 

The intensive quantities can thus be defined as the 
partial derivative of the Gibbs potential with 
respect their conjugate quantities: 

ek = - ∂ G/ ∂ ik 



Conjugate quantities are related by constitutive 
relations that describe the response of the system 
in terms of one quantity, when its conjugate is 
varied. The relation is usually taken to be linear 
(approximation) and the coefficient is a material 
constant. An example are the elastic moduli in 
Hooke’s law. 

σij = Cijkl εkl (Cijkl are called stiffnesses) 

εij = cijkl σkl (cijkl are called compliances) 

!!! In general Cijkl  ≠ 1/cijkl 



The linear approximation only holds for small 
variations around a reference state. In the Earth, 
this is a problem for the relation between pressure 
and volume at increasing depths. Very high 
pressures create finite strains and the linear 
relation (Hooke’s law) is not valid over such a 
wide pressure range. We will have to introduce 
more sophisticated equations of state. 



Thermodynamic potentials 

The energy of a thermodynamic system is a state 
function. The variation of such a function depends 
only on the initial and final state. 

A 

B 

P 

T 



1st law 

dU    =  dQ  +  dW 

   =     TdS  -  PdV 

Internal energy  =  heat  +  mechanical work 

Internal energy is the most physically 
understandable expressed with the variables 
entropy and volume. They are not the most 
convenient in general à other potentials H, F and 
G by Legendre transform 



Energy can be expressed using various potentials 
according to which conjugate quantities are 
chosen to describe the system. 

Internal energy    U 

Enthalpie     H=U+PV 

Helmholtz free energy  F=U-TS 

Gibbs free energy   G=H-TS 



In differential form 

Internal energy (1st law)  dU = TdS - PdV 

Enthalpie     dH= TdS + VdP 

Helmholtz free energy  dF = -SdT - PdV 

Gibbs free energy   dG = -SdT +VdP 



These expressions allow us to define various  
extrinsic and intrinsic quantities. 
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Maxwell’s relations 
Potentials are functions of state and their 
differentials are total and exact. Thus, the 
second derivative of the potentials with 
respect to the independent variables does not 
depend on the order of derivation. 
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Similar relations using the other potentials. Try it!!! 



Maxwell’s relations are for conjugate quantities. 
Relations between non-conjugate quantities are 
possible 
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example 

If f(P,V,T)=0 then 





Dealing with heterogeneous 
rocks 



In general, the heterogeneity depends on the scale 



If at the small scale, the heterogeneity is random, 
it is useful to define an effective homogeneous 
medium over a large scale 

∫=
V

dxdydzzyxu
V

u ),,(1



In general, of course, rocks are not statistically 
homogeneous. There is some kind of 
organization. In the classical approximation this 
is usually ignored, however. 

In the direct calculation, the evaluation of                                                       
   requires the knowledge of the 

exact quantities and geometry of all 
constituents. This is often not known, but we 
can calculate reliable bounds.  

∫=
V

dxdydzzyxu
V

u ),,(1



(a)  Deformation is perpendicular to layers. 
We define  Ma=(σ/ε)a 
We have  σ=σ1=σ2 homogeneous stress (Reuss) 
And   ε=ε1V1+ε2V2 
Thus  1/Ma=V1/M1+V2/M2 



(b) Deformation is parallel to layers. 
We define  Mb=(σ/ε)b 
We have  σ=σ1V1+σ2 V2 
And   ε=ε1=ε2 homogeneous strain (Voigt) 
Thus  Mb=V1M1+V2M2 



The effective medium constant has the property 

Ma < M < Mb 

Hill proposed to average Ma and Mb which is 
known as the Voigt-Reuss-Hill average 

M=(Ma+Mb)/2 

In general, 1/Ma = Σ Vi/Mi and Mb = Σ ViMi 

Tighter bounds are possible, but require the 
knowledge of the geometry (Hashin-Shtrikman) 


