
Equations of state (EOS) 



An EOS is a relation between P, V and T. 

The EOS known to everybody is the ideal gas 
equation: PV=nRT 

Important thermodynamic definitions: 

Incompressibility:  KS=-V(∂P/∂V)S 

    KT=-V(∂P/∂V)T 

Thermal expansivity  α=1/V(∂V/∂T)P 

Grüneisen parameter   (∂P/∂T)V=γCV/V 

An important relation is KS/KT=1+αγT 



Isothermal EOS 
 
i.e. How does the density vary with depth 
(pressure)? 
 
If we assume K is a constant 
 

 à P = -K (ΔV/V) for small ΔV 
 i.e. Hooke’s Law 

 
 



But minerals undergo large volume strains 
in the Earth 
 
For large ΔV, integrate 
 

dP/K=dρ/ρ	


 
with constant K, we get 
	



ρ/ρ0=exp(P/K0) 
 
This is different from observations! 





- As density increases, atoms get closer together 

- Repulsive forces are non-linear functions of 
interatomic distances 

i.e. the increase of density with depth becomes 
more difficult with increasing compression. 

à K must increase with increasing P 





Murnaghan EOS (empirical) 

•  Murnaghan (1967) : K=K0+K’P 
 
•  In other words P=(K0/K0’)[(V/V0)K0’-1] 
 
•  Good for compressions up to ~10% 
 
•  Commonly assume K’=4 
 
 



Birch EOS (empirical)  
 
•  Birch (1961) observed for crustal rocks:  
 
•  Vp=a(m)+bρ  

         m is the mean atomic weight 
 
• Leads to ‘Birch’s Law’… 





Schreiber & 
Anderson, 
Science 1970 



Birch-Murnaghan EOS (finite 
strain theory) 

Eulerian strain: ε=∂u/∂x-1/2(∂u/∂x)2 

V/V0=ρ0/ρ=(1-2ε)-3/2=(1+2f)-3/2 

Helmholtz free energy: F=af2+bf3+cf4+… 

P=-(∂F/∂V)T à K à ρ	



2nd (linear elasticity),  3rd, 4th order Birch-
Murnaghan EOS 



Some remarks: 

The assumption is that the strain is Eulerian. 

The same theory can be applied to Lagrangian 
strain which leads to different EOS. 
Observations show that Eulerian strain best 
describes Earth’s lower mantle. 

The shear modulus (G) is more difficult 
because it is not as easily defined 
thermodynamically, but equations take the 
same form as for K 



Manghnani et  
al, 2003 





Mie-potential EOS (atomic 
potential representation) 



A crystal is a lattice of oscillators (atoms) 

F=- ∂E/∂r = k(r-a0) 

The total vibrational energy gives T 

The normal modes give the elastic constants 

E can be expressed as the sum of an attractive 
and a repulsive potential (Born-Mie potential) 

E=-a/rm+b/rn where n>m because repulsive part 
has a shorter range 



Because n>m, we have a non-linear oscillation. 

With increasing pressure, the interatomic spacing 
decreases and the restoring force increases more 
rapidly. Compression becomes more difficult, i.e. 
the bulk modulus increases with pressure. 

At T=0, we are the bottom of E. At low 
temperature, we are near the bottom, and the 
vibrations are nearly harmonic. At high T, the 
vibrations are asymmetric and on average r is 
bigger than a0 à the volume of the atom increases. 
This is thermal expansion. 



Consider a crystal with N atoms  

E is the potential energy between two atoms.  

At r=a0, P=0 and ∂E/∂r=0 

The density ρ at P > 0 is ρ/ρ0=(a0/r)3 

The internal energy  U=3fNE  

The volume V=gNr3  

(g and f are constants related to the packing style of 
the crystals) 



P=-dU/dV = (dU/dr)(dr/dV) = f/g(1/r2)E’ 

K=-V(dP/dV) 

K’=dK/dP … 

The EOS is given by the choice of E.  

For the Born-Mie potential with m=2 and n=4, we 
get the same results as with 2nd order Birch-
Murnaghan EOS. 



Vinet EOS  
(atomic potential representation) 

• P=3K0(1- fv /fv
2) exp [3/2(K’-1)(1-fv)] 

where fv=(V/V0)1/3  

• For simple solids under high compression 

(~40%). E.g. NaCl, hydrogen, MgSiO3 

• Not suitable for solids with significant structural 

flexibility, such as bond-bending (e.g. feldspars) 



The shear modulus 

The thermodynamics of the shear modulus is 
difficult, but to a good approximation 

G=aK+bP along an adiabat, a and b are 
constants. 



Bulk sound (linear for small 
compression) 



Bulk sound (exponential for high 
compression, closed packed) 



Thermal EOS  [V(P,T)] 
a) ‘ad hoc’   
Repeat B-M at successively higher T.  
 
α(T) = a + bT + c/T2  a,b,c from experimental 

    data (calorimetry) 
 
ρ(T) = ρ0(T0).exp(-∫α(T)dT) 
 
K(T) = K(T0) + (∂K/∂T)P.(T-T0) or 
 
 



K(T, P=0) exponential Anderson-
Grüneisen 



G(T, P=0) linear 



b) Thermodynanic approach (Mie-Gruneisen or 
     “Debye model”) 

P(V,T) = P(V,T0) + Pth(V,T) 

“Thermal 
pressure” 



Α practical approach with BM3 

Isothermal compression 

Thermal pressure 


