Equations of state (EOS)

8 cubes (5 shown) press on octahedron
Gaskets are made of pyvrophyllite




An EOS 1s a relation between P, V and T.

The EOS known to everybody is the 1deal gas
equation: PV=nRT

Important thermodynamic definitions:
Incompressibility:  K¢=-V(dP/0V)q
K=-V(dP/0V);
Thermal expansivity a=1/V(aV/aT),
Gruneisen parameter (0P/0T),=yCy/V

An important relation 1s K/K.=1+oyT



Isothermal EOS

1.e. How does the density vary with depth
(pressure)?

If we assume K 1s a constant

- P=-K (AV/V) for small AV
1.e. Hooke’s Law



But minerals undergo large volume strains
in the Earth

For large AV, integrate
dP/K=dp/p
with constant K, we get

p/po=exp(P/K,)

This 1s different from observations!
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- As density increases, atoms get closer together

- Repulsive forces are non-linear functions of
interatomic distances

1.e. the increase of density with depth becomes
more difficult with increasing compression.

- K must increase with increasing P



1.6E+12 12

1.4E+12 10
1.2E+12
& 1.0E412 k&
Q.8 0E+11 6
s
- 6.0E+11
¢ 4
4.0E+11
2
2.0E+11
0.0E+00 ~ - - - ' ' 0
OE+00 1E+11 2E+11 3E+11 4E+11

pressure [Pa]

g—H—=K

g [m/s?]




Murnaghan EOS (empirical)
Murnaghan (1967) : K=K, +K’P
In other words P=(K /K, )[(V/V)* 1]
Good for compressions up to ~10%

Commonly assume K’=4



Birch EOS (empirical)
* Birch (1961) observed for crustal rocks:

* Vp=a(m)+bp
m 1s the mean atomic weight

*[.eads to ‘Birch’s Law’...
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Figure 4.3. Velocity of the P waves at 10 kbars vs. specific mass for silicates and
oxides. The dashed lines show the trend for a constant mean atomic mass (after
Birch 1961a).
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Birch-Murnaghan EOS (finite
strain theory)
Eulerian strain: e=du/0x-1/2(0u/0x)?

VIV =py/p=(1-2¢)3">=(1+2£)3/2
Helmholtz free energy: F=af>+bf3+cf*+. ..
P=-(0F/0V); 2 K2 p

21d (linear elasticity), 31, 4t order Birch-
Murnaghan EOS



Some remarks:
The assumption is that the strain 1s Eulerian.

The same theory can be applied to Lagrangian
strain which leads to different EOS.
Observations show that Eulerian strain best

describes Earth’s lower mantle.

The shear modulus (G) 1s more difficult
because 1t 1s not as easily defined
thermodynamically, but equations take the
same form as for K



Foss Hydrous Ringwoodite Compression

0.28 1

0.98 \

0.94 -

0.92 \-

08

/

Relative Unit Cell Volume (VNo)

0.88 ~_

0.88

0-84 T T T T T T T
0 5 10 15 20 25 30 35

Pressure (GPa)

Figure 3. Plot of relative unit cell volumes (V/Vj) versus pressure for hydrous Fogy ringwoodite.
The data from synchrotron powder diffraction (red symbol) extend the single-crystal data (small
symbol) pressure range by a factor of four. The curve is an equation of state of Ky = 171.8; K" =
7.1. The intemal precision of the unit cell refinements is smaller than the symbol, however

systematic errors, as discussed, may be larger.

Manghnani et
al, 2003
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Mie-potential EOS (atomic
potential representation)
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A crystal 1s a lattice of oscillators (atoms)
=- 0E/dr = k(r-a,)

The total vibrational energy gives T

The normal modes give the elastic constants

E can be expressed as the sum of an attractive
and a repulsive potential (Born-Mie potential)

E=-a/r™+b/r" where n>m because repulsive part
has a shorter range



Because n>m, we have a non-linear oscillation.

With increasing pressure, the interatomic spacing
decreases and the restoring force increases more
rapidly. Compression becomes more difficult, 1.¢.
the bulk modulus increases with pressure.

At T=0, we are the bottom of E. At low
temperature, we are near the bottom, and the
vibrations are nearly harmonic. At high T, the
vibrations are asymmetric and on average r 1s
bigger than a, = the volume of the atom increases.
This 1s thermal expansion.



Consider a crystal with N atoms

E 1s the potential energy between two atoms.
At r=a,, P=0 and 0E/dr=0

The density p at P> 0 1s p/p,=(a,/1)3

The internal energy U=3{NE

The volume V=gNr’

(g and f are constants related to the packing style of
the crystals)



P=-dU/dV = (dU/dr)(dr/dV) = f/g(1/r*)E’
=-V(dP/dV)

K’=dK/dP ...

The EOS 1s given by the choice of E.

For the Born-Mie potential with m=2 and n=4, we
get the same results as with 2" order Birch-
Murnaghan EOS.



Vinet EOS
(atomic potential representation)

P=3K,(1- £, /f.?) exp [3/2(K’-1)(1-f )]

where f=(V/V)!’3

*For simple solids under high compression
(~40%). E.g. NaCl, hydrogen, MgSiO,

*Not suitable for solids with significant structural

flexibility, such as bond-bending (e.g. feldspars)



The shear modulus

The thermodynamics of the shear modulus 1s
difficult, but to a good approximation

G=aK+bP along an adiabat, a and b are
constants.



Bulk sound (linear for small
compression)
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Figure 4.4. Bulk sound velocity versus specific mass for metals, from shock
data (solid curves). The corresponding atomic masses are indicated. The curves
(dashed) for the mantle and core materials, from seismic data, are also shown

(after Birch 1963).




Bulk sound (exponential for high
compression, closed packed)
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Figure 4.8. Seismic equation of state for selected rocks and minerals (after
D. L. Anderson 1967).



Thermal EOS [V(P,T)]

a) ‘ad hoc’
Repeat B-M at successively higher T.

(7)) =a+bT+c/T?> a,b,c from experimental
data (calorimetry)

p(T) = po(Ty)-exp(-la(T)AT)

K(7) = K(T) + (0K/0T)p.(I-1}) or

p(Ty, P = 0)] %%

Po

Ks(Tp, P =0) = Ksoexp[ ds= — 1/(aKs)Kso



K(T, P=0) exponential Anderson-
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G(T, P=0) linear
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b) Thermodynanic approach (Mie-Gruneisen or
“Debye model™)

P(V,T) — P(VﬂTO) %(VaT)

“Thermal
pressure”



A practical approach with BM3
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