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A B S T R A C T

Three-dimensional variations of wave speeds and density have identified the presence of seismically distinct
structures in the Earth’s mantle. To determine the thermochemical properties and dynamic relevance of these
structures, it is crucial to understand the relationship between seismic properties and temperature and compo-
sition. However, multiple thermochemical parameters influence seismic wave speeds simultaneously. A given
wave speed pair (compressional and shear) and density can be generated by many possible combinations of
thermochemical parameters, which makes the inversion of wave speeds and density for thermochemical pa-
rameters a non-unique problem. We have developed a tool which efficiently captures the mapping between
seismic wave speeds (and density) and thermochemical properties, with the capacity to represent both the
inherent trade-offs between parameters as well as data uncertainties. These trade-offs and uncertainties are
represented by the posterior probability density function provided by a neural network. We demonstrate the
concept for seismic wave speeds and density, but the same tool can also be adapted for other parameters such as
attenuation or properties of seismic discontinuities. SeisTeC is available to the wider community and is intended
to facilitate interpretations of seismic structures inside the Earth, or in general, any planetary bodies.

Our tool is based on a neural network, which implicitly learns the non-linear mapping between temperature
and bulk composition. We chose the example of the lower mantle and expressed composition in terms of six end-
member oxides (SiO2,MgO,Al2O3,FeO,Na2O,CaO) and modelled seismic wave speeds and density at appropriate
temperature and pressure conditions. Wave speeds and density are calculated for 750,000 thermochemical
models, whose temperature and composition are selected at random from pre-defined ranges, using thermody-
namic modelling. We train neural networks with wave speeds plus or minus density as the input, and temper-
ature and bulk composition as target outputs. The networks then approximate a probability density function for
each output, which allows us to interpret seismic observables in terms of physical parameters, crucially, with
uncertainties. When working with wave speeds (VP and VS) only, we find trade-offs between pairs of parameters
such as temperature - FeO, SiO2 - MgO, SiO2 - Na2O, and SiO2 - Al2O3 which limits the constraints one can place
on mantle temperature and chemistry using these observables. We also emphasise the importance of combining
VP and VS for constraining SiO2 content. The main advantage of including density with wave speeds is that it
helps to better constrain the temperature and the most abundant and dynamically relevant compositional end-
members, namely, the SiO2, MgO and FeO by breaking down the trade-offs between them. Some trade-offs be-
tween pairs of parameters involving minor compositional end-members still remain, namely temperature - CaO,
SiO2 - Na2O, SiO2 - Al2O3. In general, except mid-ocean ridge basalt, most rocks only have a small fraction of
Na2O and Al2O3. By excluding mid-ocean ridge basalt in the training data most of the apparent trade-offs will
disappear when considering more average mantle compositional ranges.

1. Introduction

Seismic data provide us with vital information about the physical
properties inside the Earth or a planetary interior (e.g. Jeffreys and

Bullen, 1940; Dziewonski and Anderson, 1981; Kennett et al., 1995;
Garcia et al., 2011; Khan et al., 2021; Stähler et al., 2021). As a result,
seismic models of the Earth have identified various seismic features at
different length scales in the mantle (e.g. Lay and Helmberger, 1983; van
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der Hilst et al., 1997; Garnero and Helmberger, 1998; Romanowicz,
2008; Fichtner et al., 2009; Thomas et al., 2009; Tauzin et al., 2010;
Ritsema et al., 2011; Debayle and Ricard, 2012; Sun et al., 2013; Frost
and Rost, 2014; French and Romanowicz, 2014; Waszek et al., 2015;
Garnero et al., 2016; Lei et al., 2020). Seismology mainly provides us
with seismic wave speeds, and although difficult, sometimes with den-
sity (e.g. Ishii and Tromp, 1999; Trampert et al., 2004; Mosca et al.,
2012; Moulik and Ekström, 2016; Koelemeijer et al., 2017) or attenua-
tion structure (Dziewonski and Anderson, 1981; Durek and Ekström,
1996; Lawrence and Wysession, 2006; Dalton et al., 2008; Hwang and
Ritsema, 2011; Zhu et al., 2013; Karaoğlu and Romanowicz, 2018;
Konishi et al., 2020; Talavera-Soza et al., 2025). However, to decipher
the structure and dynamics of the Earth’s mantle, one needs parameters
such as temperature and composition as they are closely related to
mantle dynamics. Hence, it is crucial to understand the temperature and
compositional dependence of seismic wave speeds (and density).

It is not feasible to directly sample the Earth’s lower mantle.
Therefore, mineral elastic properties (bulk modulus K, density ρ and
shear modulus G) for an assumed composition and at relevant mantle
pressure (P) and temperature (T) are inferred from experimental mea-
surements and theoretical calculations and/or by extrapolation thereof
(e.g. Duffy and Ahrens, 1995; Sinogeikin and Bass, 2000; Speziale et al.,
2001; Murakami et al., 2004; Stixrude and Lithgow-Bertelloni, 2005;
Marquardt et al., 2009; Dorfman et al., 2013; Wolf et al., 2015; Thomson
et al., 2019; Oganov and Dorogokupets, 2003; Wentzcovitch et al., 2004;
Tsuchiya et al., 2004; Mao et al., 2005; Wang et al., 2015; Muir and
Brodholt, 2015). In this forward procedure (Fig. 1), the elastic properties
of individual minerals are used to compute seismic properties of the bulk
assemblage. The seismic properties of the assemblage are then compared
with those obtained from observed seismic data (e.g. Jackson, 1998;
Deschamps and Trampert, 2004; Cammarano et al., 2005b; Matas et al.,
2007; Xu et al., 2008; Cobden et al., 2009; Khan et al., 2009; Simmons
et al., 2010; Cobden et al., 2012; Deschamps et al., 2019; Vilella et al.,
2021). The inversion of seismic wave speeds for a thermochemical
structure is a non-unique problem, i.e. for a given compressional and
shear wave speed there are many possible combinations of temperature
and composition that will fit.

Using only two or three (wave speeds ± density) observables,
determining temperature and bulk composition (here, six oxide end-
members) is an underdetermined problem. One way to simplify the
problem is to assume the mantle has a fixed composition, in most cases
pyrolite (Ringwood, 1962), and interpret wave speed variations in terms
of temperature only (e.g. Goes et al., 2004; Cammarano et al., 2005a;
Cammarano et al., 2005b; Cammarano and Romanowicz, 2007; Ritsema
et al., 2009; Simmons et al., 2009; Schuberth et al., 2012). Some studies
suggest a part or the whole lower mantle is composed of pyrolite (e.g.
Wentzcovitch et al., 2004; Li and Zhang, 2005; Irifune et al., 2010;

Chantel et al., 2012; Zhang et al., 2013; Tsuchiya and Kawai, 2013;
Cottaar et al., 2014; Wang et al., 2015; Wu, 2016; Hyung et al., 2016),
while other studies have indicated an average composition more
enriched in silica (i.e. bridgmanite), and/or having characteristics of
chondritic materials (e.g. Stixrude et al., 1992; Murakami et al., 2012;
Ricolleau et al., 2009). While fixing a composition a priori eliminates
possible trade-offs between temperature and composition, it potentially
provides an unrealistic model of mantle thermal structure, if the wrong
chemical model is chosen. (e.g. Cobden et al., 2024). Additionally, some
studies suggest that the mantle has a depth dependent composition or
lateral deviations from a uniform composition (e.g. Trampert et al.,
2004; Matas et al., 2007; Khan et al., 2008; Cobden et al., 2009;
Deschamps et al., 2012; Ballmer et al., 2017; Cobden et al., 2024).
Another option is to increase the number of observables. For instance,
Afonso et al., 2022 inverted multiple datasets for the thermochemical
structure of cratons. This is more easily feasible for the uppermost
lithosphere than the deep mantle, where additional datasets are difficult
to generate and fraught with high uncertainites.

A number of studies have attempted to invert for mantle temperature
and composition. Mattern et al., 2005 and Matas et al., 2007 applied a
least square criterion, whereas Simmons et al., 2010 adapted a very fast
simulated annealing approach. As the inverse problem of inferring
thermochemical variations is a strongly non-linear problem (Khan et al.,
2008), some random sampling and Monte Carlo type methods also have
been invoked (e.g. Trampert et al., 2004; Deschamps and Trampert,
2004; Cammarano et al., 2005b; Khan et al., 2011; Mosca et al., 2012;
Cobden et al., 2012; Deschamps et al., 2012; Afonso et al., 2022; Cobden
et al., 2018). In order to make thermochemical interpretations (i.e. to get
the posterior probability density of temperature or composition), these
methods require re-sampling of the posterior every time we wish to
interpret a different dataset or oberservation. This is labour intensive,
and the advantage of using neural networks, which is the approach
taken in this study, is that once trained on priors (Käufl et al., 2016) they
are extremely efficient at predicting posterior probability density func-
tions without retraining unless the prior changes. In addition, the neural
networks are very flexible, i.e. readily adapted for different inputs and
outputs, as well as different uncertainties.

In this paper, we investigate the feasibility of mapping the compo-
sitional variations at the same time as the temperature variation in the
Earth’s lower mantle with neural networks at fixed depth/pressure.
Owing to the non-uniqueness of the inverse problem, we consider a wide
variety of prior compositions ranging from harzburgite to mid-ocean
ridge basalt (MORB). We calculate the seismic properties (wave speed
and density) corresponding to this range of compositions via thermo-
dynamic modelling. We then create a neural network which is able to
map these seismic properties into probability density functions of bulk
composition and temperature. This allows us to quantify the ranges of

Fig. 1. The forward problem is the computation of the mineral seismic properties (e.g. compressional and shear wave speeds) from temperature and composition
(plus pressure), whereas the inverse problem is going from seismic properties to thermochemical parameters.
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temperature and composition that fit a given seismic wave speed (and
density) of the lower mantle. Moreover, the approach accounts for all
trade-offs among pairs of compositional parameters, as well as between
temperature and composition. This in turn enables us to understand the
relative contributions of thermal versus compositional effects on wave
speeds and to what extent we can constrain these using seismology. We
empasise that we train the neural networks with theoretical prior data
without ever using actual seismic data. The advantage of prior sampling
and convergence to classical Monte Carlo type methods is discussed in
Käufl et al., 2016.

2. Methodology

2.1. Thermodynamic modelling

We define the bulk composition of the Earth’s mantle in terms of six
end-member oxides, namely: SiO2, MgO, FeO, CaO, Al2O3 and Na2O,
which form over 98 % of the mantle mass (e.g. Irifune, 1994). For a
given bulk composition, pressure and temperature, the mineral assem-
blages and elastic properties are calculated self-consistently using
Perple_X thermodynamic modelling software (Connolly, 1990, 2005)
together with the equation of state in Stixrude and Lithgow-Bertelloni,
2005 and mineral parameters in Stixrude and Lithgow-Bertelloni,
2011. Average elastic properties, namely, the Voigt average for ρ and
Voigt-Reuss-Hill for K and G, are then taken to compute the average
compressional (VP) and shear wave (VS) speeds of the mineral assem-
blage as

VP(P,T,C) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K(P,T,C) + 4

3G(P,T,C)
ρ(P,T,C)

√

and VS(P,T,C)

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
G(P,T,C)
ρ(P,T,C)

√

, (1)

respectively, where we have denoted the composition by C. To allow for
variations in the mantle composition, we compute mineral assemblages
for 2500 randomly chosen bulk compositions and for each composition,
at a given depth (pressure), 300 temperatures are selected at random,
giving a maximum of 750,000 different thermochemical models. These
models cover all compositions from harzburgite to MORB, as shown by
the range of each individual oxide in Table 1. Some of the low tem-
perature models are thermodynamically unstable and therefore dis-
carded, leaving a total of 749,471 models at 1000 km. While the
temperature is drawn uniformly from the range shown in the Table 1,
prior distributions for oxides are not uniform (see Appendix A) because
the weight percentages, by definition, have to sum to 100 % (see Cobden
et al., 2018 for details). In this study, we show results at 1000 and 2800
km depths corresponding to pressures of 38.61 GPa and 130.40 GPa, i.e.
the top and bottom of the lower mantle, respectively. We use PREM
(Dziewonski and Anderson, 1981) to convert depth to pressure, and we
assume that the pressure is known and defines depth. We pick those two
depths to avoid complexity from the iron spin transition (e.g. Sturhahn
et al., 2005; Fei et al., 2007; Wentzcovitch et al., 2009; Marquardt et al.,
2018) in the mid mantle, which is beyond the scope of this paper, but
can readily be incorporated. In the following, we present results mainly
for the anharmonic wave speeds. Introducing intrinsic anelasticity adds
an extra set of parameters or assumptions to the modelling while - as we
shall show - having a minor impact on the wave speeds themselves in the

lower mantle.

2.2. Mixture density network (MDN)

Once the seismic properties of the thermochemical models are
calculated, we try to answer the following: can we infer the temperature
and composition for a given value of VP and VS (±density)? Because of
the non-uniqueness of this inverse problem, we treat the problem within
the probabilistic framework. The solution to our probabilistic inverse
problem is the posterior probability density function (pdf) for temper-
ature and composition, which is denoted as

σ(x|VP,VS), (2)

where x can be one of the following: temperature, a component of bulk
composition. An arbitrary posterior probability density function can be
approximated by a combination of a feed-forward neural network and
Gaussian kernels. The resulting combination is called a Mixture Density
Network (MDN) (Bishop, 1994, 1995). For a description of this type of
neural network and references to some examples of its application in
Earth Sciences, readers are referred to our previous work (Rijal et al.,
2021). Based on the samples generated using the forward procedure in
Sub-section 2.1, we train an ensemble of independent MDNs to
approximate the true posterior (of Eq. 2), which can be written as

p(x|VP,VS; α̂) =
∑M

n=1
wn(x|VP,VS;αn)qn(x|VP,VS;αn) ≈ σ(x|VP,VS), (3)

where α̂ = {α1,α2,…,αn} represents weights and biases, also called
parameters, of the feed-forward part of ensemble members. In Eq. 3, we
have performed a weighted sum of a total of M ensemble members,
where qn and wn represent the output posterior pdf and the mixing co-
efficient (or weight), respectively, of the nth ensemble member. αn and
wn are tuned by the ensemble during its training process providing a
reasonable approximation of the underlying generator of the training
data (see Section 2.3). For the details of this prior sampling based
approach, and its comparison with MCMC, readers are referred to Käufl
et al., 2016, for example. Often a range of network parameters fit the
data equally well, depending on the initialisation and network archi-
tecture. To account for this, we train an ensemble of fifteen, i.e. M = 15,
independent MDNs (e.g. de Wit and Trampert, 2015; Käufl et al., 2016;
Rijal et al., 2021), with each having 3–5 Gaussian kernels. The output is
a parameterised posterior pdf p(x|VP,VS;α) on temperature or a
component of bulk composition for a pair of VP and VS. The architecture
of an MDN is shown in Appendix B, along with the range of hidden nodes
used to approximate the thermochemical posteriors. The hidden node
range is determined based on a network complexity test. The test pro-
vides the range which has the lowest error on a dataset that is not used
for training the networks. The MDNs are built, trained and deployed for
prediction using TensorFlow 1.13.1 (Abadi et al., 2015). Sometimes, it is
possible to get the density information along with the wave speeds from
seismology. One can simply condition Eq. 3 (as we will see) on density as
well, if such an additional constraint is available.

2.3. MDN prediction performance

Each of the 750,000 randomly generated thermochemical models (in
Section 2.1), has its own wave speeds, density, bulk composition and
temperature. We remind the reader that we work at a fixed pressure or

Table 1
The prior range of T (in K) and six oxides (in wt%) considered in this study. TS represents the maximum temperature which is assumed not to exceed the mantle solidus
of MgSiO3 perovskite (Stixrude et al., 2009). It is approximately 3347 K at 1000 km depth.

T SiO2 MgO FeO CaO Al2O3 Na2O

Lower bound 900.00 31.127 4.720 1.951 0.017 0.195 0.002
Upper bound TS 79.855 54.840 19.169 15.083 21.007 4.465

A. Rijal et al.
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depth here. A randomly chosen training set consisting of 70 % of these
models is used to train the ensemble of MDNs, which learn the rela-
tionship between inputs (VS and VP) and an output (temperature or a
component oxide). A subset of 10 % of the models, called a test set, is
used to test the prediction performance of the trained MDN ensemble.
Another subset with remaining 20 % of the models are used to restrict
the overfitting during the training process. We use VS and VP of the test
set to predict pdfs for temperature and composition. Since we know the
actual values (also called targets) of the temperature and composition
for the wave speeds of the test set, we can compare them with the
network predictions.

We train a separate MDN ensemble for each target thermochemical
parameter. In other words, the output of each trained MDN ensemble is a
1-D marginal (posterior) pdf. A simple measure of the prediction per-
formance is a comparison between the mean of the posterior pdf and the
actual target value from the test set. Fig. 2 (plots labelled as w/o density)
shows the performance of trained MDN ensembles at 1000 km depth.
Each circle represents the mean of the posterior pdf predicted by neural
networks. Ideally, a unimodal pdf with pronounced peak would mean
the predictions fall along the diagonal line. That is, the closer the circles
plot to the dashed black line, the better the trained MDN ensemble has
performed. The networks resolve variations in temperature and
composition. Although the network predictions are scattered for some
targets, they cluster around the dashed diagonal line, showing, for
instance, the wave speeds are able to infer temperature and SiO2 quite
well. In comparison, the networks provide less constraints (circles plot
more horizontally) on the relationship between wave speeds and MgO,
FeO, CaO, Al2O3 and Na2O, because the same wave speeds are generated
by different combinations of these oxides. The predicted mean values of
these end-member oxides closely follow a horizontal trend, indicating
that the network is inferring values close to the mean prior in these
cases.

When the density information is available, one can train neural
networks with wave speeds and density as inputs, i.e. we condition the
parameterised posterior of Eq. 3 on density as

p(x|ρ,VP,VS;α). (4)

The prediction performance of these neural networks are shown in
Fig. 2 (plots labelled as w/ density). Now, the plots for temperature and
SiO2 are more closely clustered around the diagonal line (compared to
when the network was trained using wave speeds only). More impor-
tantly, the networks now resolve variations inMgO and FeO significantly
better. This is because the density breaks the trade-off between various
thermochemical parameters which have simultaneous effects on wave
speed and density. However, the remaining oxides, namely: CaO, Al2O3

and Na2O, are still not constrained. Seismic wavespeeds are much more
sensitive to the volumetrically abundant components (SiO2, MgO and
FeO) and therefore mask the true variations of these minor components
via trade-off (see below).

To quantify the information gained about a thermochemical
parameter, we can calculate the relative difference between prior and
posterior distributions, using measures such as Kullback-Leibler (KL)
divergence (e.g. Cover and Thomas, 1991) in logarithmic information
units or nats. If two distributions are identical, the KL divergence will be
zero (i.e. no information gain). Conversely, significantly different dis-
tributions give a higher KL divergence value. The divergence of the
posterior pdf of thermochemical parameters from their prior distribu-
tions at depths 1000 km and 2800 km are shown in Figs. 3 and 4,
respectively. The posterior pdfs are predicted using wave speeds (and
density) of three rock types shown in Table 2. As expected, when
including density along with wave speeds the information gain or KL
divergence value is relatively large compared to excluding it. The rela-
tive increase in information is particularly large for temperature, MgO,
SiO2 and FeO, giving the impression that these parameters are well
resolved, because the posterior is much narrower than the prior. How-
ever, it is prudent to examine the posterior pdfs more closely as we

propose in the next paragraph.

3. Inferring lower mantle temperature and bulk composition

3.1. 1-D marginals of temperature and oxides

Comparing the target thermochemical model with only the mean
predicted by neural networks ignores the full information provided by
pdfs. Moreover, the comparison can be difficult if the posterior pdf has a
complex shape. We consider three rock types which may be significant
in the Earth’s mantle: peridotite, harzburgite and MORB (Eggins et al.,
1998), Irifune and Ringwood, 1987 and Perrillat et al., 2006, respec-
tively; see Table 2). The three rock types have different bulk composi-
tions but similar wave speeds. This allows us to understand the
sensitivity of wave speeds to thermochemical parameters in the context
of trade-offs between parameters and the network’s capability to
distinguish between different compositions. The wave speeds and den-
sity of these three compositions are calculated at 1000 km and 2800 km
using Perple_X, at temperatures corresponding to a 1300 ◦C (1573 K)
adiabat.

Using only the VP and VS as inputs to the trained neural networks we
predict the pdfs on temperature and bulk composition. Then, we
compare these pdfs with the corresponding target temperature and
compositions given in Table 2. The results are labelled w/o density in
Figs. 3 and 4. Although the target temperature and SiO2 are relatively
close to the mean of the posterior pdfs, the uncertainty on these pa-
rameters are large. For example, for peridotite at 1000 km the width of
SiO2 pdf is in the range of 38.36–69.09 wt%. All posterior ranges are
defined as approximately 99.9 % of the area under the posterior prob-
ability density functions. One can compute a smaller percentile such as
68.26 % but it may not provide an accurate estimate of uncertainty on
thermochemical parameters due to the complex shape of the probability
density functions. For MORB, the temperature pdf at 2800 km and SiO2
pdf at 1000 km show high probability density at lower values of tem-
perature and SiO2 than the respective targets. It is important to mention
that our prior (thermochemical parameter) ranges are extremely broad
(see Appendix A). If we had narrower priors then the apparent uncer-
tainty would be correspondingly smaller (see below). For peridotite, the
temperature and FeO pdfs predicted by the neural network have width in
the range 1012–2600 K and 1–19.56 wt%, respectively. The posteriors
for MgO, CaO, Al2O3 and Na2O resemble their prior distributions.
Similarly, the posteriors for FeO also look much like the prior without
the density. Changing the FeO content changes VP and VS in (more or
less) the same proportions as changing the temperature (e.g. Deschamps
and Trampert, 2003). Thus, the effect of iron on wave speeds can easily
hide within the changes in temperature leading to broad pdfs for FeO
and temperature. For example, a change of 0.05 volume fraction of iron
would correspond to roughly 360 ± 160 K temperature change at 1000
km (Deschamps et al., 2012). We next investigated the predicted pdfs
when both wave speeds and density were given as inputs to the (trained)
neural network (Figs. 3 and 4, labelled w/ density). Temperature un-
certainties for all three rock types decreased significantly. For peridotite
at 2800 km depth, temperature is in the range 1845–3430 K, and the
volumetrically abundant chemical components - SiO2, FeO, MgO - are
within 34.67–53.2 wt%, 4.27–8.4 wt%, 19.87–47.39 wt%, respectively.
The less abundant oxides CaO, Al2O3 and Na2O predicted by neural
networks have uncertainties in the range 0–14 wt%, 0.83–15 wt%,
0–3.8 wt%, respectively. The width of the pdf shows that temperature
and SiO2 uncertainties are reduced by a factor of approximately 1.86 and
1.52, respectively, for harzburgite at 2800 km. Furthermore, combining
wave speeds with density allows the neural networks to constrain the
MgO and FeO content significantly better as shown by the narrower pdfs
compared to working with wave speeds alone. It is important to note,
although the KL divergence indicates that these paraemters are better
resolved, the mean of the posterior is offset with respect to the target.
While the target is still within the posterior, a bias is present and is

A. Rijal et al.
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Fig. 2. MDN prediction performance plots at 1000 km depth. As a simple measure of the prediction performance, the mean of the posterior pdf is compared with the
(actual or) target thermochemical value of the test set. A unimodal pdf with pronounced peak centred around the target value would plot along the diagonal dashed
line. So, closer the predictions cluster around the diagonal line, the better the prediction performance of the trained network. Plots labelled with w/o and w/ density
refer to predictions from neural network trained with wave speeds data only and with wave speeds plus density, respectively. When including density information,
neural networks resolve variations in temperature, SiO2, MgO and FeO significantly better (compared to w/o density).

A. Rijal et al.
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Fig. 3. Neural network predicted pdfs on temperature and composition at 1000 km depth for wave speeds (and density) shown in Table 2. The numbers on the top
right corner represent KL divergence values or information gain (in nats). Again, plots labelled with w/o and w/ density refer to predictions from neural networks
trained with wave speeds only and with wave speeds plus density, respectively. Temperature, SiO2,MgO and FeO pdfs show significant reduction in uncertainties and
increase in information gain when density is included in neural network trainings.

A. Rijal et al.
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Fig. 4. Same as Fig. 3, but for wave speeds at 2800 km depth. In contrast to 1000 km depth (Fig. 3), the temperature pdfs at 2800 km are wider for all three rock
types because the prior distribution for temperature is broader at 2800 km. In general, the same trends apply between 1000 and 2800 km depths when
including density.

A. Rijal et al.
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another manifestation of the trade-offs between parameters. The tem-
perature pdfs at 1000 km are narrower than at 2800 km, because the
prior distribution for temperature is broader at 2800 km than at 1000
km. Our prior temperature distribution is depth dependent and the
maximum temperature of the prior is fixed at the melting point of
MgSiO3 perovskite (Stixrude et al., 2009). In essence, pdfs of tempera-
ture and bulk compositions are a little narrower at one depth than
another, but the same general trend applies, i.e. combining density with
VP and VS reduces uncertainties.

Wide 1-D marginals predominantly represent the trade-off between
different thermochemical parameters. If one assumes a fixed composi-
tion, obviously, there will be no parameter trade-offs. To demonstrate
this more clearly, we used three fixed compositional models shown in
Table 3 as priors and computed wave speeds for 1000 different tem-
peratures selected at random between 900 K and 3347 K. Models 1 and 2
are selected to understand the difference in predicted temperature, for
the same PREM wave speeds, when there is a relatively small change in
the assumed composition. Model 3 is chosen to avoid overlapping its
wave speeds with PREM, and the neural network is required to extrap-
olate. Next, we trained three separate neural networks, i.e. one for each
fixed composition. We then put wave speeds taken from PREM at 1000
km depth as inputs to the three trained networks, and obtained a pdf on
temperature as output (Fig. 5, right). The pdfs obtained from neural
networks trained with wave speeds from models 1 and 2 are very nar-
row, indicating that the temperature is tightly constrained. But each
neural network gives a different temperature as output and the mean
temperatures differ by about 400 K. The temperature pdf obtained from
the third neural network is multi-modal, and it shows relatively large
uncertainty in temperature compared to other two networks. This is
because the PREM wave speeds are not in the prior used to train the third
neural network (see Fig. 5, left). This in turn forced the network to
extrapolate away from the prior range, leading to uncertain temperature
prediction. In essence, predictions can be unrealistic if observed seismic
wave speeds are not inside the prior data (i.e. data used to train the
neural networks) range. Moreover, assuming a unique composition may
not be appropriate to constrain absolute temperatures in the Earth’s
mantle because the temperature depends on the choice of compositions
that one assumes.

3.2. Parameter trade-offs

As mentioned earlier, we need to be cautious comparing target
values with the posterior mean. A peak in the 1-D marginal doesn’t
necessarily mean a high probability in the (actual) higher dimensional
thermochemical space, because a 1-D marginal only represents inte-
grated information. The advantage of representing the inference of a
thermochemical parameter as a 1-D marginal is that they are fast to
implement and give a conservative estimate of the uncertainties. The
disadvantage is that they cannot capture the correlations between pa-
rameters. To get a 2-D marginal, we need to train an additional neural
network. For example, to get the 2-D marginal pdf of temperature and
FeO, we take the 1-D conditional pdf for FeO conditioned on temperature
(i.e. the extra network) and the 1-D marginal for temperature as

p(T, FeO|VP,VS) = p(FeO|T,VP,VS)⋅p(T|VP,VS). (5)

Correlations between temperature and composition are shown in
Fig. 6, labelled as w/o density for results with only peridotite wave
speeds as input. There are six possible combinations of temperature with
oxides. We see a strong linear correlation between temperature and FeO.
The relations between temperature and other oxides are more complex.
2-D marginal pdfs are an effective way of visualising the dependency
between two parameters, however, there might still be in-
terdependencies between three or more thermochemical parameters
which are not seen in the 2-D pdfs. In a similar way, the linear corre-
lation between FeO and temperature is not apparent by looking into
their individual 1-D marginals. Of course, it is difficult to visualise such
high-dimensional probability density spaces. Hence, we restrict our-
selves to 2-D marginal posteriors in this study, but consider all possible
pairs of thermochemical parameters.

We show here an example corresponding to the seismic properties of
peridotite, but Eq. 5 is valid for any compositional model. Trade-offs
inferred from wave speeds (and density) corresponding to other
compositional models (of Section 3) are similar to those inferred for
peridotite wave speeds (and density). Once we include the density, the
trade-off between FeO content and temperature is much less, and we can
place a much tighter constraint on both of them. Interestingly,
combining density with wave speeds also reveals a linear correlation
between temperature and CaO, as well as linear trade-offs between

Table 2
Wave speeds and densities of peridotite (Eggins et al., 1998), harzburgite (Irifune and Ringwood, 1987) and MORB (Perrillat et al., 2006) calculated using Perple_X at
1000 km and 2800 km depth, with temperatures corresponding to a 1300 ◦C adiabat. The six oxide proportions have been normalised to 100 % (i.e. other components
e.g. TiO2, K2O which account for <2 wt% were not included.)

Depth 1000 km

Rock VS VP ρ T SiO2 MgO FeO CaO Al2O3 Na2O

Peridotite 6.318 11.458 4553.31 2000 45.652 40.379 7.683 2.875 3.168 0.243
Harzburgite 6.309 11.391 4527.33 2000 44.085 46.833 7.910 0.505 0.657 0.010
MORB 6.304 11.430 4654.92 2000 50.626 8.611 9.903 11.949 16.173 2.738

Depth 2800 km

Rock VS VP ρ T SiO2 MgO FeO CaO Al2O3 Na2O

Peridotite 7.395 13.765 5531.56 2600 45.652 40.379 7.683 2.875 3.168 0.243
Harzburgite 7.389 13.744 5507.08 2600 44.085 46.833 7.910 0.505 0.657 0.010
MORB 7.280 13.710 5697.34 2600 50.626 8.611 9.903 11.949 16.173 2.738

Table 3
Three fixed isochemical models selected to train neural networks with only temperature variation at 1000 km. TS is the maximum temperature, and it is about 3347 K
as before.

Model SiO2 MgO FeO CaO Al2O3 Na2O Tmin Tmax

model #1 45.008 38.248 8.900 3.056 3.650 1.139 900 TS
model #2 37.003 41.551 10.013 5.391 4.897 1.146 900 TS
model #3 63.345 7.096 5.712 7.231 16.558 0.058 900 TS
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temperature and SiO2 and between temperature and MgO.
Some trade-offs among component oxides are shown in Fig. 7.

Although the joint pdfs are complicated, a correlation between pairs of
parameters such as SiO2 -MgO, SiO2 - Al2O3 and SiO2 - Na2O is revealed
without the density information. When including density, oxide pairs
FeO and Al2O3, FeO and Na2O, FeO and CaO, CaO and MgO, FeO and
MgO, and FeO and SiO2 (also see Appendix C) show correlation although
some oxides show multiple peaks. Furthermore, density limits the trade-
off between MgO and SiO2 to a smaller range compared to results with
wave speeds only. However, correlation between oxide pairs SiO2 -Na2O
and SiO2 - Al2O3 remain. Al and Na are minor components and in most
rock types (i.e. other than MORB-type rocks) the abundances do not
exceed more than a few percent (Table 2). Hence the effect of these
parameters on the inferred SiO2 content should be small for rocks similar
to pyrolite/peridotite/harzburgite. The main advantage of including
density is that it helps to better constrain the most abundant and
dynamically relevant compositional end-members, namely, the SiO2,
MgO and FeO. The trade-offs identified here have no mineral physics
origin, but are entirely due to the chosen prior and the under-
determined nature of the problem.

4. Lower mantle temperature and compositions from PREM

One dimensional reference models of the Earth (e.g. PREM - Dzie-
wonski and Anderson, 1981, or ak135- Kennett et al., 1995) are often
used to infer the average thermal and chemical properties of the mantle
(e.g. Jackson, 1998; Deschamps and Trampert, 2004; Matas et al., 2007;
Murakami et al., 2012; Cottaar et al., 2014; Houser et al., 2020).
Although the spherically symmetric reference model is a good first order
approximation for wave speeds, it only provides an averaged Earth that
is a biased representation of a potentially complex three dimensional
interior (Cobden et al., 2009). Nevertheless, let’s predict the tempera-
ture and composition for the PREM wave speeds and density using the
neural networks trained with broad priors of Sub-section 2.1. The results
at 1000 km depth are shown in Fig. 8. The combination of density with
wave speeds reduces the uncertainties (compared to working with wave
speeds only) in temperature and SiO2, MgO and FeO which are the most
abundant parameters. The temperature,MgO, FeO and SiO2 predicted by
neural networks are in the range 1260–1850 K, 22.86–51.34 wt%,
2.86–10.22 wt% and 31.33–48.16 wt%, respectively (when including
density). For comparison, the bulk compositions of peridotite, harz-
burgite and MORB are plotted together with the pdfs. MORB falls on the

edge of the pdfs. The FeO pdf shows a peak almost at the FeO wt% of
peridotite and harzburgite rocks. Whilst both harzburgite and peridotite
SiO2 plot on the upper edge of the pdf, the MgO pdf favours peridotite.
The pdfs of minor components, namely, Al2O3, Na2O and CaO resemble
their prior distributions. In this study, we have been working with a very
broad prior which includes many intermediate compositions between
MORB and peridotite that are unlikely to be abundant (or exist at all) in
the mantle. One can restrict the prior temperature and/or composition
ranges with the help of additional constraints (e.g. from geochemistry
and petrology) and/or include an additional observable (e.g. attenua-
tion) to further constrain the temperature and composition pdfs.

5. Inferring temperature and bulk composition from VS and ρ

So far we have inferred thermochemical parameters using
compressional and shear wave speeds with or without density. In this
section we predict thermochemical parameters from shear wave speed
and density of peridotite (as an example). The combination of VS and ρ
constrains the temperature and FeO (Fig. 9) better than when VS is
combined with VP. Pdfs of temperature andMgO show a width similar to
working with VP and VS, but the prediction from VS and density favours
slightly higher temperature and MgO content. The FeO prediction from
VS and ρ shows only a slightly broader pdf compared to that from using
both wave speeds (VP and VS) together with density. Combining VP with
density (not shown here) also predicts a similar FeO pdf (only narrower
by just 1–2 wt%) to that obtained from combining shear wave speed and
density. This shows that the density is an important parameter for
constraining iron. The SiO2 posterior pdf predicted from VS and ρ of
peridotite follows its prior distribution, in contrast to working with VP
and VS. In a similar way, we found that the SiO2 posterior predicted from
VP and ρ (also not shown here) also follows the prior. This highlights the
significance of combining VP and VS in constraining SiO2. Furthermore,
in comparison to the pdf predicted by wave speeds alone, combining
density with wave speeds further reduces the SiO2 uncertainty.

The trade-offs between temperature and the most abundant param-
eters are shown in the 2-D marginals in Fig. 10. The region of FeO -
temperature trade-off shows significant probability density at slightly
higher FeO and lower temperature than working with both wave speeds
and density (see Fig. 6 for comparison). However, the inherent trade-off
is similar in both cases which is represented in the region of high
probability density. In general, T - SiO2, T - MgO, FeO - MgO, FeO - SiO2
and SiO2 - MgO all show trade-offs similar to working with both wave

Fig. 5. Left: wave speeds generated from three fixed compositional models of Table 3 for temperatures uniformly drawn from the range 900 and 3347 K. We used the
three sets of wave speeds to train three separate neural networks to predict temperature. Red star shows PREM wave speeds at 1000 km depth. The wave speeds of
prior model 3 (orange) do not overlap with PREM at all. The neural network trained on these wave speeds is forced to extrapolate when PREM is given as an input.
Right: All three neural networks take the same PREM wave speeds as inputs to predict a temperature pdf. The pdfs obtained from the neural networks trained with
wave speeds from models 1 (green) and 2 (blue) resolve the temperature extremely well, but the output temperature depends on the choice of assumed compositions
and they differ from each other by about 400 K. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 6. 2-D marginal pdfs of temperature with all six oxides inferred from the wave speeds (and density) corresponding to peridotite (Table 2) at 1000 km depth.
Plots labelled w/o and w/ density are results from neural networks trained using wave speeds only and with wave speeds plus density, respectively. Darker colour
shows higher likelihood. We normalised the likelihood values to [0–1] for plotting purpose. Solid”+” symbol represents the target value, i.e. the actual value for
peridotite (as in Table 2). A linear correlation between FeO and temperature is observed without the density information. Other oxides and temperature show
complex dependencies. However, including density significantly reduces the joint probability space of trade-off by breaking down these complex dependencies.
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Fig. 7. 2-D marginal pdfs for different pairs of oxides inferred from the wave speeds corresponding to the peridotite model of Section 3 at 1000 km. Labels (w/o and
w/ density) and the colour scheme are same as Fig. 6. Solid”+” symbol represents the target value.
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speeds and density, but in a wider region. Overall, the temperature and
the most abundant oxide end-members (SiO2, MgO and FeO) are better
constrained when all three seismic observables are combined. In gen-
eral, when working with VS and ρ only, the target thermochemical pa-
rameters are on the edge or away from the high probability region of the
2-D marginal pdfs. If no additional observables are available, one would
need to make the prior in composition narrower (using independent
information) to get a tighter constraint on thermochemical parameters.

6. Narrower priors

The prior dataset used to train the neural networks is constantly
evolving as new experimental and theoretical constraints on mineral
thermoelastic properties become available. Defining the prior is also
based on user-driven choices. With the broad priors we have used in this
study, the temperature uncertainty, i.e. the width of the posterior pdf, at
1000 km for harzburgite VP and VS is 1542 K, whereas including ρ re-
duces the uncertainty to 555 K. Recently, Houser et al., 2020 examined
the role of temperature uncertainties in discriminating between
different compositions. Their approach shows that in order to

discriminate between two compositions, perovskite and harzburgite,
throughout the lower mantle the maximum temperature uncertainty
should be ±150 K (±200 K to ±300 K in spin transition region). In an
application to seismic observables with additional prior constraints (e.g.
from petrology or geodynamics) one might choose to restrict the tem-
perature and/or composition ranges. This in turn will reduce the widths
of the pdfs in the output from the neural networks.

If we systematically reduce the prior range of thermochemical pa-
rameters by 20 % and 40 %, the resulting uncertainities of the main
parameters reduce as well, albeit by somewhat smaller amounts (see
Table 4). In this test, we reduced the upper bound of the range of
chemical parameters shown in Table 1, except for MgO for which we
removed lower MgO models. Temperature range is symmetrically nar-
rowed from both ends. As shown in Table 4, reducing the priors by 40 %
constrains the SiO2 and FeO contents within 14 wt% and 5.4 wt%,
respectively. In essence, restricting the priors to a narrower range re-
duces the possibilities for trade-offs between thermochemical parame-
ters, leading to narrower 1-D marginals.

Fig. 8. 1-D marginal thermochemical pdfs at 1000 km for PREM wave speeds and density. The oxide pdfs are compared with oxide wt% of three rock types given in
Table 2. The pdfs inferred using wave speeds data only are labelled as w/o density, and those with wave speeds plus density are labelled w/ density.
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7. Discussion

Using an ensemble of neural networks, in particular, Mixture Density
Networks (MDNs), we can infer the posterior probability density func-
tions of temperature and bulk composition for a given value of VP and VS
(±density). The computational demand for obtaining prior samples - i.e.
calculating seismic properties for thermochemical models (Perple_X in
our case) - and training the neural networks depends on several factors
(details in Käufl et al., 2016): number of networks in an ensemble,
number of parameters of each ensemble member, size of the prior
samples, choice of error minimisation algorithm, code efficiency, etc.
Roughly, to train an independent ensemble member - i.e. one MDN -
with 3 input nodes, 45 hidden nodes, 5 Gaussian kernels (see architec-
ture in Appendix B) and approximately 5.3× 105 training data, it takes
about 9.6 min of wall-clock time (about 14.5 min of CPU-time) in a
compute node with two AMD EPYC 7451 24-Core Processors running at
2.3 GHz. Most time is spent generating the thermochemical dataset,
lucklily it is trivial to parallelise Perple_X and run each Gibbs mini-
misation on a separate core.Once trained, the same network takes just a
fraction of a second to evaluate a pdf at 2701 points. In comparison to a
Monte Carlo type method, which is a posterior sampling method, our
neural networks use samples drawn from prior ranges of temperature
and composition. In principle, once trained the same trained neural
networks can be re-used to interpret wave speeds (and density) obtained
from different locations or different seismic studies, which makes the
inference step extremely efficient. In contrast, in order to get the tem-
perature and composition as well as trade-offs between thermochemical

parameters, Monte Carlo type methods require re-sampling of the pos-
terior every time we need to interpret new wave speeds which is inev-
itably less efficient.

From the point of view of seismic interpretation, the most important
compositional end-members are the most volumetrically abundant ox-
ides (MgO, SiO2 and FeO), and we have seen that one can get a signifi-
cantly better constraint on them by including density. In addition,
including a fourth observable, such as attenuation (e.g. Hwang and
Ritsema, 2011; Karaoğlu and Romanowicz, 2018; Konishi et al., 2020),
could help to reduce the remaining trade-offs between thermochemical
parameters. Although attenuation may be less sensitive to composition,
it can help to constrain the temperature and grain size (Talavera-Soza
et al., 2025).- However, the intrinsic attenuation depends on a number
of parameters including activation energy, activation volume, frequency
dependence and grain size, all of which are poorly constrained for the
lower mantle. Hence, while attenuation could theoretically provide an
extra constraint with which to reduce the trade offs between thermal
and chemical parameters, in practise the results would only be mean-
ingful if uncertainties in the anelasticity parameters were also taken into
account.

Although seismic wave speeds depend on material properties such as
the size and orientation of mineral grains, for simplicity our modelling is
with isotropic mineral parameters. This is a good first order approxi-
mation (Marquardt and Thomson, 2020), and we do not attempt to es-
timate modelling errors due to unaccounted anisotropy. In addition, the
results shown so far are based on anharmonic wave speeds. We trained
two neural networks (including and excluding density) in which the

Fig. 9. 1-D marginals of temperature and oxide end-members at 1000 km inferred from VS and ρ of peridotite rock from Table 2. The marginals are compared with
predictions from VP, VS only and VP, VS together with ρ. The VS and ρ pair constrains the temperature and FeO contents. The pair VP and VS constrain the
SiO2 content.
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anharmonic wave speeds were corrected for temperature-dependent
anelasticity, following the model of Deschamps et al., 2019. We
assumed fixed values for the various anelasticity parameters (see Ap-
pendix D). Temperature pdfs inferred from anelastic wave speeds are
only slightly narrower (Fig. 11) than those inferred from anharmonic
wave speeds, showing negligible influence of anelasticity (Brodholt
et al., 2007). In this study, we used ρ, VP and VS. However, the inputs to
the neural networks can readily be modified by conditioning the Eq. 4
for other parameters, including attenuation, anisotropy, or the depth
and sharpness of seismic discontinuities. Seismic discontinuities are
particularly relevant for transition zone and D″ studies. It is important to
mention that any uncertainty in the wave speeds and density, if avail-
able, from observed seismic data or models can be propagated through

the MDNs. We chose to illustrate our tool at fixed depth/pressure. Often
a continuous description in pressure-space is desired (e.g. Afonso et al.,
2015), it is trivial to condition our posteriors on pressure as well.

Recently, we used neural networks to characterise the elastic prop-
erties of MgO as a function of pressure and temperature (Rijal et al.,
2021; Rijal et al., 2023). We found that the experimental uncertainties in
density and seismic wave speeds may be comparable to or larger than
reported variations in these properties in the lower mantle. These un-
certainties would contribute further to the ranges of temperature and
composition that can fit a given set of wave speeds and density. In the
current study we chose to use an explicit EOS (Stixrude and Lithgow-
Bertelloni, 2005, 2011) because this is currently one of the most
comprehensive and self-consistent datasets for the elastic properties of

Fig. 10. 2-D marginal pdfs for pairs of different thermochemical parameters inferred from the shear wave speed and density corresponding to peridotite rock
(Table 2). Colour scheme is according to Fig. 6. Solid”+” symbol represents the target value.

Table 4
The width (upper minus lower) of the posterior probability density functions of temperature and the most volumetrically abundant oxides inferred using broad and
systematically narrowed priors (by 20 % and 40 % of broad priors). The thermochemical parameters are inferred using harzburgite wave speeds (± density) at 1000 km
(see Table 2). T is in K and oxides in wt%.

Broad prior 20 % narrower prior 40 % narrower prior

Lower Upper Lower Upper Lower Upper

Without T 1018 2560 1120 2463 1397 2470
density SiO2 36.44 64.91 36.33 55.13 36.91 50.80
​ MgO 4.00 50.85 13.07 50.95 22.13 50.67
​ FeO 0.70 18.98 1.25 16.49 0.98 13.38
With T 1775 2330 1790 2270 1820 2223
density SiO2 35.70 52.70 36.27 51.27 36.38 50.22
​ MgO 20.52 49.89 22.97 47.82 27.18 48.12
​ FeO 1.70 8.70 1.79 8.62 3.13 8.53
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mantle minerals. We did not include uncertainties on the mineral elastic
or seismic properties during the modelling or training, but it would be
straightforward to do so. This would give even more conservative un-
certainty ranges than the wide ranges seen in this study, although the
ranges could in turn be reduced by narrowing the priors as discussed
earlier. Trade-offs indentified here depend on the prior and non-
uniqueness of the problem. Often systematics in composition-space are
known in mineral physics, but not communicated. Including these sys-
tematics in the prior for generating the dataset could help defining a
more realistic prior. The effect of such restructions on the prior would
need further investigations and are beyond the scope of the current
paper.

8. Conclusion

We have developed a neural networks tool to map seismic observ-
ables into thermochemical parameters.We use a Bayesian formulation
which infers posterior marginals conditioned on a number of input pa-
rameters. The networks are trained on syntheic models, which associate
thermochemical parameters to the seismic observables. The models are
generated using appropriate prior information from mineral physics
databases. We chose to use PerpleX (Connolly, 1990; Connolly, 2005) to
generate the models, but other packages can be used equally well, such
as e.g. MAGEmin (Riel et al., 2022 or BurnMan (Myhill et al., 2023).
Input observables and additional parameters as well as output targets
are fully flexible.

To illustrate and test our tool, we quantify the full ranges of ther-
mochemical parameters that fit VP and VS (±density) at a given depth in
the lower mantle. It is challenging from only two or three observables to
infer seven thermochemical parameters (temperature and six oxide end-
members) because of the non-uniqueness of this inverse problem. The
MDN is an efficient method for getting an overview of the uncertainties
and trade-offs which are often neglected during seismic interpretation in
the form of a probability density function. In this work, we have tested
this approach at fixed lower mantle depths but the concept can be
applied at any depth where data is available on the elastic properties of
constituent minerals. For this, one could either include pressure as an
additional input parameter to the neural networks or train separate
networks at each depth of interest.

In our lower mantle example, we made a few noteworthy observa-
tions. With the neural networks trained on wave speed (VP and VS) data
only, one can start to constrain the temperature and SiO2 in the lower
mantle. Without the density, we obtain limited sensitivity to other
components of bulk composition and large uncertainties on the tem-
perature. This is partly because we allowed a wide range of possible

lower mantle temperature and compositions in our training dataset and
the resulting trade-off between different thermochemical parameters
gives us broad 1-D marginals. By using density together with VP and VS,
we break down some complex dependencies between thermochemical
parameters. As a result, one obtains a tighter constraint on the tem-
perature as well as the Fe,Mg and Si content of the bulk composition. In
all cases there is limited sensitivity to the minor components (Al2O3,
CaO and Na2O), regardless that the seismic properties of these end-
members arepoorly constrained at lower mantle depths from a mineral
physics point of view (Marquardt and Thomson, 2020).

This work highlights the need to have both VS and ρ to constrain the
iron content, while for constraining the SiO2 (or MgO) content, it is
important to have both VP and VS. We could incorporate additional
parameters such as attenuation, anisotropy or properties of seismic
discontinuities in the same tool with the potential to enhance the
robustness of seismic interpretations and avoid the potential to over
interpret seismic signals. The neural network tool is freely available for
academic use (see Section Code availability).

Code availability

The code used in this study and the details on how to use it can be
found in this bitbucket repository: https://bitbucket.org/ashim_rijal/
mdns_tensorflow/src/master/ or by contacting the corresponding
author of this literature.
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Fig. 11. 1-D marginal pdfs for temperature at 2800 km inferred from wave speeds corrected for anelasticity and anharmonic wave speeds. Left: inputs are wave
speeds only. Right: inputs are wave speeds and density. Temperature pdfs inferred from anelastic wave speeds are only slightly narrower than those inferred from
anharmonic wave speeds.
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Appendix A. Prior distributions

Fig. A.12. Prior distributions of temperature (T) in Kelvin (K) and oxides (SiO2, MgO, FeO, CaO, Al2O3 and Na2O) in wt%. at 1000 km depth.

Appendix B. MDN architecture

Fig. B.13. A Mixture Density Network (figure modified after Bishop, 1994 and Rijal et al., 2021) that approximates the posterior probability density function of a
thermochemical parameter (x) for a given pair of wave speeds (VP and VS). In order to approximate the posterior, a conventional feed-forward network is combined
with a Gaussian Mixture Model (GMM). The GMM consists of Gaussian functions, and the mean, standard deviation and weight of each Gaussian is computed from
the output of the feed-forward network yk. The hidden nodes and the weights and biases of the feed-forward network are denoted by hj and α, respectively.
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Table B.5
The number of hidden nodes used in neural networks to approximate the pdf of thermo-
chemical parameters.

Thermochemical parameter Hidden nodes Hidden nodes

without density with density

Temperature 20–40 20–60
FeO 25–50 10–25
MgO 15–35 60–105
SiO2, CaO, Na2O, Al2O3 15–65 15–65

Appendix C. Correlations between compositional parameters

Fig. C.14. 2-D marginal pdfs for different pairs of oxides for the peridotite model of Section 3 at 1000 km. Results from neural networks trained without and with
density information are labelled as w/o and w/ density, respectively. Colour scheme is according to Fig. 6. Solid”+” symbol represents the target value.
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Fig. C.15. 2-D marginal pdfs for different pairs of oxides for the peridotite model of Section 3 at 1000 km. Results from neural networks trained without and with
density information are labelled as w/o and w/ density, respectively. Colour scheme is according to Fig. 6. Solid”+” symbol represents the target value.

Appendix D. Parameters for temperature-dependent anelasticity

Table D.6
Anelasticity parameters taken form Deschamps et al., 2019 to correct
anharmonic wave speeds for temperature-dependant anelasticity.

Parameter Value

Seismic period 1 s
Frequency dependance 0.274
Activation energy 286 kJ/mol
Activation volume 1.2 × 10− 6 m3/mol
Reference quality factor 312
Core-mantle-boundary temperature 3500 K
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Data availability

Data will be made available on request.
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Stähler, S., Duran, A., Huang, Q., Kim, D., Broquet, A., Charalambous, C., Clinton, J.,
Davis, P., Drilleau, M., Karakostas, F., Lekic, V., McLennan, S., Banerdt, W., 2021.
Upper mantle structure of mars from insight seismic data. Science 373, 434–438.
https://doi.org/10.1126/science.abf2966.

Koelemeijer, P., Deuss, A., Ritsema, J., 2017. Density structure of earth’s lowermost
mantle from stoneley mode splitting observations. Nat. Commun. 8, 15241. https://
doi.org/10.1038/ncomms15241.

Konishi, K., Fuji, N., Deschamps, F., 2020. Three-dimensional elastic and anelastic
structure of the lowermost mantle beneath the western pacific from finite-frequency
tomography. J. Geophys. Res. Solid Earth 125 (2), e2019JB018089. https://doi.org/
10.1029/2019JB018089. URL. https://agupubs.onlinelibrary.wiley.
com/doi/abs/10.1029/2019JB018089.

Lawrence, J.F., Wysession, M.E., 2006. Qlm9: a new radial quality factor (qμ) model for
the lower mantle. Earth Planet. Sci. Lett. 241 (3), 962–971. https://doi.org/
10.1016/j.epsl.2005.10.030. ISSN 0012-821X. URL. https://www.
sciencedirect.com/science/article/pii/S0012821X05007090.

Lay, T., Helmberger, D.V., 1983. A lower mantle S-wave triplication and the shear
velocity structure of D″. Geophys. J. Int. 75 (3), 799–837. https://doi.org/10.1111/
j.1365-246X.1983.tb05010.x. ISSN 0956-540X.
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