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Seismic anisotropy plays a key role in studies of the Earth’s rheology and deformation because of its rela-
tion to flow-induced lattice-preferred orientation (LPO) of intrinsically anisotropic minerals. In addition
to LPO, small-scale heterogeneity produces apparent anisotropy that need not be related to deformation
in the same way as intrinsic anisotropy. Quantitative interpretations of observed anisotropy therefore
require the separation of its intrinsic and apparent components.

We analyse the possibility to separate intrinsic and apparent anisotropy in media with hexagonal
symmetry – typically used in surface wave tomography and SKS splitting studies. Our analysis is on
the level of the wave equation, which makes it general and independent of specific data types or tomo-
graphic techniques.

We find that observed anisotropy can be explained by isotropic heterogeneity when elastic parameters
take specific combinations of values. In practice, the uncertainties of inferred anisotropy are large enough
to ensure that such a combination is always within the error bars. It follows that commonly observed
anisotropy can always be explained completely by a purely isotropic laminated medium unless all aniso-
tropic parameters are known with unrealistic accuracy. Most importantly, minute changes in the poorly
constrained P wave anisotropy and the parameter g can switch between the possible or impossible exis-
tence of an isotropic equivalent.

Important implications of our study include: (1) Intrinsic anisotropy over tomographically resolved
length scales is never strictly required when reasonable error bars for anisotropic parameters are taken
into account. (2) Currently available seismic observables provide weak constraints on the relative contri-
butions of intrinsic and apparent anisotropy. (3) Therefore, seismic observables alone are not sufficient to
constrain the magnitude of mantle flow. (4) Quantitative interpretations of anisotropy in terms of mantle
flow require combined seismic/geodynamic inversions, as well as the incorporation of additional data
such as topography, gravity and scattered waves.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Over the past few decades, work on seismic anisotropy has
taken a prominent role in studies of the Earth because of the poten-
tial relation to geodynamic processes. In the field and in laboratory
experiments, flow of geological materials leads to lattice-preferred
orientations (LPO) of intrinsically anisotropic crystals, such as
olivine in ophiolites. LPO produces materials with seismically ob-
servable anisotropy via the directional dependence of wavespeeds
(e.g., Turner and peridotites, 1942; Verma, 1960; Hess, 1964;
Zhang and Karato, 1996; Mainprice et al., 2005; Raterron et al.,
2009). The consequence of such intrinsic seismic anisotropy is dif-
ferences in wavespeed properties depending on polarisation: with
shear-wave splitting in SKS waves accumulated along the path, and
ll rights reserved.

Fichtner).
differences in the behaviour of Love and Rayleigh wave dispersion
that cannot be explained by simple isotropic models. Analysis of
observed seismic anisotropy has often concentrated on simple
scenarios with nearly homogeneous media, so that all measures
of observed seismic anisotropy represent model-based inferences
rather than direct observations of material properties. The results
have been taken up in geodynamic modelling, where observed
seismic anisotropy – translated into Earth models via the solution
of an inverse problem – has often been assumed to be entirely
intrinsic, and thus represent a direct indicator of flow patterns
(e.g., Ribe, 1989; Chastel and Dawson, 1993; Becker et al., 2006;
Becker, 2008).

It was early recognised that many facets of observed seismic
anisotropy can be mimicked by heterogeneous isotropic media,
when the wavelengths employed are much larger than the scales
of variation of the heterogeneity (e.g., Backus, 1962; Levshin and
Ratnikova, 1984; Babuška and Cara, 1991; Fichtner and Igel,
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2008; Guillot et al., 2010; Capdeville et al., 2010a, in press). The
shape-preferred orientation (SPO) of small fluid inclusions or
cracks, for instance, can produce such apparent anisotropy (e.g.,
Babuška and Cara, 1991; Blackman and Kendall, 1997). Similarly,
a finely stratified medium will appear transversely isotropic
(equivalent to hexagonal crystal symmetry) and will display
shear-wave birefringence with a separation of pulses of different
polarisation. Consequently, observed anisotropy may be used to in-
fer the presence of small-scale isotropic heterogeneity, including
cracks (e.g., Crampin and Chastin, 2003) and melt pockets (e.g.,
Bastow et al., 2010).

The similarity of small-scale heterogeneity and large-scale
anisotropy has profound consequences for seismic tomography
that typically aims to find smooth models with as few parameters
as possible. Small-scale structure that cannot be resolved by a fi-
nite amount of bandlimited data is suppressed from the outset
via regularisation. This leads to tomographic models that are
long-wavelength equivalents of potentially smaller-scale structure
that cannot be resolved (Capdeville et al., in press). While regular-
isation is often a technical necessity, a smooth anisotropic model
may also require less parameters or be statistically more plausible
than a rough isotropic model that explains the data equally well
(Montagner et al., 1988; Trampert and Woodhouse, 2003). This
provides additional intuitive justification for this approach, be-
cause it seems in accord with Occam’s razor, or the law of parsi-
mony. While being useful formalisations of human intuition,
neither statistics nor Occam’s razor are fundamental laws of nat-
ure, and therefore unresolvable heterogeneity may map into
large-scale apparent anisotropy. In surface wave tomography, for
instance, the unknown details of crustal structure can produce
apparent anisotropy in the mantle (Bozdağ and Trampert, 2008;
Ferreira et al., 2010).

Evidence for structural heterogeneities capable of producing
apparent anisotropy has grown rapidly, via sample analysis, stud-
ies of scattering, and seismic tomography. The Earth is undoubt-
edly heterogeneous on all scales with quasi-fractal behaviour
over some scale ranges. Parts of this heterogeneity will appear as
apparent anisotropy when interrogated by longer wavelength seis-
mic waves. Furthermore, the heterogeneity itself will have been
generated by geodynamic processes.

Thus, when we look at the interior of the Earth from the surface,
we are faced with a situation where clear indications of anisotropy
could arise from intrinsic effects such as LPO, or be apparent, rep-
resenting averages through fine-scale heterogeneity – which itself
could be anisotropic. To improve geodynamic understanding, we
need to resolve the anisotropic components and, in particular, rec-
ognise the intrinsic component directly related to flow.

At the present time, the problem of separating intrinsic and
apparent anisotropy is too complex in full generality. We can, how-
ever, examine simpler and illustrative problems. We here restrict
attention to the case of transverse isotropy, where properties are
symmetric about a preferred axis, equivalent to a crystal with hex-
agonal symmetry about this axis. We then ask if, given a set of
transversely isotropic properties, do we need intrinsic anisotropy,
or is there some equivalent combination of isotropic materials?

While it is well known that a small-scale isotropic model has a
long-wavelength isotropic equivalent, the reverse problem consid-
ered here has, to the best of our knowledge, only been addressed
by Backus (1962) – despite its outstanding geodynamic relevance.
It is, a priori, not obvious which anisotropic models can be repre-
sented by an isotropic equivalent. The mere fact that one can go
from any small-scale isotropic model to one anisotropic model
does not imply that the opposite is true as well, i.e., that one can
go from any anisotropic model to one small-scale isotropic model.

We will see that the solution to this problem is surprisingly
complex, and that in many circumstances we cannot discriminate
between intrinsic and apparent anisotropy. Where we can, the dis-
tinction depends on very precise controls on certain properties of
the materials such as the P wavespeeds or the anisotropic param-
eter g that can hardly be determined from seismic observations.

This paper is organised as follows: following the definitions of
apparent, intrinsic and observed anisotropy, we provide a brief re-
view of the upscaling relations for finely layered media. We then
discuss the set of inequalities that an anisotropic medium must sat-
isfy to be representable by an equivalent finely layered isotropic
medium. In Section 3.2, these inequalities are illustrated for the spe-
cific case of a vertical symmetry axis. A more detailed analysis in
Section 4 confirms that small variations in elastic parameters can
switch between existence and non-existence of isotropic equiva-
lents. It follows, that isotropic equivalents can generally be found
unless all elastic parameters are known with unrealistic accuracy.
A detailed discussion of this result is provided in Section 6.
2. Structure-induced apparent anisotropy in layered media

To reduce the complexity of our analysis to a tractable level, we
restrict ourselves to layered, transversely isotropic media described
in terms of density and the elastic parameters a; c; f ; l and n (Love,
1927). In this paragraph we briefly review the concept of struc-
ture-induced apparent anisotropy in layered media, as introduced
by Backus (1962). This is intended to set the stage for subsequent
developments. In the interest of a transparent terminology, we con-
sider the case of a vertical symmetry axis. This allows us to use the
notion of plane waves with horizontal or vertical polarisation and
propagation directions. The formal development, however, applies
to any orientation of the symmetry axis, including horizontal orien-
tation relevant for the analysis of SKS splitting (e.g., Silver and Chan,
1988; Babuška and Cara, 1991).

We assume the stratified medium to vary appreciably over a
length scale l. When the wavelength is much longer than l, wave
propagation through the finely stratified medium is identical to
wave propagation through a smoothed equivalent medium, the
elastic parameters of which are given by the upscaling equations

A ¼ ha� f 2c�1i þ hc�1i�1hfc�1i2; C ¼ hc�1i�1
; F ¼ hfc�1ihc�1i�1

;

L ¼ hl�1i�1
; N ¼ hni: ð1Þ

The symbol h: i represents the vertical average
h/iðzÞ ¼

R
wðn� zÞ/ðnÞdn, where / is any function, and the

smoothing window w is required to be positive. The effective med-
ium described in terms of A;C; F; L and N is referred to as a smooth,
transversely isotropic, long-wavelength equivalent (STILWE). In
the special case where the original layers are isotropic with
a ¼ c ¼ kþ 2l; f ¼ k and l ¼ n ¼ l, the effective parameters are gi-
ven by

A¼h4lðkþlÞðkþ2lÞ�1iþhðkþ2lÞ�1i�1hkðkþ2lÞ�1i2;C¼hðkþ2lÞ�1i�1;

F¼hðkþ2lÞ�1i�1hkðkþ2lÞ�1i; L¼hl�1i�1
; N¼hli: ð2Þ

Unless k and l are constant, we find A – C and L – N, meaning
that isotropic layering induces apparent anisotropy when wave-
lengths much longer than l are observed. This phenomenon is
illustrated in Fig. 1.

Eqs. (1) and (2) gain special relevance in the context of struc-
tural inverse problems that are generally under-determined due
to the finite amount of independent seismic data. Under-determi-
nacy implies the need for regularisation, i.e., the enforcement of
smoothness that prevents the appearance of small-scale features
(e.g., fine layers) that cannot be resolved (e.g., Trampert et al.,
2013). It follows that seismic inverse problems produce long-
wavelength equivalents with at least some degree of apparent
anisotropy – the only exception being the unlikely case where



Fig. 1. Exemplary illustration of apparent anisotropy induced by long-wavelength equivalence. The original stratified medium, plotted in black, is strongly heterogeneous
over length-scales of around 5 km, which is the average width of the layers. This medium is isotropic, i.e., a� c ¼ 0; l� n ¼ 0 and f=ða� 2lÞ ¼ 1. Taking the averaging window
wðzÞ to be a Gaussian with half width 15 km, the upscaling Eqs. (1) provide the long-wavelength equivalent medium, plotted in red. As predicted by Eq. (2), the long-
wavelength equivalent is anisotropic, with A� C – 0; L� N – 0 and g ¼ F=ðA� 2LÞ– 1 (e.g., Takeuchi and Saito, 1972). Seismic waves with wavelengths significantly larger
than the averaging width of 15 km are identical when propagating through either the original (black) or the long-wavelength equivalent (red) medium.
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the Earth is indeed homogeneous on length scales below the reso-
lution length.

Any deformation state of the STILWE medium must have
non-negative internal energy to ensure stability. This requirement
is fulfilled, when the elastic coefficients satisfy the inequalities
(Backus, 1962):

C P 0; L P 0; N P 0; A� N P 0; ðA� NÞC P F2:

ð3Þ

That the STILWE medium is indeed elastically stable follows
from the substitution of (1) into (3).

3. The existence of finely layered isotropic equivalents

3.1. The Backus conditions

Equipped with the machinery from the previous section, we re-
turn to our original question: under which conditions is a smooth
transversely isotropic medium equivalent to a finely layered iso-
tropic medium?

Again following Backus (1962), we introduce a new set of elastic
parameters that facilitates the subsequent analyses. Instead of
L;N;A;C and F, we shall use L;N;R; S, and T, with

R ¼ C�1; S ¼ ð4CÞ�1ðF2 þ 4NC � ACÞ; T ¼ ð2CÞ�1ðC � FÞ: ð4Þ

Furthermore, we assume that the hypothetical isotropic equiv-
alent is described in terms of the shear modulus l and the squared
S to P velocity ratio H ¼ v2

s=v2
p. Both l and H must conform to the

elastic stability conditions l P 0 and 0 6 H 6 3=4, which fol-
low from the more general stability conditions (3). As shown in
A, we can construct an isotropic equivalent composed of only
two types of layers with constant H1 and H2 > H1 if the
inequalities

ðH1L�1 � RÞðH1N � SÞ � ðH1 � TÞ2 P 0; and

ðH2L�1 � RÞðH2N � SÞ � ðH2 � TÞ2 P 0; ð5Þ

are satisfied simultaneously for 0 6 H1 < T < H2 6 3=4. The
relation between l and H and their long-wavelength equivalents
L;N;R; S, and T is then

L ¼ hl�1i�1
; N ¼ hli; R ¼ hHl�1i; S ¼ hHli; T ¼ hHi; ð6Þ
which follows from the combination of (2) and (4). The left-hand
sides of the inequalities (5) are identical quadratic polynomials in
H1 and H2, respectively. A finely layered isotropic equivalent there-
fore exists, when ðHL�1 � RÞðHN � SÞ � ðH� TÞ2 is greater or equal
to zero for a potentially small neighbourhood of H around T that
falls within the stability range 0 6 H 6 3=4.

3.2. Examples

To illustrate the Backus conditions (5), we assume a fixed com-
bination of A ¼ qv2

ph;C ¼ qv2
pv and g ¼ F=ðA� 2LÞ, where the ratio

g affects the azimuthal dependence of P and S velocities (e.g.,
Takeuchi and Saito, 1972; Dziewoński and Anderson, 1981). Then
we determine the combinations of N ¼ qv2

sh and L ¼ qv2
sv for which

a finely layered isotropic equivalent exists. Density cancels in the
Backus conditions, meaning that the wave speeds vph;vpv;vsh;vsv,
and g fully determine stability, and the possible existence of an iso-
tropic equivalent.

Fig. 2a shows an example where vph ¼ 8:10 km=s,
vpv ¼ 7:90 km=s and g ¼ 0:93. The black region marks combina-
tions of vsh and vsv for which the medium is unstable. Grey regions
imply stability without the possibility of isotropic equivalence. The
remaining coloured regions correspond to stability and the possi-
ble existence of a finely layered isotropic equivalent. The black
diagonal line separates vsh > vsv (right) from vsh < vsv (left). Hori-
zontal lines and colours indicate various ranges of H ¼ v2

s=v2
p with-

in the isotropic equivalent. Yellow, for instance, means that a finely
layered isotropic equivalent exists – for a given combination of vsh

and vsv – when H is allowed to range from 0:1 to 0:3 between the
different layers. For the same vsh-vsv combination an isotropic
equivalent still exists when this range is extended, say to
0 6 H 6 0:4. Values of H > 0:5 correspond to auxetic materials,
i.e., materials with negative Poisson ratio. Thus, white, yellow
and orange mean that isotropic equivalents can exist without the
need to invoke an auxetic rheology that is unrealistic for the Earth.
Fig. 2a suggests that an isotropic equivalent can be found for
0:13 < H < 0:75 when vsh > vsv, at least for this specific set of
vph;vpv and g.

A reduction of vph by 1:2% combined with an increase of vpv by
1:4%, leads to the example shown in Fig. 2b. An isotropic equivalent
may now be found for vsh < vsv when H ranges between 0 and
0:48, and for vsh > vsv when H > 0:48. Figs. 2c and d shows the



Fig. 2. Ranges of elastic stability and possible isotropic equivalence for various fixed combinations of vph;vpv and g. Black regions mark combinations of vsh and vsv that are
elastically unstable. Grey indicates elastic stability. White, yellow, orange and red corresponds to pairs of vsh and vsv that are elastically stable, and for which a finely layered
isotropic equivalent can be found for specific ranges of H. The diagonal black lines separate vsh > vsv (right) and vsh < vsv (left). Horizontal lines and colours separate various
ranges of H ¼ v2

s =v2
p in the isotropic equivalent. Values of H > 0:5 correspond to auxetic materials, i.e., materials with negative Poisson ratio.
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result of slight modifications in g. Note that an increase of g by 1%
can completely change the combinations of vsh and vsv for which
an isotropic equivalent can be found.

The examples in Fig. 2 suggest that vph;vpv and g must be
known with considerable precision in order to determine whether
observed anisotropy is – at least to some degree – intrinsic, or
whether it may be explained fully by isotropic heterogeneity.

Examples similar to this one are possible for any other orienta-
tion of the symmetry axis, including a horizontal symmetry axis
that is used in the analysis of SKS splitting.

3.3. Equivalence

We should stress that the long-wavelength averaging of the
laminate isotropic structure is fully equivalent to the transverse
isotropic representation. This applies to the variation of the waves-
peeds with angle of propagation, and a necessary deviation of the
group velocity associated with energy propagation from the phase
velocity. Furthermore, surface wave dispersion will be equivalent,
i.e., we will see Love and Rayleigh dispersion that appears to be
incompatible with a simple medium that is smooth or composed
of only few isotropic layers. The addition of complexity through
lamination provides sufficient degrees of freedom to match the dis-
persion character with purely isotropic materials, though not in a
simple way that could be used constructively in tomographic
inversions that generally favour simplicity.

It is worth noting that such averaging properties as we have
seen for elastic moduli will apply to the case of more general con-
stitutive relations. Effective anisotropy can be induced in, e.g., rhe-
ological behaviour as the net effect of locally isotropic materials.

4. Perturbation analysis

To substantiate our conjecture that slight variations of elastic
parameters can strongly perturb the regions of possible isotropic
equivalence, we perform a perturbation analysis of the Backus con-
ditions (5) that assumes small anisotropy and plausible Earth
materials. First, we define the quadratic function gðHÞ:

gðHÞ ¼ ðHL�1 � RÞðHN � SÞ � ðH� TÞ2: ð7Þ

In terms of g, the Backus conditions (5) require that there exists
at least a small neighbourhood around T for which gðHÞ is positive.
This is illustrated in Fig. 3. Expanding g, yields

gðHÞ ¼ H2ðNL�1 � 1Þ þHð2T � SL�1 � RNÞ þ RS� T2: ð8Þ
Re-substituting the original elastic parameters L;N;A;C and F,
gives

gðHÞ ¼ H2 N
L
� 1

� �
þH

1
C
ðC � FÞ � 1

4CL
ðF2 þ 4NC � ACÞ � N

C

� �

þ N
C
� A

4C
� 1

4
þ F

2C
: ð9Þ

In the next step we factorise ðCLÞ�1 from Eq. (9):

CLgðHÞ ¼ H2ðNC � CLÞ þH CL� FL� 1
4

F2 � NC þ 1
4

AC � NL
� �

þ NL� 1
4

AL� 1
4

CLþ 1
2

FL: ð10Þ

To study the case of weak anisotropy, we introduce the small
parameters eg; eA and eL, defined as

g ¼ F
A� 2L

¼ 1þ eg; ð11Þ

N ¼ Lþ eL; ð12Þ
C ¼ Aþ eA: ð13Þ

Thus, in the case of isotropy, we have eg ¼ 0; eL ¼ 0 and eA ¼ 0.
Substituting (11)–(13) into (10), and omitting all quadratic terms
in the small quantities eg; eA and eL, gives

CLgðHÞ ¼ H2ðAeLÞ þH ALeg þ A
1
4
eA � eL

� �
� LeL �

1
2

A2eg

� �

� L2eg þ L eL �
1
4
eA

� �
þ 1

2
ALeg: ð14Þ

For further analysis, we make the reasonable assumption that
physically plausible values for H ¼ v2

s =v2
p may be found in the

vicinity of L=A ¼ v2
sv=v2

ph, i.e.

H ¼ L
A
þ h; ð15Þ

with h being a small perturbation of H away from L=A. Inserting (15)
into (14), and omitting quadratic terms in h, gives

g
L
A
þh

� �
¼ h eg|{z}

Oð10�2Þ

A
C|{z}
�1

1� A
2L

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
��0:7

þ eL

L|{z}
Oð10�2Þ

ðL�AÞ
C|fflfflffl{zfflfflffl}

��0:75

þ1
4

eA

C|{z}
Oð10�2Þ

A
L|{z}
�1

2
6664

3
7775;

ð16Þ

where the numerical values below the curly brackets are for stan-
dard global Earth models (e.g., Dziewoński and Anderson, 1981;



Fig. 3. Illustrations of the parabola CLgðHÞ as defined in Eq. (10), for two combinations of vph;vpv;g; vsh and vsv. (a) This parabola corresponds to the example from Fig. 2a for
vsh > vsv. The grey-shaded area marks H values around H ¼ T for which the parabola lies above zero. Since we can find H1 and H2 with 0 6 H1 < T < H2 6 3=4 and
gðH1Þ > 0 and gðH2Þ > 0, an isotropic equivalent exists. A zoom into the parabola around H ¼ T is shown to the left. (b) The same as above, but for vsh < vsv. There are no H
values around H ¼ T for which the parabola lies above zero. Therefore, an isotropic equivalent does not exist.
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Kennett and Engdahl, 1991; Kennett et al., 1995) around 100 km
depth and weak anisotropy. Eqs. (15) and (16) reveal that a zero
of (14) is, correct to first order, located at H ¼ L=A. What controls
the possible existence of an isotropic equivalent are the slope of
(16) and the position of its zero at H ¼ L=A relative to

T ¼ L
A|{z}
�1

� eg|{z}
Oð10�2Þ

1
2
� L

A

� �
|fflfflfflfflffl{zfflfflfflfflffl}
�0:2

; ð17Þ

which is also correct to first order. Numerical values below curly
brackets are again for around 100 km depth and weak anisotropy.
The slope of the line (16) is determined by the delicate interplay
of comparatively large numbers of Oð1Þ, pre-multiplied by aniso-
tropic perturbations (eg; eL=L; eA=C) that typically range around plus
or minus a few percent. This implies that minor changes of aniso-
tropic properties can strongly influence the slope of (16), thereby
affecting the possible existence of an isotropic equivalent. Similarly,
the position of the zero of (7) or (16) at H ¼ L=A relative to T from
Eq. (17) is controlled by the sign of eg. It follows that we cannot de-
cide about the existence of an isotropic equivalent when the sign of
eg ¼ g� 1 is not known precisely, i.e., when the error bars around a
tomographically estimated g include 1.

Eq. (16) explains the existence fields of isotropic equivalents ob-
served in the examples from Fig. 2. Small variations in eL change
the slope of the parabola gðHÞ in the vicinity of H ¼ T from nega-
tive (for vsh > vsv) to positive (for vsh < vsv), thereby eliminating
the possibility that the observed anisotropy can be explained by
a purely isotropic equivalent.

5. Intrinsic vs. apparent anisotropy in the context of
tomographic inversions

While anisotropy in the Earth is likely to be complicated, the
limited resolving power of seismic data requires assumptions of
unrealistically high symmetry to reduce the number of indepen-
dent elastic parameters. The restriction to transverse isotropy falls
into this class of simplifications. In mantle tomography, the num-
ber of independent elastic parameters is often further reduced
from five to two (e.g., Panning and Romanowicz, 2006; Nettles
and Dziewoński, 2008; Fichtner et al., 2010; Yoshizawa and
Ekström, 2010). This reduction becomes necessary because P wave
anisotropy (e.g., in terms of A and C) and g can hardly be con-
strained independently from seismic observables that are mostly
sensitive to S wave anisotropy (e.g., vsh and vsv). The specific
way of treating P wave anisotropy and g leaves considerable
freedom of choice that is to some degree subjective. Such choices
affect the existence of isotropic equivalents.

The simplest, though mineralogically implausible, treatment of
P wave anisotropy and g in tomographic inversions is to enforce P
wave isotropy, i.e., vph ¼ vpv, and g ¼ 1 (e.g., Debayle and Kennett,
2000; Fichtner et al., 2010; Yoshizawa and Ekström, 2010). Exis-
tence diagrams for isotropic equivalents at 100, 300 and 1000 km
depth are shown in Fig. 4. The isotropic reference P and S velocities
at the various depth levels are taken from the 1D model PREM
(Dziewoński and Anderson, 1981). Fig. 4 reveals that models with
vsh and vsv variations of up to �10% around the reference vs can
always be represented by purely isotropic equivalents, without
the need to invoke nearly fluid (0 6 H 6 0:1) or auxetic
(H P 0:5) materials. The existence diagrams for isotropic equiva-
lents from Fig. 4 can be incorporated in tomographic models to re-
veal where isotropic equivalents can exist and what their possible
properties are. This is illustrated in Fig. 5 for the Australasian mod-
el of Fichtner et al., 2010 at 70 and 150 km depth. As predicted by
the diagrams in Fig. 4, the radial anisotropy in the complete model
can be explained by a finely layered isotropic equivalent. Isotropic
layers with H ¼ v2

s=v2
p well below 0:3 are needed beneath the Tas-

man and Coral Seas east of mainland Australia, as well as along the
Phanerozoic eastern margin of the continent (yellow areas in
Fig. 5). In contrast, isotropic layers with H ¼ v2

s =v2
p well above

0:3 are needed beneath most of Precambrian central and western
Australia in order to explain the observed radial anisotropy in
terms of an isotropic stratification (orange areas in Fig. 5).

Alternative treatments of P wave anisotropy and g are based on
empirical relations between elastic parameters for plausible min-
eral assemblages (Montagner and Anderson, 1989). For instance,
a transversely isotropic material parameterised in terms of

vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

v2
sv þ

1
3

v2
sh

r
; vp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
5

v2
pv þ

4
5

v2
ph

r
; n ¼ v2

sh

v2
sv
; /

¼
v2

pv

v2
ph

ð18Þ

and g can effectively be described by the two S wave parameter per-
turbations dvs and dn when the empirical relations

d ln vp

d ln vs
¼ 0:5;

d ln g
d ln n

¼ �2:5;
d ln /
d ln n

¼ �1:5 ð19Þ



Fig. 4. Existence diagrams for isotropic equivalents at 100, 300 and 1000 km depth when P wave anisotropy is neglected (vph ¼ vpv) and g is set to 1. Shown are relative
variations of vsh and vsv. Reference values are taken from the isotropic version of PREM (Dziewoński and Anderson, 1981). For variations of up to �10% in vsh and vsv, the
elastic medium is generally stable (no black fields). It can, furthermore, be represented by purely isotropic equivalents with H in the range from 0:1 to 0:5 (yellow and orange
fields).

Fig. 5. Possible isotropic equivalence in a tomographic model. Left: horizontal slices at 70 and 150 km depth through the vsh and vsv distributions in the radially anisotropic
model of Fichtner et al., 2010. In this model, P wave anisotropy is ignored, i.e., vph ¼ vpv, and g ¼ 1. Right: corresponding existence maps for isotropic equivalents, using the
same colour coding as in Fig. 4. Isotropic equivalents can express the radial anisotropy throughout the whole model, with a clear preference of layers with high H ¼ v2

s =v2
p

beneath Precambrian central and western Australia. Isotropic layers with H well below 0:3 are needed beneath the Tasman and Coral Seas east of Australia, as well as along
the Phanerozoic eastern margin of the continent.
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are enforced (e.g., Panning and Romanowicz, 2006; Marone et al.,
2007). The corresponding existence diagrams of isotropic equiva-
lents at 100, 300 and 1000 km depth are shown in Fig. 6, with ref-
erence values again taken from PREM (Dziewoński and Anderson,
1981). Within �10% variations of v and vs, all models are elastically
stable. Isotropic equivalents exist for wide ranges of dn-dvs combi-
nations that are strongly depth dependent without having an easily
classifiable pattern. However, the empirical scaling relations (19)
can produce transversely isotropic models for which a purely iso-
tropic equivalent cannot be found (grey fields).

The comparison of Figs. 4 and 6 illustrates the effect of the
rather subjective choice of coupling between P and S wave anisot-
ropy. In accord with our results from Section 4, subtle changes in P
wave anisotropy and g in particular, strongly influence the possible
existence of isotropic equivalents.
6. Discussion

6.1. Inferences on anisotropy from SKS splitting

While our illustration in Section 5 is based on surface wave
tomography, similar examples are possible for SKS splitting be-
cause both use the same mathematical model – transverse isotropy
described by five elastic parameters (e.g., Silver and Chan, 1988;
Babuška and Cara, 1991). Anisotropy inferred from SKS splitting
is therefore naturally included in our analysis. Similar to surface
wave tomography, SKS splitting does not constrain P wave anisot-
ropy. Furthermore, inferred S wave anisotropy carries large uncer-
tainties due to the lack of depth resolution. It follows, that SKS
splitting is also not able to discriminate between intrinsic and
apparent anisotropy.



Fig. 6. Existence diagrams for isotropic equivalents at 100, 300 and 1000 km depth when P wave anisotropy and g are related to S wave anisotropy via the empirical scaling
relations of Eq. (19) that were proposed by Montagner and Anderson (1989), and used, for instance by Panning and Romanowicz (2006) and Marone et al. (2007). Reference
values at the various depth levels are taken from PREM (Dziewoński and Anderson, 1981). Isotropic equivalents exist for wide ranges of dn–dvs combinations that are strongly
depth dependent without having an easily classifyable pattern.
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6.2. Existence of small-scale heterogeneity in the Earth

Wherever we have intermingled structures elongated trans-
verse to the general direction of propagation of seismic waves,
e.g., in the form of SPO, we can expect apparent anisotropy. Even
when the materials are intrinsically anisotropic, the longer wave-
length resultant will be apparent anisotropy, with characteristics
different from those of the constituents. Do such classes of struc-
tures exist naturally within the Earth?

Indeed, we can recognise a number of examples related to the
lithosphere–asthenosphere system. Within the crust, numerical
modelling of coda waves provides evidence for a nearly self-similar
distribution of heterogeneities across a wide range of length scales
(Frankel, 1989). In many subduction zones, deep seismic events
produce high-frequency waves that are efficiently transmitted to
the surface to produce anomalously large ground motion concen-
trated on the land closest to the trench. Significant effects in east-
ern Japan are seen from events as deep as 500 km in the
subducting Pacific plate. The ducting of these high frequency
waves (up to 20 Hz) along the subduction zone can be achieved
by a stochastic waveguide composed of a quasi-laminate structure
with wavespeed variations of a few percent superimposed on the
deterministic structure, with correlation lengths around 20 km
downslab and 0:5 km across the slab thickness (Furumura and
Kennett, 2005). Locally there are alternations of higher and lower
wavespeed that encourage trapped propagation along the foliation,
and which will impose apparent anisotropy in the subducted slab.
A similar class of structure explains the very efficient propagation
of high-frequency waves from the Indonesian subduction zone to
northern Australia (Kennett and Furumura, 2008) through both
oceanic and cratonic lithosphere, and also the propagation of
high-frequency Po/So waves in the western Pacific to more than
3000 km from the source. Similar structures have been invoked
in the interpretation of dense seismic profiles from peaceful nucle-
ar explosions in the former Soviet Union (e.g., Morozova et al.,
1999; Rydberg et al., 2000) though there are differences of opinion
about how much of the observed effects arise at the base of the
crust rather than in the lithospheric mantle (Nielsen et al., 2003).
Other classes of observations indicate the need for complex struc-
tures in the lithospheric mantle with rapid wavespeed variations
with depth below 100 km (Thybo and Perchuc, 1997). Based on
observations of PKP precursors, Hedlin et al., 1997 suggest the
presence of � 10-km-scale heterogeneities throughout the mantle.

Inferences from receiver function studies from ocean bottom
seismographs suggest the presence of a mille-feuille structure with
elongate melt pockets (SPO) of similar dimensions to that proposed
for lithospheric heterogeneity (Kawakatsu et al., 2009). Such struc-
ture will induce apparent anisotropy in both seismological and
rheological properties.
Were the temperature in the asthenosphere to drop, one can
envisage such a structure ‘freezing in’ to give a quasi-laminate. This
process would provide one mechanism for adding heterogeneity to
the base of the lithosphere as the oceanic plate cools moving away
from the mid-ocean ridge, which could then be delivered to a sub-
duction zone. The quasi-laminate nature of the older parts of the
continental lithosphere would provide a significant contribution
to the well recognised faster SH waves in the cratons (e.g., Gung
et al., 2003; Fichtner et al., 2010; Kennett et al., 2013) without pre-
cluding intrinsic anisotropy for which there is independent evi-
dence (e.g., Debayle and Kennett, 2000).

For a general intrinsically anisotropic medium we would expect
comparable levels of azimuthal and polarisation anisotropy. Yet for
cratons, at least, the estimates of polarisation anisotropy are much
larger than for azimuthal anisotropy. For Australia, for instance,
azimuthal anisotropy is around 2% (Fishwick et al., 2008) while
polarisation anisotropy exceeds 5% (Fichtner et al., 2010). The con-
tribution to apparent polarisation anisotropy from the quasi-lami-
nate heterogeneity proposed by Kennett and Furumura (2008)
would be around 3%, which is of a similar size to the discrepancy
between azimuthal and polarisation anisotropy.

Current geodynamic models for the Earth favour a convective
regime in the mantle with a high Rayleigh number, but also a
low Reynolds number. In consequence we expect a scenario where
mantle material is well-stirred, but where initially distinct compo-
nents are not well mixed (e.g., Davies, 1999). Over time heteroge-
neity will tend to become more streaky, imposing a regime of
small-scale heterogeneity with rapid variations in properties in
some directions, but much slower change orthogonally. This is pre-
cisely the configuration that can be described by apparent anisot-
ropy, on some scale. The net effect on global scales will depend on
the degree of organisation of the inter-threading structures. The
seismic wavelengths employed in global studies, and the regions
they sample around the nominal propagation path, are most likely
large enough to smear out the influences of streaky heterogeneity,
and thus we see a mantle that cannot be distinguished from
isotropic.

6.3. Constraints on P wave anisotropy

One of our principal conclusion is that P wave anisotropy must
be known with considerable precision in order to assess the possi-
ble existence of isotropic equivalents. Although evidence has been
presented in the context of seismic tomography for radial anisot-
ropy in P waves (Boschi et al., 2000), it is difficult to justify the in-
crease in the numbers of degrees of freedom in the model relative
to the improvement in data fit. Direct evidence for P anisotropy is
confined to the crust and the uppermost mantle (e.g., Fuchs, 1977;
Schulte-Pelkum et al., 2001; Fontaine et al., 2009), and the results
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are quite sensitive to the presence of heterogeneity. It is therefore
rather unlikely that it will be generally possible to extract P wave-
speed parameters with the precision that would allow an unam-
biguous separation of intrinsic and apparent anisotropy, even in
the simple case of transverse isotropy.
6.4. More complex forms of anisotropy

We restricted ourselves to transverse isotropy because the sep-
aration of intrinsic and apparent anisotropy can be studied analyt-
ically. The Earth is certainly not transversely isotropic, but
macroscopically triclinic due to the presence of multiple mineral
phases with different orientations and concentrations. More gen-
eral cases of anisotropy could be analysed using the 3D version
of non-periodic homogenisation (Capdeville et al., 2010b,a), but
the complexity of this problem is daunting.

At this point we can only conjecture that the separation of
intrinsic and apparent anisotropy becomes more difficult when
the symmetry of the assumed elastic tensor is further reduced.
Reducing symmetry introduces additional elastic parameters,
some of which control P wave anisotropy. In the Earth’s mantle,
however, constraints on P wave anisotropy are weak. Thus, the
number of uncertain parameters increases with decreasing sym-
metry. We would therefore expect that it effectively becomes eas-
ier to find small-scale isotropic models that are equivalent within
the error bars to a given anisotropic model.
7. Conclusions

The flow of Earth materials leads to LPO of intrinsically aniso-
tropic materials that produces observable seismic anisotropy.
Assuming that all seismic anisotropy results from LPO, this link is
frequently used to infer rheology and flow patterns from aniso-
tropic tomographic models.

While LPO certainly exists, observed seismic anisotropy can also
be mimicked by heterogeneity at length scales smaller than the
wavelength, for instance in the form of SPO or a sequence of fine
layers. The existence of sub-wavelength heterogeneity in the Earth
is predicted by convection at high Rayleigh and low Reynolds num-
bers, and observationally confirmed by strongly scattered seismic
waves and the incompatibility of large polarisation and small azi-
muthal anisotropy in various tomographic models. Small-scale
heterogeneity produces apparent anisotropy that need not be re-
lated to rheology and flow patterns in the same way as intrinsic
anisotropy induced by LPO. Quantitative interpretations of ob-
served seismic anisotropy in terms of Earth properties therefore re-
quire a separation of its apparent and intrinsic contributions.

At present, the problem of separating intrinsic and apparent
anisotropy is too complex to be dealt with in full generality. How-
ever, by restricting ourselves to transversely isotropic media, we
can gain valuable insight that may serve as a future starting point
for studies of more complicated scenarios, based for instance on
non-periodic homogenisation techniques (Capdeville et al.,
2010b,a). To further reduce the level of difficulty to a presently
tractable level, we only ask, under which circumstances a given
transversely isotropic model can be represented by a completely
isotropic finely layered equivalent. In cases where this is possible,
intrinsic anisotropy is – strictly speaking – not required, thereby
eliminating any possibility to infer the amount of intrinsic anisot-
ropy from seismic observations.

Our main conclusion is that observed seismic anisotropy can
nearly always be explained by purely isotropic layering, unless
all anisotropic parameters are known with unrealistic accuracy.
Both, the examples in Section 3.2 and the perturbation analysis
in Section 4 indicate that the parameter g plays a particular role
for the possible existence of isotropic equivalents. Minute changes
in g can switch between possible and impossible isotropic equiva-
lence. However, g is poorly constrained. It follows that intrinsic
anisotropy over tomographically resolvable length scales is never
strictly required when reasonable error bars for anisotropic param-
eters are taken into account.

We explicity stress that our results do not negate the existence
of intrinsic anisotropy in the Earth, which is well observed, e.g., in
the form of LPO in ophiolites. However, we have demonstrated that
many aspects of anisotropy can be mimicked by slightly more
complex isotropic structures. Indeed a significant component of
large-scale anisotropy is likely to be associated with the way that
seismic waves average out the properties of fine-scale variability.
In the 3D heterogeneous Earth it will be very difficult from seismo-
logical data alone to unambigously assign the true amount of
intrinsic anisotropy that may be related to flow via LPO, and so
estimates need to be treated with caution. Thus convective flow
patterns and the strength of the flow cannot be quantified on the
basis of anisotropic tomographic models alone, and further geody-
namic constraints are required, e.g., from gravity and topography
for the lithosphere (e.g., Simons et al., 2003; Kirby et al., 2006).
In future studies, seismic anisotropy and mantle flow should be in-
verted jointly on the basis of both geodynamic and seismic data,
and by using realistic flow models that incorporate the formation
of small-scale heterogeneity in convection regimes at high Ray-
leigh and low Reynolds number. Observations of seismic wave
scattering (e.g. Hedlin et al., 1997; Furumura and Kennett, 2005;
Kennett and Furumura, 2008; Kaneshima and Helffrich, 2009)
could be incorporated to estimate the contribution of small-scale
heterogeneity to observed anisotropy.

In our analysis, we considered transversely isotropic media that
do not perfectly represent the Earth which is certainly triclinic.
Nevertheless, we were able to obtain valuable insight into the nat-
ure of the problem.
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Appendix A. Conditions for the existence of an isotropic
equivalent

We give a slightly more detailed and illustrated version of the
proof of the inequalities (5), first derived by Backus (1962). As a
preparatory step, we note an important lemma that we will need
later: there is a function l P 0 such that

hl�1i ¼ X�1; hli ¼ Y; ðA:1Þ

if and only if X 6 Y . To verify this statement, we first assume
hl�1i ¼ X�1 and hli ¼ Y . Invoking Schwarz’s inequality, we have

1 ¼ h1i2 ¼ hl�1=2l1=2i2 6 hl�1ihli ¼ X�1Y ; ðA:2Þ

which proves part one of the lemma. The proof of the second half is
constructive: we consider a layered medium that is partitioned into
two fractions P1 and P2 with constant shear moduli l1 and l2.
Without loss of generality we let l2 > l1. Our goal is to find p1

and p2 with p1 þ p2 ¼ 1 such that
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X�1 ¼ l�1
1

Z
P1

wðn� zÞdnþ l�1
2

Z
P2

wðn� zÞdn

¼ p1l�1
1 þ p2l�1

2 ; ðA:3Þ

and

Y ¼ l1

Z
P1

wðn� zÞdnþ l2

Z
P2

wðn� zÞdn ¼ p1l1 þ p2l2: ðA:4Þ

Both p1 and p2 may depend on z, and this dependence is con-
trolled by the width of the various layers. Solving for p1 and p2,
gives

p1 ¼
l2 � Y
l2 � l1

; p2 ¼
Y � l1

l2 � l1
; ðA:5Þ

which implies l1 < Y < l2. This inequality motivates the ansatz

l1 ¼ Y � v; l2 ¼ Y þ v; ðA:6Þ

where v remains to be determined. It follows from (A.6) that
l1l2 ¼ Y2 � v2, and therefore, with a little bit of algebra:

X�1l1l2 ¼ p1l2 þ p2l1 ¼
vl2

l2 � l1
þ vl1

l2 � l1
¼ v l2 þ l1

l2 � l1

¼ Y ¼ X�1ðY2 � v2Þ: ðA:7Þ

Rearranging (A.6) gives

v2 ¼ YðY � XÞ: ðA:8Þ

It follows that X 6 Y is a necessary condition for Eq. (A.8) to
have a real-valued solution for v. This concludes the proof.

To pursue our original goal, we assume that the STILWE param-
eters L;N;R; S and T are given, and from them, we wish to construct
a finely layered, elastically stable and isotropic medium. For this
we divide the medium in two fractions P1 and P2 where H takes
the constant values H1 and H2 > H1, respectively. This is shown
in Fig. A.7a. The effective parameter T is then given by

T ¼
Z

wðn� zÞHðnÞdn

¼ H1

Z
P1

wðn� zÞdnþH2

Z
P2

wðn� zÞdn

¼ p1H1 þ p2H2; ðA:9aÞ

with p1 þ p2 ¼ 1. Note that T;p1 and p2 can still be position-depen-
dent because the width of the individual layers is not specified.
Within each of the layers with constant H we assume at least two
Fig. A.7. (a) Division of the layered medium into two fractions where H ¼ v2
s =v2

p takes th
within each of the constant-H layers consists of at least two different types of sublayers. T
of the layers within a fraction. The widths of layers and sublayers is arbitrary and poten
sub-layers with constant l. Furthermore, we impose that the aver-
age shear modulus within each layer of a specific fraction is the
same, as illustrated in Fig. A.7b. We denote the shear modulus aver-
ages within the layers of a fraction by hli1 and hli2. For the effective
parameter N we then find

N ¼ p1hli1 þ p2hli2: ðA:9bÞ

Eq. (A.9b) holds because the width of each layer is small com-
pared to the width of the window w. The shear modulus l within
a layer can therefore be replaced by its average hli1 or hli2,
depending on the association with one of the two fractions. For
the remaining effective parameters we obtain

L�1 ¼ p1hl�1i1 þ p2hl�1i2; ðA:9cÞ
R ¼ p1H1hl�1i1 þ p2H2hl�1i2; ðA:9dÞ
S ¼ p1H1hli1 þ p2H2hli2; ðA:9eÞ

Using p1 þ p2 ¼ 1, we can solve Eq. (A.9a) for p1 and p2:

p1 ¼
T �H2

H1 �H2
; p2 ¼

T �H1

H2 �H1
: ðA:10Þ

From (A.10) we obtain expressions for the fractional averages of
l and l�1:

hli1 ¼
H2N � S
H2 � T

; hl�1i1 ¼
H2L�1 � R

H2 � T
; ðA:11aÞ
hli2 ¼
S�H1N
T �H1

; hl�1i2 ¼
R�H1L�1

T � �H1
: ðA:11bÞ

Upon invoking the previously shown lemma, we obtain condi-
tions for the existence of a function l such that Eqs. (A.11) hold.
These conditions are

ðH2L�1 � RÞðH2N � SÞ P ðH2 � TÞ2; ðA:12aÞ
ðR�H1L�1ÞðS�H1NÞ P ðT �H1Þ2: ðA:12bÞ

Thus, if we can find H1 and H2 such that the inequalities (A.12)
are satisfied, we can construct a finely layered isotropic medium
that has the effective parameters L;N;R; S and T. A procedure for
finding the shear modulus distribution of the finely layered med-
ium, is given in the proof, but l is only specified up to its average
within each of the fractions. Of course, H1 and H2 must conform to
condition 0 6 H1 < T < H2 6 3=4.
e constant values H1 and H2 > H1, respectively. (b) The shear modulus distribution
he average of l over a constant-H layer – denoted hli1 or hli2 – is the same for each
tially variable as a function of z.
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