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Abstract

We perform inversions of gravity data (geopotential model EGM96) and seismic tomography model (S16RLBM) for
the scaling factor (ζ ), which relates relative density anomalies to relative S-wave velocity anomalies. The gravity data and
tomographic model are anti-correlated below continents down to a depth of z = 200 km. This anti-correlation is not present
below oceans. Except for smoothness, which is controlled by a damping factor, no a priori information is added to the inversion.
Data are filtered between degrees � = 11 and � = 16 of the spherical harmonic expansion. This spectral window is well suited
for the study of intermediate-size (2000–4000 km) anomalies in the uppermost mantle. Calculations are made separately for
sub-continental and sub-oceanic mantle. The sub-continental and sub-oceanic scaling factors are significantly different at
depths shallower than 260 km. In both cases, the magnitude of ζ is around 0.05. The sub-continental scaling factor has a
positive root down to z = 220 km, whereas the sub-oceanic scaling factor yields positive values down to z = 140 km only. At
depth shallower than 350 km, models of ζ do not depend on the damping factor or the viscosity model. At depths greater than
350 km, the resolution of ζ (z) decreases significantly and low degrees (� = 2–4) add information from large-scale anomalies
and from the lower mantle. As a result, the shape and values of ζ for � = 2–16 and � = 11–16 are significantly different
at depths greater than 350 km. A possible explanation of the discrepancies between the sub-continental and sub-oceanic
scaling factor is that intermediate-scale anomalies are more important in the continental uppermost mantle than in the oceanic
uppermost mantle. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The density (ρ) and the S-wave velocity (VS) of the
Earth’s mantle are both related to temperature, com-
position and pressure. Therefore, the inference of the
density structure from VS-anomalies is not straight-
forward. To make a crude diagnostic of the origin
of the anomalies, one can use a scaling factor (ζ )
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defined as the ratio of the relative density variations
to the relative VS-anomalies.

ζ(r, θ, ϕ) = ∂ ln ρ(r, θ, ϕ)

∂ lnVS(r, θ, ϕ)
(1)

Purely thermal anomalies result in positive values
of ζ , because an increase (decrease) of temperature
lowers (raises) both the density and the shear veloc-
ity. Extrapolations of experimental data for olivine
yield values of ζ between 0.35 and 0.45, depend-
ing on temperature (Isaac et al., 1989; Isaac, 1992).
Karato (1993) accounted for anelasticity and found
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smaller values: 0.2 ≤ ζ ≤ 0.3 in the upper mantle.
Vacher et al. (1996) have computed values of ζ using
a simplified mineralogical model of the upper mantle
and temperature distributions predicted by isoviscous
convection. They found values of ζ ranging between
0.42 at the surface, and 0.37 at z = 660 km depth. To
determine ζ in the mantle, one needs two indepen-
dent data sets, which constrain seismic velocity and
density, respectively. Here, we used a global S-wave
velocity model and geodetic data.

Seismic tomography of the upper mantle yields
high-velocity roots below continents, but not below
oceans (for recent S-wave models see Woodhouse
and Trampert, 1995; Li and Romanowicz, 1996; Su
and Dziewonski, 1997; Ritsema et al., 1999). This
difference was first pointed out by Jordan (1975), who
proposed that material in the sub-continental mantle
is colder than in the sub-oceanic mantle. The increase
of density induced by the relatively low temperature
is balanced by differences in the respective chemical
composition of the sub-continental and sub-oceanic
mantle. Forte et al. (1994a) computed a radial model
of ζ related to the continent–ocean anomalies of
seismic velocities, and arrived at similar conclusions.

Inversions of gravity data and tomographic models
have been performed (e.g. King and Masters, 1992;
Kogan and McNutt, 1993; Forte et al., 1994a,b) to
investigate chemical differences in the mantle. These
studies are based on flow models driven by density
anomalies, and they use Eq. (1) to convert velocity
anomalies into density anomalies. However, King and
Masters (1992) and Kogan and McNutt (1993) have
assumed a constant value of ζ throughout the man-
tle. Forte et al. (1994a,b) have imposed the shape of
the function ζ (r), and inverted gravity data for the pa-
rameters describing this curve. Moreover, the spatial
resolution of these studies is limited to the spherical
harmonic degrees less or equal to � = 8 (Forte et al.,
1994a,b) or � = 12 (Kogan and McNutt, 1993). Low
degrees of the gravity anomalies depend strongly on
the structure of the deep mantle, and are weakly influ-
enced by medium-size (L ∼ 2000–4000 km) anoma-
lies in uppermost mantle (z < 400 km).

In the present study, we invert VS-anomalies and
gravity anomalies for a radial model of ζ without
assuming a priori values or shape. We have used the
global S-wave model S16RLBM (Woodhouse and
Trampert, 1995), which is expressed in a spherical

harmonic expansion up to degree and order 16, and
the geoid model EGM96 (Lemoine et al., 1998).
Calculations are made separately for oceanic and
continental regions. It turns out that ζ has positive
values down to z = 220 km below continents, and
down to z = 140 km below oceans. At depths greater
than 350 km, ζ is not well constrained. A variety of
tests suggest that these results are robust.

2. Method and data

Inversions presented in this paper are carried out
using a relationship between the gravity anomalies
(δg), the VS-anomalies (δVS) and the scaling factor
(ζ ). For each degree � of the spherical harmonic ex-
pansion, the gravity anomaly (δg�) is related to the
integrated density anomaly (δρ�) weighted by the
geoid kernels (G�) (e.g. Forte and Peltier, 1987).

δg�(θ, ϕ)=3g0

ρ̄R

� − 1

2� + 1

∫ R

rCMB

G�(r)δρ�(r, θ, ϕ) dr (2)

where R and ρ̄ are the Earth’s radius and mean density,
rCMB the radius of the core, and g0 the acceleration
of gravity at the surface.

The geoid kernels (G�) describe the geoid response
to a given density anomaly located at a given depth,
and they depend on mantle dynamics. In the present
study, we have computed these kernels following the
method proposed by Forte and Peltier (1991). The con-
servation of mass, momentum, and the stress–strain
relationship are expanded in terms of generalized
spherical harmonics and solved for the poloidal flow in
a compressible mantle. This method accounts for ra-
dial viscosity variations, and therefore it is possible to
test different dynamical models of the Earth’s mantle.
However, the effects due to the toroidal flow, which
imply lateral viscosity variations, are not considered
here. Fig. 1 represents geoid kernels for the viscosity
profile MF2 developed by Mitrovica and Forte (1997).
For degrees up to � = 8 (Fig. 1b), the geoid kernels
have non-negligible values throughout the mantle. On
the other hand, at higher degrees (� > 10) (Fig. 1c),
the geoid kernels yield small values in the deep
(z > 1000 km) mantle. Therefore, the lowest degrees
of the gravity anomalies integrate density anomalies
over the whole mantle, whereas degrees higher than
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Fig. 1. Geoid kernels computed for the viscosity model MF2 (Mitrovica and Forte, 1997), and for degrees 2, 5 and 8 (left) and 10, 13
and 16 (right) of the spherical harmonic expansion. The computational method is fully described in Forte and Peltier (1991).

� = 10 are mostly sensitive to density anomalies in
the upper mantle (z < 700 km). Similar conclusions
can be drawn for other viscosity models, although the
shape of the kernel changes. For a constant viscos-
ity, kernels have negligible values in the deep mantle
(z > 1000 km) only for degrees higher than � = 20.

Inserting Eq. (1) into Eq. (2), one can relate the
density variations to the VS-anomalies. If one assumes
that the scaling factor does not vary laterally within a
given region, Eq. (2) becomes

δg�(θ, ϕ)= 3g0

ρ̄R

� − 1

2� + 1

∫ R

rCMB

G�(r)ρ0(r)ζ(r)

× (δVS)�(r, θ, ϕ)

V0(r)
dr (3)

where ρ0(r) and V0(r) are the reference profiles for
density and S-wave velocity, respectively. Note that
one could have used geoid heights (δN) rather than
gravity anomalies, since

δN�(θ, ϕ) = 1

� − 1

R

g0
δg�(θ, ϕ) (4)

The geoid is dominated by degrees � = 2 and
� = 3. The root-mean-square (rms) amplitude of the
geoid decreases sharply as the spherical harmonic
degree increases: for � = 10 and � = 20, the rms am-
plitude is, respectively, 6.8 and 1.8% of that for � = 2.
In comparison, the spectrum of the rms amplitude
of gravity anomalies is much flatter: for � = 10 and
� = 20, the rms amplitude is, respectively, 61.5 and
34.6% of that for � = 2. As a consequence, to sample
structures smaller than ∼4000 km, gravity anomalies
carry more information than geoid heights.

Gravity and VS-anomalies are then summed up for
spherical harmonic degrees between �1 and �2.

δg(θ, ϕ) =
�2∑

�=�1

δg�(θ, ϕ) (5)

K(r, θ, ϕ)= 3ρ0(r)g0

ρ̄R

�2∑
�=�1

� − 1

2� + 1
G�(r)

× (δVS)�(r, θ, ϕ)

V0(r)
(6)



196 F. Deschamps et al. / Physics of the Earth and Planetary Interiors 124 (2001) 193–211

Fig. 2. Gravity anomalies from EGM96 (Lemoine et al., 1998) (top row) and S-wave velocity anomalies S16RLBM (Woodhouse and
Trampert, 1995) at z = 100, 200 and 300 km depth. Models are filtered for degrees � = 2–16 (left column) and � = 11–16 (right column)
of the spherical harmonics expansion.
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Eq. (3) becomes

δg(θ, ϕ) =
∫ R

rCMB

K(r, θ, ϕ)ζ(r) dr (7)

We have solved Eq. (7) for a radial model of scal-
ing factor using a generalized inversion method (e.g.
Snieder and Trampert, 1999). This method is outlined
in Appendix A. Gravity anomalies constitute the data
vector, while VS-anomalies and geoid kernels are used
to define the generalized inverse matrix. The inver-
sion is regularized using a smoothness constraint with
a damping factor ε. No other a priori information is
introduced.

In the following calculations gravity anomalies and
VS-anomalies are sampled with an interval of dθ in
colatitude and dϕ in longitude. To avoid over-sampling
at high latitudes, the longitude interval (dϕ) increases
from the equator to the poles, such that the surface
element (dΩ = sin θ × dθ × dϕ) is constant. For
instance, if dϕ = 5◦ on the equator, then dΩ = 7.6 ×
10−3 steradian and dϕ = 28.8◦ at θ = 20◦.

Inversions can be made for a selected geographical
area. Here, we have computed radial models of ζ for
oceans and continents separately. To define oceanic
areas and continental areas, we have constructed a
continent–ocean function derived from the 3SMAC
tectonic regionalization (Nataf and Ricard, 1996). This
data set has a resolution of 2◦ × 2◦. The zero-mean

Fig. 3. Length (L̄) and roughness (S̄) of the mean model, as a function of the sample size. To reach stable values of L̄ and S̄, one must
consider a large enough collection of perturbated models. This example corresponds to the sub-continental scaling factor represented in
Fig. 6a.

continent–ocean function computed with the 3SMAC
repartition is equal to 0.631 for continental areas and
−0.369 for oceanic areas. The spherical harmonic ex-
pansion of this continent–ocean function is dominated
by degrees 4 and 5. Hence, the continental and oceanic
contributions to degrees 11 to 16 of gravity data and
tomographic models are distinct.

The gravity data (δg) are tide-free, non-hydrostatic
free-air gravity anomalies derived from the model
EGM96 (Haagmans et al., 1998; Lemoine et al.,
1998). EGM96 represents the Earth’s gravitational
potential up to spherical harmonic degree � = 360,
and includes recent satellite tracking data and terres-
trial gravity data. To remove the hydrostatic rotational
flattening, we used the model of Nakiboglu (1982).
The VS-anomalies (δVS) are provided by the global
tomographic model S16RLBM (Woodhouse and
Trampert, 1995), and the reference models of den-
sity (ρ0(r)) and velocity (V0(r)) are given by PREM
(Dziewonski and Anderson, 1981). In S16RLBM, the
three-dimensional VS-anomalies structure is obtained
from the inversion of Love and Rayleigh phases ve-
locities (Trampert and Woodhouse, 1995) together
with body waveform data. The model is expanded
laterally in spherical harmonics up to degree � = 16
and vertically on a spline basis, leading to a verti-
cal resolution of about 75 km in the top 400 km of
the mantle. Fig. 2 shows EGM96 and S16RLBM at
different depths for � = 2–16 and � = 11–16.
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The model S16RLBM does not provide error
estimates on the VS-anomalies. These errors would
propagate to the values of ζ . To account for likely
uncertainties, we have introduced a priori errors in
the original tomographic model, which leads to an
estimate of the variance in ζ (σ ζ ). We have generated
random errors with a Gaussian probability distribu-
tion (e.g. Press et al., 1989, pp. 191–203) and added
them to the local values of the relative VS-anomalies
(δVS/V0). The distribution of these errors has a zero
mean and a variance σ err. In other words, 95% of the
simulated errors have values within ±2σ err. We thus
obtain an ensemble of perturbed tomographic models,
and invert each of these models for a perturbed radial
model of the scaling factor (ζ per). Finally, at each
depth, we compute the mean value (ζ̄ ) and the variance
(σ ζ ) over the collection of the estimated models ζ per.
To get statistically relevant values of the scaling factor,
one must consider a large enough collection of per-
turbed models (sample size). A good test is provided
by the length (L̄) and the roughness (i.e. the norm of
the derivative, S̄) of the mean model (Appendix A).
A satisfactory solution is reached when the values of
L̄ and S̄ are independent of the sample size (Fig. 3).

3. Correlation between gravity and VS-anomalies

At shallow depths, S16RLBM correlates with
surface tectonics and yields strong continent–ocean
differences down to z = 250 km depth (Woodhouse
and Trampert, 1995). In the sub-continental mantle,
between 60 and 180 km depth, S16RLBM is strongly
anti-correlated with surface heat flow (Röhm et al.,
2000). Röhm et al. (2000) used the depth consis-
tency of S16RLBM to define a seismic lithosphere
in the sub-continental mantle: the correlation of the
VS-anomalies with respect to the VS-anomalies at
a reference depth of 100 km falls off rapidly below
180 km. Here, we computed the correlation (C) be-
tween S16RLBM and the gravity anomalies derived
from EGM96.

C(z)= 1

σδgσδVS(z)Ω

∫
Ω

δVS(z, θ, ϕ)δg(θ, ϕ) dΩ (8)

where the correlation is computed over the spatial do-
main Ω , σδVS(z) is the variance in the VS-anomalies

Fig. 4. Coefficient of correlation between S16RLBM VS-anomalies
and EGMG96 gravity anomalies as a function of depth, and for
different regions. Data are filtered for the degrees � = 11–16 of
the spherical harmonic expansion. C: all continental regions, O:
all oceanic regions, Afr: Africa and Pac: Pacific. The resolution
dθ×dϕ of the calculation is 2◦ ×2◦ for regional areas, and 5◦ ×5◦
for continents and oceans.

at depth z = R− r and σ δg the variance in the gravity
anomalies.

Fig. 4 shows the correlation as a function of depth
for some regions. In the shallow sub-continental man-
tle, S16RLBM and EGM96 are anti-correlated (i.e.
high δVS correspond to low δg). For instance, the
sub-African mantle yields a root between the depths
z = 70 and z = 180 km, in which the value of C
lies between −0.6 and −0.7 (Fig. 4). A similar root
is observed in the whole-sub-continental mantle, al-
though the anti-correlation is weaker (around −0.5).
On the other hand, in the sub-oceanic mantle, we
do not find a significant correlation between grav-
ity and VS-anomalies. In the sub-Pacific mantle, the
correlation is between −0.1 and 0.1 at least down to
z = 500 km. Higher correlation is seen in the shal-
low sub-Atlantic mantle (not shown in Fig. 4), but
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in the whole sub-oceanic mantle, correlation remains
small, between −0.2 and 0.2. We have also computed
correlation between VS-anomalies and geoid anoma-
lies, and found results similar to those in Fig. 4.

The root observed in the sub-continental mantle is
very similar in shape to that reported by Röhm et al.
(2000). Thus, the seismic lithosphere is associated
with negative gravity anomalies. Moreover, S-wave
velocity profiles yield strong positive anomalies in the
sub-continental mantle (Woodhouse and Trampert,
1995; Röhm et al., 2000). The strong anti-correlation
between tomographic models and geodetic data
suggests that the positive VS-anomalies in the
sub-continental mantle may be related to an excess of
mass (positive density anomalies). However, it does
not provide information about the origin of such an
excess of mass. The pronounced anti-correlation be-
tween the surface heat flux and the tomographic model
S16RLBM (Röhm et al., 2000) favors a thermal ori-
gin, but one cannot exclude compositional origin and
other effects. For instance, accounting for anelasticity
may reduce the amplitude of temperature anomalies
associated with velocity anomalies (Karato, 1993).

4. Scaling factor in the uppermost mantle

4.1. Preferred model

We performed a series of 2000 inversions includ-
ing simulated errors in the relative VS-anomalies. This
sample size is big enough to provide relevant values of
the mean scaling factor (Fig. 3). We assumed a vari-
ance of the distribution of the errors (σ err) equal to 2%
for continental areas and 1% for oceanic areas. For
� = 2–16, the mean value of the relative VS-anomalies
below continents (oceans) in the uppermost mantle
varies between δVS/V0 ∼ 2% (−1%) and δVS/V0 ∼
0.5% (−0.5%). For � = 11–16, these mean relative
anomalies are about one order of magnitude smaller
(solid curves in Fig. 6). Therefore, taking σ err = 2%
for continents and σ err = 1% for oceans will simulate
errors as large as 100% of the original tomographic
model for � = 2–16, and even more if one considers
� = 11–16. Such large simulated errors should cover
most sources of possible real errors.

Geoid kernels were computed according to the vis-
cosity model MF2 (Mitrovica and Forte, 1997), which

results from joint inversion of gravity anomalies and
relative sea level variations. For degrees higher than
� = 11, the geoid kernels peak around z = 250 km
depth (Fig. 1c), and have small values in the lower
mantle. The lowest degrees (� = 2–8), on the other
hand, have non-negligible values throughout the man-
tle. Moreover, for degrees lower than � = 11 the
horizontal wavelength of the anomalies is larger than
4000 km. To get a good sampling of the shallow mantle
(z = 50–400 km), we removed low degrees of gravity
and VS-anomalies. Here, data are summed up for the
spherical harmonic degrees � = 11–16. Since geoid
kernels for � = 11–16 have low values in the lower
mantle, Eq. (7) is integrated from a depth of 1000 km
up to the surface.

The damping factor (ε) controls the relative impor-
tance of a priori information (here, the smoothness)
and data. To choose its value, we have performed
a set of experiments in which the original (i.e.
non-perturbed) VS-anomalies are inverted for ζ (z) as a
function of ε. The results are displayed on a trade-off
curve (Fig. 5), by plotting the misfit of the recon-
structed to observed gravity anomalies as a function
of roughness of the estimated model. Usually, one
defines the preferred model as the best compromise
between the smoothness and the variance reduction.
The trade-off curves in Fig. 5 have a hyperbolic shape,
and therefore the preferred model is located on the
respective elbow of these curves. According to this
criterion, the variance reduction of the preferred con-
tinental model is equal to 30%, which corresponds to
a damping factor around 400. The correlation between
the observed and reconstructed gravity anomalies
reaches 56%. For oceans, the variance reduction and
the correlation are poorer (10 and 31%, respectively),
and the preferred value of the damping is around 250.
We did similar experiments for other spatial resolu-
tions, and noted that for a given value of the variance
reduction, ε is roughly multiplied by 2 as the spatial
resolution is divided by 2.

The mean value (ζ̄ ) and the variance (σ ζ ) of the
estimated model are shown in Fig. 6 for continents
(left) and oceans (right). The sub-continental scaling
factor (Fig. 6a) is positive down to z = 220 km, and
has a local maximum around z = 120 km. It reaches a
minimum at z = 500 km, and remains negative down
to z = 600 km. However, the variance of the model
increases with depth. The resolution matrix (Fig. 7)
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Fig. 5. Trade-off curve for the choice of the damping factor (ε), for continents (plain curve) and oceans (dashed curve). Inversions of
gravity anomalies and original VS-anomalies are carried out with different values of ε. The misfit to the observed gravity anomalies (1−X)
is plotted as a function of the model roughness (S). Rough models yield a good variance reduction, whereas very smooth models have a
poor variance reduction. A relevant value of ε should lie on the elbow of the curve in between these two end-members, as indicated by the
arrows. Data were filtered out in the range � = 11–16, and the surface element was kept constant, with dθ = 5◦ and dϕ = 5◦ on the equator.

yields substantial smearing between 300 and 450 km
depth. At depths greater than 450 km, the scaling fac-
tor is poorly resolved. This poor resolution has two
origins. First, the geoid kernels for � = 11–16 peak in
the layer z = 100–400 km, and have small values in
the deeper mantle. In particular, the geoid kernels are
close to zero around z = 650 km, and the resolution
is poor around this depth. Second, the amplitude of
the S16RLBM anomalies decreases rapidly at depths
greater than about 400 km (Woodhouse and Trampert,
1995). Therefore, any interpretation concerning the
transition zone (z = 420–670 km) and the lower man-
tle is difficult. We have also reconstructed gravity data
from ζ̄ and the original VS-anomalies. The variance
reduction of this synthetic data set to the observed
gravity anomalies is equal to 29.3%, which is close
to the variance reduction obtained by inverting the
original VS-anomalies. The sub-oceanic scaling factor
(Fig. 6b) decreases down to z = 180 km and is positive
down to z = 140 km. In the layer 220 ≤ z ≤ 280 km,
it remains close to zero. The variance reduction to
the observed gravity data is equal to 8.9%, which

is significantly poorer than for continental areas.
At depths greater than 260 km, the sub-continental
and sub-oceanic scaling factors are close to each
other.

One may note that the variance reduction of the ob-
served to reconstructed gravity anomalies is quite poor.
First, it must be noted that the damping imposes a low
variance reduction. Second, most of the gravity signal
is in low degrees. For � = 11–16 gravity anomalies
have small absolute values, and therefore small abso-
lute errors can lead to high relative errors. Moreover,
the variance reduction compares reconstructed gravity
anomalies to observed gravity anomalies, but it does
not account for errors on the observed gravity anoma-
lies (σ δg), on the tomographic model (σδVS ), and on
the inverted model of ζ (σ ζ ). To account for these er-
rors, we performed a χ2-test. For the whole Earth, and
assuming σδg = 0.15 mgal, σδVS/δVS = 10% and the
σ ζ plotted in Fig. 6a, we find χ2 = 4.3. Therefore,
the gravity anomalies predicted by our inverted model
of scaling factor yield within ±2σ δg of the observed
gravity anomalies. Note that because the correlation
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Fig. 6. Inverted scaling factor (ζ ) in the sub-continental (a) and sub-oceanic (b) upper mantle. Open circles indicate the mean value of ζ ,
and the error bars represent the variance in ζ . The damping factor is equal to 400 and 250 for continents and oceans, respectively. Data
are filtered for degrees � = 11–16, integration (7) is performed from z = 1000 km depth up to the surface, and the viscosity model is
MF2. The bold curve represents the mean relative VS-anomalies for degrees � = 11–16 as a function of depth below continents (a) and
oceans (b). Note that these mean relative anomalies are roughly one order of magnitude smaller that of the total tomographic model.

between observed and reconstructed gravity anomalies
is only about 50%, our model of ζ (z) cannot explain
the observed gravity anomalies completely.

The bold plain curves in Fig. 6 represent the mean
value of relative VS-anomalies (for degrees � =
11–16) as a function of depth, in the sub-continental
(left) and sub-oceanic (right) mantle. Clearly, these
curves have very different shapes than those of the
scaling factor. Therefore, the results of joint inversions
do not yield simply the variations of VS-anomalies
with depth. Chemical, thermal and/or physical pro-
cesses may be responsible for the change in the sign of
ζ in the uppermost mantle, as well as for the difference

between the sub-continental and sub-oceanic scaling
factor.

Results in Fig. 6 were obtained for given values of
some input parameters that may be unsuitable for the
uppermost mantle. Therefore, to test the robustness of
these results, it is important to evaluate the influence
of parameters such as the smoothness and the radial
viscosity model.

4.2. Damping factor (ε)

To evaluate the influence of a priori information on
the estimated model of ζ , we performed other series
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Fig. 7. Model resolution matrix for the preferred sub-continental scaling factor. Some smearing is present since z = 300 km depth (shallower
horizontal line), and below z = 450 km the resolution is poor. In this example, original data are inverted for the sub-continental scaling
factor in the window � = 11–16, and integration (7) is performed from z = 1000 km depth up to the surface. The damping factor is equal
to 400. The viscosity model is MF2 and the element of surface is constant with dϕ = 5◦ on the equator.

of inversions with different values of the damping. For
values of ε smaller than those of our preferred model
(and therefore, for rougher estimated model), ζ be-
comes negative at shallower depths (Fig. 8). Similarly,
for higher values of ε (not shown here), ζ changes
sign deeper in the mantle. However, the shape of the
function ζ (z) does not change dramatically. Rougher
models result in slightly stronger radial variations in
the layer 200–300 km, and significantly higher vari-
ances throughout the upper mantle. Variances are
higher because a weaker damping allows bigger radial
derivatives, and therefore wider ranges of values, for
ζ . Note that the preferred models (dashed curves
in Fig. 8) remain within these error bars. In other
words, weaker a priori information does not induce
dramatic changes in the shape and amplitude of ζ .
Moreover, the difference between the sub-continental
and sub-oceanic scaling factor is still present. There-
fore, the damping factor is not a sensitive parameter.
This result is important, since the determination of
the best value of ε is subjective.

4.3. Viscosity model

We made additional calculations to estimate the in-
fluence of the viscosity profile. The viscosity model
does not appear explicitly in Eq. (3), but it is required
to compute the geoid kernels G�(r). The model MF2
(Mitrovica and Forte, 1997) was built to provide a
good fit of both the long-wavelength gravity anomalies
and the relaxation times estimated from postglacial
uplift. The first alternative model we have considered
(FDW, Fig. 9a) has been constructed by Forte et al.
(1993) to provide good fit of the degree 2 of the geoid.
We have then used the model M2 of Peltier (1996)
(PM2 in Fig. 9a). This model results from inversion of
relative sea level variations induced by the postglacial
uplift only. In PM2, the viscosity in the mid-lower
mantle is about 10 times that in the mid-upper man-
tle. Finally, we have considered a model predicted by
numerical experiments of thermal convection (cv2D,
Fig. 9a). This model consists of two layers repre-
senting the upper and lower mantle. The reference
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Fig. 8. Inverted scaling factor in the sub-continental (a) and sub-oceanic (b) upper mantle, for ε = 200 and ε = 125, respectively. The
other parameters are the same as those in Fig. 4. The dotted curves represent the preferred sub-continental (a) and sub-oceanic (b) scaling
factors.

viscosity of the lower layer is 10 times that of the upper
layer, and the ratio of the top to the bottom viscosity of
the upper and lower layer are 104 and 103, respectively.
The viscosity is an exponential law of temperature, and
temperature profiles are given by 2D-numerical exper-
iments of convection (Deschamps and Sotin, 2000).

At depths shallower than 350–400 km, the scaling
factors obtained for � = 11–16 and the viscosity
models discussed above are very similar, for both
sub-oceanic and sub-continental mantle (Fig. 9b and
c). In particular, the depth at which the scaling factor
becomes negative does not depend on the viscosity
model. In each case, the sub-continental scaling fac-
tor has a local maximum around z = 120–140 km
depth. In addition, if we consider the scaling factor
obtained by inversion of the original VS-anomalies,
the variance reduction of the reconstructed to the
observed gravity (or geoid) anomalies is nearly the
same, whatever the viscosity model. At depths greater
than 400 km, significant differences appear, depend-

ing on the viscosity model. To account for an eventual
viscous layer at the top of the mantle, we modified
the model MF2. Down to z = 300 km depth, we
imposed µ/µ0 = 103 (instead of µ/µ0 ∼ 2 in the
original model) covering thus three orders of magni-
tude. Below 300 km, we let MF2 unchanged. How-
ever, inversions performed with this modified version
of MF2 do not lead to significant differences in the
model of scaling factor. Finally, we did an inversion
in the (unlikely) case of a viscosity that decreases
with depth (namely, the model symmetric to MF2 in
respect with the log(µ/µ0) = 0 axis), and still found
no significant differences down to z = 400 km depth.
Thus, the nature of the scaling factor calculated in
the uppermost mantle results from information in the
data. Moreover, uncertainties on the radial model of
viscosity do not broaden the variance in ζ .

The geoid kernels for degrees higher than � = 10
peak in the uppermost mantle and have small val-
ues at depth greater than 1000 km. This feature is
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Fig. 9. Various possible viscosity profiles in the mantle (see text for references) (a); their corresponding inverted scaling factor in the
sub-continental (b); and sub-oceanic (c) mantle. For each case, two curves are drawn, representing the minimal (ζ̄ − σζ ) and maximal
(ζ̄ + σζ ) values of the scaling factor. Our preferred model (viscosity MF2) is indicated by the error bars. Data are filtered out for degrees
� = 11–16, and Eq. (7) is integrated from z = 1000 km depth up to the surface. The damping factor is equal to 400 for continents, and
250 for oceans.

independent of the viscosity profile and may explain
why, in the uppermost mantle, the model of scaling
factor for � = 11–16 does not depend on this param-
eter. Indeed, by considering degrees � = 2–8 only
we find that models of scaling factor for different vis-
cosity profiles are slightly different even above z =
400 km. Some smaller differences are also present if
one considers � = 2–16, but we do not observe dra-
matic changes in the shape and amplitude of ζ .

Previous inversions of tomographic models and
geodetic data have focused on the determination
of a suitable viscosity model for the mantle (King
and Masters, 1992; Forte et al., 1993, 1994b). Such
studies have imposed a priori values of the scaling
factor based on laboratory measurement. However
the present results suggest that at depths smaller than
400 km, the scaling factor is not sensitive to realistic
variations in the viscosity model. Therefore, in the
uppermost mantle, it is more relevant to impose a
viscosity profile and to invert for the scaling factor
than to do the opposite.

4.4. Wavelength of the heterogeneities

In Eq. (3), we have assumed that the scaling factor
does not depend on the spherical harmonic degree. To
test this assumption, we did additional inversions for
different windows of the spherical harmonics expan-
sion, including degrees lower than � = 11 (Fig. 10).
Calculations were made for the viscosity model MF2,
and appropriate values of the damping factor. Be-
cause low-degree kernels have non-negligible values
throughout the mantle, the integration (7) was per-
formed from the core-mantle boundary up to the
surface. Obviously, for � = 11–16, modification of
the integral bounds does not change the results of the
inversion at all. Down to z = 350 km depth, the mod-
els of scaling factor for � = 2–16 and � = 11–16 are
similar. At greater depths, on the other hand, they dif-
fer significantly. The model of ζ for degrees � = 2–8
only is different from the others even in the upper-
most mantle. Finally, by removing the lowest degrees
(� = 2–4), the scaling factor is in good agreement
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Fig. 10. Inverted scaling factor in the sub-continental (a) and sub-oceanic (b) mantle, for different windows of the data spectrum:
� = 2–16, � = 2–8 and � = 5–16. For each case, two curves are drawn, representing the minimal (ζ̄ − σζ ) and maximal (ζ̄ + σζ ) values of
the scaling factor. Our preferred model (� = 11–16) is indicated by the error bars. Eq. (7) is integrated from the core-mantle boundary up
to the surface. For each calculation, the viscosity model is MF2. For continents (oceans) and � = 2–16, � = 2–8, � = 5–16 and � = 11–16,
the damping factor is equal to 900, 450, 600 and 400 (500, 250, 450 and 250), respectively.

with the case � = 11–16 down to z = 600 km depth.
In the deep mantle (z ≥ 350 km), low degrees (� =
2–4) have therefore a strong influence on the scaling
factor, but one can safely remove them to compute
values of ζ in the uppermost mantle (z ≤ 350 km).

A possible explanation is related to the shape
of the geoid kernels and to the power spectrum of
S16RLBM (Fig. 11). Down to z = 300 km depth, the
low degrees (� = 2–4) do not dominate VS-anomalies
(Fig. 11a–c). In addition, the geoid kernels have
small absolute values, compared to the higher de-
grees (� = 8–16) (Fig. 1b and c). For instance, in the
layer 100 ≤ z ≤ 300 km, G�=2 increases from 0.1
to 0.05, whereas G�=11 ranges between −0.16 and
−0.26. At depths greater than 400 km, the dominant
degree of VS-anomalies is � = 2 (Fig. 11d and e).
Moreover, at these depths, low degree geoid kernels
have values comparable to or larger than those of

the higher degrees. For low degrees, the absolute
values of the quantity K(r, θ , ϕ) (Eq. (6)) at shallow
depths are small, compared to those at depths greater
than 400 km. As a result, the contribution of shallow
depths to the gravity anomalies (Eq. (7)) is small, and
ζ is not very well constrained. A similar effect hap-
pens for high degrees at depths greater than 350 km.
The degree � = 5 dominates VS-anomalies down to
z = 150 km depth (Fig. 11a). However, the geoid ker-
nel for � = 5 yields low values down to z = 300 km,
and peaks around z = 600 km (Fig. 1b). For � = 5,
the low geoid sensitivity balances the high VS-signal,
and the scaling factor for � = 11–16 is close to that
for � = 5–16 (Fig. 10). This result emphasizes the
robustness of the inversion.

The inversion is not very sensitive to parameters
such as the viscosity profile and a priori information
(smoothness in the present study). If one considers
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Fig. 11. Power spectrum of the global model S16RLBM at z = 100 km (a); z = 200 km (b); z = 300 km (c); z = 400 km (d); and
z = 500 km (e). The dominant degrees are � = 5 down to z = 150 km, and � = 2 at depths greater than z = 350–400 km. In between
these depths, the spectrum is flat.

different viscosity models and values of the damping
factor, the shape and the amplitude of the function
ζ (z) at depths shallower than 400 km does not change
dramatically, and the continent–ocean difference is
still present. Finally, we did calculations with the
global S-wave model S20RTS (Ritsema et al., 1999),
and found results very close to those obtained with
S16RLBM in the uppermost mantle (small differ-
ences appeared in the amplitude of the scaling factor,

but not in its shape). Therefore, we believe that the
features reported in this section are quite robust.

5. Discussion

King and Masters (1992) assumed ζ = 0.4 through-
out the mantle, and inverted degrees � = 2–8 for the
radial viscosity profile. By inverting S16RLBM and
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EGM96 with their model MODLSHC, we have found
a scaling factor and variance reduction similar to those
obtained with the model MF2, for both � = 2–16 and
� = 11–16. As shown in Section 4, in the uppermost
mantle, inversions are more relevant for the scaling
factor than for the radial viscosity model. Note that we
do not account for lateral viscosity variations. Since in
the uppermost mantle ζ does not depend strongly on
the viscosity model, such lateral variations should only
have limited consequences. The method used to com-
pute geoid kernels (expansion of conservative equa-
tions in terms on generalized spherical harmonics) do
not allow lateral variations of viscosity. However, an
approximate and suitable way to account for lateral
viscosity variations would be to consider regional
studies with adapted viscosity models for each
region.

Using gravity data up to � = 12, Kogan and Mc-
Nutt (1993) performed joint inversions for Eurasia.
They have tested different viscosity models depend-
ing on the region considered. Assuming a constant
value for the scaling factor throughout the mantle,
they found ∂VS/∂ρ = 12, or, using PREM as a refer-
ence model, ζ ∼ 0.11. For the sub-continental upper
mantle, and using degrees � = 2–12 and the viscosity
model MF2, the values of ζ predicted by the present
method are close to but smaller than this value (ζ
becomes negative at z = 220 km, and lies between
0.05 at z = 80 km and 0.1 at z = 120 km).

Forte et al. (1994b) performed joint inversions for
the whole mantle, and proposed different models for
the scaling factor, based on different possible param-
eterizations. In another study, Forte et al. (1994a)
have inverted data separately for the scaling fac-
tors correlated (ζ co) and not correlated (ζ th) to the
continent–ocean difference, using degrees � = 2–8
and a given model of viscosity. They assumed a gen-
eral shape for the curve ζ (z) and found that in the
upper mantle, ζ co ranges between −0.3 and 0.3 and
changes sign at z ∼ 300 km depth. They interpreted
this sign reversal as a signature of the stabilization of
the continent–ocean heterogeneity. Once again, the
values reported in the previous section are smaller,
even for the case � = 2–16.

The major improvement of the present study is that
it does not assume any a priori value or shape for the
scaling factor. The model ζ (z) is determined only by
the smoothed linear inversion of a tomographic model

and gravity data, and thus it contains information
brought by these data sets only.

Our preferred model is built with � = 11–16, which
constitutes a second improvement. Low degree (� =
2–4) geoid kernels are mostly representative of the
deep mantle, and they do not sample depths shallower
than 350 km very well. On the contrary, geoid kernels
for degrees higher than � = 11 do not sample the man-
tle below z = 1000 km depth, and have large absolute
values in the shallow mantle. As pointed out in Sec-
tion 4.4, this difference of sensitivity together with the
power spectrum of S16RLBM result in significantly
different values of the scaling factor below z = 350 km
depth, whether one accounts for the low degrees or
not. Degrees � = 11–16 are well-suited to study the
uppermost mantle, and allow the resolution of the
continent–ocean difference, which is present down to
z ∼ 260 km. However, by filtering VS-anomalies be-
tween � = 11 and � = 16, one removes most of the
seismic signal available at depths greater than z =
400 km (Fig. 11d and e). At depths, our preferred
model is probably not relevant. To compute relevant
values of the scaling factor in the transition zone and
in the lower mantle, one must include low degrees. On
the other hand, to detect compositional changes within
the shallow sub-continental mantle one needs degrees
higher than � = 16. This last task also requires re-
gional tomographic models rather than a global model.

A final improvement is to perform inversions sepa-
rately for the sub-continental and sub-oceanic mantle.
This distinction is not equivalent to the inversions
performed by Forte et al. (1994a). The differences
between the sub-continental and sub-oceanic scaling
factor can be used to interpret the continent–ocean
difference. But in addition, separate models pro-
vide information about compositional changes within
the sub-continental and sub-oceanic mantles: using
Eq. (1), one can interpret the scaling factor mod-
els in terms of thermal and/or compositional lateral
variations.

The difference in shape of the sub-oceanic and
sub-continental scaling factors is related to the source
of anti-correlation between gravity and VS-anomalies,
which is present below continents between 80 and
180 km. At these depths the sub-continental scaling
factor is clearly positive, reaching a local maximum
around z = 120 km. On the other hand, there is no sig-
nificant correlation between gravity and VS-anomalies
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below oceans. Another important difference appears in
the variance reduction of the reconstructed to the ob-
served gravity anomalies. For � = 11–16, this variance
reduction is significantly poorer for the sub-oceanic
scaling factor (∼10%) than for the sub-continental
scaling factor (∼30%). On the other hand, if one
accounts for low degrees only (� = 2–8) the vari-
ance reduction to the observed gravity anomalies is
higher for the sub-oceanic scaling factor (∼50%)
than for the sub-continental scaling factor (∼30%).
These observations suggest that intermediate-scale
heterogeneities might play a more important role in
the continental uppermost mantle than in the oceanic
uppermost mantle. The oceanic regions seem to be
well-explained by low degree anomalies only, and
therefore may be dominated by large-scale structures,
while the continental uppermost mantle may include
more complexities, which are better accounted for by
intermediate degrees anomalies.

A full interpretation of our results in term of chem-
ical and/or thermal anomalies is beyond the scope of
this paper. However, we now give some elements of
comparison between available experimental data and
the results of the present inversion.

Experimental values of ζ are usually deduced from
the measurements of elastic properties of olivine
(Isaac et al., 1989; Isaac, 1992), which is the dom-
inant mineral of the mantle. Such values of ζ are
based on the temperature derivative of VS and ρ, and
therefore they account only for temperature varia-
tions. For olivine, the typical value of ζ at ambient
pressure and T = 1000 K is equal to 0.45 (Isaac,
1992). Elastic properties of the other minerals of the
upper mantle are less well documented. For a given
mineralogical composition, numerical models can
provide synthetic values of S-wave velocity and den-
sity based on the experimental values of the elastic
and thermal parameters of each minerals (e.g. Davies
and Dziewonski, 1975; Duffy and Anderson, 1989;
Vacher et al., 1996). Following the model of Vacher
et al. (1998), we have computed VS-anomalies and
density anomalies associated with pure temperature
variations. The reference temperature and pressure
are T = 1280◦C and p = 4 GPa, respectively, and
the mineralogical model is pyrolite (i.e. the volumic
fraction of olivine is equal to 62%). The scaling factor
resulting from these anomalies yields values around
0.37–0.38 (Fig. 12, dotted curve). The inverted values

Fig. 12. Scaling factor for pure temperature variations (δT) pre-
dicted by experimental mineralogy. Anomalies of density and
S-wave velocity are computed following the method of Vacher
et al. (1998). The reference temperature is T = 1280◦C, and the
pressure is p = 4 GPa. The mineralogical model is pyrolite, as
defined by Vacher et al. (1998). The dotted curve is based on
laboratory measurement of elastic data performed at very high fre-
quency. The plain curve accounts for anelasticity effects, using the
model of quality factor Q1 of Goes et al. (2000) for a frequency
f = 0.1 Hz.

of ζ reported in this study are significantly smaller,
even if one considers only degrees � = 2–8 of the
data. However, in the mantle, one must also account
for chemical variations and possible additional effects
such as anelasticity (see below). Moreover, elastic
moduli depend on the pressure, and the scaling factor
may also vary as a function of depth. Finally, extrapo-
lation of laboratory measurements (elastic moduli and
their temperature and pressure derivatives) to mantle
pressures may induce additional errors.

In the Earth’s mantle, anelasticity is responsible for
attenuation of seismic waves (e.g. Anderson, 1989,
pp. 279–302). Laboratory measurements of elastic
data are usually performed at high frequencies (1 MHz
and more). Such frequencies are much higher than
the upper cut-off frequency of the absorption band.
Therefore, laboratory measurements should be cor-
rected before being used to compute velocities in the
seismic band. Karato (1993) accounted for anelastic-
ity to compute values of ∂ ln VS/∂T and ζ . To compute
the anharmonic part of ∂ ln VS/∂T, he used the model
of Duffy and Anderson (1989), which accounts for
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pressure dependence of elastic parameters. He found
that ζ increases from 0.2 to 0.3 in the upper mantle,
and concluded that anelasticity damps the effects of
thermal anomalies on seismic velocities. We have also
introduced anelasticity effects in the model of Vacher
et al. (1998) following the method proposed by Goes
et al. (2000). For their model of quality factor Q1 and
a frequency equal to 0.1 Hz, we obtained values of ζ
around 0.05 (Fig. 12, plain curve). These values are
in good agreement with our inverted values.

Unlike temperature variations, compositional
changes do not have a well-defined influence on the
scaling factor. For instance, the scaling factor can be
either positive or negative, depending on the miner-
alogical variations considered. Using the method of
Vacher et al. (1998), we have computed S-wave veloc-
ities and densities for mixes with two end-members
(Olivine–Garnet and Olivine–Diopside). Increasing
the volume fraction of diopside leads to higher den-
sities and velocities, whereas increasing the volume
fraction of garnet leads to higher densities, but smaller
velocities. Therefore, the scaling factor is positive
in the first case, and negative in the second one. Of
course, the mineralogy of the mantle is much more
complicated, and simultaneous variations in the vol-
ume fractions of different minerals could balance each
others. Goes et al. (2000) have recently suggested
that compositional variations may not induce strong
VS-anomalies. Therefore, chemical variations could
explain partially, but maybe not completely, the dif-
ferences in shape and amplitude between the model of
Karato (1993), and that obtained by inversion of grav-
ity and VS-anomalies. Variations in the iron-content
could also play a significant role. Since the model
S16RLBM yields a good anti-correlation with the sur-
face heat flux (Röhm et al., 2000), thermal processes
in the uppermost mantle probably play an important
role to explain the origin of the continental seismic
lithosphere. Röhm et al. (2000) have proposed two
possible thermal origins: (1) variations in the thick-
ness of the thermal boundary layer; and (2) variations
in the shallow radiogenic heat production. Positive
values of the scaling factor, as those we observe above
200 km depth, are consistent with thermal origins. The
decrease of the scaling factor with depth and its sign
change could indicate that thermal (compositional)
anomalies are progressively less (more) important, as
depth is increasing. However, a systematic study is

required to clear up the actual influence of temperature
and compositional variations on the scaling factor.

6. Conclusions

The scaling factor relates relative density anoma-
lies to relative VS-anomalies and is therefore of great
interest for the interpretation of seismological mod-
els. To invert for this scaling factor in the uppermost
mantle, we have used spherical harmonic degrees
� = 11–16 of gravity and S-wave velocity anomalies.
This spatial window is well-adapted to the inference
of intermediate size anomalies in the uppermost man-
tle. In the sub-continental mantle, the scaling factor
has positive values down to z ∼ 220 km depth. In the
sub-oceanic mantle, the scaling factor is significantly
different, and reaches zero-value at shallower depth.
At depths greater than 260 km, the sub-continental
and sub-oceanic models are close one to each other.
These results are quite robust, but they hold in the
uppermost mantle only, i.e. at depth shallower than
350 km. At greater depths, low degrees of the spheri-
cal harmonic expansion (� = 2–4) cannot be removed
and the model of scaling factor depends on the ra-
dial model of viscosity. The observed differences
between the sub-continental and sub-oceanic scaling
factors suggest that intermediate-scale anomalies are
more important below continents than below oceans.
Finally, a rapid comparison between our results and
experimental mineralogy yields significant discrepan-
cies in the value of the scaling factor. Most of these
discrepancies are explained if one accounts for anelas-
ticity. The calculations presented in this paper may be
refined to selected geographical areas using regional
tomographic models. Regional models of the scaling
factor would be a way to account for lateral viscosity
variations and could be useful to explain the relative
stability of major tectonic units, such as old cratons.
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Appendix A. Generalized linear inversion

To solve Eq. (7), we used a generalized linear
inversion, which minimize a linear combination of
estimated errors and a priori information.

mest = G−gd (A.1)

where d is the data vector (here, the gravity anoma-
lies), mest the estimated model (the scaling factor in
our problem), and G−g the generalized inverse matrix.

G−g = [GTG + ε2W]−1GT (A.2)

where the superscript T denotes the transpose matrix.
The matrix G is the kernel matrix. In our example
(Eq. (7)), it contains the product K of the relative
S-wave velocity anomalies with the geoid kernels
(Eq. (6)). The matrix W contains a priori information,
and it is weighted by the damping factor ε. Here, we
impose our model to vary smoothly as a function of
depth. Therefore, W is defined by the product of the
flatness matrix F with its transpose.

W = FFT, where

F =




−1 1
−1 1

. . . . . .

. . . . . .

−1 1


 (A.3)

Note that the dimension of F is M × (M + 1),
where M is the dimension of the model. To invert the
matrix in the brackets in Eq. (A.2), we have used a
LU decomposition method.

The resolution matrix R provides information about
the resolution of the model.

R = G−gG (A.4)

If the estimated model is perfectly resolved, R is
equal to the identity matrix. To estimate the quality
of the model, one might also consider its norm L, its
roughness S (that is to say the norm of the model
derivative), and the variance reduction of the recon-
structed data to the observed data (X).

L = (mestTmest)1/2 (A.5)

S = (mestT Wmest)1/2 (A.6)

X = 1 −
∑N

i=1(di − dest
i )2

∑N
i=1d

2
i

(A.7)

where N is the dimension of the data vector, and
d est = Gmest the reconstructed data vector. S and X
decrease as the damping factor (ε) increases. Usu-
ally, one defines the preferred model as being the
best compromise between the data information and a
priori information (here the roughness). The damping
factor ε is therefore chosen on the trade-off curve,
which plot the misfit (1 − X) as a function of the
roughness (e.g. Fig. 5).

To account for the uncertainties of the elements of
G, we added random simulated errors to these ele-
ments, and performed an inversion with each perturbed
matrix. This lead to a collection of Z perturbed mod-
els (mper). The mean model over this collection (m̄)
and its variance (σm) are given by

m̄ = 1

Z

Z∑
j=1

m
per
j (A.8)

σ 2
m = 1

Z

Z∑
j=1

(m
per
j − m̄)2 (A.9)

The length (L̄), the smoothness (S̄) and the vari-
ance reduction (X̄) of the mean model are given by
Eqs. (A.5)–(A.7), where mest must be replaced by
m̄. To be relevant, the mean model and its variance
must be computed with a large enough collection
of perturbed models. To test this condition, one can
plot L̄ and S̄ as a function of Z. The model m̄ is
statistically relevant when L̄ and S̄ oscillate around
stationary values (Fig. 3).
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