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Summary

Seismic tomography is our principal tool to probe
the deep interior of the Earth. Over the past
decades, it has drawn the picture of a vigor-
ously convecting planet, with large-scale up- and
down-wellings convincingly imaged by isotropic
velocity variations. Models of seismic anisotropy
induced by crystal alignment provide insight into
the underlying convective motion, and variations
of density allow us to discriminate between ther-
mal and compositional heterogeneities.

However, despite substantial progress, enor-
mous challenges remain: The strength of im-
aged anisotropy trades off nearly perfectly with
the roughness of isotropic heterogeneity, which
complicates any quantitative interpretation. Den-
sity variations in the Earth, except for spherical
harmonic degrees 2, 4 and 6, are still largely
unknown, and error estimates are dominated
by subjective regularization. Concerning attenua-
tion, any pair of global 3D models is uncorrelated,
with mutual differences larger than the attributed
uncertainties.

Most of these difficulties can be traced to the
complicated nature of multi-observable/multi-
parameter inverse problems that suffer from weak
constraints and complex trade-offs. Promising di-
rections to strengthen constraints and reduce
trade-offs, include (1) the addition of new data
at both the short-period (scattered waves) and
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long-period (mode splitting) ends of the spectrum,
(2) the implementation of fully probabilistic ap-
proaches, (3) the joint inversion of phase and
amplitude information for elastic and anelastic
structure, (4) the design of misfit functionals tar-
geted at specific aspects of Earth structure, and (5)
the continuing development of full waveform in-
version techniques. Furthermore, much progress
can be made by objectively quantifying the uncer-
tainties of our inferences. This can lead to both
more consistent models of the Earth and more
reliable interpretations in terms of its thermo-
chemical structure and evolution.

11.1 Introduction

Seismic tomography is central to the multi-
disciplinary effort aimed at understanding the
structure and thermo-chemical evolution of
the Earth. Indeed, as seismic waves produced
by earthquakes travel through the deep Earth,
they absorb information from the (an)elastic and
density structure along their way which can
be extracted by seismic imaging. Compared to
geological time scales, seismic waves record an
instantaneous snapshot of the current Earth,
although anisotropy provides some constraints
on geological events in the Earth’s recent history.
The process of absorbing the information is a
well posed forward problem and currently, with
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the help of large computers, state-of-the-art
techniques allow us to model quasi-exact wave
propagation in quite complex Earth models. Seis-
mic tomography is the corresponding ill-posed
inverse problem and still quite a challenge. The
main limiting factors are the uneven illumination
of the Earth’s interior by seismic waves and the
computational resources. The former is addressed
by using more of the available data, although
the nonuniform distribution of earthquakes and
seismic stations cannot entirely be undone. The
computational burden is reduced by implement-
ing various theoretical approximations during
imaging.

The most common approach to seismic tomog-
raphy is based on travel times of identified body
and surface waves, which are inverted for ve-
locities using approximations of elastic isotropy
and high frequency wave propagation (ray theory).
Recent reviews provide extensive reference lists
going back to the beginning of this research field
in the 1970s (e.g., Romanowicz, 2003; Trampert &
van der Hilst, 2005; Nolet, 2008; Rawlinson et al.,
2010). Sometimes, a collection of normal-mode
frequencies is added to provide a global long-
wavelength constraint on the structure (Ritsema
et al., 2011). While these studies have shaped a
clear picture of the Earth’s internal structure, they
have not provided unambiguous information on
their origin and evolution. Trampert & van der
Hilst 2005 argued that estimates of uncertainty
and information on the density structure are es-
sential to distinguish between temperature and
chemical origins. A convincing case can further
be made that information on intrinsic attenuation
and anisotropic parameters significantly helps our
quest to understand the thermo-chemical evo-
lution of the Earth (e.g., Karato, 2008). Mantle
discontinuities also provide interesting informa-
tion and is discussed in chapter 10 by Deuss
et al.

The purpose of this chapter is to review on
which class of models there is agreement and
where further investigation is required. The main
emphasis will be on the imaging itself and not
so much its thermo-chemical interpretation,
although we will provide some indications. In

turn we will treat the case of isotropic velocity
tomography, anisotropy, density and attenuation
imaging in decreasing order of consensus. Finally,
we will make some suggestions for future work.

11.2 An Introduction to Linearised
Inverse Theory

Assume that we have a collection of measure-
ments gathered in a data vector d. First, we have
to decide on a mathematical description of the pa-
rameter field we want to image. Often the model
parameters are expanded onto a finite number of
global or local basis functions, e.g. spherical har-
monics, blocks and many others. The coefficients
for these basis functions are called the model
parameters and are collected in a vector m. Math-
ematically, d and m belong to vector spaces, the
data space D and the model space M, respectively.
The mapping from M to D is called the forward
operator. It is, in the case of a linear problem,
represented by the matrix G. For instance, if we
use ray theory, the data could be travel time resid-
uals, the model parameters constant slownesses
in blocks, and a row of G contains the lengths of
a particular ray in each block. Formally, we may
write

d = Gm + e. (11.1)

The data are not perfect and therefore we added
an error vector e which is implicitly recorded
together with the data d. The inverse problem
consists of finding a linear mapping S from D
to M. Since G is usually not invertible, S is not
the exact inverse of G, and thus we only find an
estimator m̃ of m. This is formally written as

m̃ = m0 + S(d − Gm0), (11.2)

where we have introduced an optional starting
model m0. The interesting question is how our
estimated model m̃ is related to the true model
m that we intended to find. We therefore insert
Equation (11.1) into Equation (11.2) to get

m̃ − m0 = R(m − m0) + Se, (11.3)
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where we have defined the resolution operator as
R = SG. It is more instructive to introduce the
target model m explicitly, and we find that

m̃ − m = (I − R)(m0 − m) + Se, (11.4)

with the identity matrix I. The last equation
clearly shows that our estimated model m̃ devi-
ates from the target model m by two terms. The
first one is due to imperfect resolution, meaning
that the resolution matrix is not equal to the
identity matrix (R �= I). The second term is the re-
sult of data errors propagating into the estimated
solution.

There is considerable freedom and choice in-
volved in the construction of the approximate
inverse operator S (e.g., Parker, 1994; Tarantola,
2005). The most general approach starts by assign-
ing a probability density σM(m) to each model, i.e.

σM(m) = kρM(m)L(m) , (11.5)

where ρM is the prior distribution in the model
space, L the likelihood function which measures
how well the model explains the data within their
uncertainty, and k a normalizing constant (e.g.,
Tarantola, 2005). Assuming that both, data uncer-
tainty and our prior knowledge, can adequately
be described by Gaussian distributions, Equation
(11.5) takes the form

σM(m) = k e− 1
2 χ (m), (11.6)

with the misfit functional

χ (m) = (d − Gm)TC−1
d (d − Gm)

+ (m − m0)TC−1
m (m − m0) . (11.7)

The superscript T denotes vector transposition,
and Cd and Cm are the covariance matrices in
the data and model space, respectively. On the
basis of Equations (11.6) and (11.7) we define our
estimator m̃ as the maximum-likelihood model,
i.e. the model that maximizes (11.6) and mini-
mizes (11.7). Requiring that the derivative of χ

with respect to m vanishes at the position of the

maximum-likelihood model m̃, we find that S is
determined by

S =
(

GTG + σ 2
d

σ 2
m

I

)−1

GT , (11.8)

where we assumed, for simplicity, that the co-
variance matrices are diagonal, i.e. Cd = σ 2

d I and
Cm = σ 2

mI. The symbol σd denotes the standard
deviation of the data uncertainty, and σm is the
standard deviation of the prior model range. The
posterior model covariance is then simply

Cm̃ = σ 2
d

(
GTG + σ 2

d

σ 2
m

I

)−1

, (11.9)

where we note that such explicit expressions can
only be obtained on the basis of Gaussian statis-
tics. Equation (11.8) reveals a dilemma in the
solution of inverse problems: For most realis-

tic applications, the matrix (GTG + σ2
d

σ2
m

I) is badly

conditioned or not invertible at all, unless the

ratio
σ2

d
σ2

m
is artificially increased. In this case,

the initial variances are used to regularize the
inversion – and not to objectively quantify data
errors and prior knowledge, as it was originally
intended. Decreasing σm for the purpose of regu-
larization also reduces the posterior covariance,
therefore providing an unrealistically optimistic
estimate of the errors in our inferred model m̃.
Expression (11.8) nicely reveals the effect that reg-
ularization has on the estimated model m̃. A large
data uncertainty (σd large) and a narrow search
around the prior model (σm small), result in a
small approximate inverse S, and hence little up-
date of m̃0. This explains why most tomographic
inversions recover only a fraction of the ampli-
tudes of the actual heterogeneities. Furthermore,
the regularization employed in the construction
of S reduces the resolution, because R = SG.
Moreover, as seen from Equation (11.4), regular-
ization acts as a trade-off between the error prop-
agation and the imperfect resolution. For a strong
regularization, Se is small and (I − R)(m0 − m) is
large and vice versa. The knowledge of both terms
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is needed to assess the quality of m̃, unless one of
them is dominant.

The only way to avoid possibly unrealistic
Gaussian distributions and the effects that reg-
ularization has on our inferences, is to directly
sample the probability distribution (11.5), using,
for instance, Monte Carlo techniques (e.g. Sam-
bridge & Mosegaard, 2002) or neural networks
(e.g. Meier et al., 2007). These are, however, com-
putationally much more involved than solving
the regularized analytical expressions based on
Gaussian statistics.

Finally, we note that seismic tomography is
in reality not a linear inverse problem because
our data generally depend nonlinearly on the
properties of the Earth. Within a probabilistic
framework, non-linearity can naturally be ac-
commodated in the model space sampling. In
deterministic problems, the nonlinearity is most
often addressed using a perturbation approach.
This involves updating the model iteratively:

mn = mn−1 + Pn−1(d − Gn−1mn−1)

+ Q(mn−1 − m0) , (11.10)

where n indicates the iteration step and Gn−1
the Fréchet derivatives of the nonlinear forward
functional with respect to mn−1. Commonly used
algorithms are, for instance, conjugate gradient
or Newton schemes which each define separate
operators Pn−1 and Q. It is worth noting that
solution (11.5) holds for linear as well as nonlinear
problems. In the following, we will refer to these
different ways of solving the inverse problem in
the context of (an)isotropic and (an)elastic seismic
tomography.

11.3 Isotropic Velocity Tomography

Over the last three decades seismic tomography
has produced a large number of models with a
high degree of overlap as documented in many
review articles (e.g., Woodhouse & Dziewonski,
1989; Ritzwoller & Lavely, 1995; Masters et al.,
2000; Romanowicz, 2003; Trampert & van der
Hilst, 2005; Rawlinson et al., 2010).

P-velocity models are almost exclusively
constructed from large collections of travel
time residuals. The uneven distribution of
earthquakes and seismic stations implies that
mainly tectonically active regions are sampled
by these data, and the main features to be imaged
are descending lithospheric plates (e.g., van der
Hilst et al., 1997). The depth extent of the
imaged slabs varies, some reaching the lower-
most mantle, others stagnant in the transition
zone (Fukao et al., 2009). If S-wave travel time
residuals are used, remarkably similar images
are retrieved (Grand et al., 1997). Travel time
models are often referred to as high-resolution
models. This is misleading since the fine block
or pixel parametrization, usually employed in
the construction of these models, only indicates
a potential maximum resolution. The actual
achieved resolution is frequently unknown,
despite the many proposed synthetic tests.

S-velocity models are more often constructed
from long-period waveforms and/or a combi-
nation of long-period body wave travel time
residuals, surface wave dispersion measurements
and normal-mode splitting functions (e.g. Mégnin
& Romanowicz, 2000; Kustowski et al., 2008;
Ritsema et al., 2011). The main robust features
appearing are low-velocity mid-oceanic ridges
recognizable down to a depth of 100–150 km
(Figure 11.1, left). There is a clear ocean-continent
difference disappearing at around 250 km depth.
The transition zone and the lower-most mantle
are dominated by large low-velocity zones
beneath Africa and the Pacific Ocean and higher
velocities in a circum-Pacific belt (Figure 11.1,
middle and right). These features have been
known since the pioneering studies of (Masters
et al. 1982), (Woodhouse & Dziewonski 1984) and
(Dziewonski 1984). They have since been con-
firmed by virtually all successive studies. These
S-velocity models employ data with a more even
coverage than high-frequency P-wave travel time
residuals, and the parametrization emphasizes
the long-wavelength structure by employing low-
order spherical harmonic expansions. Overall,
the resolution is more even over the globe, but
that is not to say that it is known precisely.
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S40RTS at 100 km depth S40RTS at 500 km depth S40RTS at 2800 km depth
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Fig. 11.1 Top Relative S velocity variations, d ln vs, in the global model S40RTS (Ritsema et al., 2011) at 100, 500
and 2800 km depth. Bottom: The corresponding null-space component m̃null. The null-space component contains
short-wavelength structure that can be scaled and added to the model without changing the misfit. (See Color
Plate 11).

With a few notable exceptions (e.g., Bijwaard
& Spakman, 2000; Panning & Romanowicz,
2006), all classical P- and S-velocity models are
obtained by a linear inversion using expression
(11.2). The most important tool to assess the
amplitude and shape of the models obtained by
linearized inversions is the resolution operator,
provided that the influence of the data errors is
small (Equation 11.3). The latter is the case for
most strongly regularized models. The resolution
is an operator which tells us how the obtained
model parameters are linearly related to each
other. Ideally we would like to construct a
model such that the resolution is the identity
matrix, meaning that the data can constrain
all the chosen parameters separately with the
correct amplitude. A typical global seismic
tomography model consists of few thousand to
a few hundred thousand model parameters, and
this number squared is the number of entries
in the resolution matrix. It is therefore easily
understandable that the latter can computation-
ally be a challenge, although not impossible
(e.g., Soldati et al., 2006). The importance of
calculating the resolution matrix was put forward

for comparing seismic tomography to geodynamic
models (e.g, Ritsema et al., 2007), but more often
than not simple synthetic tests of the chequer
board type are used as a proxy for the resolution
matrix. (Lévêque et al. 1993) convincingly argued
that such a simple test has to be interpreted with
caution as it can be quite misleading and hardly
representative of the true resolution.

As a result of regularization, most resolution
tests indicate that only a quarter to a third of the
amplitude of heterogeneities is recovered (e.g., Li
et al., 2008; Ritsema et al., 2007). This observa-
tion is crucial, but often forgotten, when combin-
ing seismic tomography and mineral physics data
to estimate the thermo-chemical structure of the
mantle. Equation-of-state modeling (e.g., Karato
& Karki, 2001; Trampert et al., 2001; Stacey
& Davis, 2004; Stixrude & Lithgow-Bertelloni,
2005; 2011) of mineral physics data allows us
to infer sensitivities (partial derivatives) of ve-
locity variations to temperature and chemical
variations. To make the conversion, amplitude
and position of the seismic anomalies has to be
known with great precision. For instance, if only
temperature is changing at a depth of 2800 km,
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a relative shear velocity variation d ln vs = 0.01
would correspond to a temperature variation of
the order of 400 K, using the temperature sen-
sitivities of (Trampert et al., 2004), a plausible
value from current geodynamic models. The un-
derestimation of amplitude in tomography has
profound consequences on this conversion. If we
have to multiply the amplitudes by a factor of
3–4, the resulting temperature variation would
be 1200–1600 K. This, however, is difficult to
reconcile with mantle flow models.

The shape of the anomalies is mainly influ-
enced by the off-diagonal elements of the reso-
lution matrix. They can be very significant and
usually oscillate strongly. This is most easily vi-
sualized by evaluating the null-space component
of a given model. Every model vector can be de-
composed into a part that lies in the range of the
forward operator G and in its null-space. The null-
space component of a model is defined by finding
the part for which Gm̃ = 0. It can be expressed as
(Deal & Nolet, 1996)

m̃null = (I − R) m̃ . (11.11)

By definition, this null-space component does not
change the fit to the data. In practice, Equation
(11.11) is only exact if the estimated model ex-
plains the data exactly. For most regularizations,
such as in Equation (11.7) where there is a com-
promise between data fit and model norm, this
is not the case. The data can then not distin-
guish between m̃ and m̃ + γ m̃null for a certain
range of scalars γ determined by the data uncer-
tainty, or equivalently the tolerance on the misfit
(de Wit et al., 2012). Nevertheless expression
(11.11) is useful for illustrating certain proper-
ties of the resolution. If it is a scaled version
of the original model, R has little off-diagonal
elements and it can be used to directly visual-
ize the amplitude uncertainty mentioned above.
If the resolution matrix oscillates, so does the
null-space operator (I − R), and hence (I − R)m̃
also has a strong short wave-length component.
Figure (11.1) shows, as an example, the null-
space component of the shear velocity model
S40RTS (Ritsema et al., 2011). It has a significant
short wave-length component which is mostly

dermined by regularization. A similar result is
seen for P velocity models (de Wit et al., 2012).

It appears thus that the amplitude of isotropic
wave speed models is significantly underesti-
mated and the smallest wave-lengths in each
model strongly distorted. In any thermo-chemical
interpretation this should, but has not yet, been
taken into account.

11.4 Anisotropic Velocity Tomography

When physical properties depend on the direction
in which they are measured, the medium is said
to be anisotropic. A medium with properties de-
pending on position only is called isotropic. In
seismology we treat the Earth as having isotropic
mass density, but velocities are often found to be
anisotropic which can easily be modeled with an
appropriate elastic tensor, with two independent
parameters for an isotropic medium and between
3 and 21 for an anisotropic medium. The effect of
anisotropy on elastic wave propagation is three-
fold: obviously wave propagation depends on the
direction of propagation, it alters the wave polar-
ization away from parallel or perpendicular to the
propagation direction and it provokes shear wave
splitting, a phenomenon similar to birefringence
in optical media. All three properties are readily
observed for seismic waves. We will only cite se-
lected examples to show the diversity of observa-
tions without the intention of being exhaustive.
An excellent overview on theory and observation
of seismic wave propagation in anisotropic media
is by Maupin and Park (2007).

There is large agreement amongst seismologists
that seismic wave propagation is anisotropic.
Although in global studies the crust is usually
assumed to be isotropic, there are many reports of
local wave propagation requiring an anisotropic
description of the crust. Seismic lamination
observed in many parts of the lower continental
crust (e.g., Meissner et al., 2006), polarization
anomalies of Lg waves (e.g., Maupin, 1990)
and S-wave splitting from local earthquakes
(e.g., Paulssen, 2004) are all best explained with
crustal anisotropy. Most observations concern
waves propagating in the upper mantle or
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interpretations concerning the upper mantle
only. Significant azimuthal anisotropy has been
observed for Pn waves beneath oceans (Hess,
1964) and continents (Smith & Ekström, 1999) as
well as for travel time residuals of teleseismic P
waves (e.g., Babuška et al., 1998). There are clear
observations of polarization anomalies of long
period P-waves which have been used to infer
upper mantle anisotropy (Schulte-Pelkum et al.,
2001), but the biggest wealth of observations
comes from SKS-splitting measurements (for a
review see e.g., Long & Silver, 2009). Surface
waves also exhibit a clear anisotropic behaviour.
Both Love and Rayleigh waves show azimuthal
dependencies for fundamental modes (e.g., Tram-
pert & Woodhouse, 2003; Ekström, 2011) as well
as overtones (Visser et al., 2008). The azimuthally
averaged phase velocities of Love and Rayleigh
waves see a different vertically averaged elastic
structure. This is known as the Love-Rayleigh
discrepancy and was first interpreted by (Ander-
son 1961) in terms of anisotropy. A transverse
isotropic medium with vertical symmetry is
sufficient the reconcile Love and Rayleigh wave
propagation. Most joint inversions of Love and
Rayleigh wave phase and/or group velocities for
three-dimensional structure therefore employ a
transverse isotropic description of the uppermost
mantle (e.g., Montagner & Tanimoto, 1991; Gung
et al., 2003; Kustowski et al., 2008). There are
few clear inferences of anisotropy in the mantle
transition zone, but surface wave overtones
suggest azimuthal (Trampert & van Heijst, 2002)
and radial (Visser et al., 2008) anisotropy. There is
a large consensus that the lower mantle is devoid
of anisotropy with the exception of D’’ (e.g.,
Maupin et al., 2005; Panning & Romanowicz,
2006). Wave propagation through the inner core
is best explained using anisotropy although the
details are not fully mapped yet (e.g., Morelli
et al., 1986; Woodhouse et al., 1986; Ishii &
Dziewonski, 2002; Beghein & Trampert, 2003;
Deuss et al., 2010).

In mathematical terms, seismic anisotropy is
easily understood. From continuum mechan-
ics we know that if the local elastic tensor
has more than two independent parameters,

wave propagation depends on the direction of
propagation. With seismic observations we can-
not estimate the elastic tensor at a specific point
in space, but only spatial averages from tens to
thousands of kilometres depending on the waves.
This makes the seismic inferences difficult to
interpret. From geodynamics and mineral physics
modeling we know that anisotropic minerals
or isotropic inclusions can align themselves
in preferred strain orientations. The former is
known as lattice preferred orientation (LPO) and
the latter as shape preferred orientation (SPO)
(e.g., Karato, 2008). Because the orientation of
these crystals and inclusions is not instanta-
neous, the observation of seismic anisotropy
potentially gives us valuable constraints on
the geological history of the strain field (e.g.,
Wenk et al., 2011). As mentioned above, seismic
observations cannot image individual crystal or
inclusion, but only spatial averages of them.
The (an)isotropic description therefore is scale-
dependent. Backus (1962) showed that a stack
of thin (sub-wavelength) isotropic layers is seen
by seismic waves as a large-scale anisotropic
medium. This concept can be generalized, and
in fact any large scale description of small scale
isotropic heterogeneity has to include anisotropy
(e.g., Capdeville et al., 2010). While this is
a fundamental property of the mathematical
description at a limited wavelength, another
ambiguity is often forgotten. To infer seismic
anisotropy from travel time or polarization
anomalies, an inverse problem is usually solved.
Starting from Equation (11.1), let us explicitly
partition the model parameters into isotropic (i)
and anisotropic (a) parts. Neglecting data errors
and the starting model for notational simplicity,
we find

d = (Gi|Ga)(mi|ma)T. (11.12)

From Equation (11.8), we see that the inverse
operator will also partition and hence(

m̃i

m̃a

)
=

(
SiGi SiGa

SaGi SaGa

)(
mi

ma

)
(11.13)

The ill-posedness of the inverse problem requires
regularization which implies that the resolution
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operator is not the identity matrix and hence
trade-offs between isotropic and anisotropic
parameters are artificially introduced. Partial
derivatives for isotropic and anisotropic param-
eters are different and so are the partial inverse
operators, and hence the resolution operator
is not symmetric. This means that the trade-
off from isotropic to anisotropic parameters,
SaGi, is different from anisotropic to isotropic
parameters, SiGa. The isotropic-anisotropic
trade-off can have large consequences for our
interpretation of the inferred anisotropy. If we
construct global phase velocity maps using a
purely isotropic description, i.e. Sa forced to 0,
the models appear blobby. Once anisotropy is
introduced, both the isotropic and anisotropic
parts of the models appear smooth, with a similar
fit to the data (Trampert & Woodhouse, 2003).
Hence, the strength of anisotropy trades off with
the roughness of isotropic velocity variations.
Another example is that significant apparent
transverse isotropy is generated if the crustal
model is inappropriate (Bozdag & Trampert,
2008), or when apparent splitting is seen on
Sdiff caused by isotropic velocity gradients in D’’
(Komatitsch et al., 2010).

We thus have to keep in mind, when seismol-
ogists report anisotropy, they explain the data
using a description involving the least possible
parameters. They implicitly or explicitly employ
Occam’s razor. In splitting measurements, the ra-
zor is implicit as the interpretation assumes a
one- or multi-layered medium a priori (e.g., Long
& Silver, 2009). A similar situation holds when
normal-mode splitting functions are used as the
medium is parametrized with a small number
of unknowns (e.g., Beghein & Trampert, 2003;
Deuss et al., 2010). With surface wave measure-
ments, the razor is more explicit, as we search
for a parametrization which explains the data sig-
nificantly better (e.g., Trampert & Woodhouse,
2003). Due to the wavelength and resolution op-
erator averaging, this is the best the seismologists
can do. However, the interpretation of the mod-
els evoking LPO or SPO is only meaningful if this
averaging is taken into account. There are many
studies which show that anisotropy can develop

during convection in the upper (e.g., Kaminski
et al., 2004; Becker et al., 2008) and lower mantle
(e.g., McNamara et al., 2002). The comparisons
to seismology, so far, are qualitative, but can be
formulated in a quantitative way using the res-
olution operator. This is important, because the
resolution strongly influences the recovered mag-
nitude of anisotropy and properly accounts for the
trade-offs.

This leaves the burning question: is the Earth
anisotropic? As argued above, seismologists find
that given the observations and the used model
parametrization, the data are usually explained
more efficiently, i.e. with less parameters, using
anisotropy. They present mathematical equiva-
lents of the physical Earth, filtered by a limited
frequency band and a nonsymmetric resolution
operator. There is consensus that the upper few
hundred kilometres of the Earth are transversely
isotropic, with decaying amplitude and a pos-
sible sign change around 200 km (Figure 11.2).
There is also agreement that there is azimuthal
anisotropy, although there is little similarity be-
tween the inferred models (e.g., Becker et al.,
2007). There are many reports of anisotropy in the
D’’ layer, but the different models tend to have
few features in common. There is a large con-
sensus that the inner core is anisotropic, but the
details have yet to emerge. We concur with Becker
et al. (2007) that the reason for this disparity are
different strategies in the inverse modelling and
we are currently comparing models with widely
differing averaging properties. Unless the seismol-
ogists come to a similar degree of consensus as
for isotropic structures, it seems difficult to infer
any geodynamic constraints from the anisotropic
models. Anisotropy needs far more parameters
for a proper description than isotropy. A possi-
ble strategy is therefore to use implicit scalings
or fix the symmetry a priori based on mineral
physics arguments (e.g., Panning & Romanowicz,
2006; Chevrot, 2006; Long et al. 2008; Panning
& Nolet, 2008). Another strategy is to be guided
by the data and invert for parameters they are
most sensitive to (e.g. Sieminski et al. 2009). The
latter is easier to interpret because it is difficult
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Fig. 11.2 Probability density function of the
spherically averaged anisotropic parameter ξ , modified
after (Visser et al. 2008). Plotted is the mean model and
2 standard deviations around it.

to quantify isotropic-anisotropic trade-offs if the
parametrization is fixed a priori.

11.5 Density Tomography

Lateral variations in density are the source of
mass transport in the Earth on all scales ranging
from the upwelling of salt bodies to the sub-
duction of lithospheric plates and the ascent of
super-plumes. They are key to the resolution
of long-lasting debates including the distribu-
tion of compositional heterogeneity, the nature
of continental lithosphere, and the contribution
of mantle convection to surface tectonics. How-
ever, despite its relevance, the detailed 3D density
structure of the Earth remains largely unknown.

In contrast to seismic velocities that can be in-
ferred from travel times, most surface observables

bear little information on density. While be-
ing most directly related to density, gravity pro-
vides only weak constraints, because solutions
to the gravitational inverse problem are inher-
ently non-unique. The use of free air gravity or
the geoid is further complicated by the effects of
boundary perturbations. Volumetric density het-
erogeneities by themselves affect gravity, but they
also generate topography on the Earth’s surface
and internal interfaces, such as the core-mantle
boundary. The strength of the boundary pertur-
bations depends on viscosity, which is, however,
poorly constrained. Furthermore, the volumetric
and boundary perturbation effects nearly cancel at
mid-mantle depths, which precludes any robust
inference on 3D density structure.

The travel times of P and S waves - the ma-
jor source of information on the Earth’s velocity
structure – are practically insensitive to density
heterogeneities. This surprisingly complete ab-
sence of information is closely related to the
scattering characteristics of velocity and density
perturbations (e.g. Wu & Aki, 1985; Tarantola,
1986). When a body wave impinges upon a ve-
locity perturbation, it generates a scattered wave
that travels along with the incident wave. The
interference with the scattered wave modifies
the shape of the original wave. This modifica-
tion is then perceived as a travel time shift that
can be used in travel time tomography to track
the causative velocity perturbation (e.g. Dahlen
et al., 2000). Density heterogeneities, in contrast,
generate scattered waves that travel opposite to
the direction of the incident wave. Therefore,
the incident and the scattered waves can never
interfere, meaning that the original pulse shape
remains unaffected. It follows that travel times of
the classical body wave phases are not influenced
by density perturbations, and that information
on density must be sought in the later parts of
seismograms. This phenomenon is illustrated in
Figure 11.3. We note that the backward scatter-
ing off density heterogeneities depends on the
parametrization of the Earth model. For instance,
choosing ρ together with the elastic parame-
ters λ and μ, instead of ρ, vp and vs, leads
to forward-scattering off density heterogeneities,
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velocity perturbation (dvs ≠ 0 or dvp ≠ 0 and dρ = 0)

before scattering after scattering

density perturbation (dvs = 0, dvp = 0 and dρ ≠ 0)

before scattering

superposition perceived
as traveltime shift

scattered wave

incident wave scattered wave scattered waveincident wave

after scattering

Fig. 11.3 Scattering characteristics of velocity and density perturbations (e.g. Wu & Aki, 1985; Tarantola, 1986).
Left: An incoming body wave impinges upon a velocity perturbation (black star) with either dvs �= 0 or dvp �= 0 and
dρ = 0. The scattered wave, indicated by the double dashed curve, propagates in the same direction as the incoming
wave. The superposition of both waves is perceived as a travel time delay or advance, depending on the sign of the
perturbation (e.g. Dahlen et al., 2000). Right: The same as to the left, but for a density perturbation with dvs = 0,
dvp = 0 and dρ �= 0. The scattered wave propagates opposite to the direction of the incoming wave. The pulse shape
of the incoming wave remains unperturbed.

i.e., scattering in the propagation direction of the
incoming wave. While this parametrization in-
troduces body wave sensitivity to density, it also
leads to undesirable trade-offs between the model
parameters, similar to Equation (11.13).

The frequency-dependent travel times of sur-
face waves (dispersion) are mildly sensitive to
density variations. Unfortunately, however, this
sensitivity tends to be oscillatory. A density per-
turbation may therefore interact with both posi-
tive and negative parts of the sensitivity distribu-
tion. The net effect is then nearly zero. Additional
complications arise from the strong trade-offs
between velocity structure and density in the
multi-parameter inverse problem. Perturbations
in seismic velocities and density influence sur-
face wave dispersion simultaneously, and the two

effects cannot easily be distinguished. This led
many authors to either ignore density variations
or to scale vs to ρ using various multiplicative fac-
tors (e.g. Panning & Romanowicz, 2006; Ritsema
et al., 2011).

At the long-period end of the seismic spec-
trum, around 0.5–3.0 mHz, the spheroidal free
oscillations of the Earth are sensitive to the long-
wavelength density distribution in the whole
mantle because of the gravitational restoring
force (Figure 11.4). Lateral heterogeneities lead
to the splitting of normal-mode eigenfrequencies
that can be used for tomography. However, since
normal modes result from the constructive inter-
ference of waves traveling in opposite directions
around the globe, they are primarily sensitive
to even-degree structure, because odd-degree
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Fig. 11.4 Sensitivity of the
frequencies of the spheroidal modes

1S4 and 2S6 to perturbations in the
radial distributions of vp (dotted), vs
(solid) and ρ (dashed) away from the
1D reference Earth model ak135
(Kennett et al., 1995). The peak
amplitude of the density sensitivity is
generally smaller than the sensitivity
to vs. Similar to surface waves, the
normal-mode sensitivity to density is
oscillatory, which further reduces the
net effect of large-scale density
variations. centre
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contributions tend to cancel. While coupled
modes provide some information on odd-degree
structure, they have so far not been used in
tomographic inversions for density.

The weak sensitivities and strong trade-offs
map directly into large uncertainties, even in
the radially symmetric density structure that
is additionally constrained by the Earth’s mass
and moment of inertia. Exploring the space of
one-dimensional Earth models with Monte Carlo
sampling, Kennett (1998) found that density vari-
ations of around 1% over 200 km depth inter-
vals are compatible with the frequencies of the
gravest spheroidal modes and their associated er-
rors. These uncertainties must be kept in mind
when interpreting lateral variations relative to a
one-dimensional average.

Compared to the abundance of tomographic
inversions for velocity structure, few attempts
have been made to exploit the scarce information
on density from surface observations.

By far the most common approach to infer
3D density, is to transform tomographic P and
S velocity models using a depth-dependent
scaling. This approach relies on mineral physics
modeling (e.g. Karato, 1993) and works under the

assumption that density heterogeneities are of
purely thermal origin. While being a convenient
choice in the absence of compositional infor-
mation, the resulting density models are often
inconsistent with fundamental geodynamic
observations such as free air gravity anomalies
(Forte, 2007). The neglect of compositional
contributions to density heterogeneity can fur-
thermore lead to incorrect predictions of mantle
flow and the associated surface deformation.

To overcome such inconsistencies, Tondi et al.
(2000, 2009) jointly inverted seismic travel times
and Bouguer anomalies for lithospheric structure
by imposing linear relations between velocities
and density. The scaling links the two other-
wise independent data sets by assuming that a
given seismic velocity uniquely specifies density
and vice versa. Using inverse problem termi-
nology, the scaling reduces the number of free
model parameters, thereby alleviating the inher-
ent non-uniqueness of pure gravity inversions.
This approach produces models of the lithosphere
that explain both gravity and seismic data sets,
but it does not allow for a decorrelation of ve-
locities and density that is likely to result from
compositional heterogeneities.
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Along similar lines, Simmons et al., 2010 as-
similated seismic travel times, the global free air
gravity field, the divergence of tectonic plates, dy-
namic surface topography and topography of the
core-mantle boundary into a joint velocity and
density model. Their method relies on the radial
viscosity profile of the Earth (Mitrovica & Forte,
2004), and on the assumption that lateral hetero-
geneities are most likely of thermal origin. While
being a significant step forward, this approach is
limited by the bias towards thermally induced
density variations, the large uncertainties in the
viscosity profile, and the absence of a formal error
analysis that accounts for plausible variations of
the forward modeling assumptions.

Recognizing that enforced velocity-density cor-
relations may prevent important inferences on
thermo-chemical structure from the outset, Ishii
& Tromp (1999, 2001, 2004) inverted normal-
mode splitting and free air gravity for a global
degree-6 model of velocities and density that were
not related a priori. Their results suggest a decor-
relation of velocity and density variations, and
in particular the presence of high-density piles in
the deep mantle beneath the African and Pacific
super-plumes.

The robustness of Ishii and Tromp’s density
models was at the centre of a long debate that
reflects the difficulty of solving a deterministic
multi-parameter inverse problem that is char-
acterized by weak constraints, strong trade-offs
and the nearly complete absence of true physical
prior information. Resovsky & Ritzwoller (1999)
pointed out that the resolution analysis in a de-
terministic inverse problem depends on the prior
knowledge, i.e. the choice of the prior model co-
variance σ 2

m in Equations (11.8) and (11.9). Since
we have little prior knowledge on density vari-
ations in the Earth, σ 2

m corresponding to density
should be very large. The weakness of our con-
straints furthermore implies that the entries of
the forward modeling or sensitivity matrix G are
small. It follows that the matrix GTG + σ 2

d σ−2
m I

in Equation (11.8) may practically not be invert-
ible, unless σ 2

m is chosen smaller than it actually
is on the basis of our prior information. The
prior model covariance is then used to regularize

the inversion in a subjective way, and not to
represent an objective state of knowledge. When
the data constraints are weak, this subjectivity
dominates the perceived resolution, expressed, for
instance, in terms of the posterior covariance Cm̃
(Equation 11.9). Based on a series of test inversions
with different choices of the prior information,
Resovsky & Ritzwoller 1999 concluded that a
decorrelation of S velocity and density could not
be detected reliably. A similar conclusion was
reached by Romanowicz (2001), who found that
density in the lower mantle trades off strongly
with the topography of the core-mantle bound-
ary, and that gravity data hardly discriminate
between different density models. However, Ro-
manowicz (2001) was able to infer rough bounds
for the depth-dependent relationship between the
degree-2 structure of density and S velocity. The
robustness of 3D density variations in determinis-
tic inversions was furthermore questioned by Kuo
& Romanowicz (2002) on the basis of synthetic
experiments.

To circumvent the subjectivity of determinis-
tic tomographies, Resovsky & Trampert (2003)
worked with a probabilistic formulation of the in-
verse problem, that does not require explicit regu-
larization to stabilize and reduce trade-offs. Using
a combined set of normal-mode and surface-wave
data they explored the model space with the help
of a neighbourhood algorithm (Sambridge, 1999a;
b) to produce probability distributions for velocity
and density heterogeneities. These probability
densities provide a complete description of our
state of knowledge, including uncertainties. The
results of Resovsky & Trampert (2003) suggest
that long-wavelength variations in vs and ρ are
unlikely to be correlated as much as variations
in vp and vs anywhere in the mantle. Especially
within the transition zone the data favour a
d ln vs-d ln ρ anti-correlation. Using mineral
physics relations between seismic properties,
temperature and composition, Trampert et al.
2004 were able to discriminate between thermal
and compositional contributions to observed
density variations, suggesting that high-density
anomalies in the deep mantle (2000–2891 km
depth) are most likely of compositional origin.
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Fig. 11.5 Left: Lateral variations in vs and ρ at various depths in the maximum-likelihood model of Mosca et al.
2012. The laterally averaged standard deviations are indicated in brackets. Note the pronounced anti-correlation of
d ln vs and d ln ρ around 2600 km depth beneath the central Pacific and Africa. (See Color Plate 12). Right:
Correlation coefficients as a function of depth between the most likely models of d ln vs, d ln ρ, d ln vp and
d ln vc, where vc denotes the bulk sound velocity. Figure modified after Mosca et al. 2012.

Recently, the studies on probabilistic tomog-
raphy were extended by Mosca et al. (2012)
who incorporated improved splitting function
measurements, as well as a large collection of
body wave travel times (figure 11.5).

In the light of the weak constraints, it is not
surprising that widely accepted seismological in-
ferences on the Earth’s density structure are rel-
atively few in number. That subducting slabs
and ascending plumes in the uppermost mantle
are comparatively dense or light, respectively,
follows from geodynamic arguments, but un-
equivocal seismic evidence on length scales above
degree 6 is missing.

The most reliable results concern the corre-
lation between velocity and density structure
at degrees 2, 4 and 6. In the mid-mantle, be-
tween 660 and around 1800 km depth, d ln vs
and d ln ρ are most likely to be uncorrelated.
Within the lower mantle, seismic data prefer a

mild anti-correlation of d ln vs and d ln ρ, with
a correlation coefficient around −0.4 (see Figure
11.5). The only concrete structural inference re-
lates to the presence of high-density material in
the lowermost mantle beneath the African and
Pacific superplumes that has been found consis-
tently by several independent studies (e.g. Ishii
& Tromp, 2001, 2004), Trampert et al., 2004;
Simmons et al., 2010; Mosca et al., 2012). All of
these results must be interpreted with caution,
given the relatively large standard deviations that
range around 50% of the maximum relative den-
sity perturbations, even when large data sets of
surface waves, normal modes and body waves are
combined.

Finally, we note that robust seismic informa-
tion on the density in the upper mantle is so far
missing. This is because structure above 660 km
depth cannot be adequately described in terms of
the lowest-degree spherical harmonics that we are
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able to recover reliably from long-period normal-
mode data.

It is becoming increasingly evident that new
inferences on the details of Earth’s 3D density
structure will force us to progress beyond both
traditional data analysis and modeling. The accu-
rate measurement of splitting functions on data
from recent megathrust earthquakes, combined
with proper mode coupling, has the potential to
yield more robust information, also about odd-
degree density structure (Deuss et al., 2011).
Several nonseismological developments may also
help to improve our knowledge concerning den-
sity. Lateral variations of the Earth’s body tides
have recently been shown to be above the ob-
servational error, and may thus yield additional
constraints on global density structure (Latychev
et al., 2009). Also on a global scale, neutrino to-
mography et al., originally conceived in the early
1980s (e.g. De Rujula et al., 1983) – may provide
very direct insight into density structure, that is
free from the trade-offs that plague seismological
approaches (e.g. Gonzalez-Garcia et al., 2008). On
small scales (up to a few kilometres) muon trans-
mission tomography has been used successfully
to image low-density magma conduits inside ac-
tive volcanoes (e.g. Tanaka et al., 2003, 2010).
Both tidal and elementary particle tomographies
are, however, in their infancy.

11.6 Attenuation Tomography

Seismic waves propagating through the Earth are
attenuated due to various relaxation mechanisms
that lead to the transformation of elastic energy
into heat. The large interest in the absorption
properties of the Earth, parametrized in terms of
the quality factor Q, is mostly related to their
temperature dependence. While seismic veloci-
ties are quasi-linearly related to temperature, T,
the temperature-dependence of Q is well approxi-
mated by an exponential Arrhenius-type law (e.g.
Jackson, 2000)

Q−1 ∝ e− E
RT , (11.14)

where E and R denote an activation energy and
the gas constant, respectively. Before delving into
the details of the Earth’s Q structure, we give
a brief summary of the description of seismic
wave attenuation, complemented by the most
fundamental observations.

11.6.1 Description of seismic wave
attenuation, basic observables and observations

Assuming that all seismologically relevant re-
laxation mechanisms can be modeled by lin-
ear rheologies, shear attenuation is commonly
described by the frequency-domain visco-elastic
stress-strain relation

σ (ω) = μ̃(ω)ε(ω), (11.15)

where μ̃ denotes the complex shear modulus in
the frequency domain. The ratio between the real
and imaginary parts of μ̃ defines the shear quality
factor Qμ:

Qμ(ω) = �μ̃(ω)
ζ μ̃(ω)

. (11.16)

The bulk quality factor Qκ is defined similarly
on the basis of the complex bulk modulus κ̃.
The observability of Q in the Earth is closely
related to the amplitude decay of seismic waves.
For instance, when Qμ >> 1, the amplitude A of a
plane S wave propagating through a homogeneous
and isotropic medium behaves as

A ∝ exp

(
−ω x

2vsQμ

)
, (11.17)

where x denotes the distance traveled. Relation
(11.17) is frequently adapted in ray-theoretical
studies that replace x/Qμvs by

t∗ =
∫
C

ds
Qμ(x) vs(x)

, (11.18)

with C and ds denoting the ray path and a path
segment, respectively. Analogous relations can
be derived for plane P waves. Most body wave
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attenuation tomographies are based on variants of
Equations (11.17) and (11.18) because they allow
us to eliminate the contribution of the potentially
uncertain seismic moment by measuring ampli-
tude ratios of different seismic phases (e.g. Reid
et al., 2001; Cheng & Kennett, 2002; Kennett &
Abdullah, 2011).

Early studies of Q in the Earth were primar-
ily based on the decay of free oscillation peaks
and long-period surface wave amplitudes (e.g. An-
derson et al., 1965; Canas & Mitchell, 1978;
Anderson & Hart, 1978; Sailor & Dziewonski,
1978. They established that attenuation in shear
largely dominates over attenuation associated
to bulk deformation, meaning that Qμ << Qκ

almost anywhere in the Earth. Attenuation mea-
surements of the Chandler wobble at sub-seismic
frequencies on the one hand, and surface waves on
the other hand furthermore indicated that Qμ is
mildly frequency-dependent, with Qμ ∝ ωα and α

in the range of 0.1–0.5 (e.g. Anderson & Minster,
1979). These results were confirmed by numer-
ous body wave analyses (e.g. Sipkin & Jordan,
1979; Flanagan & Wiens, 1998; Cheng & Kennett,
2002) and laboratory experiments (e.g. Jackson,
2000, 2007; Karato, 2008). In a recent study,

Lekic et al. (2009) developed a method that sep-
arates the depth- and frequency-dependencies of
normal-mode and surface-wave attenuation mea-
surements. Their results suggest that the effective
α in the mantle is negative (≈ −0.4) at periods
longer than 1000 s, transitioning to positive val-
ues around 0.3 for periods shorter than 500 s.

Despite the unequivocal evidence for a power-
law frequency dependence, tomographic inver-
sions mostly assume Q to be constant across the
seismic frequency band, i.e. from ≈ 1 to ≈ 10−3

Hz. This simplification is motivated by the dif-
ficulty to robustly constrain Q variations in the
Earth even within a narrow frequency band. The
constant-Q model is closely related to the notion
of a continuous absorption band, i.e. a continu-
ous distribution of relaxation mechanisms that
lead to nearly frequency-independent absorption
(Liu et al., 1976), as shown in Figure 11.6. This
is in contrast to the appearance of isolated ab-
sorption peaks that are, for instance, commonly
found in metals (e.g. Zener, 1948. Outside the
absorption band, Q is predicted to be proportional
to ω−1 at the low-frequency end, and to ω at the
high-frequency end.

A direct consequence of attenuation in gen-
eral is dispersion, i.e. the frequency-dependence

Fig. 11.6 Phase velocity (dashed)
and Q−1 (solid) as a function of
frequency in an absorption band
model with a nearly constant Q of
400 in the frequency band from
≈ 10−5 Hz to 1 Hz. A
frequency-dependent Q within
the absorption band is shown
schematically in the form of a
gray line. A power-law frequency
dependence, Q ∝ ωα with a
slightly positive α around 0.3 is
consistently found in seismic and
laboratory studies, but commonly
ignored in tomographic
inversions.
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of phase velocity (Figure 11.6). In the constant-
Q model (Liu et al., 1976), the phase velocity
dispersion relation is given by

vphase(ω)

vphase(ωref )
= 1 + 1

π Q
ln

(
ω

ωref

)
, (11.19)

where ωref is a reference frequency. Equation
(11.19) holds, provided that Q >> 1, and that ω

lies within the absorption band. Equation (11.19)
suggests that phase velocity increases monoton-
ically with increasing frequency; and this effect
is most pronounced in highly attenuative media
where Q is small.

It is important to make a clear distinction be-
tween velocity as a property of a traveling wave,
and velocity as a material property. The phase
velocity in Equation (11.19) is strictly speaking
the propagation speed of a monochromatic plane
wave in an isotropic and homogeneous medium.
This is not generally identical with a velocity as
material property, given by the square root of an
elastic modulus divided by density.

11.6.2 The nature of the inverse problem

The dependence of the phase velocity on both Q
and ω has profound implications on our ability
to infer the absorption properties of the Earth.
On the one hand, there is no seismological ob-
servable that is sensitive to variations in Q only,
while being practically insensitive to variations
in any other parameter. On the other hand, there
is also no seismological observable that is unaf-
fected by Q. The amplitudes of both long-period
(50–200 s) surface waves and intermediate-period
(5–30 s) body waves are found to be dominated
by focusing induced by 3D variations of purely
elastic structure (Sigloch, 2008; Zhou, 2009; Tian
et al., 2009). This does not mean that Equation
(11.17) is incorrect, but it is a reminder that a
proportionality derived from plane wave analysis
in homogeneous media should not be mistaken
for an equality that holds in the real Earth. The
impact of attenuation on travel times should also
not be underestimated. Based on the analysis of
finite-frequency sensitivity kernels, Zhou (2009)

infers that 15–20% of the observed phase delays in
long-period surface waves may in fact be the result
of 3D heterogeneity in Qμ. It follows, in conclu-
sion, that any inference on the spatial distribution
of Q requires the solution of an intrinsically cou-
pled multi-observable/multi-parameter problem.

The inverse problem is complicated by the dif-
ficult nature of seismic wave amplitudes that are
frequently used as the only measurement to con-
strain Q. In addition to attenuation, amplitudes
are strongly affected by focusing. Waves trav-
eling through a low-velocity region are focused
and amplified, whereas defocusing and amplitude
reduction occur in high-velocity zones. Further-
more, amplitude measurements are affected by
miscalibrated instruments, scattering and seismic
source characteristics. Small-scale heterogeneity
in the immediate vicinity of the receiver, such
as layers of nearly saturated sediments, may give
rise to nonlinear amplitude effects. These fac-
tors add frequency-dependent source and receiver
corrections to the list of unknowns.

The daunting complexity of the inverse prob-
lem for Q explains why substantial simplifica-
tions are common. Instead of jointly inverting
for all the necessary free parameters, both elastic
focusing effects and source/receiver corrections
are frequently ignored. While convenient, this ap-
proach was shown to produce incorrect estimates
of attenuation structure in body and surface wave
studies (Dalton et al., 2008; Tian et al., 2009). To
isolate the signature of attenuation, several stud-
ies proposed to remove the focusing effect from
observed amplitudes with the help of 3D elastic
velocity models derived from travel time tomog-
raphy. While being a significant step forward,
this strategy suffers from the subjective choice
of an elastic model, and its smoothness proper-
ties in particular. Overly rough elastic models
may lead unrealistically strong focusing, while
overly smooth models will compensate the un-
derestimated elastic effect by excessive Q vari-
ations. Interestingly, this scale-length problem
is similar to the one encountered in anisotropic
tomography where the roughness of isotropic ve-
locity variations trades off with the strength of
anisotropy. In any case, the resulting combination
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of elastic velocity and attenuation models will be
incompatible, because the deduced 3D variations
in Q were not accounted for in the interpretation
of travel times used to derive the velocity model
that was initially needed to remove the elastic
effect from amplitudes. This discrepancy under-
lines the intrinsic nonseparability of elastic and
anelastic effects that precludes any consistent
removal of focusing effects from seismic wave
amplitudes.

Both the multi-observable/multi-parameter na-
ture of the inverse problem for Q structure and
the inconsistency of many simplifications explain
why our progress in attenuation tomography has
been rather slow, compared to tomography for
elastic structure.

11.6.3 Constraints on the radial attenuation
structure

Constraints on the spherically averaged attenu-
ation in the Earth are mostly derived from the
amplitude decay of body waves, long-period sur-
face waves and free oscillation peaks.

Estimates of the radial shear attenuation by
various authors, summarized in Figure 11.7, are
relatively consistent. The only notable exception
is the lithosphere where values range between
Qμ ≈ 200 (Durek & Ekström, 1996) and Qμ ≈ 600
(Dziewonski & Anderson, 1981; Okal & Jo, 1990).
This variability partly reflects the presence of
strong heterogeneity in the lithosphere that pre-
vents the determination of a physically meaning-
ful average. Within a narrow asthenospheric layer,
Qμ is generally found to be low (60–90). This drop
is followed by a rapid increase through the transi-
tion zone to Qμ ≈ 300 near 660 km depth. Within
the lower mantle some authors favour a slight
decrease (Okal & Jo, 1990; Widmer et al., 1991),
while others prefer a constant Qμ ≈ 300 down
to the core-mantle boundary (Dziewonski & An-
derson, 1981; Durek & Ekström, 1996). Reliable
uncertainty estimates for the radial Qμ profile
were provided by Resovsky et al. (2005), who ap-
plied a probabilistic inversion to normal-mode
and surface-wave data. Typically, the standard

deviations were found to range between 10% and
20%, depending on depth.

The distribution of bulk attenuation, required
by the decay of radial free oscillations, is the
subject of a long-lasting debate, in the course
of which a large variety of models have been pre-
sented. Some of these are displayed in Figure 11.7.
Dziewonski & Anderson (1981) confined a com-
paratively large bulk attenuation in PREM to
the inner core, where Qκ = 1327.7 compared to
Qκ = 57823 anywhere else in the Earth. They
noted, however, that ‘‘this should be only under-
stood as a way to lower Q of radial modes in
order to make them more compatible with obser-
vations. The problem is highly non-unique and its
early resolution is not likely.’’ Similar to PREM,
Anderson & Hart (1978) and Okal & Jo 1990 lo-
cate high bulk attenuation (small Qκ ) in the inner
core. In contrast, more recent models based on
higher-quality data clearly prefer a distribution of
low Qκ in the upper mantle and the transition
zone (Durek & Ekström, 1996), or in the whole
mantle and the outer core (Widmer et al., 1991;
Resovsky et al., 2005). The variety of Qκ models
is proportional to the ill-posedness of the inverse
problem. As in the case of density tomography,
the observational constraints on Qκ are weak, so
that the solution of a deterministic inverse prob-
lem is dominated by the unavoidable and largely
subjective regularization. Any particular value of
Qκ should be interpreted with caution, since plau-
sible values of bulk attenuation may span nearly
one order of magnitude (Resovsky et al., 2005).

All of the radial Qμ models shown in Figure
11.7 are based on the assumption of frequency-
independent attenuation, despite the well-known
power law relation Qμ ∝ ωα with α mostly be-
tween 0.1 and 0.5. Additional free parameters to
describe frequency dependence are unlikely to be
resolvable. As pointed out by Lekic et al. (2009),
this simplification may lead to incorrect Qμ pro-
files, because higher-frequency waves with higher
Qμ constrain shallower structure, whereas lower-
frequency waves with lower Qμ constrain deeper
structure. Thus, attenuation estimates may be bi-
ased towards low Qμ values in the deep mantle
and towards high Qμ values in the upper mantle.
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Fig. 11.7 Comparison of the radial Q models PREM (Dziewonski & Anderson, 1981), PAR3C (Okal & Jo, 1990),
QM1 (Widmer et al., 1991), QL6 (Durek & Ekström, 1996), and the model by Resovsky et al. (2005) with ±σ

uncertainties indicated by the light-gray shaded areas.

11.6.4 3D attenuation models

Over the past four decades, numerous regional-
scale studies made use of diverse data sets
including surface wave amplitudes and differen-
tial t∗ measurements on pairs of seismic phases.
While individual results differ substantially due
to the complexity of the inverse problem and the
various ways of dealing with it, some robust links
between near-surface tectonic features and the

attenuation properties of the uppermost mantle
are emerging from the ensemble of available mod-
els: Low attenuation, i.e. large Q, is often found
within stable continents (e.g. Chan & Der, 1988;
Sipkin & Revenaugh, 1994; Tian et al., 2009;
Kennett & Abdullah, 2011). This is in contrast
to the typically high attenuation in the vicinity
of hotspots (e.g. Tian et al., 2009; Kennett &
Abdullah, 2011). Along convergent margins,
several studies inferred high attenuation in the
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mantle wedge above subducting slabs and lower
attenuation within the downgoing plate (e.g.
Flanagan & Wiens, 1990; Stachnik et al., 2004). A
decrease of uppermost mantle attenuation with
increasing age of ocean floor was found, for in-
stance, by Canas & Mitchell (1978) and Sheehan
& Solomon (1992). These observations suggest
that attenuation is primarily temperature-related,
at least within the shallow mantle.

Global models of attenuation in the whole
mantle have also been derived mostly from long-
period surface wave amplitudes and amplitude
ratios of various body wave phases. These models
differ strongly in the treatment of elastic ef-
fects and source/receiver corrections. Romanow-
icz (1990) and Durek et al. (1993), for instance,
considered the amplitudes of four consecutive ar-
rivals of multiply-orbiting long-period Rayleigh
waves (e.g. R1, R2, R3, R4), in order to reduce the
effects of elastic focusing and source uncertainty.
While this approach helps to pronounce the con-
tribution of attenuation, it only yields informa-
tion on even-degree Qμ structure. An improved
data analysis scheme was used by Romanowicz
(1994), who selected both R1 and R2 amplitudes
that did not appear to be contaminated by source
errors and elastic effects. The selection criterion
enforced consistency between the attenuation co-
efficients inferred from four consecutive wave
trains, and those measured on minor and major
arc amplitudes only. This strategy led to maps
of both even- and odd-degree structure, that were
used to construct the first global model of shear
attenuation (Romanowicz, 1995).

Billien et al. (2000) and Selby & Woodhouse
(2000; 2002) explicitly treated elastic focusing
using a linear approximation derived from ray
theory (Woodhouse & Wong, 1986). The con-
tribution from focusing to the amplitudes of
Rayleigh waves was found to be considerable,
even for long periods between 70 s and 170 s.
This motivated Billien et al. (2000) to jointly
invert phase and amplitude measurements of
Rayleigh waves for degree-20 maps of phase ve-
locities and attenuation. However, being con-
cerned that focusing may not be predicted with
sufficient accuracy by current velocity models,

Selby & Woodhouse (2002) decided not to ac-
count for elastic effects in their inversion for 3D
shear attenuation. A similar approach was taken
by Gung & Romanowicz (2004) who neglected
focusing as well as source/receiver corrections,
because these factors seemed to have little effect
on their degree-8 model in synthetic tests.

As an alternative to surface waves, Reid et al.
(2001) estimated t∗ from amplitude ratios of glob-
ally recorded S, SS and SSS waves. Also neglecting
the effect of focusing, the t∗ measurements were
inverted for a degree-8 model of Qμ in the upper
mantle.

The currently most sophisticated study on
whole-mantle shear attenuation was initiated by
Dalton & Ekström (2006) who simultaneously
inverted Rayleigh wave amplitudes and phase
delays for maps of shear attenuation and phase ve-
locity, as well as for amplitude correction factors
for each source and receiver. They demonstrated
that attenuation estimates depend significantly
on each of the amplitude corrections, and that
the neglect of elastic focusing translates into
inaccurate Q structure. The phase delay maps
were then used to remove the focusing effect from
the amplitude data, which were then inverted
for a global degree-12 Qμ model (Dalton et al.,
2008). More than previous models, the work of
Dalton et al. (2008) reveals a clear correlation
between shallow-mantle attenuation and surface
tectonics. In particular, high attenuation is found
around 100 km depth beneath the circum-Pacific
volcanic arc, the Lau basin, and along most
mid-ocean ridges, including the East Pacific Rise,
the Indian-Antarctic ridge and the Mid-Atlantic
ridge. Precambrian lithosphere is characterized
by lower than average attenuation.

In contrast to elastic P or S tomographies, there
is little agreement between attenuation models.
Dalton et al. (2008) compared their global Qμ

model to those of Romanowicz (1995), Reid et al.
(2001), Warren & Shearer (2002), Selby & Wood-
house (2002) and Gung & Romanowicz (2004).
When truncated at degree 8, the correlation of
these models was found to be mostly below 0.4
throughout the upper mantle. Furthermore, Dal-
ton et al. (2008) noted that global Qμ models differ
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most in the vicinity of mid-ocean ridges where
characteristic low-velocity regions can lead to a
strong focusing of wave energy that must be ac-
counted for correctly. The strength of the lateral
variations in global attenuation models varies by
a factor of up to 4, which is significantly above the
error estimates of around 10%, given, for instance,
by Romanowicz (1995). The various models are
therefore, technically speaking, inconsistent. The
large discrepancies between Qμ models and the
overly optimistic error estimates are again related
to the properties of an ill-posed inverse problem
where weak constraints and strong trade-offs lead
to a dominance of subjective and often implicit
regularization.

Despite the difficulties involved in attenuation
tomography, some large-scale robust features can
be deduced from the combined analysis of all
available global attenuation models. Above 250
km depth, most studies find a correlation between
Qμ and surface tectonics. The most notable con-
sistency is the appearance of high Qμ values in
stable continental interiors, including Australia’s
Pilbara and Yilgarn cratons, the East European
Platform and the Canadian Shield. Below 250
km depth the attenuation pattern changes, and
low Qμ can roughly be associated with the posi-
tion of hotspots as imaged in isotropic velocity
tomographies.

The variability of Qμ models is due to a strong
methodology-dependence that reflects the diffi-
culty of extracting a robust signal from seismic
wave amplitudes that can be attributed to attenu-
ation with sufficient confidence. From the current
perspective, much progress remains to be made
in order to arrive at a stage where attenuation
models can be interpreted quantitatively in terms
of the Earth’s thermo-chemical structure.

11.7 Promising Future Directions

From the above discussions it is clear that global
tomography is, in general, a multi-observable/
multi-parameter problem. The complicated
nature of this problem has to be addressed very
carefully, especially when inverting for weakly-
constrained and scale-dependent properties such

as anisotropy, density and attenuation. The
consensus amongst seismologists decreases from
isotropic to anisotropic, density and attenuation
models. The reason for this is the nonsymmetric
nature of the resolution operator (Equation
11.13). The Fréchet derivatives are such that
trade-offs to isotropic parameters are smallest.
This explains the considerable overlap between
different studies using different approximations
and data. Good data exist to image the elastic
part of the problem, but density is weakly
constrained. The Fréchet derivatives to anelastic
parameters are much smaller with common
parametrizations and misfit functionals. We
see mainly three general future directions: (1)
progressing towards full waveform inversion
with appropriate resolution analysis, (2) principal
component analysis and (3) finding new observ-
ables which are sensitive to a limited range of
parameters.

Full waveform inversion uses gradient-type im-
plementations of Equation (11.10) with exact
Fréchet derivatives computed with purely numer-
ical solutions of the forward problem (Bamberger
et al., 1982; Tarantola, 1988; Igel et al., 1996).
This approach accounts for the nonlinear rela-
tion between structure, phase and amplitudes in
the construction of tomographic models, thus
progressing beyond linear approximations com-
monly used. Since the update of the model is just
a scaled version of the misfit kernel, there is no ex-
plicit regularization required, beyond smoothing
the kernels and terminating the inversion after
a finite number of iterations. The first regional-
to continental-scale seismological applications of
full waveform inversion indicate that resolution
indeed improves (e.g. Chen et al., 2007; Ficht-
ner et al., 2009; 2010; Tape et al., 2010). In
particular, the amplitudes of the heterogeneities
increase, and more small-scale features are ro-
bustly imaged. We anticipate that full waveform
inversion techniques will make particularly valu-
able contributions to attenuation tomography.
The replacement of source/receiver correction
factors by more elaborate forward and inverse
modeling techniques that correctly account for
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local structure would constitute a very signifi-
cant progress. This is technically possible thanks
to advanced numerical wave propagation tools for
3D heterogeneous media (e.g. Moczo et al., 2007;
Dumbser et al., 2007; Peter et al., 2011). Poten-
tially, we can calculate the misfit kernels for all
parameters simultaneously and update the com-
plete model. Not all parameters will, of course,
be equally well determined, and trade-offs exit.
This approach will require a detailed resolution
analysis. Tools in the framework of full waveform
inversion are just becoming available (Fichtner &
Trampert, 2011a, b).

While a simultaneous inversion for all possible
parameters is tempting, we must realize that not
all Fréchet derivatives are equally strong. Princi-
pal component analysis (Sieminski et al., 2009)
opens the opportunity to determine a priori those
linear combinations of elastic parameters that are
best constrained by the data set, i.e., that generate
the largest sensitivities. For the elastic problem,
not more than 6 linear combinations mostly ac-
count for about 90% of the total sensitivity,
meaning that all remaining linear combinations
can hardly be constrained. Thus, rather than up-
dating all elastic parameters, only the first 6
linear combinations of parameters could be up-
dated instead. Principal component analysis is a
valuable tool to optimize the design of an inverse
problem by finding the maximum number of well-
constrained parameters. While the optimal linear
combinations of elastic parameters may not al-
ways have a specific meaning in terms of wave
propagation, they can still be interpreted in a
mineral physics context, thereby providing robust
insight into the thermochemical and deformation
state of the Earth.

A last promising direction is the incorpora-
tion of new observables, either in the form of
completely new measurements or as specifically
designed misfit functionals. Examples of the for-
mer include measurements of rotational ground
motions (e.g. Ferreira & Igel, 2009), Bernauer
et al., 2009), Earth tides (Latychev et al., 2009)
and highly accurate long-period mode splitting
(Deuss et al., 2011). The design of targeted misfit
functionals is based on the realization that not all

parametrizations are equivalent. It is well under-
stood, for instance, that travel times are sensitive
to velocities, but hardly to density. If the problem
is reformulated with elastic parameters and den-
sity instead, the sensitivity to density increases,
but now the problem has to be solved for elas-
tic parameters and density simultaneously, with
possible trade-offs. In the proposed approach it is
further important to realize that the sensitivities
are determined by the definition of the misfit
functional or the measurement. The idea is then
to find a misfit functional which maximizes, or
even better, which diagonalizes the sensitivity to
the parameter of interest. This can be set up as
a design problem in combination with principal
component analysis (Sieminski et al., 2009) or
in a fully nonlinear fashion (van den Berg et al.,
2003).

Most of these directions are certain to sig-
nificantly increase our imaging capabilities. In
the more distant future, sampling directly the
posterior (i.e. solving Equation 11.5) including
the full nonlinearity of the forward problem,
should become feasible with exa-computing.
Guided Monte Carlo or Neural Networks (e.g.,
Meier et al., 2007) seem promising.
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