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[1] The solution of large linear tomographic inverse problems is fundamentally
non-unique. We suggest to explore the non-uniqueness explicitly by examining the
null-space of the forward operator. We show that with the null-space shuttle it is
possible to assess robustness in tomographic models, and we illustrate the concept for
the global P-wave model MIT-P08. We found a broad range of acceptable solutions
compatible with the travel time data. The root mean square (RMS) velocity
perturbations vary from 0.2 to 0.6% in the lowermost mantle and from 0.3 to 1.3% in
the upper mantle. Such large variations in average amplitudes prohibit meaningful
inferences on temperature or chemical variations in the Earth from tomographic models
alone. On a global scale much short wavelength structure resides in the null-space of
the forward operator, suggesting that the data do not everywhere resolve structure on
the smallest length scale (<200 km) allowed by the (block) parameterization used in
MIT-P08 and similar models. This indicates that great care should be taken when
interpreting such structure. As a practical measure, we suggest that only those structures
for which the wave speed perturbations do not change sign within the range of models
permitted by the data should be considered robust. With this criterion, the model
null-space analysis shows that the high velocity anomalies in the lower mantle, which
are often interpreted as remnants of slabs of subducted lithosphere, are required by the
seismic data. Low-velocity anomalies underneath, for instance, Hawaii, Iceland, and Africa
show varying degrees of robustness.

Citation: de Wit, R. W. L., J. Trampert, and R. D. van der Hilst (2012), Toward quantifying uncertainty in travel time
tomography using the null-space shuttle, J. Geophys. Res., 117, B03301, doi:10.1029/2011JB008754.

1. Introduction

[2] The ever increasing quantity of seismic data from both
global and regional networks enables global body wave
travel time tomography to constrain velocity variations
within the Earth with increasing detail [e.g., Dziewonski
et al., 1977; Vasco and Johnson, 1998; Bijwaard and
Spakman, 2000; Kárason and van der Hilst, 2000; Grand,
2002; Widiyantoro et al., 2001; Zhao, 2004; Li et al.,
2008]. In most such studies, however, more attention is
paid to interpretation than to analyzing the quality of the
tomographic models. To assess a model, a quantitative study
of uncertainty is needed [Trampert and van der Hilst, 2005].
The solution of tomographic inversions is fundamentally
non-unique and, in general, the quality of a tomographic
image is limited by the quality of the data, the data coverage
and the approximations made in the formulation of both the
forward and inverse problem. The data used in travel time

tomography typically suffer from an uneven sampling of the
Earth’s interior by body waves. Furthermore, the travel time
data include both random and systematic errors that are dif-
ficult or even impossible to estimate accurately, although
attempts have been made [e.g., Gudmundsson et al., 1990;
Röhm et al., 1999].
[3] The performance of inversions of synthetic data cal-

culated from a known input model is often used as a proxy
for the quality of a tomographic image. Most popular are the
so-called checkerboard tests, in which synthetic data are
computed from a regular pattern of positive and negative
wave speed values, but such tests are actually of limited
diagnostic value [Lévêque et al., 1993; van der Hilst et al.,
1993]. More useful are so-called ‘hypothesis tests’ in
which the ability of data to resolve the structural features of
particular interest is tested through inversion of synthetic
data calculated for a series of alternative or competing
models [e.g., Spakman et al., 1989; van der Hilst et al.,
1997; Bijwaard et al., 1998; Wolfe et al., 2002; Montelli
et al., 2004]. Such tests help gain confidence in specific
features, and they can be used to show, for instance, that
travel time inversion with local basis functions can resolve
long wavelength structures identified in models repre-
sented by spherical harmonics [e.g., van der Hilst et al.,
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1997], but they do not yield a quantitative measure of the
quality of the entire solution or the uncertainty of indi-
vidual model parameters.
[4] To obtain more quantitative measures of the uncer-

tainty in model parameters one can calculate the associated
resolution [Aki et al., 1977; Boschi, 2003] and covariance
matrices [Vasco et al., 2003; Soldati et al., 2006]. Resolution
matrices are useful as they give an unambiguous picture of
the linear dependencies between individual model para-
meters. Current computer facilities allow us to calculate such
matrices [Trampert and Lévêque, 1990; Soldati and Boschi,
2005], but the visualization and interpretation of a matrix
with a dimension of the order of several hundred thousand is
still a challenge. Covariance matrices are useful if data and
prior model covariances are known and based on the physics
of the problem. But this is rarely the case. Indeed, one often
uses mathematical regularization and smoothness con-
straints, which can lead to covariances that grossly misrep-
resent uncertainty.
[5] In view of the non-uniqueness of solutions, model

uncertainty should be inferred from the ensemble of models
that, given the uncertainties in the data, fit the data within a
given misfit tolerance. Such an ensemble can be found by
forward sampling [e.g., Resovsky and Trampert, 2003], but
current computers can only achieve this for modest size
inverse problems, that is, of the order of 10 to 100 model
parameters. Larger problems rely on linearization and only
allow one to study the data misfit locally. The covariance
can then be interpreted as the width of the misfit function
when the data change within their uncertainties. In the
Bayesian context, this width is given by the inverse Hessian
of the problem [e.g., Tarantola, 2005] which strongly
depends on the chosen regularization. A strong regulariza-
tion will automatically yield an optimistically small model
uncertainty, whereas smoothing will give a very large
uncertainty because in that case the inverse regularization
operator is rank deficient.
[6] Meju [2009] proposed to find the range of acceptable

models given a fixed tolerance on the misfit function. His
method relies on a quadratic approximation of the misfit
function, however, and the optimal solution –and, thus, the
range– depends again on the inverse Hessian, with the
drawbacks mentioned above.
[7] Because of the fundamental non-uniqueness of the

solution the misfit function is flat and a local quadratic
approximation might be inappropriate. We suggest to
address non-uniqueness explicitly by taking the null-space
of the forward operator into account when analyzing model
uncertainty. Deal and Nolet [1996] designed the null-space
shuttle to exploit components of the model null-space, in
combination with physical a priori information, to enhance
the corresponding tomographic image [Deal et al., 1999]. In
doing so, the null-space shuttle can be viewed as a tool for
hypothesis testing that is more efficient and more quantita-
tive than the common resolution tests mentioned above. We
generalize the null-space shuttle and use it to assess robust-
ness in the type of travel time tomographic model produced
by, for instance, Fukao et al. [1992, 2001], van der Hilst
et al. [1997], Bijwaard et al. [1998], Vasco and Johnson
[1998], Kárason and van der Hilst [2001], Zhao [2004],
and Montelli et al. [2004]. Our method is comparable to
Meju’s extremal bound analysis but does not explicitly use

the inverse Hessian. The bounds are evaluated using
scaled null-space components. For illustration purposes we
use the P-wave model by Li et al. [2008], hereinafter
MIT-P08. We emphasize, however that the conclusions
about model uncertainty are pertinent to other P and S
travel time models as well, perhaps even more so since
MIT-P08 is based on a more comprehensive data set than
most other models. The conclusions might be different for
S-wave models, especially if surface wave dispersion data
are included, but the proposed technique is general and is
applicable to any linearized tomographic inverse problem.
[8] Since tomographic models are rarely minimum norm

models, they contain a null-space component. We will use
the null-space shuttle to show how to extract this component
and evaluate the robustness of a tomographic model. We
will show a range of models that –within a given data misfit
tolerance– fit the data equally well as MIT-P08, and we
discuss first-order implications for the interpretation in terms
of deep subduction, upwellings of mantle plumes, and var-
iations in temperature and chemical composition.

2. Data and Their Uncertainties

[9] The data used by Li et al. [2008] consist of residuals
with respect to travel times computed from ak135 [Kennett
et al., 1995] from three sources: (1) more than ten million
routinely picked and processed travel times from global and
regional networks; (2) more than twenty thousand differen-
tial times measured by waveform cross correlation; and (3)
about two hundred thousand phase arrivals from temporary
arrays. For internal consistency, all data are processed and
used for earthquake hypocenter determination using the
algorithms due to Engdahl et al. [1998], which hereinafter
will be referred to as EHB. For further details on the data
used we refer the reader to Li et al. [2008], and for a dis-
cussion of the different weights used we refer to Kárason
and van der Hilst [2001].
[10] The seismic data represented in, for instance the cat-

alog of the International Seismological Centre (ISC), which
were reprocessed by Engdahl et al. [1998], have varying
precision. It is, therefore, difficult to obtain a reliable esti-
mate of the uncertainties in the millions of data available for
travel time tomography. Knowledge of these uncertainties is
important, however, when judging the significance of a
certain data misfit. A few studies have attempted to estimate
the observational errors in the ISC database. Gudmundsson
et al. [1990] estimated errors in teleseismic ISC delay
times by performing statistical tests and find a mean value of
0.5 s, while Amaru et al. [2008] approximate the RMS
picking error in the ISC data to be 0.75 s. Reading or picking
errors are assumed to be random and can therefore be
reduced through stacking, for instance by constructing
composite rays [Spakman and Nolet, 1988], but this is not
the case for systematic errors in a dataset. Röhm et al. [1999]
tested delay times of the EHB database for systematic var-
iations in time. They find temporal variations of the median
delay time of 0.5–1.0 s, in agreement with Grand [1990]
who reported a late arrival bias in the ISC data of 0.5 s
depending on the gain of stations. Because of their system-
atic nature, Röhm et al. [1999] expect that these errors will
not necessarily cancel out by using the large number of
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travel times in the ISC Bulletin, which may cause a bias in
the tomographic images.

3. Null-Space Shuttle

[11] We follow the inversion procedure as described by Li
et al. [2008], who construct a global model of P-wave
velocity perturbations in the Earth’s mantle. The model
consists of blocks of constant slowness (the inverse of wave
speed) and parameters associated with source relocation. We
omit the 3D crustal correction because it introduces a bias
in the estimated null-space component due to the way the
crustal correction is implemented via regularization.
Removing this crustal correction influences neither the sta-
bility of the inversion nor the results presented in this report.
All solutions presented here were obtained after 100 itera-
tions of the LSQR algorithm [Paige and Saunders, 1982],
after which most of the misfit reduction was accomplished.
[12] We consider a model md that results from inversion of

the recorded data d, that is md = Ld, with L some generalized
inverse operator. We further consider a test model mt that
may be close to md but which does not necessarily explain
the data. In general, mt has components both in the range and
in the null-space of a forward operator G, so that

mt ¼ mrange
t þ mnull

t : ð1Þ

The part of mt lying in the null-space of the forward operator
G has no effect on the data misfit and can be found using the
null-space shuttle as proposed by Deal and Nolet [1996].
Defining

Gmt ¼ dt; ð2Þ

with dt the synthetic data vector corresponding to mt, gives

Gmrange
t ¼ dt; ð3Þ

because Gmt
null = 0 by definition. Solving the inverse prob-

lem for mt in equation (3) yields mt
range and it is (in principle)

straightforward to obtain mt
null via equation (1). To do so, we

employ the same LSQR algorithm as is used to solve the
original inverse problem. We note that we would obtain
mt
range exactly if the algorithm used to solve the inverse

problem provides a minimum norm solution. A minimum
norm solution fits the data exactly and has no components in
the model null-space. However, due to the necessary regu-
larization the solution to our inverse problem, and most
others, is a compromise between the minimum norm and the
least-squares solution. Therefore, we only get an estimate:

~mrange
t ¼ Ldt ¼ Rmt ; ð4Þ

with L the inverse operator corresponding to the LSQR
algorithm and R the resolution operator. In our notation, ‘�’
refers to estimated model parameters and ~mrange

t is different
from but close to mt

range. Consequently, we have a good
approximation of the null-space component of mt:

~mnull
t ¼ mt � ~mrange

t ¼ ðI � RÞmt : ð5Þ

For a perfect resolution, that is, R = I, there is no model
null-space.

[13] Let us now consider again the original solution md.
Once the null-space component of mt has been calculated via
the approximate null-space operator I � R, we may define a
new solution

~mnew ¼ md þ a~mnull
t ; ð6Þ

with a a scaling factor. Since G~mnull
t is not exactly zero, the

new solution in equation (6) corresponds to a slightly dif-
ferent data misfit than the original solution md. However, as
will be shown below, effects on the data misfit are small
compared to presumed data uncertainties. The null-space
shuttle therefore provides us with a powerful tool to inves-
tigate the robustness of a tomographic model in a straight-
forward fashion.
[14] A full exploration of the model null-space is practi-

cally impossible as one would have to evaluate an infinite
number of test models (mt in equation (6)). Therefore, we
need to focus our analysis on a certain subset of test models.
For instance, we could choose a test model consisting of
random anomalies, for which we would analyze the uncer-
tainties on the scale of the raw model parameters, i.e. single
constant-slowness blocks. At the other end of the spectrum,
using a uniform test model, we could explore the model null-
space on the length scale of the complete Earth model.

4. Results

[15] In this study we obtain a set of new solutions by
projecting the original tomographic image md (Figure 1)
onto the model null-space; that is, we use md as a test model.
By using the null-space component of the original solution
we implicitly assess its robustness with the same resolution
as the original model.
[16] We use the null-space shuttle to infer quantitative

bounds for the tomographic model and construct a range of
acceptable models, that is, models that explain the data
within a chosen data misfit tolerance. In the process we will
obtain a model that, for a given regularization, approximates
the minimum norm solution and therefore only contains
structures required by the data.
[17] In the Bayesian framework, and assuming Gaussian

statistics, the approximate null-space operator I � R equals
C~mC�1

m [Tarantola, 2005], where C~m is the posterior and Cm

the prior model covariance. That is, I � R can be seen as a
relative covariance. Although we are not working in a
Bayesian context, we propose to use equation (6) applied to
the tomographic model md itself, that is, mt = md, as a basis
for analyzing the range of possible models. We then get,
from equation (6),

dm ¼ ~mnew � md ¼ a~mnull
d ¼ aðI � RÞmd ; ð7Þ

where a is some numerical factor chosen to obtain a pre-
defined deviation for the data misfit. For a given a, a(I � R)
presents a relative deviation from the original model md. We
recall that ~mnull

t is not exactly in the model null-space and
that I � R increases from zero (that is, perfect resolution)
with decreasing resolution.
[18] It is essential to define a tolerance on the data misfit.

The root mean square (RMS) of the data misfit prior to
inversion is 1.92 s, while the RMS data misfit for the
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original tomographic image is 1.46 s, corresponding to a
variance reduction of 42%. This suggests that the average of
reported values for uncertainty in ISC picks �0.5 s [Grand,
1990; Gudmundsson et al., 1990; Röhm et al., 1999]– is
more than the achieved misfit reduction during the inversion.
We should not forget, however, that the inversion was for-
mulated for composite rays and after (non-linear) relocation
and phase re-identification [Engdahl et al., 1998] and not for

the original (individual) ISC travel time picks. Assuming
that errors in the data are random, we divide this uncertainty
by

ffiffiffiffiffi

10
p

because on average 10 rays were used to construct a
single composite ray. This would yield an estimate for the
(composite ray) data uncertainty of 0.1 s, but because part of
the error in the EHB data may be systematic [Röhm et al.,
1999] this value may underestimate the actual data uncer-
tainty. For example, in their tomographic study of the mantle

Figure 1. The original P wave speed perturbation model MIT-P08 without a crustal correction. The per-
turbations are in percent with respect to ak135. The color scale is different for each depth slice and the
corresponding amplitude range is given at the bottom right beneath each panel.
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beneath the NW Pacific, van der Hilst et al. [1993] report a
smaller effect on variance reduction of summary ray con-
struction: compared to the original ISC picks selected for the
region (RMS 1.5 s), the data variance was reduced by 17%
upon EHB relocation, a further 14% upon summary ray
construction, and another 42% upon inversion of the sum-
mary ray data, for a total RMS reduction of 0.6 s.

[19] Figure 2 shows the RMS data misfit versus RMS
norm of ~mnew (slowness parameters only) for new solutions
by setting mt = md in equation (6) and varying a between
�10 and 10. The red star denotes the original solution md as
shown in Figure 1. Note that the data misfit shown in
Figure 2 is the data misfit for the full solution, i.e. including
relocation parameters. By changing a, we are able to

Figure 2. RMS data misfit of the tomographic solution versus RMS norm of the slowness parameters in
the tomographic solution. Red star denotes the original solution md. Yellow diamonds represent the scal-
ing factor a from �10 to 10 with an interval of 2. Green lines represent the �0.1 s tolerance on the RMS
data misfit defined in the text. Grey dashed lines represent changes in the data misfit from 0.2 to 0.5 s
(upward) with 0.1 s intervals.

Figure 3. RMS norms of various solutions versus depth. Black line represents the original solution md.
Red and green lines represent solutions for a +0.1 s change in RMS data misfit (see Figure 2).
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minimize the norm of the solution or improve the data misfit.
Compared to the original solution the RMS norm is 24%
smaller for a = �1.7, for which the norm of the full solution
reaches its minimum. The best data misfit is achieved for
a = 2.6. We find that the effect on the RMS data misfit of
modifying the relocation parameters with the null-space
shuttle is small compared to changing the slowness

parameters. A broad range of solutions exists that fits the
data within a realistic average data uncertainty. As discussed
above, we estimated the tolerance on the RMS data misfit for
the current data set to be �0.1 s. For this tolerance, we find
two intersection points with the range curve (Figure 2). The
range in the model size is denoted by Dm and represents the
set of acceptable solutions within the �0.1 s change in the

Figure 4. Difference between the extremes of the range of acceptable solutions given a tolerance of 0.1 s
on the data misfit (Dm in Figure 2). These differences should be added to the minimum norm model in
Figure 5 to obtain the maximum norm model for the 0.1 s tolerance level. Note that the color scale is dif-
ferent from that in Figure 1.
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RMS data misfit (bounded by a =�1.4 and a = 6.6). Clearly,
Dm is very sensitive to the chosen data misfit tolerance. We
show here the results for the 0.1 s tolerance level but discuss
the dependency of Dm on data uncertainty below.
[20] To visualize the average behavior of the solution

range, we translated that range into RMS velocity pertur-
bations (excluding relocation parameters) versus depth
(Figure 3) for the original solution (black curve) and the
extreme bounds corresponding to a = �1.4 (red curve)

and a = 6.6 (green curve). In Figure 3, the maximum
difference in average P-wave velocity perturbation is about
0.4% in the lower mantle and approximately 1% in the
upper mantle at a depth of �350 km. Large uncertainties
thus exist in the average RMS amplitude of the velocity
perturbations. The difference between the models at the
extreme ends of the solution range Dm is shown in Figure 4
and is of similar size to or larger than the amplitudes of
anomalies in the original solution (Figure 1), particularly in

Figure 5. Approximate minimum norm model for a = �1.4, corresponding to a data misfit tolerance of
0.1 s. The color scale is the same as in Figure 1.
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the upper mantle. Note that the color scale is different from
that in Figure 1. By comparing Figures 1 and 4, we observe
that most changes to the original model are made on rela-
tively short length scales, i.e. a few hundred kilometers. This
is an indication that the global model is not robust at those
wavelengths.
[21] For the chosen tolerance on the data misfit of 0.1 s,

the model in Figure 5 represents the model of velocity
perturbations with the smallest norm required by the data
(given the chosen regularization). It corresponds to the left
intersection point between the green line and the blue curve
in Figure 2, i.e. for a = �1.4. The differences between this
model (Figure 5) and the original model (Figure 1), in
terms of geometry and amplitude of the velocity perturba-
tions, are most pronounced in the upper mantle and in the
Southern Hemisphere. Again we observe that, globally, the
differences between the models are mainly for shorter
wavelengths.
[22] The solution range estimated with the null-space

shuttle depends on the particular regularization chosen for
the tomographic inversion. Figure 6 shows the RMS data
misfit versus the RMS norm of the slowness parameters in
~mnew for three different sets of values for the regularization
parameters. As before, we apply equation (6) and use
mt = md and a varying between �10 and 10. The blue
curve represents the original regularization in Figure 2. As
expected, an increase in the values of damping parameters
results in a worse data fit and smaller model norm (red
curve), while the opposite is true for a less strong regulari-
zation (green curve). The model range Dm clearly depends
on the regularization via R (equation (7)). With the

regularization, a changes as well for a fixed data misfit tol-
erance. We observe that Dm becomes larger for decreasing
regularization, provided the inverse problem remains stable.
The classical L-curve analysis to choose an optimal regular-
ization corresponds to the tangent curve to the three range
curves shown (Figure 6). We note that the optimal solution,
that is, the solution to the inverse problem, is not the mini-
mum norm solution. For a given regularization, we can
always find a model with a smaller norm within the data
misfit tolerance. As before, these null-space components
mostly contain short wavelength structures.

5. Discussion

[23] This study does not provide a complete uncertainty
analysis for tomographic models because we only sampled
part of the model null-space. The approach is comparable to
the extremal bound analysis of Meju [2009] for a fixed
regularization. Whereas Meju’s bounds are symmetric by
construction and depend on the local misfit curvature, our
bounds are not necessarily symmetric and depend on the
null-space component of the model. The regularized tomo-
graphic inversion will include components of the model
null-space in the final model due to the necessary trade-off
between data misfit and regularization. These components
can be removed from the model by using the null-space
shuttle. As in Meju’s approach, the null-space analysis
depends on the chosen test model.
[24] For a data misfit tolerance of 0.1 s we found an

approximate minimum norm model (Figure 5), which only
contains structures required by the data. It is important to
realize, however, that this minimum norm solution is not to

Figure 6. RMS data misfit of the tomographic solution versus RMS norm of slowness parameters for the
original (blue curve), stronger (red) and weaker (green) regularization. A similar analysis as shown in
Figure 2 was performed. Red star denotes the original solution md. Cyan diamonds represent the optimal
solution for the chosen regularization. The black dashed line represents the classical L-curve analysis.
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be preferred over other solutions contained in Dm in
Figure 2. We therefore suggest that tomographically inferred
wave speed anomalies should be interpreted only if their
sign is constrained by the data.
[25] We illustrate this concept for MIT-P08 and analyze

the sign of the individual slowness parameters for all models
in our set of acceptable solutions Dm. If a parameter does
not have the same sign in all models, we consider it not to be
constrained by the data, whereas a slowness parameter that
has the same sign across the whole range Dm is considered
to be robust. Figure 7 shows the histogram (Figure 7, top
left) of the velocity perturbations in the minimum norm
model (Figure 5). We show the percentage of model para-
meters for which the sign is constant across the range of
acceptable solutions, which we call Psign, for a data misfit
tolerance of 0.1 s (Figure 7, top right). We show the results
as a function of the absolute amplitude of the velocity per-
turbations in the minimum norm model. We find that the
sign of �65% of all slowness parameters in the model is
constrained for this data misfit level. We observe, not
unexpectedly, that the sign is better constrained for model
parameters which have a relatively high amplitude in the
minimum norm model. For instance, for a data misfit level
of 0.1 s the data constrain the sign of about 60% of the
model parameters with an absolute amplitude of 0.1%. In

other words, 40% of the model parameters of 0.1% absolute
amplitude are difficult to interpret since the sign of the wave
speed anomalies is crucial for a solid interpretation. Model
parameters with larger amplitudes in the minimum norm
model are better constrained, e.g. 80% of the absolute
velocity perturbations of 0.8% have an unchanged sign in
the ensemble of solutions. We note that this simple analysis
is based on averages over the global model and could be
used to get a global sense of the constraint (or lack thereof)
on the sign of individual model parameters. For the 0.1 s
tolerance level, Figure 8 shows the model parameters for
which the sign is robust over Dm in white, whereas uncon-
strained parameters are shown in grey. In accord with
Figure 7, we observe that the majority of the slowness
parameters is robust. In general, the unconstrained para-
meters correspond to the poorly sampled (oceanic) parts of
the model. When the aim of a study is to interpret regional
structures in the tomographic model, we recommend visu-
ally inspecting the robustness of the sign of the velocity
perturbations (see below).

5.1. The Uncertainty of Data Uncertainty

[26] Uncertainties in the data are a crucial aspect in
uncertainty analyses. True data uncertainty is generally not
well known, and available estimates of the random and

Figure 7. (top left) Histogram of velocity perturbations in the minimum norm model shown in Figure 5.
(top right) Psign versus absolute velocity perturbation for a data misfit tolerance of 0.1 s. Grey lines high-
light Psign for an absolute amplitude of 0.1% for the wave speed anomalies. Psign for a tolerance of (bottom
left) 0.2 s and (bottom right) 0.5 s.
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systematic errors in ISC data range from 0.5 s to 1.0 s. Since
the tomographic models that we consider here use so-called
composite rays, with typically 10 or more rays and associ-
ated travel time data combined into a single entry, we
assume a smaller RMS data uncertainty. The analyses
described above are based on an RMS error of +0.1 s, but
this may underestimate the true data uncertainty (especially
if the errors in the data are of a systematic nature [Röhm
et al., 1999]). Therefore, we also evaluated how the range
of acceptable models, Dm, changes when we increase the
RMS data uncertainty.

[27] When we increase the data misfit tolerance from 0.1 s
to 0.2 s or even 0.5 s, the range of models, naturally,
becomes broader. Note that for a tolerance of 0.5 s the
extremes of the range will have approximately the same data
misfit as the reference model ak135 (1.92 s). The effect of
the higher tolerance values is shown in Figure 7, where we
show Psign for presumed data uncertainties of 0.2 s (Figure 7,
bottom left) and 0.5 s (Figure 7, bottom right). Note that for
these larger data misfit tolerance levels, we use the
corresponding minimum norm model, which is slightly dif-
ferent than for the 0.1 s level (see Figure 2). As expected,

Figure 8. Model parameters for which the sign is constrained over Dm for a data misfit tolerance of
0.1 s. Constrained parameters are shown in white and unconstrained parameters in grey.
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Psign decreases for these larger misfit tolerances, thus indi-
cating a deteriorating constraint on the sign of wave speed
anomalies (Figures 9 and 10).

5.2. Implication of Non-uniqueness of the Amplitude
of Wave Speed Anomalies

[28] The non-uniqueness of the original solution is
apparent in Figure 2. Whereas regularization is intended to
reduce non-uniqueness by imposing a priori constraints, it is
clear that for a given data misfit a broad range of viable
solutions still exists. That the amplitudes of the anomalies

are so poorly constrained suggests that amplitudes in pub-
lished tomographic models are dominated by the imposed
regularization. Even if we can use the null-space shuttle to
put quantitative bounds on the amplitude range, one should
exercise much caution when making inferences based on
amplitude. Consider, for instance, the estimation of ther-
mochemical variations in Earth’s lowermost mantle from
tomographically inferred velocity perturbations. For illus-
tration purposes, we take the two models represented by the
red and green curve in Figure 3, which we denote as ~ml

(shown in Figure 5) and ~mu , respectively. For a depth of

Figure 9. Model parameters for which the sign is constrained over Dm for a data misfit tolerance of
0.2 s. Constrained parameters are shown in white and unconstrained parameters in grey.
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�2800 km, we use a P-wave velocity to temperature sensi-
tivity of��1.6 ⋅ 10�5 [Deschamps and Trampert, 2003]. At
this depth, model ~ml would yield a temperature range from
�400 to +500 K (with an RMS of �120 K). At the same
depth, model ~mu , which is also acceptable by the seismo-
logical data used, would yield a temperature range from
�2000 to +2500 K (with an RMS of �375 K). The tem-
perature range inferred from ~ml may seem plausible, and
may suggest that the velocity perturbations in the lowermost
mantle have a purely thermal origin. By contrast, the use of
model ~mu could lead to the conclusion that factors other than

temperature (such as variations in bulk composition) are
needed to explain wave speed variations in the lowermost
mantle. These models could thus be used in support of
fundamentally different views on thermochemical varia-
tions, but the differences are not constrained by data but by
null-space components.
[29] Interpretations based on absolute values of the mag-

nitude of tomographically inferred wave speed anomalies
should thus be evaluated with this uncertainty in mind. We
note that relative variations in P and S wave speeds –
expressed, for instance, as wave speed or Poisson’s ratios–

Figure 10. Model parameters for which the sign is constrained over Dm for a data misfit tolerance of
0.5 s. Constrained parameters are shown in white and unconstrained parameters in grey.
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can produce a more robust diagnostic for compositional
heterogeneity [Trampert and van der Hilst, 2005], and this
has indeed been more commonly used [e.g., Su and
Dziewonski, 1997; Kennett et al., 1998; Saltzer et al.,
2001, 2004] than absolute wave speed perturbations.

5.3. Robustness of Small Scale Structure

[30] An important, but not unexpected, result is that (on a
global scale) the null-space components in the original
model (Figure 1) mostly concern shorter wavelength struc-
tures (cf. Figures 4 and 5). This suggests that model para-
meters are not constrained robustly everywhere at the scale
of the block parameterization (<200 km), and that in many
regions small scale structure is poorly resolved and highly
sensitive to data noise and regularization.

[31] Obviously, this does not mean that this small scale
structure is not there, nor does it rule out that in the better
sampled regions such small scale structure is resolved by the
data used. But it does mean that this structure should be
interpreted with considerable caution and, preferably, only
in combination with independent observations and con-
straints (e.g. seismicity, volcanism, gravity anomalies and
regional geologic and tectonic histories). This should be
borne in mind when using small scale structure in inter-
pretations concerning physical processes such as down-
welling of slabs, upwelling of mantle plumes and,
ultimately, mantle convection. We recommend that inter-
pretations relying solely on tomography should be restricted
to structures in the minimum norm model for which the sign
of the wave speed anomaly is constrained by the data.

Figure 11. Original model md for the South American region. The color scale ranges from �0.8 to
+0.8%.
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5.4. Robustness of Deep Subduction and Mantle
Plumes

[32] In the context of mantle convection, it is important to
know if the tomographic images of deep slabs (that is,
beyond the parts that can be considered as known to exist
from Wadati-Benioff seismicity) and low-velocity (plume-
like) structures are robust (that is, required by the data) or
whether they are artefacts due to a combination of preferred
sampling and regularization. This has been investigated
qualitatively using test inversions with synthetic data [e.g.,
Spakman et al., 1989; van der Hilst, 1995; Li et al., 2008],
but we can also use the method presented here to investigate
if pertinent parts of the slab and plume images are required

by the data. To do so, we suggest to visualize the original
solution (Figure 1) together with the part of the minimum
norm solution that has a constant sign across the solution
range Dm. We show examples for a data misfit tolerance of
0.1 s, 0.2 s and 0.5 s and set all slowness parameters to zero
for which the sign is not constrained over Dm. This enables
us to visualize which part of the structures is constrained in
sign by the data and can thus be interpreted as robust.
5.4.1. Deep Slabs
[33] For the subduction systems that are most often pre-

sented as examples where slabs of subducted lithosphere sink
into the lower mantle, for example, the Americas, Indonesia,
Tonga, it appears that it is not possible to project the pertinent

Figure 12. Approximate minimum norm model for a data misfit tolerance of 0.1 s for the South Amer-
ican region. Model parameters for which the sign is not constrained over Dm are set to zero and shown in
grey. The color scale ranges from �0.8 to +0.8%.
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structures onto the model null-space. Figures 11–14 illustrate
this for the slab systems beneath Central and South America.
An important first-order inference is that the deep slabs
imaged in the original tomographic model (Figure 11) are
also present in the approximate minimum norm model and
pass our constant sign robustness criterion, even for data
misfit tolerances up to 0.5 s (Figures 12–14). From such
analyses we conclude that the high wave speed anomalies
that are often interpreted as lower mantle parts of the slabs are
indeed required by the travel time data used, thus justifying
interpretations in terms of plate reconstructions and deep
subduction [e.g., Grand, 1994; Grand et al., 1997; van der
Hilst et al., 1997; Bijwaard et al., 1998; Replumaz et al.,
2004; Ren et al., 2007]. Owing to more limited sampling,

the narrow upper mantle parts of the downgoing slab are
often not as well resolved as the deeper parts, but the
presence of slabs of subducted oceanic lithosphere in the
upper mantle is uncontroversial since they are well con-
strained by, for instance, seismicity and volcanism. Other
parts of presumed subducted slabs that are generally
poorly resolved by travel time data are the subhorizontal
structures in the transition zone, often referred to as stag-
nant slabs [van der Hilst et al., 1991; Fukao et al., 1992,
2001]. The presence of these structures is supported,
however, by multimode surface wave studies [e.g., Fukao
et al., 2001; Lebedev and Nolet, 2003; Ritsema et al.,
2004] and the regional geology and the tectonic histories
of the slab systems involved [e.g., van der Hilst and Seno,

Figure 13. Approximate minimum norm model for a data misfit tolerance of 0.2 s for the South Amer-
ican region. Model parameters for which the sign is not constrained over Dm are set to zero and shown in
grey. The color scale ranges from �0.8 to +0.8%.
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1993; Griffiths et al., 1995; Bijwaard et al., 1998; Huang
and Zhao, 2006].
5.4.2. Mantle Plumes
[34] We find that the slow anomalies that are often inter-

preted as upwellings of mantle plumes, for instance under-
neath Hawaii, Iceland, Africa [e.g., Bijwaard and Spakman,
1999; Montelli et al., 2004; Wolfe et al., 2009], show a
varying degree of robustness. As an example we show for
MIT-P08 the tomographically inferred wave speed anoma-
lies beneath Iceland (Figure 15) and Hawaii (Figure 16).
Figures 15 and 16 show the original model and the approx-
imate minimum norm model inDm for data misfit tolerances
of 0.1 s, 0.2 s and 0.5 s. Again, the parameters in the mini-
mum norm model for which the sign is not constrained over

Dm are set to zero. Whether the low-velocity structure
beneath Iceland is constrained in sign depends very much on
the data misfit tolerance (Figure 15). In MIT-P08 the shape
of the anomaly is not robust and we observe a clear differ-
ence between the original model and the narrow low-
amplitude low-velocity structure in the minimum norm
model. Similar (visual) analysis suggests that mantle struc-
ture beneath Hawaii (Figure 16) is more robust than below
Iceland. The presence of anomalously low P-wave speeds in
the upper mantle and transition zone west of Hawaii, that is,
in the same region where Cao et al. [2011] inferred high
transition zone temperatures from images of interface
topography, seems required by the data used in the con-
struction of MIT-P08. However, the depth extent of the low

Figure 14. Approximate minimum norm model for a data misfit tolerance of 0.5 s for the South Amer-
ican region. Model parameters for which the sign is not constrained over Dm are set to zero and shown in
grey. The color scale ranges from �0.8 to +0.8%.
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velocity anomaly, that is, its possible continuation into the
lowermost mantle (toward the core-mantle boundary), is not
constrained by the data used in MIT-P08.
[35] We reiterate that these observations do not by them-

selves refute hypotheses on the existence and depth extent of
(upwellings of) mantle plumes. It simply indicates that even
though travel time data require low-velocity structures in
these mantle regions, they can not yet constrain their shape
and depth extent. Plume-like structures in tomographic
models such as MIT-P08 should, thus, be interpreted with
caution and preferably in conjunction with independent
observations.

6. Summary and Conclusions

[36] Whether or not tomographically inferred anomalies
are robust, that is, required by the data, is important from a
physical point of view, since they help shape our under-
standing of physical processes such as downwelling of slabs,
upwelling of mantle plumes and, ultimately, mantle con-
vection. Since the advent of seismic tomography over three
decades ago, researchers have focused on improving spatial
resolution, benefitting from ever increasing computational
power and data quantity and quality, but relatively little
attention is being paid to the quality and (fundamental) non-
uniqueness of the images.

[37] As an alternative to sensitivity tests with synthetic
data, we propose to explore the model null-space to identify
acceptable solutions of linearized tomographic inversions.
The range of acceptable models depends on a predefined
tolerance on the data misfit and regularization. Besides being
straightforward to implement, the method allows one to find
new solutions that can be easily visualized and interpreted in
a physical sense, similar to the representation of the original
solution. We illustrated these concepts for one tomographic
model (MIT-P08) but stress that the conclusions are relevant
for all similar such models.
[38] Tomographic models are notoriously non-unique and

substantial parts of the original models can lie in the null-
space of the forward operator (Figure 2). Using the null-
space shuttle [Deal and Nolet, 1996], one can quantitatively
evaluate the range of solutions (Dm) that satisfy the tomo-
graphic data, and we suggest to consider Dm when inter-
preting structures based solely on tomography. As a practical
measure of robustness, we propose to use the stability of the
sign of a particular model parameter. If its value is not
consistently positive or negative over Dm, then the param-
eter is not uniquely constrained by the data. This is most
pertinent for velocity perturbations of low amplitude
(<0.2%) and sign stability decreases with increasing data
misfit tolerance (Figures 7–10).
[39] For a conservative change in RMS data misfit of

�0.1 s, we find a broad range of solutions that are

Figure 15. (top) Original model and the approximate minimum norm model for a data misfit tolerance of
(bottom left) 0.1 s, (bottom middle) 0.2 s, and (bottom right) 0.5 s beneath Iceland. Model parameters for
which the sign is not constrained over Dm are set to zero and shown in grey. The color scale ranges from
�0.5 to +0.5%.

DE WIT ET AL.: ROBUSTNESS IN TRAVEL TIME TOMOGRAPHY B03301B03301

17 of 20



compatible with the travel time data used for global
tomography by Li et al. [2008]. For test models with a
similar data misfit (given the tolerance) as the original
solution, MIT-P08, the RMS velocity perturbations vary
from 0.2 to 0.6% in the lowermost mantle and from 0.3 to
1.3% in the upper mantle (Figure 3). Such large variations in
average amplitudes prohibit robust inferences on thermo-
chemical variations in the Earth solely from tomographic
models (based on currently available travel time residuals).
[40] Independent of regularization we find that on a global

scale much of the short wavelength variations resides in the
model null-space, suggesting that the data do not every-
where resolve structure on the smallest length scale
(<200 km) allowed by the (block) parameterization used in
MIT-P08 and similar models. This does not mean that such
structure does not exist or that such structure is not con-
strained in well sampled areas. But it does mean that such
structure is in general not robust and should be interpreted
with great care, preferably along with independent informa-
tion from other sources, such as geological studies, plate
reconstructions, the geometry of Wadati-Benioff zones, and
geodynamical modeling, as has been done in many global
[e.g., van der Hilst et al., 1997; Grand et al., 1997; Bunge
and Grand, 2000] and regional [e.g., van der Hilst and
Seno, 1993; van der Hilst, 1995; van der Voo et al.,
1999; Replumaz et al., 2004; Miller et al., 2006] studies.
[41] Application of the null-space shuttle shows that the

high velocity anomalies in the lower mantle, which are often
interpreted as evidence for slab penetration into the lower

mantle [e.g., Richards and Engebretson, 1992; Ricard et al.,
1993; van der Hilst et al., 1997; Grand et al., 1997], are
robust in that they are required by the seismic data. Low-
velocity anomalies that are commonly interpreted as
(upwellings of) mantle plumes, for instance underneath
Hawaii, Iceland and Africa, show varying degrees of
robustness. In general, the travel time data do require a low-
velocity structure, but the shape and depth extent of such
plume-like anomalies is not fully constrained in every region
by travel time data alone. Indeed, as was noted by Li et al.
[2008], to resolve present-day controversies about ‘plume
imaging’ requires a dramatic improvement in data coverage,
especially in oceanic regions. The conjunction of various
types of seismic data and other independent observations,
improved data coverage (in particular in oceanic regions), as
well as the improvement of both forward and inverse
methods, will help to overcome these controversies in the
future.
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work were provided by the Netherlands Research Center for Integrated
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