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Abstract. Global seismic tomography has produced a great amount of robust information
concerning the three-dimensional extent of the Earth’s internal structure. This has stimulated a
multidisciplinary discussion aimed at understanding the mechanisms which govern the internal
evolution of our planet. A brief overview of seismic tomography is presented. Since
geodynamical understanding is the main purpose of seismic tomography, some suggestions are
made on how to evolve from a predominantly qualitative to a more quantitative interpretation of
its results. We argue that without a more systematic and realistic error and resolution analysis,
interpretations might be misleading. Assuming a steady increase of data quality and coverage,
the most challenging aspect of seismic tomography will be to take the nonlinearity of the problem
fully into account. It is hoped that this contribution stimulates some discussion in that direction.

1. Introduction

Global seismic tomography has been a very active field of research since the first systematic
efforts in the early 1980s. Over the years several good and exhaustive reviews have been
written on the subject (e.g. Dziewonski and Woodhouse 1987, Woodhouse and Dziewonski
1989, Masters 1989, Romanowicz 1991, Montagner 1994, Masters and Shearer 1995,
Ritzwoller and Lavely 1995, Dziewonski 1996). I will not try to reiterate the state-of-
the-art in seismic tomography, but rather the opposite. My concern will be to point out
some shortcomings in our modelling techniques which need to be overcome in order to
advance from a predominantly qualitative to a more quantitative interpretation of its results.
It is thus hoped to stimulate a discussion among seismologists and scientists from other
fields with different experiences and approaches to yield new developments.

I will give a general overview of the techniques used in global seismic tomography. The
most easily understandable case of travel-time tomography will be used to illustrate some
specific points. The given summary is by no means exhaustive and as a consequence, the
reference list far from complete. The main concern here is to convey the general ideas of
seismic tomography to the nonspecialist in that field. Before beginning a detailed discussion,
I would like to put seismic tomography in a more geodynamical context and point out that it
is extremely encouraging to see that a great amount of overlapping information is emerging
from different tomographic studies using different data, and/or different theories.

Seismic tomography is by far the most powerful tool to probe the Earth’s deep interior.
Seismic waves from big enough earthquakes can be observed throughout the world, and as
they travel deep through the Earth or along the surface, their arrival times and shapes
are impregnated with information on the medium they travelled through. The inverse
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problem in seismic tomography consists of mapping the Earth’s three-dimensional elastic
velocity field from large quantities of arrival times, body or surface waveforms and free
oscillations. A recent quantitative comparison of many different studies (Ritzwoller and
Lavely 1995) showed that a robust overlap of information concerning the Earth’s structure
was recovered using different data and different mapping strategies. For the upper mantle
(figure 1, top panel) the main results are low-velocity zones associated with mid-oceanic
ridges and regions of the western Pacific characterized by back-arc volcanism. These areas
may be understood in terms of upwellings of hot material. High velocities are mainly
continental areas (in particular shields) assumed to be compositionally different, cooler and
of higher viscosity than the average upper mantle. At shallow depths in oceans, where the
lithosphere is older, cooling is responsible for the creation of a thicker and hence faster than
average lithosphere. This correlation with structures identified by plate tectonics is thus to
be expected if we assume that low and high velocities mainly correspond to material hotter,
respectively colder, than average. In the lower mantle (figure 1, bottom panel) the amplitude
of heterogeneity is much smaller than in the upper mantle. Fast velocities are concentrated
on a ring surrounding the Pacific. This ring roughly corresponds to the projection into the
lower mantle of zones of convergence from surface tectonics and subducting slabs. This
could be an indication of subducting slabs penetrating into the lower mantle, as shown
in a more spectacular way by Grant (1994) and Van der Hilstet al (1997). Zones of
low velocities are correlated with geoid highs and the positions of most world hotspots.
It is hoped that these three-dimensional velocity models will provide a solid basis for
understanding the driving forces of plate tectonics.

Seismic tomography maps the current thermodynamic and compositional state of
heterogeneity in the flowing mantle and thus imposes severe constraints on possible models
of convection in the mantle (Tackleyet al 1994). The thickness of continental roots,
the depth extent of the mid-ocean ridge signal and the change of lithospheric velocity
versus age (Suet al 1992, Woodhouse and Trampert 1996) give important clues on the
formation and evolution of the continental and oceanic lithosphere. The relative variation
of P-wave velocities versus S-wave velocities puts strong mineralogical constraints on the
composition of the mantle (Robertson and Woodhouse 1996). The thermal state of the lower
mantle puts some boundary condition on possible geodynamo models explaining the Earth’s
magnetic field (Olsen and Glatzmaier 1996). It has long been recognized that there is a
correlation between the geoid and seismic models (Hageret al 1985), and therefore both
types of information (gravity and seismological) may give access to the three-dimensional
density variations within the Earth. Seismic tomography thus fuels a strong interdisciplinary
discussion in Earth sciences. The fundamental question which still awaits to be addressed
in detail is: how well resolved and how accurate are our current tomography models? The
answer to this question, however, is of primary importance for a quantitative interpretation.

The easy access to digital seismological data, the increasing computational facilities and
the availability of robust matrix solvers now make it relatively straightforward to produce a
tomographic model. Trying to make an interpretation of the model to understand the inner
workings of the underlying real Earth is far more difficult. Many hidden problems make
a straightforward interpretation more difficult than commonly assumed. For instance, there
is no doubt that seismic tomography can detect subducting slabs, but it is nowhere near as
clear whether or not it can answer the question of the depth extent of the penetration, owing
to insufficient analyses of depth resolution and a lack of detailed understanding of the
sensitivity of seismic velocity to changes in composition and thermodynamic parameters
such as temperature and pressure. The answer to this latter question, however, is of
primary importance for determining the exact nature of mantle convection. The spectrum
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Figure 1. Maps of S-wave velocity perturbations of model S16RLBM (Woodhouse and Trampert
1996) at two different depths. The perturbations are in per cent relative to a reference model.
Plate boundaries and hotspots are shown in yellow.



374 J Trampert

S

200

400

600

800

1000

S1
6R

L
B

M

0 45 90 135 180 225 270 315 360

-4.0

0.0

4.0

%

S

200

400

600

800

1000

S1
2W

M
13

0

-4.0

0.0

4.0

%

0˚ 45˚ 90˚ 135˚ 180˚ 225˚ 270˚ 315˚ 0˚

-45˚

0˚

Figure 2. Cross sections of two different models at 20◦ South as shown in the top panel
by the white line. The perturbations of S-wave velocities for model S16RLBM (Woodhouse
and Trampert 1996) and model S12WM13 (Suet al 1994) are in per cent relative to the
same reference model. The horizontal distances are in degrees of longitude and depths are
in kilometres. The white lines in the two bottom panels divide the Earth’s interior into the
upper and lower mantle. This division corresponds to a strong discontinuity of average seismic
velocities at that depth.

of heterogeneity is another question which has received a lot of attention in the literature.
For a long time, arguments were put forward in favour of the idea that the spectrum is red
(e.g. Su and Dziewonski 1991), meaning that the Earth’s internal structure is dominated
by long wavelengths. A few isolated studies pointed out that this might not be the case.
Gudmundssonet al (1990) analysed P-wave travel-time residuals in a statistical manner
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and concluded that the Earth’s spectrum is much whiter than had previously been assumed.
Sniederet al (1991) showed that part of the observed long-wavelength features could be
due to artefacts of low-pass filtration of much narrower structures, such as mid-oceanic
ridges or subducting slabs. A quantitative analysis of small-scale structure leaking into
long-wavelength structure has been given by Trampert and Snieder (1996). Furthermore,
regularization of any kind, always necessary in the tomographic inverse problem, favours
a red spectrum, and so does the use of integral data (Mochizuki 1993, Passier and Snieder
1995) which is always the case in seismic tomography. The nature of the spectrum,
important for discriminating between many competing convection models, certainly needs
to be re-examined. These are just a few examples to try to illustrate the difficulties arising
from the interpretation of seismic tomography. To address these points, we suggest that
we have to look in far more detail, than has been done up to now, at issues such as how
accurate our models are (error estimation), how many different models are compatible with
the data (nonuniqueness and resolution) and how to use more elaborate inverse techniques
to take the inherent nonlinearity of the problem into account.

2. The inverse problem

2.1. Definition and general characteristics

Seismic tomography is mainly concerned with reconstructing the three-dimensional velocity
field inside the Earth from observations of elastic waves at the surface. The forward problem
consists of predicting a seismograms(t,1), or parts of a seismogram, at a given distance
1 from the seismic source as a function of timet assuming a certain velocity fieldv(r).
Formally we have

si(t,1) =
∫
�[v(r)]

gi [t, 1, v(r)] dr (1)

where r labels the position inside the Earth andi denotes a particular seismogram.g
describes the physical theory of elastic wave propagation and� is the path of the wave
(line, surface or volume). Nonlinearity may enter equation (1) in two ways: explicitly
through the expression ofg and implicitly through the path� which depends onv(r). In
seismology, all data are integral or average measurements of medium propertiesv(r) along
the path�. The inverse problem consists of finding the velocity fieldv(r) from many
different observationss(t,1).

The nature of the tomographic inverse problem is characterized by an uneven distribution
of sources (earthquakes) and receivers (seismic stations on continents and oceanic islands
only) resulting in an uneven sampling of the medium by elastic waves. This means that some
parts of the Earth’s interior are overdetermined while other parts remain underdetermined.
The inverse problem is ill-posed under these conditions. Usually, its eigenvalue spectrum
is falling off quite steeply which means that small errors in the data may produce large
variations in the solution. The problem is said to be ill-conditioned. Both, ill-posedness and
ill-conditioning go hand in hand with large nullspaces, which imply nonunique solutions.
The answer to these problems is implicit or explicit regularization. Regularization can
either be seen as reducing the possible model space or choosing one particular solution
out of many possible ones. A last concern is that inverse mapping should be a consistent
operation, meaning that the solution itself is independent of the parametrization used to
describe the solution. Trampert and Lévêque (1990) illustrate inconsistency with a purely
underdetermined problem with two parameters and one data point:a + b = 2. The least-
squares solution isa = 1 andb = 1. If we change the parameters intoc = a+b andd = b,
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we find c = 2 andd = 0 which yieldsa = 2 andb = 0. Clearly, both solutions are correct
but would give completely different interpretations. To understand what is happening,
we have to evoke implicit regularization used by the least-squares algorithm itself. This
little example shows that comparing solutions which used different parametrizations may
prove difficult if inconsistent mapping techniques are used. An extensive discussion of this
particular problem may be found in Tarantola (1987).

The geophysics community has been very active in inverse theory and as a result many
textbooks describe in detail the theory as well as the practical side of specific techniques
used in that field (e.g. Tarantola 1987, Menke 1989, Parker 1994, Sen and Stoffa 1995). In
general, relation (1) is far too complicated to be of any practical use, so that simplifications
in the expression ofg, � and v need to be sought. As a result, most global tomography
problems are solved using a linearized relationship between the data and model parameters,
and a more or less complicated cost function is minimized in a least-squares sense to derive
a linear operator which maps the data into an estimated solution. To be more specific we
will need to discuss in more detail the different ingredients entering the inverse problem.

2.2. Data

A typical seismogram (figure 3) shows packets of P and S body waves and dispersed surface
waves, which are the result of the seismic source, the elastic properties of the Earth through
which the waves propagate and the characteristics of the seismic recorder. The nomenclature
of seismic body waves is a code which describes their path through the Earth. The most
basic information in a seismogram is the arrival times of the different waves. Travel-time
tomography uses this simplified information for building Earth models. Alternatively, the
dispersed surface waves or the whole seismogram may be used in tomography needing a
more elaborate theory of wave propagation. In the case of travel times, the viewpoint of a
propagating wave is commonly adopted, while in whole waveform modelling, the standing
wave description (normal modes) is more frequently used.

Seismological data spanning more than three orders of magnitude in frequency have
been used to map the structure of Earth’s interior. They vary roughly from one second
body-wave arrival times to normal mode periods of several thousand seconds. The first
ones are sensitive to Earth structure at lengthscales as short as tens of kilometres, while the
latter ones have wavelengths up to the Earth’s radius itself. Intermediate frequency data
consist mainly of whole body or surface waveforms. These different data sets taken from
various parts in the seismogram sample the Earth’s structure in different ways and give
complementary information on the medium they travelled through.

2.3. Forward theory

The propagation of seismic waves in an elastic medium is governed by the elastodynamic
equations. Assuming that the source excitation and the instrument response is known, this
leads to a nonlinear relationship between the observed data and the given Earth model via
the forward theory containing the physics of wave propagation. A full forward theory would
allow us to model all the wiggles seen on figure 3, but would be excessively complicated. We
therefore seek simplifications ing and� in expression (1). The simplest form of seismic
tomography uses arrival times of body waves. In the ray theoretical approximation, the
travel timeTi of a rayi along its pathLi (which is a line) is the integrated slownessv(r)−1

Ti =
∫
Li

dr

v(r)
. (2)
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Figure 3. Example of a seismogram recorded at a distance of about 9000 km from the earthquake
source. The body waves appear as relatively impulsive wavepackets whereas the surface waves
are well dispersed in time.

We may express this as a travel-time difference, or delay time, with respect to a travel time
in a reference Earth:

δTi = Ti − T 0
i =

∫
Li

dr

v(r)
−
∫
L0
i

dr

v0(r)
. (3)

Fermat’s principle states that the travel time of a ray is stationary for small changes in ray
location. This allows us to substitute the unknown raypath in the true Earth by the raypath
in the reference Earth, introducing a second-order error and we finally arrive at

δTi = −
∫
L0
i

δv(r)

v0(r)2
dr. (4)

This equation expresses a linear relationship between the observed delay times and the
perturbationsδv(r) to the reference Earth.

In a similar way, Rayleigh’s principle is used to derive a linearized relationship between
three-dimensional perturbations from a radially symmetric reference model and the resulting
perturbations in the dispersed surface-wave data. In the more general case of full wave-form
inversion, perturbation theory with some form of Born approximation is used to calculate
the necessary partial derivatives. All global tomography studies to date use a linearized
forward theory which for a particular measurementδdi = si −

∫
gi(v0) dr can formally be

written as

δdi =
∫
Gi(r)δv(r) dr (5)

whereGi(r) are the partial derivatives aboutv0(r) of the nonlinear functionalgi [t, 1, v(r)]
of expression (1) or data kernels at positionr inside the Earth.
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2.4. Parametrization of the model

In a strict sense the modelsδv(r) we want to infer from the data are continuous functions
of position. This means of course that our problem is infinite dimensional in the model
space. We now seek simplifications ofv in equation (1) and it is convenient to expand the
model in a complete set of basis functionsBj(r), most appropriate for the given problem:

δv(r) =
∞∑
j=1

mjBj (r). (6)

Many different choices of basis functions are possible. The most common choices in global
tomography are blocks and spherical harmonics (together with polynomials at depth). To
describe the model fully, the chosen set has to be complete (the summation in equation (6)
is carried out to infinity), and then all parametrizations are equivalent. For practical reasons
and the limited resolution of the data, we have to choose an upper limitL, however.
This leads then to a classical linear inverse problem forL coefficientsmj which may be
represented by the matrix equation

δd = Am (7)

where the matrixA is defined byAij =
∫
Gi(r)Bj (r) dr. The truncation of the expansion

leads to a smoothed estimation of the true model, regardless of the real smoothing properties
of the data. It is important to realize that the truncation implies implicit regularization of
the inverse problem. Furthermore, different choices of basis functions (e.g. rough edges
of blocks versus smooth edges of spherical harmonics) also lead to different implicit
regularizations. Consistency problems in the chosen inverse operator may make comparisons
of studies with different choices difficult. An additional problem is that truncated basis
functions may leak into the solution, and give a biased estimation of the model (Trampert
and Snieder 1996).

2.5. Cost function

The dataδd and model parametersm are normally assumed to be elements of metric
spacesD andM, respectively. Solving the inverse problem is giving a rule for mapping an
element ofD into an element ofM. The global seismic tomography problem is usually not
well-posed, and hence the desired mapping rule is not uniquely defined. We need to have
some criteria which choose one particular mapping. A general way of introducing such a
criterion is to define a cost function of the form

Cλ = 1D(δd,Am)+ λ1M(m,m0). (8)

1D and1M are metrics measuring the distance between observed and predicted points
in the data space and between a given model and a reference point in the model space,
respectively. In the case of a Bayesian viewpoint,1D(δd,Am) would have the form
(δd−Am)†C−1

d (δd−Am) whereCd is a covariance operator describing the error ellipsoid
within which the data should be fitted (Tarantola 1987) and† denotes the transpose. A
similar expression holds for1M(m,m0), namely(m −m0)

†C−1
m (m −m0) where Cm

is now a covariance operator describing the ellipsoid within which the model should vary
aroundm0. Cd andCm should bea priori information coming not from the given problem
but from independent sources. It is, however, extremely difficult to put realistic error bars
on seismic data and virtually impossible to estimate data correlations. Thus in tomography
the current practice has evolved to reduceCd to a diagonal and to decidea posteriori (from
a few inversions) to what level the data should be fitted. A similar practice applies to
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Cm andλ is an ad hoc positive constant. The more philosophical questions arising from
such a practice are discussed in Scales and Snieder (1997). In the case of an optimization
viewpoint, we ask the question: what is the smallest model subject to the constraint that the
data are fitted to an acceptable level? This gives a Lagrange multiplier problem of findingm
minimizing Cλ, whereλ is the Lagrange multiplier,1D(δd,Am) describes the acceptable
fit and1M(m,m0) represents the model norm measuring the size of the model (Parker
1994). In both cases, we may interpret (8) as compromising between two characteristics of
the model: its size and its disagreement with the data. Both should be as small as possible,
but since they cannot usually both go to zero, the cost function (8) is introduced. Requiring
Cλ to be as small as possible for a givenλ yields the solution.λ is a trade-off parameter
which balances the two undesirable properties of the model. The choice of an optimumλ,
however, is not an easy one. Alternative forms of cost functions are in use which draw
upon the resolving power of the data and the error propagation in the process of inverse
mapping (Menke 1989).

2.6. Regularization

We mentioned that the initially ill-posed problem results in a multimapping of an element
from the data space into the model space. In that sense, the ill-posedness is related to the
fact that the spacesD andM are locally defined too large (presence of more or less big
nullspaces). Regularization can be seen as locally reducing the sizes of the data and model
space, or choosing one particular mapping from many possibilities. In the optimization
viewpoint, it can be shown thatλ of expression (8) is positive and that the stationary
solution corresponding to the minimum model norm is unique (Parker 1994).

Regularization enters the cost function, and hence the solution, in implicit or explicit
form. Summarizing, implicit regularization comes from the choice of an upper limitL in
the expansion equation (6), the choice of the basis functions themselves and, finally, the
choice of a norm in equation (8) since the disagreement of the model with the data is
measured by a norm and so is the model size, where the size here means the actual size or
more generally the roughness. Explicit regularization is made by deciding uponλ, explicit
weightings in the chosen norms and a reference modelm0. Regularization transforms the
mapping into a well-posed problem and gives us the subjective feeling of a unique solution.
I would like to emphasize, however, that the tomographic inverse problem has inherently
many solutions and that we have chosen one particular one by the introduction of some
regularization. It seems to be desirable to move away from implicit regularization towards
explicit regularization due to inconsistency effects (Trampert and Lévêque 1990), nonlinear
effects (Sambridge 1990) and leakage problems with truncated basis functions (Trampert
and Snieder 1996).

2.7. Inverse operator

To date, most global tomography studies adopt a Bayesian viewpoint, and the most probable
solution lies at the minimum of (8). It is possible to minimize (8) using only information
of the gradient ofCλ leading to the well known methods of conjugate gradient or steepest
descent. Second derivative information of the cost function may also be used to infer the
nature of the minimum. Remember that our forward theory has been linearized about a
reference model. In a similar way, we now linearize the cost function around a modelmn,
rather than the reference modelm0, whereCλ(mn) = Cnλ and using a second-order Taylor
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expansion

Cλ = Cnλ +∇Cnλδm+ 1
2δm

†∇∇Cnλδm (9)

we solve for the discrepancyδm which gives a new model estimate

mn+1 =mn + δm with δm = −[∇∇Cnλ ]−1∇Cnλ (10)

where∇Cnλ is the gradient vector and∇∇Cnλ is called the Hessian. The full calculation
of the Hessian is quite computer intensive, but various approximations to the Hessian exist
and the Newton approximation (e.g. Tarantola 1987) gives the well known algorithm

mn+1 =mn + (A†nC−1
d An + λC−1

m )
−1(A†nC

−1
d δd− λC−1

m mn) (11)

whereAn is built from the Frech́et derivatives ofg aboutmn. Algorithm (11) is iterative
and allows us to take account of a slight nonlinearity about the reference model which
linearized the forward problem. In most practical cases, the algorithm is stopped after the
first iteration to avoid recalculating the partial derivatives in a three-dimensional model.

Different choices of cost functions, different norms and weightings, different trade-off
parameters and reference models lead to various inverse operators more or less well suited
for a particular problem. Most techniques in use in seismic tomography are discussed
in Tarantola (1987), Menke (1989) and Parker (1994). The mathematics is most elegant
with the use ofL2-norms, and it is most remarkable that in the linear case many different
viewpoints (stochastic, optimization or eigenvector analyses) lead to the same final formulae
(Menke 1989). The solution is then described by the same numbers, but of course their
interpretation will be quite different depending on the particular viewpoint.

3. And beyond, or what is needed for interpretation

We argued above that global seismic tomography has many multidisciplinary applications.
Most interpretations take its results literally, without questioning the ‘goodness’ of the
obtained solution. However, what is the ‘goodness’ of a solution? Two notions, related to
the inherent nonuniqueness of the problem and data uncertainties, are of importance: error
analysis and resolution. If there are many possible solutions which fit the data within a
certain criterion, error analysis should provide the means of assessing the spread of these
solutions and resolution analysis should tell us what can be said about the real Earth. We
will show some examples of how interpretation can be misleading by leaving the ‘goodness’
factor out of the discussion and propose that global optimization techniques are probably best
suited for a more rigorous analysis. Another important question, but hardly addressed, is to
know how approximations in the forward theory (by linearizing the problem for instance)
can affect the estimated model. Here two possible viewpoints may be adopted: include
errors in the forward theory in the discussion of model errors, or adopt a more sophisticated
forward theory. The latter case almost always involves nonlinearity and most analysing
tools are still lacking. In the following, we will examine some unresolved issues in global
tomography. We will split this discussion into the linear or linearized problem and the
nonlinear case, mainly for convenience, as much, of course, is known in the former case,
but statements are more uncertain in the latter case, due to a lack of theoretical background.

3.1. Linear case

3.1.1. Model errors. Modelling of convection based on seismic tomography needs to
convert seismic anomalies into thermal anomalies. Hot anomalies represent up-flowing
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material and cold material is sinking. Basic thermodynamics (and some assumptions) allow
us to derive a linear relationship between velocity and thermal anomalies. The sign of the
seismic anomalies is thus of primary importance to inferences on convection. In most parts
of the lower mantle, seismic anomalies are quite small (rms amplitude lower than 0.5%).
Realistic error bars would be important to geodynamicists to help them decide whether the
signs of the amplitudes are well constrained. Model uncertainties are usually given under the
assumption of Gaussian statistics and expressed by a form of covariance matrix describing
the error bars associated with individual model parameters and correlations between the
different model parameters. The final model uncertainties are due to imperfect resolution
and propagation of data errors. If the prior information on model and data covariances is
Gaussian distributed, which is usually assumed in practice, the posterior model covariance
is also Gaussian distributed, and it can then be shown (Tarantola 1987) that it is given by
the local curvature of the cost function. If the cost function happens to have a very wide
valley in which we are picking one particular solution (remember that regularization gives
this particular solution), or the underlying statistics are not Gaussian, the local curvature
is in general an underestimation of the width of the valley. Error estimation based on
Gaussian statistics may well be too optimistic. Similar concerns have been raised for a
special case of delay-time tomography by Pulliam and Stark (1994). An important question
is then how to use alternative methods of looking at errors. One answer lies in global
optimization techniques (Sen and Stoffa 1995). It is out of the question that, for a realistic
tomography problem, one can ever assess the whole model space as the number of possible
models grows exponentially with the number of model parameters. However, we might be
able, with existing computational power, to explore the cost function with Metropolis-type
algorithms around the local minimum we found with our linearized inversion. The general
ideas of such techniques are well described in Sen and Stoffa (1995).

3.1.2. Resolution. Another central question is: what can be said about the real Earth from
our models? Consider the two vertical sections for two different models (figure 2). In the
lower mantle, both models are extremely similar, but model S16RLBM (Woodhouse and
Trampert 1996) clearly shows more detail than model S12WM13 of Suet al (1994) in
the upper mantle. Continental roots and to some extent mid-oceanic ridges appear to be
much shallower features in model S16RLBM. The point is that discussing the vertical or
lateral extent of the features in any model does not make much sense without evoking
the corresponding resolution. The finite sampling of the Earth leads to the intuitive
understanding that data are able to discern the gross features of the real Earth, but features
smaller than a certain characteristic length remain undetected. This critical length is called
resolution length. Resolution acts as a linear filter through which the true Earth is seen,
true Earth meaning here the Earth which can be modelled with the forward theory. If
the resolution operator is the identity operator, the model is perfectly resolved. The most
natural way of introducing the concept of resolution is due to Backus and Gilbert (1968).
They showed how to construct the inverse operator by assuming a certain shape and
width of the resolution filter, or averaging kernel as they called it. Being mathematically
a beautiful theory, but practically difficult to implement in the presence of data errors,
resulted in their method not finding many applications in seismic tomography. Many
different approaches have since been adopted regarding the resolution operator, ranging
from ignoring its usefulness, via checkerboard tests, complicated synthetic tests simulating
reality to formal calculations of the operator itself. In a beautiful little research note,
Lévêqueet al (1993) showed that, unfortunately, the only way of estimating the resolution
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is by explicitly calculating it. It might also be useful to remark that Backus and Gilbert’s
averaging kernel refers to the physical model (called hereδv(r)), while the resolution
operator for most tomographic inversion refers to the coefficients in equation (6). It is
of course trivial to switch from one model space to the other, if the basis functions are
explicitly known, but there still seems to be some confusion in the literature. A typical
tomographic problem tries to find at least several thousands of unknowns. The fundamental
problem of resolution is not to calculate the operator (all that is needed is computer time
and some patience), but its visualization for interpretation. Backus and Gilbert’s philosophy
taken more liberally might be the answer to that problem. We are free to choose the
parametrization of our inverse problem, keeping in mind the possible consistency problems
related to implicit regularization. If we could find an optimum parametrization such that the
corresponding resolution is as close to the identity operator as possible, the resolution would
be implicitly contained in the parametrization. This implies closely spaced basis functions
in well-resolved areas and widely spaced basis functions in badly resolved areas. Recently,
Curtis and Snieder (1997) showed how global optimization techniques may be used for
such a purpose and, alternatively, Sambridge and Gudmundsson (1998) proposed general
algorithms for flexible irregular cell parametrization of ray-based tomography problems.
To complicate matters, resolution is only half the story. Trampert and Snieder (1996)
pointed out that truncating the expansion in equation (6) at an upper limitL, the neglected
basis functions may leak into the estimated coefficients, if the sampling of the Earth is not
homogeneous. The full resolution equation is then given by

mest
L = Rmtrue

L + Bmtrue
∞ (12)

whereR is the classical resolution operator discussed above andB is a bias operator which
describes how the neglected basis functions leak into theL-estimated coefficients. This
bias is not negligible for realistic tomography problems, but so far it has not explicitly been
taken into account. A close analysis ofB shows that leakage is strongest for coefficients
close to the truncation level, and hence second-derivative model smoothing very efficiently
counteracts the effects of the bias operator. In the absence of any sound prior information
regarding the solution, it is thus desirable to implement second-derivative model smoothing,
which is far easier to use numerically than formal leakage correction.

3.1.3. Errors in the forward theory. The notion of ‘true’ Earth is intimately related to how
the data can be predicted, or the correctness of the forward theory. It is then important
to know the effects of theoretical errors upon the estimated solution. Tarantola (1987) and
Jackson (1994) addressed this problem under the assumption that the errors in the forward
modelling can be described by a certain statistical distribution. The main restrictions in
the forward modelling of seismic tomography are the stationarity principles. The extent
to which nonray-theoretical effects may corrupt the models constructed so far can only be
determined by extensive numerical simulations using more advanced algorithms for three-
dimensional ray tracing and the calculation of synthetic seismograms in a three-dimensional
Earth. So far, no quantitative assessments of these effects have been performed.

3.2. Nonlinear case

Nonlinear problems are far more difficult to analyse. Part of the nonlinearity of the
seismic tomography problem comes from the fact that the paths which elastic waves travel
along depend upon the structure they travel through. Under some assumptions, stationarity
principles may be used to linearize the problem. However, if the underlying structure is
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too heterogeneous or the data we want to use are not stationary quantities (e.g. inverting
amplitude for quality factor), the only viable approach seems to be to explore the total
model space by forward modelling and testing against the data. Such techniques can be
regrouped under the name of global optimization and a detailed account is given by Sen
and Stoffa (1995). Unfortunately, the number of possible models grows exponentially with
the number of model parameters which makes such an approach virtually impossible for a
realistic seismic tomography problem.

In most practical cases, nonlinearity has been treated locally, so that algorithms such
as (11) may be used. Alternatively, Snieder (1991) showed how to extend Backus and
Gilbert’s (1968) theory to the nonlinear case. He again used a local approach based on
perturbation theory. A more promising direction is to look for systematic transformations,
which reformulate the nonlinear inverse problem into a linear one. For instance, Woodhouse
(1978) has shown how the velocity as a function of depth can be obtained by a linear
inversion of travel times observed as a function of distance between a source and a receiver
choosing an appropriate parametrization. Classically, this problem has been solved by
reducing the travel distance in terms of a velocity–depth function to the form of Abel’s
integral equation, for which a nonlinear exact inverse exists under certain assumptions. In
another approach of transforming the original problem, Grünbaum (1992) and Grünbaum
and Zubelli (1992) developed a technique, called diffuse tomography, where the nonlinear
forward problem can be solved by a finite set of linear systems of equations. To my
knowledge, this has not found any applications in geophysics yet, but there are great
similarities with the seismic tomography problem involving multiple scattering. Recently,
Vasco (1997) presented a general approach which transformed nonlinear inverse problems
into linear ones based on the theory of continuous groups. Clearly, at this stage not much
more can be said about fully nonlinear tomography, but it is a clear challenge for future work.

4. Concluding remarks

In the last 20 years, global seismic tomography has made tremendous progress in
the mapping of three-dimensional elastic wave velocity fields. Many robust pieces of
information have emerged which stimulated a multidisciplinary discussion within the Earth
sciences. This information is becoming increasingly important in understanding the internal
machinery of our planet. We have now reached a point where we have to look more closely
at the effects of approximations in our modelling. Error and resolution analyses have to
be made in a more systematic and realistic way to promote a more robust interpretation
of the results. The data quality is of course an important factor in the advance of seismic
tomography, but assuming a steady increase of data quality and coverage, the fully nonlinear
treatment of global tomography is the most promising direction for substantial improvement
in our understanding of the Earth’s deep interior. In many cases, this involves complications
in the mathematics of the problem, and it is hoped that scientists from outside the Earth
sciences, with similar problems, may shed a new light on our approaches.
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