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S U M M A R Y  
Although much is known of the 3-D structure of the Earth, existing models do not 
make use of much that is known about the large structural perturbations near the 
surface. It has long been known, for example, that continental and oceanic crustal 
structures are quite different, and that these differences are evident in the dispersion 
of Love and Rayleigh waves sampling continental and oceanic paths. Such 
differences are largest at periods of less than about 100 s. Existing global models do 
not adequately account for such data, and make allowances for crustal structure in a 
very approximate way, owing to the incompleteness of information on the global 
distribution of crustal parameters. As a result, variations in, for example, crustal 
thickness translate themselves into model artefacts extending to great depth. This 
can be seen as one aspect of the imperfect resolution of the existing global models. 
In order to construct higher resolution models of the Earth’s outer shell (0-200 km 
depth), it is necessary to gain more precise knowledge of near-surface structure by 
incorporating data that have sensitivity to the details of the depth distribution of 
heterogeneity near the surface. As a first step we analyse a large data set of 
fundamental-mode Rayleigh and Love waveforms to obtain global phase-velocity 
maps in the period range 40-150 s. Minor and major arc phase velocities have been 
determined from about 24 000 digital GDSN and GEOSCOPE seismograms 
recorded between 1980 and 1990. In order to make such measurements in an 
automatic way, we have developed a method, using non-linear waveform inversion, 
in which velocity and amplitude, as a function of frequency, are expanded in 
B-splines. The waveform data are inverted for the B-spline coefficients, with the 
application of an explicit smoothness constraint that protects against unwanted 
effects, such as those due to notches in the amplitude spectra, and avoids some of 
the problems associated with the phase ambiguity. The cost function (which is 
minimized in a least-squares sense) presents many local minima, and a good initial 
model is needed; this is derived by integration of group velocities. 

The measurements made using this new technique are then used in a global 
inversion for phase-velocity distributions of Love and Rayleigh waves, expressed in 
terms of a spherical harmonic expansion. We show resulting phase-velocity maps up 
to degree and order 40. These maps are corrected for possible artefacts due to the 
truncation of the spherical harmonic expansion. We present a detailed resolution 
analysis which shows that global lateral resolution for surface-wave tomography is of 
the order of 2000km. Love-wave phase velocities show a high correlation with 
known upper mantle structure at long periods and with crustal structure at shorter 
periods. Similarly, Rayleigh-wave phase velocities correlate well with known 
tectonic features, but show no clear crustal signature owing to their different 
sampling of the structure with depth. 
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1 I N T R O D U C T I O N  

The dispersive properties of surface waves have been used 
to infer the Earth’s internal structure since the early 
twenties. Gutenberg (1924), using data collected by Tams 
(1 92 1 ), explained the dispersion differences between surface 
waves propagating along oceanic and continental paths in 
terms of properties of the Earth’s crust. Throughout the 
next few decades, many scientists studied different parts of 
the world and produced average regional models based on 
surface-wave data. The important crustal types (shield, 
mid-continent, etc) that have emerged from surface-wave 
studies are summarized in Brune (1969). Similarly, Dorman 
(1969) reviews different regional upper-mantle models 
derived from surface waves. More recently, much work has 
been done at very long periods, leading to rather precise 
knowledge of the global distribution of phase velocities at 
periods greater than about 150s, for low degrees in the 
spherical harmonic expansion of heterogeneity. For 
example, by measuring the shifts in spectral peaks, Masters 
et al. (1982) discovered a strong pattern of degree 2 in the 
phase velocities of Rayleigh waves at periods greater than 
200s. Nakanishi & Anderson (1982, 1983, 1984) made 
expansions up to degree 6 using measurements of group and 
phase velocities. Woodhouse & Dziewonski (1984) intro- 
duced a technique of waveform inversion in which the direct 
measurement of group and phase velocities was avoided; 
nevertheless, since the largest features in their data set were 
the fundamental-mode Rayleigh and Love orbits, their 
models accurately represent the distribution of phase 
velocities at periods greater than about 150 s. Wong (1989) 
measured phase and amplitude anomalies by a deconvolu- 
tion procedure, using synthetic seismograms, and con- 
structed phase-velocity maps up to degree 12 for Rayleigh 
and Love waves in the period range 150-300s. Here we 
adopt a similar approach, but seek to apply it at shorter 
periods (40-150 s), overlapping with those used in the early 
studies which first identified strong regional differences. 

The aim of this paper is to produce phase-velocity maps at 
frequencies sensitive to the structure of the crust and 
uppermost mantle and to assess the lateral resolution 
achievable with modern surface-wave coverage. The great 
wealth of available digital seismograms demands new ways 
of processing. It is now possible to have all these data 
online, and our concern has been to design an automatic 
analysis procedure. We will describe a new non-linear 
waveform inversion for amplitude and phase velocity as a 
function of frequency. Special care will be taken to describe 
the usefulness of the explicit smoothness constraint that we 
apply. We show that the additional introduction of 
group-velocity information allows the algorithm to be 
automated. We briefly describe the data used and the 
construction of global phase-velocity maps expanded on a 
spherical harmonic basis. Special care has been taken to 
avoid possible artefacts resulting from the truncation of the 
expansion. Finally, we present a detailed resolution analysis 
and briefly discuss the results and compare them with 
previous work. 

2 PHASE-VELOCITY M E A S U R E M E N T S  

We propose a new approach to waveform inversion, which 
directly inverts the relevant part of the seismogram for 

amplitude and phase anomalies with respect to a reference 
model. The approach is general and may be applied to 
single-station, two-station or great-circle paths. 

2.1 Waveform inversion 

Let D ( w )  be the Fourier transform of the normalized 
observed seismogram supposed to contain a fundamental 
surface-wave mode only, and S( w )  the corresponding 
fundamental-mode synthetic seismogram computed for a 
given earth model. Normalization is performed by dividing 
each seismogram by its rms amplitude. We may write 

D ( w )  = A ( w )  exp [-iwASs(w)]S(w), (1) 

where A ( w )  denotes the amplitude correction and S s ( w )  the 
phase slowness perturbation with respect to the earth model 
employed. A is the station-event distance and w the angular 
frequency. We expand amplitude and phase in terms of 
cubic B-splines (e.g. Lancaster & Salkauskas 1986): 

I =  I 

with B , ( w )  the ith cubic 9-spline and a, and p, constants to 
be found. In the following, we will drop the explicit 
frequency dependence of D ( w ) ,  S ( w ) ,  A(w), S s ( w )  and 
B,(w)  in our notation. Eq. (1) contains both real and 
imaginary terms, and we can write the following amplitude 
equation, completely decoupled from the phase terms: 

ID1 = A  IS1 = f ( w ,  at) .  (4) 
Eq. (4) defines a simple linear inverse problem for the 

coefficients a, defined in (2), where the partial derivatives 
are given by 

Similarly, from (1) we obtain two phase-velocity equations: 

%e (D)  = A [ %  (S) cos (wA6s) 

+ 91r, (S) sin (WA~S)]  = g(w,  p,), (6) 

- (S) sin (wASs)] = h ( w ,  p,), (7) 

.An ( D )  =A[.% (S) cos   ASS) 

In contrast to eq. (4), expressions (6) and (7) define a 
non-linear inverse problem for the coefficients p,, with the 
a, known. This problem will be solved iteratively, and after 
each step the partial derivatives are updated using 

+ wAB, 9m (S) cos (wASS)], 

- wAB, 9% (S) cos (LOASS)]. (9) 
The inverse problem for the phase coefficients p, is highly 

non-linear, particularly at higher frequencies, and its 
solution is dependent on the starting model. In order for it 



Global phase velocity maps 677 

to converge uniquely to  the final solution, some other 
information is needed. We have chosen to  introduce 
group-velocity measurements, which are secondary observ- 
ables easily calculated from the seismograms. Knowing that 

c ( w )  
1 - w c ' ( w ) / c ( w )  

U ( w )  = 

where U ( w )  and c ( w )  are group and phase velocities, 
respectively, and ['I denotes the derivative with respect to  
w ,  it is straightforward to  show that the group slowness 
perturbation is given by 

6 ~ = 6s + w6s' = k ( w ,  p i )  i:) 
In contrast to  (6) and (7), this equation corresponds to  a 

linear inverse problem for the coefficients p, defined in (3) 
with the following partial derivatives: 

Our inverse problem for amplitude correction and phase 
slowness perturbation is now completely defined, and will be 
solved with a standard least-squares algorithm (Tarantola & 
Valette 1982). The data are related to  the model by 
d = y ( m )  and the estimated model m minimizes the cost 
function 

@(m) = [d - y(m)lTCJi[d - y(m)] + m'C;'rn, (13) 

which expresses the classical trade-off between data fit and 
minimum model norm. Matrices C, and C,, the a priori 
covariance matrices of data and model, quantify the 
expected data variance and model norm. The specification 
of the covariance matrices will be  described below. Matrix 
C, will be  chosen to  apply smoothing to  the solution as a 
function of frequency. The solution is sought iteratively 
using the algorithm 

m,,, = m,, + (GTC;'G + C;')-' 

x GTC,"(d - r(m,>) + G(m, - YJ1- (14) 
The algorithm (14) may be applied to  linear as well as to  

non-linear sets of equations. For  a linear problem, (14) will 
converge in one iteration. This applies to  expressions (4) 
and ( l l ) ,  whereas the solution of the non-linear equations 
(6) and (7) needs multiple iterations. The  practical 
implementation of the algorithm is further described below. 

2.2 A priori information 

Dispersion curves are  intrinsically smooth. The effects of 
lateral and vertical heterogeneities are  averaged during 
surface-wave propagation, depending on distance and 
frequency, respectively. From a physical point of view it is 
reasonable, therefore, t o  introduce a smoothness constraint 
into the inversion algorithm. We require the roughness of 
the model to  be  minimum. The roughness of a function 
m ( w )  may be defined as 

where the function m ( w )  is twice continuously differentiable 
between o1 and w N .  Our model is expanded o n  a B-spline 

basis whose elements are twice continuously differentiable, 
and we obtain 

or, in matrix form, 

R = E~HE,  

where 

dw. 

We shall write 

C,' = AH, 

where A (XI) plays the role of a smoothing parameter 
controlling the trade-off between roughness and fit to  the 
data. C,' is band-diagonal and allows very efficient 
calculations. This approach is closely related to  that of 
Constable & Parker (1988), where the practical implemen- 
tation of B-splines and regularization with smoothing splines 
is described in detail. The  above development shows how to 
introduce an explicit smoothness constraint in a least- 
squares inversion using algorithm (14). Because the data 
have been normalized prior to  inversion, C;' is chosen 
equal to  the identity matrix, the magnitude of the data 
variance being absorbed in the parameter A. 

In addition to  having a physical meaning, we will explain 
how this smoothness constraint has practical advantages in 
our measurements, avoiding problems related to  notches in 
the spectrum and the phase ambiguity. 

2.3 Automatic algorithm 

The waveform inversion for amplitude and phase velocity as 
a function of frequency is completely automatic. This means 
that at no stage does an operator have to  interact in the 
process to  make a decision (e.g. data too noisy, poor final 
data fit). To make sure that the final result corresponds to  
correct measurements, a number of safe-guards need to be 
built into the algorithm. The methodology used in this paper 
is motivated by surface ray theory, and some consequences 
of this approach are discussed in Section 5. 

(1) The waveform to be inverted consists of fundamental- 
mode surface waves cut from the complete seismogram 
using a group-velocity window. We consider as noise that 
portion of the seismogram before the start of the 
fundamental-mode surface wave. This noise signal is also 
defined by a group-velocity window. We compute the 
maximum amplitudes of the envelope of the noise signal and 
the total signal. T h e  fundamental surface waveform is 
considered t o  be pure if the signal-to-noise ratio is above a 
certain threshold, which we fixed to  be 7. This simple 
consideration is very effective in detecting higher mode and 
S-wave interference, o r  poorly excited surface waves for 
deep and/or small events. Approximately 60 per cent of all 
considered waveforms are rejected with this criterion. We 
considered data from magnitude 5.5 onwards and most of 
the rejected data correspond to magnitudes below 5.9. 
Above magnitude 5.9, rejections were almost exclusively of 
waveforms corresponding to  major arcs. 

(2) In order to  obtain the phase velocity, i i  would be 



678 J .  Trampert and J .  H .  Woodhouse 

Figure 1. Observed (solid line) and predicted (dotted line) amplitude spectrum of a Love wave recorded at station CRZF at a distance of 
16 378 km from the epicentre. The event has a magnitude of 5.8 and the reference 010590D in the Harvard CMT catalogue. The observed 
spectrum clearly shows 4 notches, which have been interpolated during the inversion. The variance reduction of only 80 per cent indicates the 
presence of notches. 

sufficient to introduce the spectral ratio of the observed to 
the synthetic signal at each frequency into eqs (6) and (7) .  
Instead, we have chosen to invert eq. (4) for the coefficients 
a, of the B-spline expansion of the amplitude correction. 
With the constraint (18), we recover a smooth interpolation 
of the spectral ratio of the observed over the synthetic 
signal. We fixed h =lo-', which means that priority is 
nevertheless given to fitting the data. This weak requirement 
of smoothness is effective in interpolating through notches in 
the observed spectrum, where the phase may be poorly 
defined. Below a certain threshold of variance reduction, 
which we fixed to be 85 per cent, there is a high probability 
that such notches occur and we reject the data. Consider the 
example in Fig. 1, where we see 4 notches in the spectrum. 
The variance reduction is 80 per cent in this case, and the 
seismogram is rejected. Allowing a phase-velocity deter- 
mination for this example showed that it is not possible to fit 
the phase at periods near 180s. Many other factors may 
affect amplitude measurements. We believe that, with a 
correct instrument response and correct source parameters, 
spherical earth models should allow amplitudes to be 
predicted to within a factor 3, at least at long periods, and 
we elected to reject all seismograms where amplitude 
predictions vary by more than a factor 3 at any given 
frequency with respect to the observed data. The aim of this 
rather conservative criterion is to select data for which the 
source parameters are well known and for which departures 
from ray theory are not too large. About 25 per cent of all 

considered waveforms did not pass this amplitude test and 
were eliminated: the number of rejected seismograms is a 
decreasing function of earthquake magnitude. Among the 
possible causes for such poor amplitude agreement are (i) 
inaccurate source parameters, (ii) focusing, defocusing and 
off-path propagation due to lateral refraction, (iii) 
multipathing, and (iv) departures from ray theory. A recent 
study by Friederich et al. (1994) has shown that such effects 
can be large, particularly for frequencies somewhat higher 
than those used in the current study. All such effects will be 
particularly significant near nodes in the surface-wave 
radiation patterns, and the amplitude test has the desirable 
effect of eliminating such paths from further analysis. 

(3) The inversion of eqs (6) and (7) is a highly non-linear 
problem for the coefficients pi corresponding to the B-spline 
expansion of 6s. The cost function has many local minima 
and the solution is dependent on the starting model. We 
have chosen to integrate the group velocity, a secondary 
observable readily calculated from the observed seismo- 
gram, to obtain a starting model compatible with the same 
original waveform. At this stage, any data with a 
group-velocity perturbation greater than 10 per cent with 
respect to the chosen earth model are eliminated. In 
practice, this involves solving (1 1) for the initial B-spline 
coefficients of the phase slowness perturbation. This 
problem is linear and straightforward. Again we have given 
priority to the data fit and used A = loph in (18). 
(4) Starting with the model calculated from the group 
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Figure 2. Undamped (solid line) and smooth (dotted line) phase-velocity determination from a major-arc Rayleigh wave recorded at station 
DRV. The distance is 27 095 km, and the event is the same as for Fig. 1. The undamped solution presents 2n-jumps at periods 100 and 65 s. The 
smoothness constraint correctly eliminates these jumps. 

velocity, the solution converges to the absolute minimum of 
the cost function. Even with a good starting model, eqs (6) 
and (7) are so rapidly varying in 8s that the probability of 
divergence of the algorithm is not negligible. We simply 
added the group-velocity data to the system again to act as 
linear constraints (with a relative weight lop5 of the phase 
data). This means that our final phase velocities are 
compatible with the phase of the original seismograms as 
well as with the measured group velocities. 

( 5 )  The last problem to overcome is due to the 
fundamental phase ambiguity in the seismograms arising 
from the multivalued nature of the Fourier phase. If we gain 
a complete cycle in phase, the corresponding phase slowness 
changes by 2n/wA.  The nature of the inverse problem is 
such that the solution stays as close as possible to the initial 
model. The result is jumps of 2 a l w A  in the final slowness 
perturbation. If we require the slowness perturbation to be 
sufficiently smooth, such jumps are not allowed, and the 
solution follows the correct number of cycles in the phase. 
Note that exactly the same is done manually, where the 
integer arising from the multivalued Fourier phase is 
determined so that the measured phase velocity connects 
smoothly from period to period. Fig. 2 clearly shows the 
effect of the smoothness constraint. We used A = lo-*, 
which is sufficient to avoid jumps of 2nlwA. We require that 
the data variance reduction reaches at least 85 per cent and 
that at no frequency is the perturbation higher than 10 per 
cent with respect to the earth model. Finally, we make a 
global 2 n / w A  shift, so that the phase velocity is closest to 
that of the spherical earth model at a period of 150 s. 

The amplitude and phase-velocity measurements are set 
up as a non-linear waveform inversion and are completely 
independent of an interactive operator. The algorithm 
depends on a few parameters which have been carefully 
tuned from the manual analysis of numerous seismograms. 
Some of the selection criteria are very conservative. They 
have been chosen with the aim of having well-excited, 
purely fundamental-mode, surface waves at all frequencies 
considered, and reasonable corresponding source para- 
meters. The data fit for a finally selected waveform is best 
seen in Fig. 3, where we have randomly chosen a 
seismogram and compared it with the predicted seismogram 
after inversion. Besides the representation of the complete 
waveforms, the observed and predicted seismograms have 
been narrowband-filtered at periods of 150, 80 and 40s and 
show a good fit for each frequency band. 

3 DATA 

The raw data set consists of long-period Love and Rayleigh 
waves. We considered all digital data available from the 
GDSN and GEOSCOPE networks recorded between 1980 
and 1990. We selected data for events with a magnitude 
greater than 5.5. The minimum distance between station and 
event was set to 20" to avoid possible interferences between 
S waves and surface waves as well as near-field effects. The 
maximum allowed distance was chosen to be 160" to avoid 
possible interferences between minor- and major-arc waves. 
Seismograms have been rotated to radial and transverse 
components and resampled at 1 point every 16s. Love 
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Figure 3. (a) Observed (solid line) minor-arc Rayleigh wave and its corresponding predicted waveform (dotted line) after inversion for station 
PAF. The synthetic seismogram computed with PREM (dashed line) is also shown with an offset of -10. The distance is 16610 km and the 
events are the same as for Fig. 1. (b) Narrowband-filtered observed (solid line) and predicted (dotted line) waveforms from Fig. 3(a). Top: 
filtered around 150 s, middle: filtered around 80 s and bottom: filtered around 40 s. 
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1990 
Total 

waves are measured on transverse components, and 
Rayleigh waves on vertical components. 

Each observed seismogram was time-variable filtered 
(Cara 1973) using the group velocity corresponding to 
PREM (Dziewonski & Anderson 1981). The time interval 
around the group arrival time was chosen to be sufficiently 
large as to avoid any loss of energy in the observed surface 
wave, which was reconstructed between periods of 35 and 
250 s .  Corresponding to each observed seismogram, we 
computed a synthetic seismogram using normal-mode 
summation (Gilbert 1971; Dziewonski & Woodhouse 1983). 
The source parameters (origin time, source duration, depth 
and moment tensor) were taken from the Harvard 
catalogue. Latitude and longitude were taken from the 
NEIS or the ISC catalogue, since we anticipate that, while 
depth estimates from long-period waveforms improve upon 
those determined from arrival-time data, the epicentral 
locations probably do not (Dziewonski & Woodhouse 1982). 
We assumed the source parameters to be correct and did not 
allow for any perturbations in the inversion scheme. The 
synthetics were calculated using the Preliminary Reference 
Earth Model (PREM; Dziewonski & Anderson 1981). An 
ellipticity correction was introduced at this stage, and the 
instrument response of the observed seismogram was 
applied. We cut the seismograms with group-velocity 
windows of 5.3-3.3 km sC1 and 4.8-3.0 km s-' for Love and 
Rayleigh waves, respectively. The noise signal, referred to 
above, was defined by the group-velocity windows of 
5.3-4.8 km s- '  and 4.8-4.4 km sC1 for Love and Rayleigh 
waves, respectively. 

As mentioned before, the waveform inversion is 
completely automatic. A number of safe-guards are built 
into the algorithm. If all the required conditions described in 
the previous paragraphs are fulfilled, the measurement is 
deemed satisfactory and included in the final inversions. 

The number of paths surviving these tests, including 
minor and major arcs, was approximately 24 000 (10 000 for 
Love and 14000 for Rayleigh waves). This corresponds to 
about 10 per cent of all considered waveforms. All 
seismograms are treated in exactly the same way, with the 
same explicit a priori information resulting in the most 
homogeneous phase-velocity and amplitude data set to date. 
The precise coverage is summarized in Table 1. A map of 
great-circle path coverage would show all parts of the Earth 
sampled, with GDSN data mainly covering the American, 
Eurasian and Pacific plates, and GEOSCOPE data mainly 
covering the African, Indo-Australian and Antarctic plates. 
Although the data coverage is excellent in this study, it is 
not homogeneous owing to the distribution of earthquakes 
and stations. 

166 758 1470 
2684 9640 339 12524 1324 

4 G L O B A L  PHASE-VELOCITY M A P S  

4.1 Inversion for phase-velocity distributions 

We made average phase-velocity measurements over minor 
and major arcs relative to the PREM phase velocities. 
Explicitly, we may write for one given frequency that 

Table 1. Total number of great-circle paths used in 
this study. The data have been selected from the 
GDSN and GEOSCOPE networks using both, LH 
and VH, channels and correspond to  events with a 
magnitude greater than 5.5 in the considered time 
span. In 1990, we only had access to data recorded 
between January and July. 

Number of rays 

1981 236 532 536 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 

229 
290 
243 
247 
249 
274 
260 
259 

643 
1067 
752 
906 
924 

1192 
1047 
1252 

19 
44 
27 
34 
31 
51 
52 
57 

652 
9.52 
767 
94 1 

893 
1582 
1672 
2406 

67 
149 
122 
127 
144 
170 
168 
224 

where d, is the ith measurement, 8 and cp are colatitude and 
longitude, respectively, G, are the data kernels, 6c( 8, w ) / c  is 
the true relative phase-velocity perturbation, and the 
integration is over the sphere representing the earth. In the 
general case, the data kernels describe the true sampling of 
the earth by the surface wave. In the present study, we 
assume the validity of the great-circle approximation, which 
means that G, is zero everywhere except along the minor 
and major arcs. Producing a phase-velocity map from such 
measurements is then a simple interpolation problem, where 
we have chosen to expand the relative phase-velocity 
perturbations in a spherical harmonic basis: 

sc 
C / = ~ m = - /  
-= C C t/mY,m(e, CP>? (20) 

where I is the degree and rn the order of the spherical 
harmonic y,n. This leads to a simple least-squares inversion 
for the coefficients tInz to be solved with eq. (141, where the 
derivatives are the integrals of the spherical harmonics along 
the minor and major arcs. Following the ideas of Shure, 
Parker & Backus (1982) and Parker (1994), we wish to 
retrieve a smooth model and define the roughness of the 
model over the sphere as 

r r l .  1 72 

where Vg denotes the surface Laplacian. Requiring the 
roughness of the model to be minimum, and using the 
normalization convention of Edmonds (1 960), similar 
arguments to those in Section 2.2 lead to a diagonal n p r i w i  
model covariance matrix given by 
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where j is the index numbering the ( L  + 1)’ coefficients and 1 
is the degree of the corresponding spherical harmonic. A 
(>0) again is a smoothing parameter controlling the 
trade-off between roughness and fit to the data. Note that 
the model covariance depends only on the degree of the 
spherical harmonic and not on  its order. In other words, all 
coefficients corresponding to the same spherical harmonic 
degree are equally weighted. 

To describe the Earth’s structure fully, the set of spherical 
harmonics must be complete, and hence the summation in 
(20) has to be carried out to infinity. This would lead to an 
ill-posed inverse problem. In practice, we are limited by the 
finite resolution of the data, so that we have to choose an 
upper limit L. The result of truncating the expansion is to 
lead to a long-wavelength estimation of the true Earth, 
where the maximum lateral resolution is given by the 
highest degree considered. This looks like a very attractive 
way of finding a smooth approximation to the true Earth, 
but there is a hidden catch which may bias the retrieved 
model. 

This problem is related to ringing, as described in detail in 
a spherical harmonic analysis of the geomagnetic field by 
Whaler & Gubbins (1981). They showed that truncating the 
spherical harmonic expansion generates side lobes in the 
averaging kernels (Backus & Gilbert 1968) with a particular 
prominent peak at the antipodes. This is analogous to 
Fourier filtering. Truncating a Fourier spectrum with a 
straight cut-off is well known to give ringing, and the same 
applies to the spherical case. The remedy in Fourier analyses 
is to taper the form of the cut-off, and Whaler & Gubbins 
(1981) suggested the same in spherical harmonic analyses. 
They progressively down-weighted coefficients correspond- 
ing to higher and higher spherical harmonic degrees. A close 
inspection of (22) shows that our u priori model covariance 
does exactly the same: the higher the spherical harmonic 
degree, the higher the damping of the corresponding 
coefficients. An explicit smoothness constraint is thus a 
natural way of reducing ringing. 

The introduction of a smoothness constraint is thus 
effective against possible artefacts due to ringing in 
least-squares interpolation problems using model expansions 
on incomplete sets of basis functions. We should, however, 
not hide a drawback inherent to this approach, namely a 
trade-off between bias reduction and lateral resolution. 
Because we down-weight, or damp, coefficients correspond- 
ing to higher and higher degrees, we have to expect that we 
will not be able to retrieve completely the earth’s structure 
corresponding to the highest degrees in our expansion. The 
effective resolution should thus be expected to be lower than 
suggested by the maximum degree L. We will discuss this in 
greater detail in the following section. Another important 
point is that the smoothness constraint (as well as any other 
form of damping for that matter) imposes an a priori shape 
upon the high-degree power spectrum, independently of any 
structural information. This should be kept in mind when 
relating the power spectra of models to the nature of the 
Earth’s structure. 

Our final models are the spherical harmonic expansions, 
to degree .and order 40, of Love- and Rayleigh-wave 
phase-velocity perturbations for the period range 40-150 s. 
As an example, results at 40s period are tabulated in the 
Appendix. A complete set of numerical coefficients is 

available from the authors on request. Figs 4 and 5 show the 
relative phase-velocity perturbations of Love and Rayleigh 
waves at 40. 80 and 150 s. 

4.2 Resolution 

Algorithm (14) used to infer the spherical harmonic 
coefficients for the phase-velocity maps allows a complete 
resolution analysis. The resolution matrix obtained from 
(14) applies to the coefficients itself, and its interpretation is 
not straightforward. We prefer to convert the resolution 
matrix into averaging kernels (Backus & Gilbert 1968) given 
by 

The above equation states that the relative phase velocity 
estimated at position (el), cp0) is an average of the true 
model over the whole Earth with weights A(8,  cp; O,,, Po), 
the averaging kernels. The rotation of the resolution matrix 
into the relative phase-velocity space is trivial and A is 
readily calculated. Fig. 6 shows an example of an averaging 
kernel, which ideally should be a Dirac function. In our 
case, it is a peaked function at the central point, with no 
prominent side lobes, as expected because we suppressed 
ringing. To give a complete picture of the resolution we 
would need to show such kernels for each point on the 
Earth’s surface. As most of the area over which the true 
model is averaged is contained in the central peak, we have 
chosen to represent the radius of the central peak only. 
Maps of resolving radii are shown in Fig. (7) for Love and 
Rayleigh waves. They are dependent only upon the path 
coverage and the smoothness parameter A and give a good 
representation of the lateral resolution that can be achieved. 
There is a very high correlation between resolving radii and 
ray density (high lateral resolution corresponds to dense 
path coverage and vice versa), but resolving radii give 
further quantitative information on the extent of lateral 
resolution. . 

In general, lateral resolution is higher for Rayleigh waves 
than for Love waves. This is particularly evident in the 
Southern hemisphere for which most stations are located on 
islands where the horizontal noise level is on average 10 
times higher than vertical macroseismic noise. This results in 
a lower ray-path coverage for Love waves than for Rayleigh 
waves. The highest lateral resolution between 1000 and 
1700 km, which corresponds to spherical harmonic degrees 
of 40-23, is achieved only in some areas of the globe, 
principally the Western Pacific and North America. Other 
parts of the world have resolving lengths between 1700 and 
2400 km (degrees 23-16). For Love waves, resolution in the 
Southern hemisphere may go down to degrees 12-6 in some 
areas. The trace of the resolution matrix gives the number of 
independently resolved parameters, and hence also the 
average lateral resolution. For Rayleigh waves the trace is 
642, which suggests an average resolution of degree 24, and 
for Love waves the trace is 529, corresponding to a 
resolution of degree 22, which correlates well with the 
average resolution obtained from the resolving radii. The 
resolving radii are dependent on the smoothing parameter 
A. The maps shown in Fig. 7 are obtained for A = If we 
increase the smoothing parameter, the resolving radius will 
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Figure 4. (a) Love-wave phase-velocity perturbation at a period of 39.982 s. The variations are given in per cent with respect to the PREM 
average. Yellow lines are plate boundaries, and yellow circles are hotspots. The smoothness parameter h = (b) As for (a), but for a 
period of 79.689 s and A = 5 X (c) As for (a) but for a period of 150.919 s and A = 
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Figure 4. (Continued.) 

(a> RAYLEIGH Period = 40.043 see 

Figure 5. As for Fig. 4(a), but for a Rayleigh wave at a period of 40.043 s and A = 
period of 79.909 s and A = 5 X 10 ‘. (c) As for Fig. 4(a), but for a Rayleigh wave at a period of 149.124 s and A = lo-’. 

(b) As for Fig. 4(a), but for a Rayleigh wave at a 
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(c) RAYLEIGH Period = 149.124 sec 
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Figure 5. (Continued.) 

4 0  



Global phase velocity maps 683 

0 
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Figure 6. Averaging kernel at latitude = 0" and longitude = 90" corresponding to the Rayleigh-wave path coverage and a smoothness parameter 
x = 

increase. To fix ideas, a map obtained with A = in the 
case of Rayleigh waves will degrade to be comparable to the 
Love resolving radii map obtained with A = 

Another common way of accessing resolution is through 
checkerboard tests. We constructed synthetic earth models 
with equal-area cells of 10" and 4 X 10" square kilometres. 
To simulate an inversion of data corresponding to these 
models, it is sufficient to apply the resolution matrix to these 
models. The results for the Rayleigh case can be seen in 
Fig. 8. We clearly see that an average lateral resolution of 
about 1000 km can only be achieved in the Western Pacific 
and North America, whereas over the whole Earth we 
obtain an average lateral resolution of around 2000 km. This 
confirms what we have already seen from the resolving radii 
maps. 

Resolving radii maps are a good means to represent the 
lateral resolution achievable in modern global surface-wave 
tomography. Checkerboard tests only show how well the 
particular chosen input checkerboard model is resolved. 
Strictly speaking, they do not say anything about any other 
input model, even for heterogeneity with a comparable 
wavelength. Resolving radii, on the other hand, provide a 
compact and more complete representation of the resolution 
operator. 

5 DISCUSSION A N D  CONCLUSION 

The methodology used in this paper is motivated by surface 
ray theory. In the measurement of mean-path phase 

velocities, the smoothing constraint is applied because the 
local dispersion relation along the path c ( o )  is everywhere a 
smooth (analytic) function of frequency, and in ray theory 
the phase of the signal is given in terms of the integral of 
o / c ( w )  along the ray-path. The measurements are 
expressed as mean phase-velocity anomalies (relative to the 
reference model); however it is important to note that it is, 
in fact, the anomaly in the phase of the signal that is 
measured. In a case where the wavefield was well described 
by ray theory, but the rays deviated greatly from the 
great-circle path, the measurements would nevertheless be 
valid. In the interpretation of the measurements, we have 
made the further assumption that Fermat's principle holds, 
i.e. that the measurements correspond to path integrals 
along the major- or minor-arc segments of the great-circle 
path. This could be relaxed in future work, and thus one 
could seek to interpret the same measurements in terms of 
laterally refracted rays, as has been done at very long 
periods by Wong (1989) and Pollitz (1994). The inversion, in 
this case, becomes non-linear, and the great-circle 
approximation employed here may be regarded as the first 
iteration of an iterative scheme. It is undoubtedly the case 
that there are many examples of off-great-circle propagation 
and non-ray-theoretical effects (e.g. Lay & Kanamori 1985; 
Woodhouse & Wong 1986; Snieder 1988; Levshin, 
Ratnikova & Berger 1992; Laske, Masters & Zurn 1994; 
Friederich ef al. 1994). The extent to which such effects may 
corrupt the models constructed under the simple assump- 
tions made here can be determined only by extensive 
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Figure 7. (a) Resolving radius corresponding to the Love-wave path distribution used in this study. The smoothness parameter X = 10- 
the radii are given in krn. (b) As for (a). but for Rayleigh waves. 

and 
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Retrieved Checkerboard - 1000 

Retrieved Checkerboard - 2000 

Figure 8. (a) Retrieved checkerboard for the Rayleigh-wave resolution with h = The original checkerboard has been constructed with 
cells of approximately 10' square km of surface area. The amplitudes are relative to the input amplitude. The contour interval is 0.2: bold lines 
represent zero contours, dashed contours negative amplitudes and solid contours positive amplitudes. (b) As for (a), but for a surface area of 
4 X 10' square km. 

numerical simulations using more advanced algorithms for the spectrum of heterogeneity. We have not addressed these 
the construction of the theoretical seismograms. The issue is issues here. Instead we argue upon the basis of the large 
whether such effects enter as random noise to  which the variance reduction, particularly at higher frequencies for 
inversion is insensitive, o r  as a signal tending to  bias or, which non-ray-theoretical effects are thought to  be 
indeed, to  vitiate the results. Naturally, the frequency of strongest, that a significant part of the signal, well described 
occurrence and the magnitude of such effects (in general by ray theory, has been retrieved. The variance reduction at 
their statistics) are of importance, and will depend upon longer periods is lower, mainly, we believe, because the 
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39.982 
59.932 
79.689 
99.709 

150.919 

Table 2. Correlation coefficients comparing our Love phase-velocity results with those 
predicted by M84A (Woodhouse & Dziewonski 1984). The correlation coefficients are 
given for each spherical harmonic degree, as well as for the total expansion (SH) and a 
pixel-based average described in the main text. Also shown are total data variance 
reductions. 

86% 
80% 
71% 
66% 

53% 

Period Variance 

Reduction 

D2 

0.60 
0.74 
0.78 
0.80 
0.85 

Correlation Coefficient 

D3 D4 D5 D6 D7 D8 SH Pixel 
0.48 0.51 0.56 0.55 0.56 0.54 0.53 0.44 
0.68 0.75 0.80 0.79 0.77 0.74 0.74 0.73 
0.74 0.83 0.85 0.85 0.81 0.77 0.80 0.80 
0.76 0.85 0.86 0.86 0.80 0.77 0.79 0.81 
0.75 0.85 0.83 0.81 0.71 0.68 0.73 0.73 

Dl  D2 D3 D6 D7 D8 SH 
0.23 
0.56 
0.71 
0.75 
0.77 

___ Pixel 
0.60 
0.38 
0.07 
0.41 

0.96 

0.60 
0.76 

0.82 
0.85 
0.94 

0.35 
0.56 
0.69 
0.75 
0.83 

0.25 
0.60 
0.75 
0.80 

0.81 

0.25 
0.59 

0.73 
0.77 
0.78 

0.26 
0.58 

0.69 
0.72 

0.74 

0.03 

0.37 
0.64 
0.73 
0.79 

I 

amplitude of heterogeneity in phase velocity is much 
smaller. Calculations by Woodhouse & Wong (1986) show 
that at long periods ( T  - 150 s )  the effects of off-great-circle 
propagation are minor for the early orbits ( R l ,  R,, GI,  G2) 
used here, at least for the low-order models used in their 
study. The models derived here could be used as a starting 
point to estimate such effects at higher frequencies. 

The most original feature of this study is the 
phase-velocity maps down to 40 s, much shorter periods than 
used in any other study to date. The Love-wave model at 
40s (Fig. 4a) shows a remarkable correlation with surface 
topography and bathymetry, and hence with crustal 
thickness. For Rayleigh waves (Fig. 5a), this resemblance is 
almost absent, but here the correlation is very good with 
certain tectonic features. This is to be expected: while Love 
waves at 40 s sample the surface, decaying exponentially 
with depth, Rayleigh-wave sampling is more complex with a 
maximum sensitivity at about 50 km depth, and hence 
Rayleigh waves have more sensitivity to upper-mantle 
structure. These maps are very stable, and together with the 
high data variance reduction (Tables 2 and 3) suggest that 
the great-circle approximation is quite robust up to these 
frequencies. 

Considering longer periods, the waves are more and more 
sensitive to upper-mantle structure. The mid-oceanic ridges 
are the major low-velocity anomalies, together with regions 
characterized by back-arc volcanism. The Atlantic ridge is 
particularly well resolved for Love phase velocities (Figs 4b 
and c). High velocities are associated with continental 
shields and old ocean basins. Longer periods allow a 
comparison with previous studies. We note a good visual 
correlation of all major features between our models at 100 
and 200s and those obtained by Montagner & Tanimoto 
(1991) and Zhang & Tanimoto (1993). 

At 150s, our maps are in very good agreement with 
results obtained by Wong (1989) for both Love and 
Rayleigh waves. We made a more quantitative comparison 
between our phase-velocity maps and those predicted by 
M84A (Woodhouse & Dziewonski 1984). We calculated 
correlation coefficients for each spherical harmonic degree 
(1-8) as well as for all degrees taken together. Furthermore, 
we defined a pixel-based correlation coefficient, where we 
divided the earth into knots every 3 degrees in latitude and 
longitude. At each of those pixels, we calculated the 
corresponding phase velocity. The final correlation 
coefficient was then calculated for phase velocities at 7200 
different points of the earth’s surface. The results are shown 
in Tables 2 and 3. Figs 9(a) and (b) show the resemblance of 
Love-wave phase velocities at 150s, corresponding to a 
correlation coefficient of 0.79. In general, the correlation is 
good at long periods, getting progressively worse at shorter 
periods. This is to be expected, as M84A was constructed 
using long periods. We find that the pixel-based correlation 
coefficient is more sensitive to visual resemblance than the 
total spherical harmonic one. Smith & Masters (1989) 
calculated spherical harmonic degree by degree correlations 
between their model, M84A and a model obtained by Davis 
(1987). The degree-by-degree correlation coefficients 
(Tables 2 and 3) with M84A indicate that our models at long 
periods are also similar to those obtained by Smith & 
Masters (1989), and hence to those by Davis (1987). 

The spherical averages for Love phase velocities vary 
from 0.17 to 0.07 per cent with respect to PREM, 
corresponding to periods varying from 40 to 150s. For 
Rayleigh phase velocities, they vary from 0.98 and 0.25 per 
cent for the same period interval. At long periods these 
results compare well with those obtained by Nakanishi & 
Anderson (1984) for instance. Total data variance 

Table 3. As for Table 2, but for Rayleigh waves. 

D1 Reduction 

79.909 
100.393 

0.12 
0.49 
0.74 
0.84 
0.90 __ 
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(a) M84A; Love T=150.919s; Deg 0-8 

Love T=150.919s; Deg 0-8 

Figure 9. (a) Relative Love-wave phase velocity at 150s predicted by M84A (Woodhouse & Dziewonski 1984) with a spherical harmonic 
expansion up to degree and order 8. The contour interval is 0.5 per cent: bold lines represent zero contours, dashed contours negative 
amplitudes and solid contours positive amplitudes. (b) As (a), but for our model. 

reductions at long periods are comparable to those obtained 
by previous studies. The observed decrease in variance 
reduction with increasing period (Tables 2 and 3) is not due 
to different damping parameters, which only explains a few 
per cent. This behaviour is generally observed (e.g. Zhang & 
Tanimoto 1993), and, we believe, is a consequence of the 

fact that the heterogeneous signal-the departure from 
PREM-is much larger at shorter periods. 

We obtained Love and Rayleigh phase-velocity maps 
between 40 and 150 s using a new method of waveform 
inversion for phase-velocity measurements. In the construc- 
tion of the models, special care has been taken to avoid bias 
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due to the truncation of the spherical harmonic expansion. 
The main result is that at 40s, Love-wave phase velocities 
show a significant correlation with crustal structure, whereas 
Rayleigh phase velocities correlate better with tectonic 
features. The stability of the maps and the high data 
variance reduction suggest that the great-circle approxima- 
tion is robust for the frequency range considered. At longer 
periods, our results are comparable with those of previous 
studies. Finally, a detailed resolution analysis shows that, for 
modern surface-wave tomography, the average lateral 
resolution is approximately 2000 km. 

ACKNOWLEDGMENTS 

This work was done while JT was supported by a fellowship 
from the Commission of the European Communities in the 
framework of the SCIENCE program. We wish to thank 
Andy Jackson for numerous discussions and routines 
involving B-splines. Special thanks go to all those involved 
in collecting and distributing the high-quality GDSN and 
GEOSCOPE data. 

REFERENCES 

Backus, G.E. & Gilbert, J.F., 1968. The resolving power of gross 
earth data, Geophys. J .  R. astr. Soc., 16, 169-205. 

Brune, J.N., 1969. Surface Waves and Crustal Structure, in The 
Earth’s Crust and Upper Mantle, ed. Pembroke, P.J., Geophys. 
Mono. Am. Geophys. Un., 13,230-242. 

Cara, M., 1973. Filtering of dispersed wavetrains, Geophys. J .  R.  
astr. Soc., 33, 65-80. 

Constable, C.G. & Parker, R.L., 1988. Smoothing, splines and 
smoothing splines; their application in Geomagnetism, J .  
Comput. Phys., 78,493-508. 

Davis, J.P., 1987. Local eigenfrequency and its uncertainty inferred 
from spheroidal mode frequency shifts, Geophys. J .  R.  astr. 

Dorman. J., 1969. Seismic Surface-Wave Data on the Upper 
Mantle, in The Earth’s Crust and Upper Mantle (ed. Pembroke, 
P.J.), Geophys. Mono., Am. Geophys. Un., 13, 257-265. 

Dziewonski, A.M. & Anderson, D.L., 1981. Preliminary Reference 
Earth Model, Phys. Earth planet. Inter., 25, 297-356. 

Dziewonski, A.M. & Woodhouse, J.H., 1982. Analysis of 
earthquake source parameters from digital data, Terra Cognita, 
2, 176-177. 

Dziewonski, A.M. & Woodhouse, J.H., 1983. Studies of the seismic 
source using normal mode theory, Proc. Enrico Fermi fnt. Sch. 
Phys., L X X X V ,  pp. 45-137, eds Kanamori, H.R. & Boschi, E., 
Nioza, Amsterdam. 

Edmonds, A.R., 1960, Angular Momentum and Quantum 
Mechanics, Princeton Univ. Press, Princeton, NJ. 

Friedcrich, W., Wieland, E. & Stange, S., 1994. Non-plane 
geometries of seismic surface wave fields and their implications 
for regional-scale surface wave tomography, Geophys. J .  Inf., 
119, 931-948. 

Gilbert, F., 1971. Excitation of normal modes of the Earth by 
earthquake sourccs, Geophys. J .  R. astr. SOC.,  22,223-226. 

Gutenberg, B., 1924. Dispersion und Extinktion von seismischen 
Oberfachenwcllen und der Aufbau der obersten Erdschichten. 
Physikalische Zeitschrift, 25, 377-382. 

Lancaster, P. & Salkauskas, K., 1986. Curve and Surface Fitting: An 
Introduction, Academic Press, London. 

Laske, G., Masters, G.  & Ziirn, W., 1994. Frequency-dependent 
polarization measurements of long-period surface waves and 
their implications for global phase velocity maps, Phys. Earth 
planet. Inter., 84, I1  1-137. 

SOC., 88, 693-722. 

Lay, T. & Kanamori, H., 1985. Geometric effects of global lateral 
heterogeneity on long-period surface wave propagation, J.  
geophys. Res., 90, 605-621. 

Levshin, A., Ratnikova, L. & Berger, J. ,  1992. Pecularities of 
surface-wave propagation across central Eurasia, Bull. seism. 
SOC. Am., 82, 2464-2493. 

Masters, G., Jordan, T.H., Silver, P.G. & Gilbert, F., 1982. 
Aspherical earth structure from fundamental spheroidal mode 
data, Nature, 298, 609-613. 

Montagner, J.-P. & Tanimoto, T., 1991. Global upper mantle 
tomography of seismic velocities and anisotropies, J .  geophys. 
Res., 96, 20337-20351. 

Nakanishi, I. & Anderson, D.L., 1982. Worldwide distribution of 
group velocity of mantle Rayleigh waves as determined by 
spherical harmonic inversion, Bull. seism. SOC. Am., 72, 
1 185- 1 194. 

Nakanishi, I. & Anderson, D.L., 1983. Measurement of mantle 
wave velocities and inversion for lateral heterogeneity and 
anisotropy, I. Analysis of great circle phase velocities, J .  
geophys. Res., 88, 10 267-10283. 

Nakanishi, I. & Anderson, D.L., 1984. Measurement of mantle 
wave velocities and inversion for lateral heterogeneity and 
anisotropy, 11. Analysis by the single station method, Geophys. 
J .  R. astr. SOC., 78, 573-618. 

Parker, R.L., 1994. Geophysical Inverse Theory, Princeton Univ. 
Press, Princeton, NJ. 

Pollitz, F.F., 1994. Global tomography from Rayleigh and Love 
wave dispersion; effect of ray-path bending, Geophys. J .  Int., 

Shure, L., Parker, R.L. & Backus, G.E., 1982. Harmonic splines for 
geomagnetic modelling, Phys. Earth planet. Inter., 28, 215-229. 

Smith, M.F. & Masters, G., 1989. Aspherical structure constraints 
from free oscillation frequency and attenuation measurements, 
J .  geophys. Res., 94, 1953-1976. 

Snieder, R., 1988. Large scale waveform inversions of surface waves 
for lateral heterogeneity, 1. Theory and numerical examples, J .  
geophys. R e x ,  93, 12 055-12 065. 

Stacey, F.D., 1992. Physics of the Earth, 3rd edn., Brookfield Press, 
Brisbane, Australia. 

Tams, E., 1921. Uber Fortplanzungsgeschwindigkeit der seismischen 
Oberflachenwellen langs kontinentaler und ozeanischer Wege, 
Centralblatt fur  Mineralogie, Geologie und Palaon tologie, 2-3, 
44-52. 

Tarantola, A. & Valette, B., 1982. Generalized non-linear inverse 
problems solved using the least squares criterion, Rev. 
Geophys. Space Phys., 20,219-232. 

Whaler, K.A. & Gubbins, D., 1981. Spherical harmonic analysis of 
the geomagnetic field: An example of a linear inverse problem, 
Geophys. J .  R.  astr. Soc., 65, 645-693. 

Wong, Y.K., 1989. Upper mantle heterogeneity from phase and 
amplitude data of mantle waves, PhD thesis, Harvard Univ., 
Cambridge, MA. 

Woodhouse, J.H. & Dziewonski, A.M., 1984. Mapping the upper 
mantle: Three dimensional modelling of Earth structure by 
inversion of seismic waveforms, J .  geophys. Res., 89, 

Woodhouse, J.H. & Wong, Y.K., 1986. Amplitude, phase and path 
anomalies of mantle waves, Geophys. J .  R.  astr. Soc., 87, 
753-773. 

Zhang, Y.-S. & Tanimoto, T., 1993. High-resolution global upper 
mantle structure and plate tectonics, J .  geophys. Res., 98, 
9739-9823. 

118,730-758. 

5953-5986. 

A P P E N D I X  A 

The models are specified in terms of the normalized, real 
spherical harmonics commonly used in representing the 
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geoid (e.g. Stacey 1992). Writing the relative phase-velocity perturbation is given by 

where P;"(cos 0) are the associated Legendre polynomials, The coefficients A and B are those listed in Tables A1 and 

Table Al. Spherical harmonic coefficients. multiplied by 10 000, corresponding to the relative Love-wave 
phase-velocity model at 39.982 s 
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Table A2. As for Table A l .  but for Rayleigh waves at 40.043s. 
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A2 up to degree and order 20, which corresponds to the 
average lateral resolution achieved in this study. Coefficients 
up to degree and order 40 for all models are available on 
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request by e-mail from jeannot@sismo.u-strasbg.fr or 
john@earth.ox.ac.uk. 


