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In a recent paper, Ho-Liu, Montagner & Kanamori (1989) 
compared two inversion techniques: the iterative back- 
projection inversion, also known as 'Simultaneous Iterative 
Reconstruction Technique', or SIRT for short (e.g. Van der 
Sluis and Van der Vorst 1987) and the generalized 
least-square inversion 'without blocks' (Tarantola & Valette 
1982). Ho-Liu et al. (1989) were the first to mention a 
possible connection between both algorithms, but their 
paper presents two points which need clarification. 

(1) They derive SIRT from the generalized least-square 
inversion under certain assumptions. However, their 
approach presents a conceptual mistake which has a 
detrimental effect on the interpretation of the parameter p 
in the SIRT algorithm. A correct demonstration showing the 
relationship between SIRT and the generalized least-square 
solution is given by Trampert & IRv&que (1990). 

(2) Then, they argue that no formal error and resolution 
estimation is possible with SIRT. Trampert & Uv:vCque 
(1990) showed that any linear inversion algorithm can be 
used to compute a resolution matrix in the sense of Wiggins 
(1972). If furthermore, the algorithm used is a special case 
of the generalized least-square inversion (which most 
algorithms are), the error estimation is very easy. 

Let us now analyse these two points in more detail. 
To derive SIRT from the generalized least-square 

inversion, Ho-Liu et al. (1989) start from equation (25) of 
Tarantola and Valette (1982) which says that 

where L is the matrix of partial derivatives of a function L, 
4 the data vector, pk the model estimation at iteration k 
and p, the starting model. C,, and C,, are the a priori 
covariance matrices for the data and the starting model 
respectively. 

With certain number of assumptions they obtain 

P k + l -  Pk + A-lL=B-YdO - LPk) ( 2 )  

where A = diag ( p  + Ci &,I), the cumulated ray length per 
block and B = diag ( x i  I&,!) the total ray length. We will 
discuss the interpretation of the constant p below. 
Expression (2) represents the classical SIRT algorithm. 

As they derive equation (2) from equation (l), the 

number k counting the iterations is the same in both 
expressions. This is precisely where the problem occurs. 
Equation (1) solves a non-linear problem dO = L(p), when 
the function L is differentiable. This generalized least- 
square algorithm minimizes the misfit function dO - L(p,) 
using a step-by-step linearization technique. Each step 
represents one iteration. If the problem is linear, this 
Gauss-Newton method converges in one iteration (Tarantola 
1987). On the other hand, (2) solves iteratively a linear 
problem (Van der Sluis & Van der Vorst 1987). This means 
that a linear problem, 4 = Lp is solved in one iteration by 
equation (1) and hence the SIRT algorithm has to converge 
in one iteration as well. This however is generally 
impossible. The SIRT solution can be expressed as a 
geometrical series expansion and requires a certain number 
of iterations to converge depending on the eigenvalue 
associated with the model parameter. 

The authors thus mixed two different concepts belonging 
to linear and non-linear iterative problems. But how can 
they obtain the linear SIRT algorithm from a non-linear 
approach? The answer is found in their assumptions. We do 
not want to analyse in detail all assumptions made by 
Ho-Liu et ai. (1989); nevertheless, one needs to be 
mentioned: they assume that the ray paths are short relative 
to the block size and say that lij - Li (1, is the length of ray i 
in block j and Li is the total length of ray i ) .  This means that 
a ray starting in one block never leaves this block, or that 
the original problem &=Lp is already diagonal and its 
solution is obvious. This assumption is completely 
unrealistic in tomographic problems. 

We have just seen that Ho-Liu et al. (1989) made a 
conceptual mistake in demonstrating that SIRT is a special 
case of the generalized least-square inversion. As a 
consequence, their interpretation of p as the ratio between 
the data variance and the a priori model variance (which 
would correspond to the damping constant in the classical 
damped least-square solution) is incorrect. This could 
considerably affect the choice of p and the solution in 
general. To make a correct interpretation of p, we have to 
emphasize some general features of SIRT. A detailed 
discussion of the following is given by Trampert & LCvEque 
(1990). The convergence speed of SIRT is not uniform, but 
depends on the eigenvalue associated with the model 
parameter. The smaller this eigenvalue, the slower the 
convergence. The big drawback of SIRT, however, is that it 

755 



756 J.  Trampert 

uses implicit non-physical a priori information to converge. 
In this context, p plays a double part: p is decreasing the 
eigenvalues and thus the convergence speed, and p may 
correct the non-physical a priori information, if we take care 
to introduce an additional constant 8’. Equation (2) then 
becomes 

(3) 
It is easy to show that the a priori model covariance is 
proportional to (1/02)A-’. We see that this a priori model 
covariance depends on the theory matrix L via A, If 8’ is 
different from zero, a large value of p, compared to 
max (& I&,[), can make this covariance theory independent 
to the first order. Ho-Liu et af. (1989) described the SIRT 
algorithm for 8’ = 0, which means that they allow an infinite 
a priori variation to all model parameters, independently of 
p. Then, the only effect they produce with p is to slow down 
the convergence speed. If they stop the iterations before 
complete convergence, they think that they are damping the 
solution, but in fact, they are further away from the final 
solution. For an infinite number of iterations, p has no effect 
whatsoever on the final solution with their algorithm. 

The second point we want to clarify concerns the 
resolution and error analysis. 

Following Trampert & UvEque (1990), we assume that a 
linear problem & = Lp can be solved by an algorithm H. 
The resolution matrix is defined as (Wiggins 1972) 

R = HL. (4) 

It is clear that the j th column of R is R, = HLj, where L, is 
the jth column of the known theory matrix L. The vector R, 
can thus be obtained by applying the inversion algorithm H 
to the ‘data vector’ L,. 

The resolution of SIRT can be derived the same way, 
where the SIRT algorithm H is applied as many times as we 
have unknowns in our system. Furthermore, we know that 
SIRT is a special case of the generalized least-square 
solution (Trampert & UvEque 1990), which means that the 
error estimation is quite simple. In this case, the a posteriori 
model covariance is given by 

C, = (I - R)C,o. 

Therefore, it is possible to make a formal resolution and 
error analysis with SIRT, contrary to what has been stated 
by Ho-Liu et al. (1989). 
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