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S U M M A R Y
We present an accelerated full-waveform inversion based on dynamic mini-batch optimization,
which naturally exploits redundancies in observed data from different sources. The method
rests on the selection of quasi-random subsets (mini-batches) of sources, used to approximate
the misfit and the gradient of the complete data set. The size of the mini-batch is dynamically
controlled by the desired quality of the gradient approximation. Within each mini-batch,
redundancy is minimized by selecting sources with the largest angular differences between
their respective gradients, and spatial coverage is maximized by selecting candidate events with
Mitchell’s best-candidate algorithm. Information from sources not included in a specific mini-
batch is incorporated into each gradient calculation through a quasi-Newton approximation of
the Hessian, and a consistent misfit measure is achieved through the inclusion of a control group
of sources. By design, the dynamic mini-batch approach has several main advantages: (1) The
use of mini-batches with adaptive size ensures that an optimally small number of sources is used
in each iteration, thus potentially leading to significant computational savings; (2) curvature
information is accumulated and exploited during the inversion, using a randomized quasi-
Newton method; (3) new data can be incorporated without the need to re-invert the complete
data set, thereby enabling an evolutionary mode of full-waveform inversion. We illustrate
our method using synthetic and real-data inversions for upper-mantle structure beneath the
African Plate. In these specific examples, the dynamic mini-batch approach requires around
20 per cent of the computational resources in order to achieve data and model misfits that
are comparable to those achieved by a standard full-waveform inversion where all sources are
used in each iteration.

Key words: Inverse theory; Waveform inversion; Computational seismology; Seismic to-
mography.

1 I N T RO D U C T I O N

Seismic tomography has seen significant progress since the early
applications by Aki & Lee (1976), Aki et al. (1977) and Dziewonski
et al. (1977). Increasing data availability and increases in compu-
tational power have opened the doors to ever more sophisticated
methodologies, including, for instance, finite-frequency tomogra-
phy (e.g. Yomogida 1992; Dahlen et al. 2000; Friederich 2003;
Montelli et al. 2004; Yoshizawa & Kennett 2005), joint inversions
of body and surface wave data (e.g. Ritsema et al. 1999, 2011;
Chang et al. 2010; Koelemeijer et al. 2017) or fully probabilistic
approaches (e.g. Devilee et al. 1999; Trampert et al. 2004; Bodin
& Sambridge 2009; Mosca et al. 2012). During the last decade
it has become computationally feasible to perform regional-scale
(e.g. Chen et al. 2007; Fichtner et al. 2009; Tape et al. 2010;
Rickers et al. 2013; Simute et al. 2016) and global-scale seismic

tomography (e.g. French & Romanowicz 2014; Bozdag et al. 2016;
Fichtner et al. 2018) using full-waveform inversion (FWI), concep-
tualized already in the late 1970s and early 1980s (Bamberger et al.
1977, 1982; Lailly 1983; Tarantola 1984).

Although FWI is able to account for the full physics of wave
propagation and recover detailed Earth structure, it is not being ap-
plied as widely as more traditional techniques, such as ray-based
traveltime tomography (e.g. Grand et al. 1997; Gorbatov & Ken-
nett 2003; Lebedev & van der Hilst 2008). This partly stems from
various practical challenges, such as the handling of numerous
different file formats related to forward and adjoint simulations,
the processing of the observed waveform data, the quantification
of multifrequency waveform misfits, the computation of adjoint
sources, and the often tedious and impractical interaction with
remote supercomputing systems. The Obspy toolkit (Krischer et
al. 2015b) made a significant contribution to simplify these tasks.
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Additionally, the sheer number of files involved in FWI led to per-
formance degradation of file systems on high-performance com-
puting (HPC) systems, which motivated the development of the
adaptable seismic data format (Krischer et al. 2016). Furthermore,
the automation of previously manual tasks such as window pick-
ing (Maggi et al. 2009; Krischer et al. 2015a) helped to make
the workflow faster and more robust. All of these developments
have led to a point where it has become increasingly feasible to
perform FWI almost automatically using HPC resources (Krischer
et al. 2018). Despite these improvements, significant challenges
remain.

First, and foremost, the computational requirements of FWI are
substantial, as the algorithm requires at least two numerical sim-
ulations of the wave equation for each source at each iteration.
Previous steps to mitigate this problem include the use of graphi-
cal processing units (Rietmann et al. 2012; Gokhberg & Fichtner
2016), simultaneous sources (e.g. Capdeville et al. 2005; Krebs et al.
2009; Moghaddam et al. 2013; Tromp & Bachmann 2019), coupling
with computationally less intense methods (e.g. Capdeville et al.
2003; Monteiller et al. 2012; Masson & Romanowicz 2016, 2017;
Capdeville & Métivier 2018), the acoustic approximation (e.g.
Alkhalifah 2000; Operto et al. 2013; Cance & Capdeville 2015),
using wavefield adapted meshes (van Driel et al. 2020; Thras-
tarson et al. 2020) and coarsening the numerical mesh with
the help of homogenization (e.g. Capdeville et al. 2013). Most
commonly, however, the number of sources, for example, earth-
quakes or explosions, is limited at the expense of tomographic
resolution.

Second, and related to the first issue, efficient methods must
be found to evolve FWI earth models over time, as new data
become available. Pioneering evolutionary earth models using
approximate and computationally inexpensive forward simula-
tors are already operational (Debayle et al. 2016). However, to
be practical, an evolutionary approach for FWI must (1) avoid
costly re-inversions of all previously considered data and (2) har-
ness second-derivative information from previous iterations using
Limited-memory-Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)
-type optimization techniques (Nocedal 1980; Liu & Nocedal 1989;
Nocedal & Wright 1999).

Here, we propose an optimization and inversion framework,
which aims to address these challenges. It is based on a stochastic
gradient descent (SGD) method, using dynamic mini-batches, and
it incorporates curvature information through the L-BFGS approxi-
mation of the Hessian and its inverse. Similar methods have become
popular in machine-learning (Bottou 2010; Byrd et al. 2011, 2016;
Masters & Luschi 2018). In pure SGD, the randomly chosen up-
dates can improve optimization for non-convex objective functions,
as it allows the optimization to escape from saddle points or local
minima (Ge et al. 2015) by quasi-randomly changing the misfit
topography with each view on the data. However, this comes at
the cost of slow convergence. Mini-batch gradient descent methods
promise to retain the beneficial properties of pure SGD methods for
non-convex optimization, while at the same time enabling efficient
convergence through the exploitation of redundancies in the data
set. Optimization based on mini-batch methods has been shown to
reduce computational costs in exploration geophysics (van Leeuwen
& Herrmann 2013; Fabien-Ouellet et al. 2017; Yang et al. 2018;
Matharu & Sacchi 2019) and has been applied in medical imaging
as well (Boehm et al. 2018). To our knowledge, these methods have
not found their way to seismological problems. In this contribution,
we present a framework for mini-batch optimization with adaptive
batch size that is particularly well suited for specific challenges

Figure 1. Surface ray coverage. Earthquake locations and mechanisms are
indicated by beach balls and stations by black triangles. Bright colours
represent a relatively higher density of rays. In total 125 earthquakes were
recorded at 2648 unique stations. The complete data set has 51 865 source–
receiver pairs. The black line marks the edge of the computational domain
and the grey line marks the start of the absorbing boundary region.

faced in seismology. These include, for instance, the large hetero-
geneity between the number of receivers per source and uneven
source–receiver distributions. In addition, we show that the method
offers significant benefits by allowing for the flexible integration
of new data, faster model convergence, constant window updating,
as well as enabling the use of large data sets without increasing
iteration costs.

This manuscript is structured as follows: In Section 2, we briefly
introduce the study region and the data set that we later use to il-
lustrate our developments. Subsequently, in Section 3, we present
the dynamic mini-batch optimization for FWI, the corresponding
inversion workflow, as well as the modelling tools used in the ex-
amples. In Section 4, we show synthetic and real-data inversions,
illustrating that our approach converges and that it does so at signif-
icantly lower computational cost than mono-batch FWI, where all
sources are used in each iteration. Since the focus of this work is on
methodological improvements, the interpretation of the final model
is deferred to a future publication.

2 E X A M P L E A P P L I C AT I O N

Throughout this paper, we illustrate our developments using a data
set that covers the African Plate. Coverage, summarized in Fig. 1,
is uneven and partly sparse, thus making it a suitable test region for
the proposed approach. We select 125 earthquakes from the Global
Centroid Moment Tensor (GCMT) Catalog (Ekström et al. 2012).
Magnitudes range from 5.5 to 6.7. This range empirically provides
a good signal in the frequency band of interest while minimiz-
ing finite-source effects (Vallée 2013). Recordings from AfricaAr-
ray and the Network of Autonomously Recording Seismographs
(NARS) were complemented with data that are publicly available
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through the International Federation of Digital Seismograph Net-
works (FDSN) (Romanowicz & Dziewonski 1986) Web Services.
The earthquakes were recorded at 2648 unique stations. Since not
each station was online for each earthquake, the data set contains
51 865 unique source–receiver pairs. The considered period band
is 65–120 s.

This source–receiver geometry is used for both synthetic and real-
data inversions, the results of which are described in more detail in
Sections 4.1 and 4.2, respectively. For the real-data inversion, the
first generation of the collaborative seismic earth model (Fichtner
et al. 2018) is used as initial model. In the synthetic inversions,
the initial model is Preliminary reference Earth model (PREM)
(Dziewoński & Anderson 1981).

While our method is applicable in combination with arbi-
trary misfit functions, the example inversions employ time- and
frequency-dependent phase misfits (Fichtner et al. 2008). This mis-
fit measure does not require the isolation of specific phases and
largely ignores less reliable amplitude information. To balance sen-
sitivity across regions, we employ a station weighting scheme that
empirically leads to faster convergence. For this, misfits at station
location xr are multiplied by the factor

Wr =
⎛
⎝ n∑

i=1,i �=r

1

|xi − xr |

⎞
⎠

−1

, (1)

where n is the total number of all other station locations xi . For a
review of station weighting methods in the context of regional to
global scale FWI, the reader is referred to Ruan et al. (2019).

3 S T O C H A S T I C G R A D I E N T D E S C E N T
W I T H DY NA M I C M I N I - B AT C H E S

In this section, we describe all steps from forward modelling to the
inversion framework. While our method is independent of the par-
ticular numerical wave propagation solver, we perform all forward
and adjoint modelling using the Salvus software suite (Afanasiev
et al. 2019). This is a fully 3-D implementation of the spectral-
element method (Seriani & Priolo 1994; Faccioli et al. 1996, 1997;
Komatitsch & Vilotte 1998), which has the advantages of implicitly
satisfied free-surface boundary conditions and geometric flexibility.

3.1 Optimization scheme

The goal of most deterministic inverse problems is to find a model
that explains data within their observational errors. In seismology,
this is commonly done by defining and minimizing a misfit function
χ (m) that quantifies differences between observed seismograms
and synthetic seismograms computed for earth model m. The misfit
function is composed of individual misfits, each corresponding to
one of N sources. To facilitate a varying amount of sources, we
define χ (m) as a sample average, where each sample i is the misfit
contribution χi (m) from a single source and forward simulation,
that is,

χ (m) = 1

N

N∑
i=1

χi (m) . (2)

The individual misfits χi (m) themselves contain the misfits of all
seismic traces related to that source. The function χ may be ap-
proximated by a randomly or systematically chosen mini-batch B,
which is a subset of all N sources and normalized by the number of

sources, |B|, in the batch,

χ (m) ≈ χB(m) = 1

|B|
∑
i∈B

χi (m) . (3)

As described in the following paragraphs, the composition of the
batches varies per iteration in such a way that information from the
entire data set is still incorporated during the optimization proce-
dure. Iterative optimization methods subsequently update the model
mk in the kth iteration as

mk+1 = mk + sk , (4)

where the update sk can be computed with various optimization
methods using the mini-batch Bk of the kth iteration. Here, we
propose a mini-batch variant of the trust-region method (Nocedal
& Wright 1999; Conn et al. 2000), which determines the update
sk by solving the trust-region subproblem. For this, we consider a
quadratic approximation qk of the misfit function χ , using Taylor’s
expansion around the current model mk ,

min qk(s) = χBk (mk) + ∇χBk (mk)T s + 1

2
sT Hks

subject to ‖s‖ ≤ �k . (5)

Here and in contrast to line-search methods, the model update is
computed in a single step, without the separation into a search
direction and a step length. The trust-region radius �k limits the
maximum distance between two consecutive models and automati-
cally adapts to the quality of the approximation during the iterations.
In eq. (5), we replaced the misfit χ and its gradient ∇χ by the mini-
batch approximations χBk and ∇χBk , respectively. Furthermore, Hk

is the L-BFGS approximation of the Hessian, computed from pre-
viously calculated mini-batch gradients and model updates.

Since misfits and gradients are not computed for all sources
in each iteration, it is not possible to check that the total misfit
decreases in each iteration, that is, that χ (mk+1) < χ (mk) for all
k > 0. A common mitigation in conventional stochastic gradient
methods is to use diminishing step sizes (Nemirovski et al. 2009;
Byrd et al. 2016). However, this has two major drawbacks: (1) With
an increasing number of iterations, the model updates become very
small and (2) the updates do not utilize any previously accumulated
curvature information, which may lead to slow convergence. Since
the composition of the mini-batches changes (quasi-randomly) from
one iteration to the next, additional simulations would be required to
ensure that the mini-batch approximation of the misfit has decreased,
meaning that

χBk+1 (mk+1) < χBk (mk) . (6)

For these reasons, we define a control group Ck⊂Bk, consisting
of a subset of sources of the current mini-batch. This control
group remains in the mini-batch of the subsequent iteration, that
is, Ck⊂Bk + 1. As explained in Section 3.2, the events in the control
group are selected dynamically, and therefore we generally do not
have Ck = Ck + 1. This concept is visualized in Fig. 2.

The purpose of the control group is to accept or reject proposed
model updates and to steer the sizes of the mini-batch, the control
group itself and the trust-region radius. Using the L-BFGS ap-
proximation of the inverse Hessian, we solve eq. (5) approximately
using the dogleg method (Nocedal & Wright 1999) and obtain a
trial model update sk . This only requires a few vector products, but
neither storing a matrix nor solving a linear system. Next, we com-
pute the misfit reduction of the mini-batch sample average that is
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1430 D. P. van Herwaarden et al.

Figure 2. Schematic representation of the mini-batch approach. Mini-
batches Bk for iteration k are a subset of the complete data set A, and
the control group Ck is a subset of the current mini-batch. The mini-batch
for the next iteration, Bk + 1, consists of events that were chosen as control
group events from the latest mini-batch Bk as well as other events that are
quasi-randomly chosen from the full data set.

predicted by the quadratic model qk for the trial model sk :

ρ
Bk
pred. = qk(sk) − χBk (mk) . (7)

If ρ
Bk
pred. ≥ 0, the curvature information extracted from the previous

batches is inconsistent, and the L-BFGS approximation of the in-
verse Hessian is not positive definite. In this case, the size of the
mini-batch needs to be increased or the curvature information re-
set. Next, we compute the predicted misfit reduction for the control
group

ρ
Ck
pred. = ∇χCk (mk)T sk + 1

2
sT

k Hksk , (8)

which corresponds to the quadratic model obtained from using not
only the gradients from the control group but also all available cur-
vature information. If ρ

Ck
pred. ≥ 0, the curvature information between

the control group and the entire batch is inconsistent, and more
events of the current batch need to be added to the control group.
Otherwise, if ρ

Ck
pred. < 0, we continue with computing the misfits of

the control group events for the trial model, mk + sk , to obtain the
actual misfit reduction for the control group

ρ
Ck
act. = χCk (mk + sk) − χCk (mk) . (9)

If ρ
Ck
act. < 0, the model update sk is accepted, and we proceed with the

next iteration. Otherwise, we need to repeat the previous steps with
a smaller trust-region radius to improve the quality of the quadratic
approximation qk.

As a final step, we update the trust-region radius based on the
ratio of actual and predicted reductions of the control group misfit,
ρ

Ck
act./ρ

Ck
pred.. This is a standard procedure in trust-region methods

(Conn et al. 2000), except that we only consider events from the
control group to compute this ratio. If the ratio is significantly
smaller than 1, the approximation of the quadratic approximation
qk was poor, and we decrease the trust-region radius �k for the next
iteration. Otherwise, we may increase �k to allow for larger model
updates in the following iteration. This procedure is identical to
algorithm 4.1 of Nocedal & Wright (1999), except that the trust-
region radius is halved when the ratio is smaller than 0.25.

The advantages of this strategy are threefold: First, the composi-
tion of the mini-batch is fully dynamic and allows us to interchange
sources, as well as measurement time windows, for computing mis-
fits in every iteration. Second, we retain curvature information using
the L-BFGS approximation of the inverse Hessian, and thus we can
use curvature information to influence the computed descent direc-
tion. Third, with the help of the control group and the trust-region
framework, we ensure convergence without the need for additional
simulations to evaluate misfits or gradients for particular events.

Figure 3. Angle between the gradient for the complete data set and mini-
batch gradient approximations or random event selection for variable batch
sizes, ranging from 1 to 125 (all sources). At iteration 1, the gradient is
dominated by few prominent features, meaning that there is significant re-
dundancy in the data set. Therefore, a smaller amount of sources is able to
provide a gradient that is close to the complete gradient. As the model
converges (towards iteration 16), gradients tend to contain more short-
wavelength structure, and each individual source becomes more important to
further improve the model. Note that the gradient approximation algorithm
results in significantly smaller batch size without increasing the angular dif-
ference. The gradient approximation is made for the gradient with respect
to the model parameters vsv, vsh and vpv.

The actual rules to determine the sizes and compositions of the
mini-batches and control groups will be explained in the following
section.

3.2 Selection of mini-batch and control group sources

In principle, a variety of strategies could be employed to select
sources for both the mini-batches and the control group. Our specific
approach rests on the observation that uneven coverage in regional
to global tomography often causes a small number of sources to
dominate both the misfit and the gradient. This effect is related to
the variation in the number and quality of data recordings for each
event. Therefore, it is possible to approximate the gradient for the
complete data set using a smaller subset of sources.

The selection of sources for the mini-batch B is a multistage pro-
cess, starting with Mitchell’s Best-Candidate algorithm (Mitchell
1991) to select sources that have not been used in previous itera-
tions. For this, the source furthest away from the already selected
sources is added to the mini-batch. The first source in the initial
mini-batch is chosen randomly. This approach ensures that all avail-
able sources are incorporated quickly, while homogenizing spatial
coverage in each iteration. As the iterative inversion progresses, the
number of events in the mini-batches, needed to approximate the
complete gradient, typically increases. This is illustrated in Fig. 3,
which shows the angular difference between the complete gradient
and mini-batch gradients for variable mini-batch sizes at iterations
1 and 16. For comparison with the previously discussed gradient
approximation method, we also include a comparison with simple
random event selection. Note that with the gradient approximation
algorithm, significantly fewer sources are required for an equally
good approximation.

Control group events are selected by attempting to approximate
the gradient of the mini-batch. This is done iteratively, by removing
one source at a time from the mini-batch and measuring the angle
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Accelerated FWI using dynamic mini-batches 1431

Figure 4. Examples of the mini-batch gradient approximation. Shown are spherical slices at 100 km depth through the normalized sensitivity kernels Kvsv

with respect to the SV velocity, vsv, computed for the initial model of the real-data inversion. Source locations are indicated by the yellow circles. The dominant
feature in the full gradient for all 125 sources (top left) suggests that an increase in vsv is required in the Eastern Mediterranean to reduce the misfit. The
gradients shown in the top right, bottom left and right respectively are the approximations with 1, 10 or 40 sources with corresponding 53.2◦, 27.8◦ and 8.8◦
angular differences. As the number of sources that are used for the approximation increases, the quality improves. It is however import to note that each of the
shown approximations lie within 90◦ of the full gradient, and, would therefore still provide a direction of descent for the full problem.

between the gradients of the reduced test control group and the
complete mini-batch. The source that results in the smallest angular
change between the test control group gradient and the mini-batch
gradient is removed. Essentially, we remove those sources from the
current batch that have the smallest influence on the search direction.
This iterative process can be described as choosing the source

si+1 = arg max
s∈Bi

{
∇χ T

Ci /{s}∇χB

‖∇χCi /{s}‖ · ‖∇χB‖

}
, (10)

in order to update the control group as Ci + 1 = Ci/si + 1. The ini-
tial test control group C0 is equal to the complete mini-batch B.

This process can then either be terminated once the control group
reaches a predefined minimum size or when the angular differ-
ence between the mini-batch gradient and the control group gra-
dient reaches a certain threshold value. Examples of mini-batch
gradient approximations are shown in Fig. 4. The complete SV
velocity gradient, computed for all 125 sources with respect to
the initial model, is dominated by a negative contribution in the
Eastern Mediterranean. This feature is preserved when the gra-
dient is computed with fewer sources. We define the size of
the subsequent mini-batch to be twice the size of the control
group to ensure that we continue to sample from the remaining
events.
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1432 D. P. van Herwaarden et al.

Figure 5. Flowchart summarizing the inversion procedure. The above workflow allows us to easily incorporate new data each time a new model is accepted.
Additionally, measurement windows can be re-selected each time a source is not included in the control group. This naturally enables the use of a dynamically
changing objective function that comprises an increasing number of measurements.

Additionally, we store the removal order (i + 1)/|B|, which pro-
vides information on which sources had a large effect on the batch
gradient and which sources had less influence. This information
is updated every time a source is removed from a batch and then
used to assign probabilities for picking previously used sources
randomly to complete subsequent mini-batches. The probability
is determined by the removal order and normalized such that the
total probability equals 1. This process constitutes a dynamic opti-
mal experimental design problem. Typically, the model converges
first in regions where the gradient is dominant during the first
few iterations. As a consequence, the gradient in those regions
decreases, and events constraining other parts of the domain obtain
a relatively higher likelihood of being selected for the subsequent
mini-batches.

3.3 Workflow

The flowchart in Fig. 5 summarizes the inversion procedure. In
the initialization stage, the complete data set is assembled, and
an initial set of sources for the first mini-batch is selected using
Mitchell’s best candidate algorithm. Subsequently, synthetic seis-
mograms, misfits and gradients are computed. Using the mini-batch
gradients, the first control group is selected. With the gradient in-
formation available, a model update can be computed together with
the control group misfits. When the model is accepted at this stage,
new sources are selected to complete the next mini-batch. Misfits
and gradients are then again computed for the mini-batch, which
now contains both the newly added sources and the control group
sources carried over from the previous mini-batch. With the new

gradients available, the next control group is selected for the next
iteration.

Measurement windows for which misfits are computed can be
reselected for the newly added sources. This continued window re-
selection allows us to increase the number of measurements as the
model improves, thereby increasingly avoiding cycle skips.

4 S Y N T H E T I C A N D R E A L - DATA
I N V E R S I O N S

To illustrate the proposed optimization scheme, we present two
inversion examples, using the scenario described in Section 2. A
synthetic inversion allows us to quantify the quality of the recovery
in relation to the computational costs. In the subsequent real-data
inversion, we compare the dynamic mini-batch approach to a more
traditional mono-batch inversion with L-BFGS optimization, where
all data are used in each iteration. All gradients are smoothed to
prevent subwavelength structure from entering the model by effec-
tively convolving the gradients with a Gaussian filter with a standard
deviation of 150 km. Such an effective convolution is efficiently im-
plemented through the numerical solution of the diffusion equation
(Afanasiev et al. 2018).

4.1 Synthetic inversion

For the synthetic inversion, we set the minimum control group size
to three sources, in order to begin with a reasonable coverage of
the study region. Additionally, we set the maximum allowable angle
between the control group and the mini-batch gradient to 22.5◦, and
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Accelerated FWI using dynamic mini-batches 1433

Figure 6. Comparison of synthetic mono-batch and dynamic mini-batch FWI. (a) SV velocity, vsv, in the target model, used to compute artificial waveform
data. (b) Reconstructed vsv after 21 mono-batch iterations with all 125 sources. (c) Reconstructed vsv after 61 dynamic mini-batch iterations. Both methods
produce similarly good reconstructions in areas with sufficient coverage. However, the total number of simulations, forward plus adjoint, is around 5300 for
the mono-batch FWI and 1300 for the dynamic mini-batch FWI.

Figure 7. Normalized L2 model misfit versus the combined number of
forward and adjoint simulations. Each dot represents an iteration. For a
given number of iterations the mono-batch FWI retrieves a better model.
However, since the computational cost is directly tied to the number of
simulations, the dynamic mini-batch inversion recovers a model of similar
quality at a substantially lower computational cost. The model misfit does
not converge to zero because the coverage is insufficient to constrain the
entire domain.

define the mini-batch size for the subsequent iteration to be twice the
previous control group size. These values were empirically found
to produce good results, and may vary when other data sets are
considered.

Figure 8. Development of the mini-batch sizes over the course of 61 dy-
namic mini-batch iterations. Note the general trend to increase the mini-
batch size. This is to be expected as individual sources start to contribute
more unique information as the model improves. The subsequent mini-batch
size is always twice the size of the last iteration’s control group. Peaks occur
when the degree of redundancy in the batch decreases. In this case, each
event is detected to contribute unique information, and the algorithm at-
tempts to include as many of these unique directions as possible. If a few
sources dominate the search direction, or events point in a similar direction,
the batch size is shrunk.

The earth model is radially anisotropic and parametrized in terms
of density ρ, the wave speeds vpv, vph, vsv and vsh, and the dimen-
sionless parameter η. The target model, used to compute artificial
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Figure 9. Mono-batch and dynamic mini-batch inversions with similar computational cost, corresponding to around 750 simulations, forward plus adjoint.
(a) Initial vsv distribution (Fichtner et al. 2018). (b) Mono-batch inversion result after 3 iterations, each including all 125 sources. (c) Dynamic mini-batch
inversion after 40 iterations, with batch sizes around 10. The total data misfit reduction for the mono-batch FWI is 21.36 per cent with respect to the initial
model misfit. For the dynamic mini-batch FWI, it is 50.99 per cent.

data, contains equal perturbations of all velocities with respect to
PREM (Dziewoński & Anderson 1981), which also serves as ini-
tial model. To assess recovery on different scales, short wavelength
anomalies with a 2 per cent perturbation are placed on top of long
wavelength anomalies with a 5 per cent perturbation. This is illus-
trated in Fig. 6(a). During the inversion, we enforce vpv = vph and
η = 1 because we do not expect our long-period data set to resolve
P-wave anisotropy.

Figs 6(b) and (c) show the recovered vsv models after 21 iter-
ations of a mono-batch FWI and 61 iterations using the dynamic
mini-batch approach, respectively. While both methods recover the
velocity anomalies in the regions with sufficient coverage, the lat-
ter required a significantly smaller number of forward and adjoint
simulations, and therefore less computational resources. This is
quantified in Fig. 7, which shows model misfit in terms of the L2

norm of the model parameter residuals, normalized by the L2 norm
of the initial model. To achieve a similar model misfit reduction, the
dynamic mini-batch inversion requires only around 25 per cent of
the simulations needed by the mono-batch FWI where all sources
are used in each iteration.

Fig. 8 shows the adaptive sizes of the mini-batches as a func-
tion of iteration number. Since the mini-batch size was tied to
the allowable angular difference, it automatically changed dur-
ing the inversion. Note the general trend of increasing mini-batch
size. This effect is to be expected as we gradually need more
sources to approximate the complete gradient, as indicated before in
Fig. 3.

4.2 Real-data inversion

To demonstrate the practical applicability of our method, we per-
form a real-data FWI using the setup described in Section 2,
which is identical to the previously presented synthetic inversion.
We compare two cases, the ‘traditional’ approach where all data
is used for each model update, and the dynamic mini-batch ap-
proach. Since the focus of this contribution is on the method and
not on the model, we defer a geologic interpretation to a later
publication.

To prepare for the inversion, we processed data using ObsPy
(Megies et al. 2011; Krischer et al. 2015b). This included linear de-
trending, removal of the instrument response, and bandpass filtering
to 65–120 s period. This period band allows us to keep the compu-
tational requirements relatively low, while avoiding cycle-skipping
problems.

To compare mono-batch FWI with the dynamic mini-batch ap-
proach, we first contrast inversion results where the total number
of forward and adjoint simulations is similar, around 750. In the
mono-batch approach, 750 simulations correspond to three itera-
tions, each requiring a forward and an adjoint run for each of the
125 sources. The final model in Fig. 9(b) still closely resembles
the initial model (Fichtner et al. 2018) in Fig. 9(a). For the nearly
identical computational cost, the dynamic mini-batch approach was
able to perform 40 iterations with mini-batch sizes around 10. The
resulting model, displayed in Fig. 9(c), contains substantially more
detail than the initial model and the mono-batch inversion result.
While a detailed resolution analysis is beyond the scope of this
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Figure 10. Mono-batch and dynamic mini-batch inversions with similar data misfit reduction. (a) Initial vsv distribution (Fichtner et al. 2018). (b) Distribution
of vsv after mono-batch inversion with 16 iterations, corresponding to 4000 simulations, forward and adjoint combined. (c) Distribution of vsv after 40 dynamic
mini-batch inversions, corresponding to around 800 simulations. The total data misfit reductions are comparable, 48.23 per cent for the mono-batch inversion,
and 50.99 per cent for the dynamic mini-batch inversion.

work, we note that the data misfit reduction relative to the mis-
fit for the initial model is 21.36 per cent for the mono-batch ap-
proach. In the dynamic mini-batch inversion, the misfit is reduced by
50.99 per cent.

Fig. 9 motivates the question if more similar results could be
found if the mono-batch inversion was continued further. In fact,
after additional 13 mono-batch iterations, the misfit is reduced
by 48.23 per cent, closely approaching the 50.99 per cent of
the dynamic mini-batch inversion. Also, the corresponding earth
models, displayed in Fig. 10, are visually more similar. How-
ever, to achieve this result with the mono-batch FWI, we re-
quired a total of 16 × 250 = 4000 simulations, compared to
750 for the dynamic mini-batch version. Thus the dynamic mini-
batch inversion only required 19 per cent of the computational
costs.

5 D I S C U S S I O N

We presented a quasi-random mini-batch optimization technique
with adaptive batch size and its application to full seismic wave-
form inversion. In the following paragraphs, we will discuss the
extent to which the method meets the goals formulated in Sec-
tion 1, namely (1) the reduction of computational cost and (2)
the easy integration of new data without the need to re-invert the
complete data set. Furthermore, we will discuss other advantages
and limitations of the method, as well as its relation to previous
work.

5.1 Computational efficiency

As shown in both the synthetic and real-data examples, the dynamic
mini-batch approach converges significantly faster than the mono-
batch inversion. However, we note that the relative convergence of
two very different methods is not easy to compare. In this context,
we note that the two real-data inversion results in Fig. 10 are not
exactly identical for various reasons. Most importantly, batch gra-
dients merely approximate the gradient of the complete data set.
The quality of the approximation depends on the size of the mini-
batches, but also on the amount of noise in the data. One may argue
that mini-batch sizes should be increased to ensure a close approxi-
mation of the minimum. On the other hand, we found that a limited
batch size, in fact, helps to avoid over-fitting because random noise
is harder to fit by being inconsistent between different subsets of
events. Thus, as in any real-data application, careful preliminary in-
version experiments are required to ensure that meaningful results
can be obtained at optimally low cost.

Our approach fundamentally rests on the presence of redundan-
cies in the data set. This makes it particularly suitable for seismolog-
ical applications based on earthquake data. Earthquake hypocentres
tend to cluster, thereby naturally introducing redundancy that the
dynamic mini-batch approach can exploit. This also implies that
the approach may have less benefits for source–receiver configura-
tions, where redundancies are minimized, for example, with optimal
experimental design (Curtis 1999; Martiartu et al. 2017; Maurer et
al. 2017). More generally, the dynamic mini-batch optimization
must be considered in the framework of the no-free-lunch theorem
(Wolpert & Macready 1997; Mosegaard 2012), loosely stating that
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the efficiency of any method does not rest within the method itself
but in its application to suitable problems.

5.2 Evolutionary FWI

The dynamic mini-batch approach has the advantage of being ‘evo-
lutionary’ on two levels: First of all, it naturally allows us to in-
corporate new data without having to re-invert the whole data set,
which is done in evolutionary inversions based on computation-
ally less expensive forward problem approximations (Debayle et al.
2016). This ability rests on the interpretation of the complete data
set in terms of both sources that have already acted and sources
that will act in the future. In this sense, adding data from new
sources, for example, from quasi-randomly occurring earthquakes
and seismic array deployments, simply corresponds to the selection
of mini-batch members that had not been selected before.

Second, each time a source enters a mini-batch without being
part of the control group, we adapt the measurement windows. This
allows us to add new measurement windows and to extend existing
ones, as the waveform fit gradually improves during the inversion.

5.3 Limitations

One of the obvious disadvantages of our approach is that it adds
complexity to the already complex FWI workflow. Additionally,
the size of the mini-batch is effectively determined by the desired
quality of the gradient approximation, which is a tuning parameter.
Setting this tuning parameter appropriately requires intuition for
the problem. If the batch size is taken too small, this might lead to
slow convergence. If it is taken too large, one may miss some of the
performance benefits. Furthermore, since misfits are not evaluated
for the entire data set at each iteration, the mini-batch approach does
not provide a misfit reduction curve, commonly used to assess con-
vergence. Instead, the convergence curve can only be approximated
by successive mini-batch misfits.

Another drawback is the potential imprint of so-called ‘stochastic
noise’ in the model, where the contributions from gradients with
respect to individual sources can easily be recognized in the model.
This effect is especially evident in the early phases of the inversion
and is likely to be stronger when using higher frequency data and
their narrower associated Fresnel zones. Using larger batches and/or
performing more iterations helps to mitigate this effect. The syn-
thetic example shows that for a given number of iterations, mono-
batch FWI always produces a model that is closer to the true model
(see Fig. 7). The dominant cost in FWI, however, is not the total
number of iterations, but the total number of wavefield simulations
required. In this metric, the stochastic mini-batch method presented
in this paper outperforms mono-batch FWI, even though a higher
total number of total iterations are required to mitigate the stochastic
noise.

5.4 Comparison to similar approaches

Other ideas have been proposed to accelerate FWI, such as source-
stacking (Capdeville et al. 2005; Krebs et al. 2009; Romanowicz
et al. 2019). Although source-stacking theoretically provides sig-
nificant computational savings, we are unaware of any real data
applications. Missing data, artefacts in gradients due to cross-talk
between forward and adjoint wavefields and workflow complex-
ity may have contributed to this. Recent developments (Tromp &
Bachmann 2019) have shown promising results to address the

first two challenges by utilizing superpositions of monochromatic
sources. We think it is likely that both methods carry value, depend-
ing on the nature of the problem. It is important to note that they
are not mutually exclusive, that is, there is nothing that prevents
one from using source-stacks within the framework of a mini-batch
inversion.

6 C O N C LU S I O N S

We presented a novel FWI approach that can lead to significant
computational savings, consistently accumulates and exploits cur-
vature information, and enables an evolutionary mode where new
data can be incorporated without re-inverting the complete data set.

The method is based on a variant of stochastic gradient descent,
specifically adapted to applications in seismic tomography. Quasi-
random mini-batches of sources, for example earthquakes, are used
to approximate the misfit and the gradient for the complete data
set. The size of the mini-batches is dynamic and mostly controlled
by the desired quality of the gradient approximation. Furthermore,
members of a mini-batch are chosen to (1) homogenize spatial
coverage and (2) exploit redundancies in the data set.

Our synthetic and real-data inversions for upper-mantle structure
beneath the African Plate indicate that the dynamic mini-batch ap-
proach requires around 20 per cent of the computational resources
in order to achieve data and model misfits that are comparable to
those achieved by a standard FWI where all sources are used in
each iteration. Naturally, these numbers will depend on the specific
application and in particular on the extent to which a given data set
is redundant.
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