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S U M M A R Y
We propose a new approach for generating synthetic earthquakes based on the physics of soft
glasses. The continuum approach produces yield-stress materials based on Lattice–Boltzmann
simulations. We show that if the material is stimulated below yield stress, plastic events occur,
which have strong similarities to seismic events. Based on a suitable definition of displacement
in the continuum, we show that the plastic events obey a Gutenberg–Richter law with exponents
similar to those for real earthquakes. We also find that the average acceleration, energy release,
stress drop and interoccurrence times scale with the same exponent. Furthermore, choosing
a suitable definition for aftershocks, we show that they follow Omori’s law. Finally, the far
field power spectra of elastic waves generated by these plastic events decay as ω−2 similar to
those observed for seismic waves. Our approach is fully self-consistent and all quantities can
be calculated at all scales without the need of ad hoc friction or statistical assumptions. We
therefore suggest that our approach may lead to new insights into the physics connecting the
micro- and macroscales of earthquakes.
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1 I N T RO D U C T I O N

It is well established that materials failing under compression or
shear show a power-law behaviour of intermittent slip (e.g. Ben-
Zion et al. 2011; Uhl et al. 2015). This power-law behaviour is
observed over many length scales for a wide range of materials,
as well as for many other natural and social processes, but what is
responsible for the scale invariance is still under debate (Newman
2006). What further complicates the search for the cause of the
power-law behaviour is that many phenomena show an exponential
cut-off, below which the power law breaks down. For forced mate-
rials, this cut-off seems to depend on the applied force (Uhl et al.
2015). Furthermore, different loading modes (stress or strain rate)
result in a similar power law, if analysed with a mean-field model,
and can only be separated by analysing the time series in more detail
(Maaß et al. 2015).

Earthquakes are the result of a mechanical failure of earth mate-
rials, and the power-law behaviour of their occurrence frequency is
well established and known under the name of Gutenberg–Richter
(GR) law (Gutenberg & Richter 1954). The details, however, of the
underlying physics of why earthquakes occur, especially at the mi-
croscopic scale, are currently not understood. At the macroscopic
scale, many aspects of earthquakes show a complex behaviour that
can be modelled with tools of statistical and continuum physics.
Earthquakes obey several empirical power laws possessing a cer-
tain scale invariance. The best known laws are the above men-
tioned GR law, which relates the frequency of earthquakes to their

magnitude or seismic moment (energy) and Omori’s law (Omori
1894; Utsu et al. 1995), which describes how the frequency of af-
tershocks decays with time. Other laws are less well documented,
and for comprehensive overviews consult Rundle et al. (2003) and
Turcotte et al. (2007). The reason for the power-law behaviour of
earthquakes is still under debate. This is similar to other phenomena
exhibiting power laws, for which the mechanisms are equally poorly
understood. Scale invariance has been central in statistical physics
in the context of self-organized criticality, which is known to pro-
duce a power-law behaviour (e.g. Newman 2006). If the earth is in
a permanent critical state due to inherent dynamics, self-organized
criticality could explain the power-law behaviour of earthquakes.
Certain aspects of earthquakes, however, are better represented by
characteristic earthquakes giving rise to characteristic energy and
time scales. There is also some evidence that ‘mode-switching’
between several dynamical regimes occurs. The latter behaviour
can be understood in terms of generalized phase changes between
discrete and continuum states of material. An overview of these
discussions can be found in Turcotte et al. (2007), Ben-Zion (2008)
and Ben-Zion et al. (2011).

Deciding between scale invariance, characteristic scales or
‘mode-switching’ is a difficult problem because the dynamics in-
volved (stress, strain, rupture velocity, friction, ...) is not directly ob-
servable. The problem is mostly approached by generating synthetic
earthquake catalogues and comparing those to the observed GR law
and/or Omori’s law from recorded earthquake catalogues. These
synthetic catalogues are generated by either statistical models, or

C© The Authors 2016. Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access article
distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 1667

 at U
niversity L

ibrary U
trecht on O

ctober 26, 2016
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

mailto:jeannot@geo.uu.nl
http://creativecommons.org/licenses/by/4.0/
http://gji.oxfordjournals.org/


1668 R. Benzi et al.

mechanical models, and even a mixture of both. An overview of the
commonly employed models can be found in Turcotte et al. (2007)
and Vere-Jones (2011). The ETAS (epidemic-type aftershock se-
quence) model, for instance, is a popular statistical model, whereas
the block-slider model is a popular mechanical one where every-
thing is determined by the prescribed friction law (e.g. Kawamura
et al. 2012). The block-slider model is most often implemented
numerically (for a review see Rundle et al. 2003), although labora-
tory based studies are sometimes conducted (e.g. Rubinstein et al.
2011). None of these synthetic earthquake models provide a fun-
damental insight into the physics of earthquakes at the microscopic
scale, which is ultimately responsible for the empirical laws seen
for real earthquakes. The sequences are generated by ad-hoc pre-
scribed statistical or constitutive laws. A popular constitutive law is
the rate and state friction law (Dieterich 1979; Ruina 1983). This
law is entirely phenomenological and the tuning of the parameters
is based on laboratory experiments, although extrapolations from
laboratory experiments to the earth’s crust remain debated (e.g.
Kanamori & Heaton 2000). An interesting recent development is
the shear transition zone friction law (e.g. Daub & Carlson 2010),
which is derived from physical processes acting at the grain scale,
and captures the full range of rupture modes observed at the fault
scale.

Another way to obtain catalogues is by controlled experiments.
Since the pioneering study of (Mogi 1962), acoustic emissions of
fracture experiments in the laboratory were monitored and their
power-law behaviour studied. An overview of earlier studies can
be found in (Rundle et al. 2003). Laboratory based fracture exper-
iments are performed under controlled dynamic fracture regimes
and the rupture can be observed from inception to arrest. Yoshimitsu
et al. (2014) showed that there is a natural continuation in the scaling
between seismic moment and corner frequency from kilometre-size
natural earthquakes and millimetre-scale microruptures in rocks. A
notable experiment following seismic scaling laws, for instance, is
that of breaking bamboo chopsticks (Tsai et al. 2016).

We propose a new approach for generating synthetic earthquake
catalogues, which is based on the physics of complex soft-glassy ma-
terials. This continuum approach, based on the Lattice–Boltzmann
method, provides a way to simulate yield-stress materials (i.e. vis-
cous fluid-like behaviour above a critical yield stress and plastic
solid-like below the critical yield stress) (Benzi et al. 2010). Below
yield stress, plastic (or brittle) events can be identified radiating
elastic perturbations through the model (Benzi et al. 2014) simi-
lar to earthquakes. In this paper, we show that these plastic events
follow the GR law with b-values comparable to those for observed
earthquakes, as well as Omori’s law, and generate elastic waves
with power spectra proportional to ω−2 above a cut-off frequency.
This is quite remarkable since we have made no special effort to
tune our system to represent a realistic fault with a certain slip-
behaviour or earth-like rock or gouge properties. Our approach is
not based on any phenomenological laws but on the exact momen-
tum equations of a mixture of immiscible fluids. It is important to
note that yield stress is not imposed by our approach, but a con-
sequence of the prescribed repulsion and attraction potentials and
the distribution functions of the fluids. We force the system be-
low yield stress to make it behave like a solid, where elastic waves
are generated by plastic events. This is quite different to the clas-
sical continuum approach used for modelling fault zones, which
is based on the rate-and-state friction law. This phenomenological
law characterizes the dependence of friction on slip, slip velocity,
slip history and normal stress. The parameters are often calibrated
by laboratory experiments and the modelling is very successful in

reproducing earthquake statistics (see e.g. Ben-Zion 2008; Daub &
Carlson 2010).

In our approach, all physical properties can be computed at any
scale (Benzi et al. 2014, 2015). We speculate that a properly tuned
system and a more detailed comparison with real earthquake data
could yield insight into the physics responsible for the observed
power laws in Earth’s seismicity. We finally remark that, recently a
similar approach to ours has been proposed using molecular dynam-
ics simulations for glass forming systems (see for instance Salerno
& Robbins 2013; Lin et al. 2014; Liu et al. 2016).

2 G E N E R AT I N G P L A S T I C E V E N T S
A N D T H E I R A NA LY S I S

We consider a system of soft glass recently introduced into the liter-
ature (Benzi et al. 2009) and based on a lattice kinetic description.
The basic idea of the approach is to consider two non-ideal fluids
with particular frustration effects at the interface in order to sta-
bilize phase separation against coarsening. In particular, we use a
mesoscopic lattice Boltzmann model for non-ideal binary fluids,
which combines a small positive surface tension, promoting highly
complex interfaces, with a positive disjoining pressure, inhibiting
interface coalescence. The mesoscopic kinetic model considers two
fluids A and B, each described by a discrete kinetic distribution
function fζ i(r, ci; t), measuring the probability of finding a particle
of fluid ζ = A, B at position r and time t, with a discrete velocity ci,
where the index i runs over the nearest and next-to-nearest neigh-
bours of r in a regular 2-D lattice. ci represents a ‘molecular’ or
mesoscopic velocity of order 1/

√
3 in our simulations. The system

is further characterized by elastic (shear and pressure) waves with
speeds about 30 times slower than the mesoscopic velocity (Benzi
et al. 2014). The mesoscale particle represents all molecules con-
tained in a unit cell of the lattice. The distribution functions evolve
with time under the effect of free-streaming and local two-body
collisions, described, for both fluids (ζ = A, B), by a relaxation
towards a local equilibrium ( f (eq)

ζ i ) with a characteristic time-scale
τLB:

fζ i (r + ci , ci ; t + 1) − fζ i (r, ci ; t)

= − 1

τLB

(
fζ i − f (eq)

ζ i

)
(r, ci ; t) + Fζ i (r, ci ; t). (1)

The equilibrium distribution is given by

f (eq)
ζ i = wiρζ

[
1 + uci

c2
s

+ uu :
(
ci ci − c2

s

)
2c4

s

]
(2)

with wi a set of weights known a priori (Sbragaglia & Shan 2011).
Coarse grained hydrodynamical densities for both species are de-
fined as ρζ = ∑

ifζ i and the global momentum for the whole binary
mixture as j = ρu = ∑

ζ , ifζ ici, with ρ = ∑
ζ ρζ . The term Fζ i(r, ci;

t) is the ith projection of the total internal force which includes a
variety of interparticle forces. A delicate issue concerns the choice
of the forcing term and is done as follows: First, we consider a
repulsive (r) force with strength parameter GAB between the two
fluids

F(r )
ζ (r) = −GABρζ (r)

∑
i,ζ ′ �=ζ

wiρζ ′ (r + ci )ci (3)

which is responsible for the phase separation. Both fluids are also
subject to competing interactions, which provide a mechanism for
a frustration (F) of the phase separation. In particular, we intro-
duce two forces, namely a short-range (nearest neighbour, NN)
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self-attraction, controlled by strength parameters Gζ ζ,1 < 0 and
‘long-range’ (next to nearest neighbour, NNN) self-repulsion, gov-
erned by strength parameters Gζ ζ,2 > 0

F(F)
ζ (r) = −Gζ ζ,1ψζ (r)

∑
i∈NN

wiψζ (r + ci )ci − Gζ ζ,2ψζ (r)

×
∑

i∈NNN

wiψζ (r + ci )ci (4)

with ψζ (r) = ψ[ρζ (r)] = 1 − e−ρζ (r) a suitable pseudo-potential
function (Shan & Chen 1993). Despite their inherent microscopic
simplicity, the above dynamic rules are able to promote a host of
non-trivial collective effects (for a detailed discussion see Benzi
et al. 2009). By properly tuning the phase separating interactions
(3) and the competing interactions (4), the model simultaneously
achieves a small positive surface tension � and a positive disjoining
pressure �d. In short, particles sitting at the interface are subject to
three different forces: an attractive one from the NN particles of the
same species and two repulsive forces from the NNN particles of the
same species and the NN particles of the other species. The two op-
posite repulsion forces introduce a frustration effect at the interface
which is able to dramatically slow down the coarsening effect in
the system. This allows the simulations of droplets of one dispersed
phase into the other, which are stabilized against coalescence. Once
the droplets are stabilized, different packing fractions and poly dis-
persity of the dispersed phase can be achieved. In the numerical
simulations presented in this paper, the packing fraction of the dis-
persed phase in the continuum phase is kept approximately equal to
90 per cent. The model provides two basic advantages whose com-
bination is not common: On the one hand, it provides a realistic
structure for the emulsion droplets, like for instance the Surface
Evolver method; at the same time, due to its built-in properties, the
model gives directly access to equilibrium and out-of-equilibrium
shear-stresses, including both elastic and viscous contributions.

Upon choosing a small volume ratio between the two fluids (say
the volume of fluid A divided by that of fluid B is small), the model
exhibits a typical configuration depicted in Fig. 2 that closely resem-
bles that observed in real emulsions and foams. The model shows
remarkable agreement with existing experimental data, namely we
observe a finite yield stress σ y above which the shear-stress σ de-
pends on the strain-rate S following a Herschel–Bulkley law (Benzi
et al. 2014; Dollet et al. 2015). In Fig. 1, we show the shear-stress
σ as a function of external strain-rate S in a standard Couette geom-
etry, where the external strain-rate is due to the imposed boundary
conditions.

For a small external strain-rate S, the system does not flow. The
external forcing provides the energy for isolated plastic rearrange-
ments which usually take the form of a so called T1 events (e.g.
Benzi et al. 2014). In Fig. 2, we give an example of such plastic
events, which can be isolated in space-time or multiple events can
occur simultaneously (avalanches). In all cases, just a few bubbles
change the topological network of the system. Soon after a plas-
tic event, elastic waves travel through the domain and can trigger
other plastic events. The overall dynamics is strongly intermittent
in space and time, a feature often observed in laboratory visual-
ization of real emulsions. A standard Voronoi tessellation is able
to capture the topological change in the network and the location
of plastic events. Remarkably, our model is perhaps the only one
which enables the simulation of an emulsion-like system with real-
istic interface dynamics and with no a priori constrains on bubble
sizes and shapes.

Figure 1. Shear-stress σ as a function of the imposed strain-rate S for a Cou-
ette geometry, obtained by using the Lattice–Boltzmann model described in
the text. The best fitting Herschel–Bulkley law is also shown. The red dots
represent values for stress in our simulations for different strain-rates, and
show the existence of a yield stress in our simulated materials.

For a small external strain-rate S, the shear-stress σ (t) in the
system is smaller than the yield stress σ y and the system exhibits
stick-slip behaviour. Such an intermittent stop-and-go mechanism
has often been thought of as the basic mechanism underlying the
statistical properties of earthquake dynamics (e.g. Rundle et al.
2003; Ben-Zion 2008; Kawamura et al. 2012; Lieou et al. 2015).
Evidence for the occurrence of plastic events in our system has
been given in Benzi et al. (2014). In Fig. 3, we show the behaviour
of σ (t) and the corresponding value of dv/dt for a relatively short
time window in a simulation using a Couette geometry. σ (t) is
the space averaged stress and v(t) is the velocity of the system
averaged in space in the x direction and computed at the centre of
the channel. In this example, we took a symmetric forcing on the
two boundaries where the velocity difference 
U = SL is fixed, S
being the apparent external strain-rate and L the size of the system.
We considered a system of 5122 grids points corresponding to about
130 bubbles, where S = 2.7 × 10−6 and integrated the system for
3 × 107 time steps. For more information on the system equations,
see (Benzi et al. 2014). In this particular case, the yield stress is
σ y ≈ 10−4. There are two remarkable features in Fig. 3: first of all,
the stress σ (t) intermittently shows strong drops followed by slow
increases; second the acceleration dv/dt sporadically shows large
fluctuations around a mean value of zero, reminiscent of earthquake
recordings. Both effects are related to the above mentioned stick-slip
mechanism. In particular, the large fluctuations in dv/dt correspond
to plastic events in the system, which can be far or close from the
central line where we measured v(t).

While Fig. 3 looks encouraging and we are tempted to asso-
ciate events corresponding to strong fluctuations in dv/dt to ‘earth-
quakes’, the quantity dv/dt is an average quantity and not suit-
able for a systematic investigation of the statistical properties of
earthquake-like events. In seismology the statistical properties of
earthquakes are investigated by looking at the frequency of earth-
quakes above a given magnitude, which are known to follow the GR
law. To define magnitude or seismic moment, we need to define a
suitable measure of displacement or slip.

Let us recall that the simulation uses kinetic equations in the
continuum limit. Thus we have no particle we can follow in the
system. However, because the interface between the two fluids is
stable, we can measure displacements by computing changes in the
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Figure 2. A typical plastic event observed in the numerical simulation of our Lattice–Boltzmann model. The figure shows a local enlargement of the density
field at four different times. The red lines indicate two bubbles which are in contact. (a) At time t, bubbles B and C are closest. (b) At time t + dT, these
bubbles have started moving apart. (c) At time t + 2dT, bubbles A and D are closest. (d) At time t + 3dT, A and D have moved even closer to each other. These
movements represent a plastic event and correspond to an irreversible change in the topological configuration of the bubbles. The orange colour represents the
high density fluid and the blue colour the lower density one. dT is smaller than τ chosen in Section 2.

position of the interface. The simplest way to do this is to take our
system L × L and divided it into smaller squares of size L/n × L/n.
We chose n such that L/n corresponds to 32 grid points which is the
average size of a single bubble. Furthermore we checked that our
results, as discussed below, are independent of the exact choice of
n. Next, for each square L/n × L/n we considered two consecutive
times, say t and t + τ and computed the density change δρ(x, y, t, τ )
≡ ρ(x, y, t + τ ) − ρ(x, y, t). Finally, we took the average of δρ(x, y,
t, τ )2 in square i, where i is a label for the n2 squares of sides L/n
and denoted it by δρ2

i (t, τ ). The reason to choose δρ2
i (t, τ ) is that

for small enough τ , it is easy to show that δρ2
i (t, τ ) ∼ ρ2Ai (t, τ )

where Ai is the fraction of n2 points which have been changed due
to interface displacement. The value of Ai (t, τ ) is also proportional
to 1 − Oi(t, τ ), where Oi(t, τ ) is the so-called overlap between two
consecutive configurations (e.g. Benzi et al. 2014).

We now need to connect our previously defined quantities to
the standard definition of earthquake magnitude or moment. The
seismic moment M0 is defined as M0 ∼ DSa, where D is the av-
erage slip of the earthquake and Sa its source area. For each small
square, the area Sa is simply given by (L/n)2 and the displace-
ment is proportional to

√Ai (t, τ ). However, Ai (t, τ ) shows strong
fluctuations both in space (i.e. from square to square i) and in
time (only at times where a plastic event occurs are one or more

values of Ai relatively large). Therefore it seems reasonable to con-
sider D2 ∼ A(t, τ ) = supi [Ai (t, τ )] as being representative of the
squared-displacement. Such a choice is further motivated by the
fact that plastic events are local in space and are responsible for
the largest value of Ai in i, and we are interested to study the sta-
tistical properties of the extreme events in the displacement, which
corresponds to A(t, τ ). Similarly in seismology, the maximum dis-
placement at a given frequency is used to define a magnitude. In
Fig. 4, we show the behaviour of A(t, τ ) as a function of time for
the same time snapshot as already discussed in Fig. 3. We observe
a strong correlation in the sharp increase of A(t, τ ) and a drop in
stress σ (t). It is interesting to note that some events occur in isolation
whereas others cluster in time to form avalanches. In the following
we take τ to be a relatively small fraction (0.2) of the characteristic
time scale tp for plastic events. In fact, plastic events occur over
a small but non-zero value of time called tp (Benzi et al. 2014).
In our simulations tp ∼ 5000 time steps and we chose τ = 1000
time steps. Hereafter, we will neglect τ in the definition of A(t). The
above discussion tells us that we can consider M0 ∼ A(t)1/2. Within
the same approximation, we can further estimate the energy release
as Er ∼ 
σ DSa ∼ D2

√
Sa ∼ A(t), where 
σ is the stress drop

during an event, which is proportional to the local strain D/
√

Sa

(e.g. Madariaga 2011).
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Figure 3. Behaviour of dv/dt, upper panel and shear-stress σ during a
relatively short time period in the numerical simulation. The system is
driven at the boundaries by a very small external strain-rate S in a Couette
geometry. The velocity v has been obtained as the x average in the system at
the centre of the channel. The shear stress σ is averaged over space in both
x and y directions.

Figure 4. Same as in Fig. 3 with the upper panel representing the quantity
A(t) which provides a measure of the largest slip observed in the system.

3 R E S U LT S

Above we argued that A(t) is a good candidate to investigate the
statistical properties of our system. If that is the case, the GR law
implies a scaling behaviour of the probability density distribution
of A of the form:

P(A) ∼ A−γ (5)

To assess the validity of eq. (5), we performed two different series of
numerical simulations with resolution 5122 and 10242 respectively.
By increasing the resolution we increase the size of the system,
that is, the number of bubbles. Numerical simulations were per-
formed for several millions of time steps, long enough to assure the
statistically invariance of the probability density function. For each
resolution we chose two different values of the external forcing with
σ < σ y.

In Fig. 5, we show a ln-ln plot of P(A) for two different values of
the strain rate S for a resolution 5122. For both values of the strain
rate a clear scaling of P(A) is observed with exponents γ in the range
[1.2, 1.4]. In order to assess the robustness of our results, we also
computed the probability distribution of dv/dt and of the energy

Figure 5. ln–ln plot of the probability distribution P(A) of A(t) obtained
by numerical simulations for two different values of the strain-rate. A1/2 is
proportional to the seismic moment M0.

Figure 6. Probability density distribution for different quantities: red tri-
angles correspond to the probability density of A and is the same as the
one shown in Fig. 5 for the larger strain rate; blue circles correspond to the
probability density function of |dv/dt|, where v is the average velocity in
the x direction at the centre of the channel; the black squares corresponds to
the probability distribution of the energy release Er. In the insert we show
the probability density function of τE defined as the time between two con-
secutive events. We define an event by the condition Ath > 10−3. The black
line in the insert has the same slope as the black line in the main part of the
figure.

release in the system, namely Er ∼ σdσ/dt. We assume that the
elastic energy in the system is proportional to σ 2 and we compute
the probability distribution of Er for Er < 0. In Fig. 6, we show the
results for the probability distribution of A for the largest strain rate
of Fig. 5 together with the probability distribution of |dv/dt| and Er.
All quantities show almost the same scaling properties, although
the range where the scaling law is observed is somewhat quantity
dependent. The figure clearly shows that Er ∼ A(t) as we stated at
the end of Section 2, although Er was obtained by an independent
calculation in this figure. Remarkably, the same scaling law seems
to be observed for the time τE between two consecutive events. In
particular, we defined an event when A(t) is greater than a given
threshold Ath which, for Fig. 6, is chosen to be Ath = 10−3. In the
insert of Fig. 6, we show the probability distribution of τE where
the black line corresponds to the scaling law observed in Fig. 5.
If aftershocks dominate the distribution of these interoccurrence
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Figure 7. Same as in Fig. 5 for a simulation at a resolution of 10242. Note
that by increasing the resolution we are increasing the system size, that is,
the number of bubbles.

times, we would expect to recover Omori’s law (see discussion in
Turcotte et al. 2007). Finally in Fig. 7, we show the probability
distribution of A(t) for the numerical results using a resolution of
10242.

To investigate Omori’s law, we adopted the distance metric in-
troduced by Baiesi & Paczuski (2004). Using our variables, we
rewrote it as n pq = 
T (
L)d f 10−BGR log A p for every pair of events
(p, q) and where p < q, that is, event p occurred before q. 
T is
the time difference (in LB units) between events, 
L their distance
separation and df is the fractal dimension of the interface, which
is 1.5 in our case. BGR is the slope in the Gutenberg–Richter law
for the moment and derived from Fig. 5 (see below), and Ap is
the squared displacement for event p. The use of this NN metric
for the statistical classification of earthquakes into aftershocks and
background seismicity was introduced by Zaliapin et al. (2008) and
Zaliapin & Ben-Zion (2013). The inverse of npq can be interpreted
as a proxy for the degree to which events are correlated. By deter-
mining a threshold for this correlation, we can identify aftershock
sequences. We set this threshold to be close to the inverse value of
the antimode in the bi-modal probability distribution function of the
nearest-neighbour distance corresponding to our case, as outlined
by Zaliapin & Ben-Zion (2013). We then chose the 1000 strongest
events and their corresponding aftershocks and plot the probability
density rate of plastic events as a function of time from the main
event. We find that the rate of events aligns along a line as predicted
by Omori’s law (Fig. 8). We verified that the result is robust with
respect to the choice of this threshold, and changing it even by an
order of magnitude does not significantly affect the result.

We also looked at the power spectra of Ai at surface element
i where no extreme values occur, that is, where Ai < A and no
events occur for any time t. This is equivalent to looking at a power
spectrum of the ground displacement generated by an earthquake in
the far field. It is well established that the power spectra of seismic
ground displacements are flat with a decay ∼ω−2 beyond a corner
frequency (e.g. Aki & Richards 1980). In Fig. 9, we show the power
spectra obtained in our numerical simulations, using a resolution of
10242, exhibiting a characteristic ω−2 decay. This is further evidence
that our system is capable of capturing features of real earthquakes.

The results shown in Figs 5–8 are independent of our choice
of the effective displacement D = A1/2. We have checked that the
same scaling is observed, for instance, if we consider the quantity

Figure 8. Rate of change in the number of aftershocks for fixed time bins
corresponding to the 1000 strongest main events in our catalogue. The time is
counted from the beginning of the corresponding main shocks. Red squares
represent the mean for a particular bin.

Figure 9. Power spectra of far field elastic displacements at several ran-
domly chosen squares (i....) in the box. They show a clear ω−2-decay.

Ã ≡ N−1
eff 
iAi (t) where Neff is the number of small boxes where

the displacement is concentrated. More specifically, upon defining
pi ≡ Ai (t)/
iAi (t), we compute the ‘entropy’ H ≡−
ipilogpi and
derived Neff ≡ exp (H), which by definition is the number of boxes
where the displacement is concentrated. It turns out that Ã ∼ A for
all times and with very high accuracy. This supports our choice
to consider A(t) as an unbiased estimate of the area subject to an
effective slip.

4 C O N C LU D I N G R E M A R K S

The information obtained from Figs 5–8 is quite clear and striking:
the system shows well defined scaling laws for various quantities
and independent of the volume considered (i.e. independent on the
number of bubbles). Fig. 9 further shows that the power spectra of
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far field displacements follow an ω-square model. In particular, our
results strongly support the following conclusions:

(i) A clear power-law scaling of P(A) as a function of A is ob-
served;

(ii) The scaling exponent lies in the range [1.2, 1.4] and is smaller
for larger values of the external strain rate S;

(iii) The scaling behaviour does not depend on the numerical
resolution and it is the same for the acceleration |dv/dt|, the energy
release Er and hence the stress drop, and the interoccurrence time
τE;

(iv) For all analysed aftershock sequences, there is clear evidence
that our system obeys Omori’s law;

(v) The power spectra of far field elastic waves generated by the
plastic events decays as ω−2.

To compare the values of our scaling exponents with the ones
observed in the GR law for earthquakes, we have to remember that
the moment M0 ∼ DS. In our case D ∼ A1/2 since A is a measure of
an area, namely the number of unit squares subject to displacement.
If P(A) ∼ A−γ then the quantity M0 ∼ D ∼ A1/2 shows a probability
density distribution P(M0) ∼ M1−2γ

0 . In seismology the scaling is
normally reported for cumulative distributions and the scaling con-
stant BGR is defined as C(M0) = ∫ ∞

M0
P(x)dx ∼ M−BGR

0 ∼ M2−2γ

0 .
The results shown above therefore give an estimate of BGR in the
range [0.4, 0.8] nicely bracketing the scalings reported for real
earthquakes, which on average is 2/3 (e.g. Ben-Zion 2008). The
slope we observe for Omori’s law is close to −2, but we did not plot
the rate of the cumulative number of aftershocks as is usually done
in seismology (e.g. Ben-Zion 2008). If we take that into account,
we get a slope of −1, close to that for real earthquakes, and the
cumulative number of earthquakes will logarithmically depend on
time counted from the main shock.

It is interesting to observe that the scaling exponent decreases for
increasing shear rate S. Eventually, for very large S, we expect the
stress to overcome the yield stress and, at that point, the system starts
to flow. Only in the region σ < σ y does the system show stick-slip
behaviour and GR statistics. It is worth stressing that the statistical
properties of P(A) are resolution independent. Finally, we would like
to reiterate that our model so far is not designed to represent any
realistic seismic environment and/or a particular form of friction
law, yet shows many characteristics of natural earthquakes.
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