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S U M M A R Y
We present an extension of the adjoint method that allows us to compute the second derivatives
of seismic data functionals with respect to Earth model parameters. This work is intended to
serve as a technical prelude to the implementation of Newton-like optimization schemes and
the development of quantitative resolution analyses in time-domain full seismic waveform
inversion.

The Hessian operator H applied to a model perturbation δm can be expressed in terms
of four different wavefields. The forward field u excited by the regular source, the adjoint
field u† excited by the adjoint source located at the receiver position, the scattered forward
field δu and the scattered adjoint field δu†. The formalism naturally leads to the notion of
Hessian kernels, which are the volumetric densities of Hδm. The Hessian kernels appear as
the superposition of (1) a first-order influence zone that represents the approximate Hessian,
and (2) second-order influence zones that represent second-order scattering.

To aid in the development of physical intuition we provide several examples of Hessian
kernels for finite-frequency traveltime measurements on both surface and body waves. As
expected, second-order scattering is efficient only when at least one of the model perturbations
is located within the first Fresnel zone of the Fréchet kernel. Second-order effects from density
heterogeneities are generally negligible in transmission tomography, provided that the Earth
model is parameterized in terms of density and seismic wave speeds.

With a realistic full waveform inversion for European upper-mantle structure, we demon-
strate that significant differences can exist between the approximate Hessian and the full
Hessian—despite the near-optimality of the tomographic model. These differences are largest
for the off-diagonal elements, meaning that the approximate Hessian can lead to erroneous
inferences concerning parameter trade-offs. The full Hessian, in contrast, allows us to correctly
account for the effect of non-linearity on model resolution.

Key words: Inverse theory; Seismic tomography; Computational seismology; Theoretical
seismology; Wave scattering and diffraction; Wave propagation.

1 I N T RO D U C T I O N

1.1 Full waveform inversion

Full waveform inversion is a tomographic technique that is based on the numerical simulation of seismic wave propagation. The purely
numerical solutions of the wave equation for heterogeneous Earth models provide complete and accurate synthetic seismograms that can be
exploited for high-resolution imaging in complex media.

While already initiated in the late 1970s and 1980s (e.g. Bamberger et al. 1977, 1982; Tarantola 1984; Gauthier et al. 1986; Tarantola
1988), full waveform inversion has only recently gained popularity, mainly for two reasons: rapid advances in high-performance computing
and our need to reveal the structure of the Earth with increasing detail. Applications of full waveform inversion to real data have now been
reported in widely varying contexts, ranging from exploration and engineering problems (e.g. Igel et al. 1996; Operto et al. 2004; Gao
et al. 2006; Smithyman et al. 2009) to the imaging of regional- and continental-scale structure (e.g. Dessa et al. 2004; Bleibinhaus et al.
2007, 2009; Chen et al. 2007; Tape et al. 2009, 2010; Fichtner et al. 2009, 2010). Despite the success of full waveform inversion, numerous
challenges remain. These include the design of more efficient optimization schemes and the rigorous quantification of model resolution and
uncertainties.
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1.2 Efficiency of optimization schemes and the Newton method

The efficiency of iterative schemes used to minimize the misfit X between observed seismograms u0(t) and synthetic seismograms u(t)
improved continuously over the past three decades. Simplistic steepest-descent methods employed in the early-development stage of full
waveform inversion (e.g. Bamberger et al. 1982; Gauthier et al. 1986) have been replaced by pre-conditioned conjugate-gradient algorithms
(e.g. Mora 1987, 1988; Tape et al. 2007; Fichtner et al. 2009) and Newton-like methods (including Gauss–Newton and Levenberg–Marquardt)
that use the approximate Hessian (e.g. Pratt et al. 1998; Epanomeritakis et al. 2008; Brossier et al. 2009). The ultimate step to be taken, is the
implementation of the full Newton method where the Earth model in iteration k, denoted by mk , is updated according to

mk+1 = mk + hk, (1)

where the descent direction hk is the solution of the Newton equation

H(mk) hk = −∇mX (mk). (2)

The symbols H and ∇mX signify the Hessian and the Fréchet derivative of the misfit functional X with respect to the Earth model. Newton’s
method converges quadratically provided that the initial model m0 is sufficiently close to the global optimum. It therefore has the potential
to reduce the number of iterations needed to reach acceptable solutions. While common practice in non-linear optimization (e.g. Hinze et al.
2009), the feasibility of the Newton method in full waveform inversion has so far only been explored in 1-D synthetic studies (Santosa &
Symes 1988; Pratt et al. 1998).

1.3 Quantification of resolution

While full waveform inversion is a promising tool, resolution estimates are generally deficient. They are mostly based on synthetic inversions
for specific input structures and on the visual inspection of the tomographic images. Synthetic inversions are known to be potentially misleading
even in linearized tomographies (Lévêque et al. 1993). Visual inspection is equally inadequate because of the very efficient psychologic trap
to mistake the great detail seen in the models as an indicator of comparatively high resolution. In fact, small-scale features may easily appear
in full waveform inversion because it hardly requires any explicit regularization—in contrast to classical linearized tomography that is based
on the solution of large ill-conditioned linear systems.

Early attempts to analyse—and in fact define—resolution were founded on the equivalence of diffraction tomography and the first
iteration of a full waveform inversion (e.g. Devaney 1984; Wu & Toksöz 1987; Mora 1989). However, this equivalence holds only in the
impractical case where the misfit X is equal to the L2 waveform difference

∫
(u − u0)2 dt (Fichtner et al. 2008). Furthermore, the analysis of

diffraction tomography is feasible only in homogeneous or layered acoustic media.
Despite being crucial for the interpretation of the tomographic images, methods for the quantification of resolution in realistic applications

of full waveform inversion do not exist so far. This absence of a quantitative means to assess the capabilities of full waveform inversion is the
source of much scepticism as to whether it is really worth the effort.

Part of the problem is the inherently non-linear relation between Earth structure and seismic waveforms that leads to misfit functionals
with multiple local minima. At least in the vicinity of the global optimum m̃, characterized by ∇mX (m̃) = 0, the Hessian matrix H can be
used to infer the resolution of and the trade-offs between model parameters. Approximating X quadratically around m̃ yields

X (m) ≈ X (m̃) + 1

2
(m − m̃)T H(m̃) (m − m̃) . (3)

Furthermore accepting Gaussian statistics, allows us to define a probability density

σ (m) = const e−X (m) = const e− 1
2 (m−m̃)T H(m̃) (m−m̃) . (4)

Eq. (4) reveals that H(m̃) is the inverse posterior covariance matrix in the vicinity of m̃ (e.g. Tarantola 2005). It follows that H(m̃) contains
all the information on resolution and trade-offs, provided that we are sufficiently close to the global optimum.

1.4 Objectives and potentials

The key role played by the Hessian in optimization and resolution analysis motivates the development of methods that allow us to compute
the second derivatives of X with optimal efficiency. When a discretized version of the governing equations can be solved explicitly—as in
2-D frequency-domain modelling (Pratt et al. 1998)—the product of H and an arbitrary model vector can be computed conveniently via an
extension of the discrete adjoint method. However, in large-scale 3-D applications where the forward problem is solved iteratively in the time
domain, the matrix formalism of the discrete adjoint method becomes impractical.

Our prime objective is therefore to generalize the continuous adjoint method to the computation of the Hessian operator H applied to
an arbitrary model perturbation δm. This is intended to serve as a technical preparatory step for future developments, and as a means to gain
the intuition and experience needed for the meaningful solution of any inverse problem.

The potential of the method developed in the following sections goes far beyond Newton’s method and the quantification of uncertainties.
It may as well be used for extremal bounds analysis (Meju & Sakkas 2007; Meju 2009; Fichtner 2010), for the determination of optimal
step lengths in gradient-based optimization, as a tool to assess second-order effects on seismic data functionals including finite-frequency
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traveltimes (see Section 4), to study wave propagation through complex media (e.g. Baig & Dahlen 2004), or to design locally independent
model parameters as it is classically done in Partitioned Waveform Inversion (Nolet 1990, 2008).

1.5 Which Hessian?

The term Hessian is frequently used as a synonym for the approximate Hessian, especially in the context of linearized tomography. For the
least-squares misfit functional

X = 1

2
(d − d0)T (d − d0), (5)

with synthetic data d and observed data d0, the Hessian matrix H is given by

H = GT G + (d − d0)T ∇mG, (6)

where G is the Jacobian matrix of d, that is, G = ∇md. The full Hessian H reduces to the approximate Hessian

H̃ = GT G (7)

either when the relation between d and m is linear (d ≈ Gm) or in the hypothetical case of zero misfit (d = d0). It can, however, be shown in
both 1-D synthetic inversions (Santosa & Symes 1988) and large-scale 3-D waveform tomographies (Section 5) that H̃ can differ substantially
from H.

The analysis presented in the following paragraphs goes beyond the linear approximation and the assumption of small misfits. It will
allow us to compute the exact second derivatives of any data or misfit functional, thus fully accounting for the generally non-linear relation
between Earth models and seismic observables. The distinction between linearization and inherent non-linearity will become most apparent
in Section 4 where we consider the second derivatives of finite-frequency traveltimes that are commonly considered to be nearly linearly
related to Earth structure.

1.6 Outline

This paper is organized as follows. To set the stage for the computation of second derivatives, and to introduce basic concepts and notations,
we start with a condensed review of the standard continuous adjoint method that allows us to express the Fréchet derivative

∇mX δm = lim
ν→0

1

ν
[X (m + ν δm) − X (m)] (8)

in terms of the regular wavefield u and the adjoint wavefield u† (Section 2.1). The extension of the adjoint method to the computation of the
Hessian operator H applied to a continuous model perturbation δm(x),

H δm = ∇m∇mX δm , (9)

is then the topic of Section 2.2. Our approach naturally leads to the concept of Hessian kernels, defined as the volumetric densities of Hδm.
The transition to the discrete world is made by projecting the Hessian operator H onto the basis functions of the model space to obtain the
components of the Hessian matrix H (Section 2.2.2). Up to that point, our development will be deliberately general. This ensures that the
formalism can be applied to any PDE-governed physical system in general and to different types of wave equations in particular. Section 3
is concerned with the specific application of the previously derived equations to the 3-D viscoelastic wave equation. We provide explicit
formulas for Hessian kernels and we elaborate on their interpretation in terms of second-order scattering from within secondary influence
zones. We furthermore highlight relations between Hessian and Fréchet kernels. To illustrate the concept, we provide a series of examples
where we computed Hessian kernels for finite-frequency traveltime measurements on both surface and body waves (Section 4). In a realistic
full waveform tomography for European upper-mantle structure we demonstrate that the approximate Hessian differs significantly from the
full Hessian, even in the vicinity of the optimal model (Section 5). Finally, Appendix A is intended to reveal close relationships between the
discrete and continuous adjoint methods for the computation of second derivatives.

2 T H E C O N T I N U O U S A D J O I N T M E T H O D F O R F I R S T A N D S E C O N D D E R I VAT I V E S

2.1 First derivatives

Variants of the continuous adjoint method applied to seismic wave propagation have been described by several authors (e.g. Tarantola 1988;
Tromp et al. 2005; Plessix 2006; Liu & Tromp 2006; Fichtner et al. 2006; Chen 2011). In the interest of generality and compact notation,
we derive here a formulation that is independent of the type of wave equation used. For this we consider a wavefield u that depends on the
position vector x ∈ G ⊂ R

3, time t ∈ T = [t0, t1] and on model parameters m ∈ �

u = u(m; x, t). (10)

The model space � contains all admissible parameters m(x) = [m(1)(x), m(2)(x), . . .]. The components m(α)(x) may, for instance, represent the
distributions of density ρ, the P velocity vP or the S velocity vS , that is, m(x) = [ρ(x), vP(x), vS(x), . . .]. The semicolon in eq. (10) indicates
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that u evolves in space and in time, whereas the model parameters are assumed to be fixed for a given realization of u. The wavefield u is
linked via the wave equation, symbolically written as

L(u, m) = f , (11)

to external sources f and the model parameters m. It is commonly not u itself, but a scalar data functional X (m) = X [u(m)] that we are
interested in. The data functional can either play the role of a secondary observable or of a misfit functional that quantifies the discrepancy
between observed and calculated waveforms. Without loss of generality we can write X in the form of an integral over time and space, that is,

X (m) =
∫

T

∫
G

χ [u(m; x, t)] dt d3x = 〈χ (m)〉 , (12)

where we introduced 〈 . 〉 as a short notation for the time-space integral
∫

T

∫
G (.) dt d3x. The derivative of X (m) with respect to m in a direction

δm follows from the chain rule

∇mX δm = ∇uX δu = 〈∇uχ δu〉, (13)

where

δu = ∇mu δm (14)

denotes the derivative of u with respect to m in the direction δm. The practical difficulty of eq. (13) lies in the appearance of δu which is
often hard to evaluate numerically. For a first-order finite-difference approximation of ∇mX one needs to determine u(m + εδm) for each
possible direction δm. This, however, becomes infeasible in the case of numerically expensive forward problems and large model spaces.
Consequently, we may not be able to compute ∇mX unless we manage to eliminate δu from eq. (13). For this purpose, we differentiate the
governing eqs (11) with respect to m. Again invoking the chain rule for differentiation gives

∇mL δm + ∇uL δu = 0 . (15)

The right-hand side of eq. (15) vanishes because the external sources f do not depend on the model parameters m. We now multiply eq. (15)
by an arbitrary test function u† and then apply the integral 〈 . 〉〈
u†∇mL δm

〉 + 〈
u†∇uL δu

〉 = 0 . (16)

Adding eqs (13) and (16) gives

∇mX δm = 〈∇uχ δu〉 + 〈
u†∇uL δu

〉 + 〈
u†∇mL δm

〉
. (17)

We can rewrite eq. (17) using the adjoint operators ∇uχ
† and ∇uL† which are defined by

〈∇uχ δu〉 = 〈
δu∇uχ

†〉 (18)

and〈
u†∇uL δu

〉 = 〈
δu∇uL† u†〉 , (19)

for any δu and u†. We then obtain

∇mX δm = 〈
δu

(∇uχ
† + ∇uL†u†)〉 + 〈

u†∇mL δm
〉
. (20)

We may now eliminate δu from eq. (20) if we can determine a field u† to satisfy

∇uL†u† = −∇uχ
† . (21)

Eq. (21) is referred to as the adjoint equation of (11), and u† and −∇uχ
† are the adjoint field and the adjoint source, respectively. When the

solution u† of the adjoint equation is found, then the derivative of the objective functional reduces to

∇mX δm = 〈
u†∇mL δm

〉
. (22)

By construction, ∇mX δm can now be computed for any differentiation direction δm without the explicit knowledge of δu. This advantage
comes at the price of having to find the adjoint operator ∇uL† and a solution to the adjoint problem (21). When the operator L is linear in u,
it follows that ∇uL(u)u† = L†(u†), and the adjoint eq. (21) can be simplified to

L†(u†) = −∇uχ
† . (23)

The adjoint field u† is then determined by the adjoint operator L† of L and the right-hand side −∇uχ
† that is derived from the data functional.

2.1.1 Fréchet kernels

Much of our physical intuition is based on the interpretation of sensitivity or Fréchet kernels which are defined as the volumetric densities of
the Fréchet derivative ∇mX

Km(u†, u) = d

dV
∇mX =

∫
T

u†∇mL(u, m) dt . (24)
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In eq. (24), we introduced the dependence of the Fréchet kernel Km on u and u† explicitly in the notation. The usefulness of this seemingly
unnecessary complication will become apparent the Section 2.2.1 on Hessian kernels. Using the notion of Fréchet kernels, we can recast
eq. (22) as follows

∇mX δm =
∫

G
Km δm d3x . (25)

For the special case of an isotropic Earth model parameterized in terms of ρ, vP and vS , eq. (25) takes the form

∇mX δm =
∫

G
(Kρ δρ + KvP δvP + KvS δvS) d3x =

∫
G

(K̄ρ δ ln ρ + K̄vP δ ln vP + K̄vS δ ln vS) d3x , (26)

where K̄ρ = ρKρ, K̄vP = vP KvP and K̄vS = vS KvS are kernels for relative perturbations. The Fréchet kernels reveal how the data functional
X (m) is affected by infinitesimal changes in the model parameters. It is the study of Km for different types of seismic waves and different
data functionals that allows us to design efficient inversion schemes and to interpret the results in a physically meaningful way.

2.1.2 Translation to the discretized model space

In most applications, the model space � is discretized, meaning that the components m(α) of the space-continuous model m(x) = [m(1)(x),
m(2)(x), . . .] are expressed as a linear combination of N < ∞ basis functions, bi(x)

m(α)(x) =
N∑

i=1

μ
(α)
i bi (x) , α = 1, 2, . . . . (27)

Commonly, the basis functions are spherical harmonics, blocks, wavelets or splines. With the representation (27), the model m and the data
functional X are fully determined by the coefficients or model parameters μ(α)

i . We are therefore interested in the partial derivatives ∂X /∂μ
(α)
i .

Using the definition of the classical derivative, we find

∂X
∂μ

(α)
i

= lim
ε→0

1

ε

[
X

(
. . . , μ

(α)
i + ε, . . .

)
− X

(
. . . , μ

(α)
i , . . .

)]
= lim

ε→0

1

ε

[
X

(
. . . , m(α) + εbi , . . .

) − X (. . . , m(α), . . .)
]

= ∇m(α)X bi =
∫

G
Km(α) (x) bi (x) d3x . (28)

It follows from eq. (28) that the gradient in the classical sense, ∂X /∂μ
(α)
i , is given by the projection of the sensitivity kernel Km(α) onto the

basis function bi.

2.2 Second derivatives

Equipped with the machinery of the adjoint method for first derivatives, we can now compute the Hessian operator H applied to a model
vector δm1, that is, Hδm1. For this we first differentiate X with respect to m in the direction δm1,

∇mX δm1 = 〈∇uχ δ1u〉 , (29)

with the derivative of the forward field

δ1u = ∇mu δm1. (30)

Repeating this procedure for a second direction δm2 yields

H (δm1, δm2) = ∇m∇mX (δm1, δm2) = 〈∇u∇uχ (δ1u, δ2u) + ∇uχ δ12u〉 , (31)

with the first derivative

δ2u = ∇mu δm2 (32)

and the second derivative of the forward wavefield

δ12u = ∇m∇mu(δm1, δm2) . (33)

The first term on the right-hand side of eq. (31),

H̃ (δm1, δm2) = 〈∇u∇uχ (δ1u, δ2u)〉 , (34)

is the approximate Hessian of the data functional X applied to δm1 and δm2. The approximate Hessian merely involves first derivatives
that we can already compute efficiently for any differentiation direction with the help of the standard adjoint method that we described in
Section 2.1. The Gauss–Newton and Levenberg–Marquardt methods of non-linear optimization use H̃ as a computationally less expensive
substitute of the full Hessian H .

The difficulty in eq. (31) is the appearance of the second derivative δ12u that we cannot compute efficiently for arbitrary differentiation
directions δm1 and δm2. To eliminate δ12u from (31) we again differentiate the forward problem, L(u, m) = f, with respect to m in the first
direction δm1

0 = ∇mL δm1 + ∇uL δ1u . (35)

C© 2011 The Authors, GJI, 185, 775–798

Geophysical Journal International C© 2011 RAS



780 A. Fichtner and J. Trampert

Differentiating (35) once more with respect to m but in the direction δm2 yields

0 = ∇m∇mL(δm1, δm2) + ∇u∇mL(δm1, δ2u) + ∇m∇uL(δ1u, δm2) + ∇u∇uL(δ1u, δ2u) + ∇uLδ12u . (36)

In the next step, we multiply eq. (36) with an arbitrary test function w† and integrate over time and space

0 = 〈
w†∇m∇mL(δm1, δm2)

〉 + 〈
w†∇u∇mL(δm1, δ2u)

〉
+ 〈

w†∇m∇uL(δ1u, δm2)
〉 + 〈

w†∇u∇uL(δ1u, δ2u)
〉 + 〈

w†∇uLδ12u
〉
. (37)

Adding (37) to (31) and rearranging terms gives

H (δm1, δm2) = 〈(∇uχ + w†∇uL
)

δ12u
〉 + 〈∇u∇uχ (δ1u, δ2u)〉 + 〈

w†∇m∇mL(δm1, δm2)
〉 + 〈

w†∇u∇mL(δm1, δ2u)
〉

+ 〈
w†∇m∇uL(δ1u, δm2)

〉 + 〈
w†∇u∇uL(δ1u, δ2u)

〉
. (38)

We can now eliminate the second derivative of the forward field, δ12u, from eq. (38) by imposing that the test field w† be the solution of the
adjoint equation

∇uL†w† = −∇uχ
† . (39)

The adjoint eq. (39) is identical to the adjoint equation for first derivatives (21), which implies w† = u†. This means that the adjoint field
u† can in practice be recycled for the computation of the Hessian. When u† satisfies the adjoint eq. (39), then H (δm1, δm2) can indeed be
expressed in terms of first derivatives with respect to m

H (δm1, δm2) = 〈∇u∇uχ (δ1u, δ2u)〉 + 〈
u†∇m∇mL(δm1, δm2)

〉 + 〈
u†∇u∇mL(δm1, δ2u)

〉 + 〈
u†∇m∇uL(δ1u, δm2)

〉
+ 〈

u†∇u∇uL(δ1u, δ2u)
〉
. (40)

The last term on the right-hand side of eq. (40), involving ∇u∇uL, is zero for linear operators, including the wave equation operator. Whether
the second term, involving ∇m∇mL, is zero or not depends on the specific parameterization of the model space. The wave equation operator,
for instance, is linear in density and the elastic parameters which leads to a zero second derivative, that is, ∇m∇mL = 0. However, when the
model is parameterized in terms of density and seismic wave speeds, quadratic terms appear and ∇m∇mL is generally non-zero.

To apply conjugate gradient type methods to the solution of the Newton eq. (2) we require the Hessian applied to a model perturbation,
that is Hδm1 and not H (δm1, δm2). Unfortunately, δm2 appears implicity via δ2u in eq. (40). The next step is therefore the isolation of δm2.
For clarity, we restrict the following development to operators L(u) that are linear in u, and we omit the dependence of L on m in the notation.
This gives

∇u∇uL(u)(δ1u, δ2u) = 0 , (41)

∇u∇mL(u)(δm1, δ2u) = ∇mL(δ2u) δm1 , (42)

∇m∇uL(u)(δ1u, δm2) = ∇mL(δ1u) δm2 . (43)

After slight rearrangements we can now write eq. (40) in the following form

H (δm1, δm2) = 〈∇u∇uχ (δ1u, δ2u)〉 + 〈
u†∇mL(δ2u) δm1

〉 + 〈
u†∇m∇mL(u)(δm1, δm2)

〉 + 〈
u†∇mL(δ1u) δm2

〉
. (44)

Our focus is now on the first two terms on the right-hand side of eq. (44) where the direction δm2 appears implicitly via δ2u = ∇mu δm2.
Invoking the adjoint ∇mL† of ∇mL we can write

〈∇u∇uχ (δ1u, δ2u)〉 + 〈
u†∇mL(δ2u) δm1

〉 = 〈
δ2u

[∇u∇uχ
†(δ1u) + ∇mL†(u†) δm1

]〉
. (45)

In eq. (45) we have recognized that ∇u∇uχ (δ1u, δ2u) can be interpreted as a linear operator, ∇u∇uχ (δ1u), acting on δ2u, that is, ∇u∇uχ (δ1u,
δ2u) = ∇u∇uχ (δ1u) δ2u. To further simplify eq. (45), we differentiate the adjoint eq. (39) with respect to m in the direction δm1, keeping in
mind that L† is linear in u†

L† (
δ1u†) = −∇u∇uχ

†(δ1u) − ∇mL†(u†) δm1 . (46)

Eq. (46) reveals that the derivative of the adjoint field δ1u† = ∇mu†δm1 is the solution of an adjoint equation with two source terms on the
right-hand side. The first source term, −∇u∇uχ

†(δ1u), is the derivative of the regular adjoint source −∇uχ
† that we already encountered in

eqs (21) and (23). It accounts for the change of the adjoint source that results from the perturbation of the forward wavefield u. The second
source term, −∇mL†(u†) δm1, is located at the perturbation δm1 itself, and it is responsible for the excitation of a scattered adjoint wavefield
(see Figs 2 and 5 for illustrations). We will come back to the physical interpretation of δ1u† and its two sources in Section 3.3.2.

With the help of eq. (46) we can simplify eq. (45)

〈∇u∇uχ (δ1u, δ2u)〉 + 〈
u†∇mL(δ2u) δm1

〉 = − 〈
δ2uL†(δ1u†)

〉 = − 〈
δ1u†L(δ2u)

〉
. (47)

To replace L (δ2u) in eq. (47) we note that the differentiation of the forward problem, L(u, m) = f, with respect to m in the direction δm2

gives

∇mL(u) δm2 + L(δ2u) = 0 . (48)

Inserting (48) into (47) leaves us with the following expression

〈∇u∇uχ (δ1u, δ2u)〉 + 〈
u†∇mL(δ2u) δm1

〉 = 〈
δ1u†∇mL(u) δm2

〉
, (49)
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where the second differentiation direction, δm2, appears explicitly. The substitution of (49) into eq. (44) now allows us to assemble the Hessian
operator applied to δm1, that is, Hδm1

Hδm1 = H (δm1, ◦) = 〈
δ1u†∇mL(u) ◦〉 + 〈

u†∇mL(δ1u) ◦〉 + 〈
u†∇m∇mL(u)(δm1) ◦〉

. (50)

The symbol ◦ represents a place holder for a second differentiation direction δm2.

2.2.1 Hessian kernels

Eq. (50) suggests the representation of H (δm1, δm2) in terms of volumetric integral kernels that are reminiscent of the Fréchet kernels
introduced in eqs (24) and (25)

H (δm1, δm2) =
∫

G
K 1

m δm2 d3x =
∫

G

(
K 2→1

m + K 1↔1
m + K 1→2

m

)
δm2 d3x , (51)

with the Hessian kernels defined by

K 1
m = K 2→1

m + K 1↔1
m + K 1→2

m , (52)

K 2→1
m =

∫
T

δ1u†∇mL(u) dt , (53)

K 1↔1
m =

∫
T

u†∇m∇mL(u)(δm1) dt , (54)

K 1→2
m =

∫
T

u†∇mL(δ1u) dt . (55)

In this sense, we may identify the Hessian operator H applied to the model perturbation δm1 with the Hessian kernels, that is

H δm1 ≡ K 1
m . (56)

Considering again the special case of an isotropic medium parameterized in terms of ρ, vP and vS , eq. (51) can be written as

H (δm1, δm2) =
∫

G

(
K 1

ρ δρ2 + K 1
vP

δvP2 + K 1
vS

δvS2

)
d3x =

∫
G

(
K̄ 1

ρ δ ln ρ2 + K̄ 1
vP

δ ln vP2 + K̄ 1
vS

δ ln vS2

)
d3x , (57)

with the kernels for relative perturbations K̄ 1
ρ = ρK 1

ρ , K̄ 1
vP

= vP K 1
vP

and K̄ 1
vS

= vS K 1
vS

. Unlike Fréchet kernels, Hessian kernels depend on
the model perturbation, δm1, either explicitly as in K 1↔1

m or implicity via δ1u and δ1u†. The comparison of eqs (53) and (55) with eq. (24)
reveals that the Hessian kernels K 2→1

m and K 1→2
m are closely related to the Fréchet kernel Km. In fact, we find

K 2→1
m = Km

(
δ1u†, u

)
, (58)

and

K 1→2
m = Km

(
u†, δ1u

)
. (59)

The explicit formulas derived in Section 3.2 for the Fréchet kernels with respect to specific Earth model parameters can thus be reused for
the computation of the Hessian kernels K 2→1

m and K 1→2
m . Eqs (58) and (59) are also important for the physical interpretation of the Hessian

kernels.

2.2.2 Translation to the discretized model space

In a discretized model space the components m(α)(x) of the space-continuous model m(x) are expressed in terms of a linear combination of a
finite number of basis functions, bi(x), as introduced in eq. (27). With the help of the Hessian operator H we can then compute the components
of the Hessian matrix H. The component (H)(αβ)

ij of H is the second derivative of the data functional X with respect to the discrete model

parameters μ(α)
i and μ

(β)
j , that is

(H)(αβ)
i j = ∂2X

∂μ
(α)
i ∂μ

(β)
j

. (60)

Making use of eq. (28) we find

(H)(αβ)
i j = ∂

∂μ
(β)
j

(
∂X

∂μ
(α)
i

)
= ∂

∂μ
(β)
j

(∇m(α)X bi ) = ∇m(β)∇m(α)X (bi , b j ) . (61)

The component (H)(αβ)
ij of the Hessian matrix is therefore equal to the Hessian operator ∇m(β)∇m(α)X applied to the basis functions bi and bj.

It follows that the Hessian kernel K 1
m for the model perturbation δm1 = bi can be interpreted as a continuous representation of the ith row of

the Hessian matrix H.
The derivation of the adjoint equations in the continuous space followed by the discretization through projection is characteristic for

time-domain full waveform inversion. This approach differs from frequency-domain full waveform inversion where the discrete adjoint
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method is applied to a semi-discrete version of the governing equations. That the continuous and discrete adjoint methods for both first and
second derivatives are closely related will be shown in Appendix A.

3 A P P L I C AT I O N T O T H E S E I S M I C WAV E E Q UAT I O N

Our developments have so far been general in the sense that the equations do not depend on the particular type of wave equation used to model
seismic wave propagation. In the following paragraphs, we will be more specific and apply the adjoint formalism to the 3-D viscoelastic wave
equation.

3.1 Governing equations and their adjoints

The propagation of seismic waves in the Earth can be modelled with the seismic wave equation

L(u, m) = ρ(x)ü(x, t) − ∇σ (x, t) = f(x, t) , x ∈ G ⊂ R
3 , t ∈ [0, te] ⊂ R , m = (ρ, C) , (62)

that relates the displacement field u in the Earth G ⊂ R
3 to its mass density ρ, the stress tensor σ and an external force density f [see

Dahlen & Tromp (1998), Kennett (2001) or Aki & Richards (2002) for detailed derivations of eq. 62]. The wave operator L is linear in u.
The free surface boundary condition imposes that the normal components of the stress tensor σ vanish at the surface ∂G of the Earth, that
is, σn|x∈∂G = 0, where n is the unit normal on ∂G. Both the displacement field u and the velocity field u̇ are required to satisfy the initial
condition of being equal to zero prior to t = 0: u|t≤0 = u̇|t≤0 = 0. To obtain a complete set of equations, the stress tensor σ must be related
to the displacement field u. For this we assume that σ depends linearly on the history of the strain tensor ε = 1

2 (∇u + ∇uT )

σ (x, t) =
∫ ∞

−∞
Ċ(x, t − τ ) : ε(x, τ ) dτ . (63)

The symbol : in eq. (63) denotes the contraction over the two innermost indices, that is, (Ċ : ε)i j = ∑3
k,l=1 Ċi jklεkl . Eq. (63) defines a linear

viscoelastic rheology. The fourth-order tensor C is the elastic tensor. Since the current stress cannot depend on future strain, we require the
elastic tensor to be causal: C(t)|t<0 = 0. The symmetry of ε, the conservation of angular momentum and the relation of C to the internal
energy (Aki & Richards 2002) require that the components of C satisfy a set of symmetry relations, Cijkl = Cklij = Cjikl, that reduce the
number of independent components to 21. The number of non-zero independent elastic tensor components, or elastic parameters, determines
the anisotropic properties of the elastic medium (e.g. Babuška & Cara 1991).

The adjoint wave operator L†, that governs the propagation of the adjoint wavefield, is given by (Tarantola 1988; Tromp et al. 2005;
Plessix 2006; Fichtner et al. 2006)

L†(u†, m) = ρ(x)ü†(x, t) − ∇σ †(x, t) , (64)

with the adjoint stress tensor defined by

σ †(x, t) =
∫ ∞

−∞
Ċ(x, τ − t) : ∇u†(x, τ ) dτ . (65)

Just as the regular stress tensor σ , the adjoint stress tensor σ † is required to satisfy the free surface boundary condition σ †n|x∈∂G = 0.
Furthermore, the propagation of the adjoint wavefield is constrained by the terminal conditions u†|t≥te = u̇†|t≥te = 0, where te is the time
when the observation ends. In non-dissipative media the elastic wave operator L is self-adjoint, meaning that L = L†. The obvious numerical
difficulty in solving the adjoint equation is the occurrence of the terminal conditions that require that the adjoint field be zero at time t = te.
In practice, this condition can only be met by solving the adjoint equation backwards in time, that is by reversing the time axis from 0 → te

to te → 0. The terminal conditions then act as zero initial conditions, at least in the numerical simulation. Eq. (65) reveals that the adjoint
stress tensor σ † at time t depends on future strain from t to te. This results in a growth of elastic energy when the wavefield propagates in the
regular time direction from 0 to te. In reversed time, however, the elastic energy decays, so that numerical instabilities do not occur (Tarantola
1988). For efficient strategies to solve the adjoint equation and the time integral that appears in the Fréchet kernels, the reader is referred to
Griewank & Walther (2000), Liu & Tromp (2006) or Fichtner et al. (2009).

3.2 First derivatives and Fréchet kernels

The most general expression for the derivative of a data functional X (m) in the direction δm is given by eq. (22) that we repeat here for
convenience

∇mX δm = 〈u†∇mL δm〉 . (66)

Substituting the governing eqs (62) and (63) for the general operator L yields the explicit formula

∇mX δm =
∫

T

∫
G

u†(t)

[
δρ ü(t) − ∇

∫ ∞

τ=−∞
δĊ(t − τ ) : ∇u(τ ) dτ

]
dt d3x , (67)
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Figure 1. Schematic illustration of the primary influence zone where the regular wavefield u interacts with the adjoint wavefield u†. Numbers are used to
mark the regular and adjoint wave fronts at successive points in time. As time goes on, the regular wavefield propagates away from the source while the adjoint
wavefield collapses into the receiver. In numerical simulations the adjoint equations are solved backwards in time to satisfy the terminal conditions. On the
reverse time axis, the adjoint field propagates away from the receiver, starting at the final observation time. The primary influence zone marks the region where
a model perturbation δm generates a first-order scattered wavefield that affects the measurement at the receiver. Perturbations located outside the primary
influence zone have no first-order effect on the measurement. The spatial extension of the primary influence zone is proportional to the length of the analysis
time window considered in the seismograms.

with the model perturbation δm = (δρ, δC). To avoid clutter, we omitted spatial dependencies in the notation. Integrating by parts provides a
more symmetric and more useful version of eq. (67)

∇mX δm = −
∫

T

∫
G

δρ u̇†(t)u̇(t) dt d3x +
∫

T

∫
G

∫ ∞

τ=−∞
ε†(t) : δĊ(t − τ ) : ε(τ ) dτ dt d3x , (68)

where the adjoint strain tensor ε† is defined by ε† = 1
2 [(∇u†) + (∇u†)T ]. The Fréchet kernels associated with (68) are

Kρ = −
∫

T
u̇†(t)u̇(t) dt , (69)

and

KC (τ ) =
∫

T
ε†(t) ⊗ ε(t + τ ) dt . (70)

The symbol ⊗ signifies the tensor or dyadic product. Both kernels are non-zero only within the primary influence zone where the regular
and adjoint wavefields interact at some time between t = 0 and t = te. The primary influence zone, illustrated in Fig. 1, is the region where
a model perturbation δm causes the regular wavefield u to generate a first-order or single-scattered wave that affects the measurement at the
receiver. A perturbation located outside the primary influence zone has no first-order effect on the measurement.

For most seismic phases, the primary influence zone is a roughly cigar-shaped region connecting the source and the receiver. Its precise
geometry depends on many factors including the frequency content, the length of the considered time window, the type of measurement and
the reference Earth model, m. Specific examples for common seismic phases and measurements can be found, for instance, in Friederich
(1999), Zhou et al. (2004), Yoshizawa & Kennett (2005), Zhao et al. (2005), Liu & Tromp (2006, 2008), Nissen-Meyer et al. (2007), Sieminski
et al. (2007a,b) or Zhou (2009).

3.2.1 Perfectly elastic and isotropic medium

Eq. (68) is of general validity. The most relevant special case, that we will use for illustration, is the perfectly elastic and isotropic medium.
Perfect elasticity means that the time-dependence of the elastic tensor C and its perturbation δC has the form of a unit-step or Heaviside
function H(t)

C(x, t) = C(x) H (t) , δC(x, t) = δC(x) H (t) . (71)
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Upon inserting (71) into eq. (68) we obtain a simplified expression for ∇mX

∇mX δm = −
∫

T

∫
G

δρ u̇†(t)u̇(t) dt d3x +
∫

T

∫
G

ε†(t) : δC : ε(t) dt d3x . (72)

In an isotropic medium the components of C are given by (Aki & Richards 2002)

Ci jkl = λδi jδkl + μδikδ jl + μδilδ jk . (73)

The symbols λ and μ denote the Lamé parameters. It follows that the complete derivative of X is composed of three terms

∇mX δm = ∇ρX δρ + ∇λX δλ + ∇μX δμ , (74)

with

∇ρX δρ = −
∫

T

∫
G

δρ u̇†u̇ dt d3x , (75a)

∇λX δλ =
∫

T

∫
G

δλ (tr ε)(tr ε†) dt d3x , (75b)

∇μX δμ = 2
∫

T

∫
G

δμ ε : ε† dt d3x . (75c)

The symbol tr ε signifies the trace of the strain tensor ε. The associated Fréchet kernels are

K 0
ρ = −

∫
T

u̇†u̇ dt , (76a)

K 0
λ =

∫
T

(tr ε)(tr ε†) dt , (76b)

K 0
μ = 2

∫
T

ε : ε† dt . (76c)

The superscript 0 symbolizes that the Fréchet kernels correspond to the fundamental parameterization m = (ρ, λ, μ). Based on eqs (75) and
(76) we can deduce the Fréchet kernels for a perfectly elastic and isotropic medium that is parameterized in terms of density ρ, the S wave
speed vS = √

μ/ρ and the P wave speed vP = √
(λ + 2μ)/ρ

Kρ = K 0
ρ + (

v2
P − 2v2

S

)
K 0

λ + v2
S K 0

μ , (77a)

KvS = 2ρvS K 0
μ − 4ρvS K 0

λ , (77b)

KvP = 2ρvP K 0
λ . (77c)

3.3 Second derivatives and Hessian kernels

As we have seen already in Section 2.2.1, the second derivative H (δm1, δm2) can be conveniently expressed in terms of three Hessian kernels,
K 2→1

m , K 1→2
m and K 1↔1

m . It follows from eqs (58) and (59) that we can reuse the formulas for Fréchet kernels from Section 3.2 to compute the
Hessian kernels K 2→1

m and K 1→2
m for specific Earth model parameters. The only difference is the involvement of the scattered adjoint field

δ1u† and the scattered forward field δ1u in the kernel calculations.
Some additional work is required for the kernel K 1↔1

m : As a preparatory step towards explicit expressions for special rheologies, we
substitute the governing eqs (62) and (63) into the definition of K 1↔1

m (eq. 54)∫
G

K 1↔1
m δm2 d3x = 〈

u†∇m∇mL(δm1) δm2

〉
=

∫
T

∫
G

∇m∇mρ (δm1, δm2) u†(t)ü(t) dt d3x −
∫

T

∫
G

u†(t)

[
∇

∫ ∞

τ=−∞
∇m∇mĊ(t − τ )(δm1, δm2) : ∇u(τ )

]
dτ dt d3x .

(78)

In eq. (78) we did not specify a particular parameterization. This is accounted for by the notations ∇m∇mρ and ∇m∇mĊ that allow ρ and
C to depend on model parameters m other than density and the elastic coefficients themselves. Integrating eq. (78) by parts and writing the
resulting expression in terms of the regular and adjoint strain fields, ε and ε†, gives∫

G
K 1↔1

m δm2 d3x

= −
∫

T

∫
G

∇m∇mρ (δm1, δm2) u̇†
1 (t)u̇(t) dt d3x +

∫
T

∫
G

∫ t

τ=t0

ε†(t) :
[∇m∇mĊ(t − τ ) (δm1, δm2)

]
: ε(τ ) dτ dt d3x . (79)

Eq. (79) is, just as eq. (68) for the first derivative ∇mX δm, of general validity. Special cases can be derived by further specifications of the
rheology, that is, the elastic tensor components and their time dependence. Again, we consider the perfectly elastic and isotropic case as an
example.
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3.3.1 Perfectly elastic and isotropic medium

First, we substitute the perfectly elastic and isotropic rheology, as described by eqs (71) and (73), into the general expression (79)∫
G

K 1↔1
m δm2 d3x = −

∫
T

∫
G

∇m∇mρ (δm1, δm2) u̇†u̇ dt d3x

+
∫

T

∫
G

∇m∇mλ (δm1, δm2) (tr ε†) (trε) dt d3x

+
∫

T

∫
G

∇m∇mμ (δm1, δm2) ε† : ε dt d3x . (80)

When the isotropic medium is parameterized in terms of ρ, λ and μ or, alternatively, ρ, κ and μ, we find

K 1↔1
m = 0 , (81)

meaning that the Hessian kernel K 1↔1
m is identically zero. This result depends critically on the choice of the free parameters. Changing, for

instance, the set of free parameters to ρ, viP and viS, results in

∇m∇mρ (δm1, δm2) = 0 ,

∇m∇mC(δm1, δm2) = δm1

⎛⎜⎜⎝
0 2vPδi jδkl 2vSγi jkl

2vPδi jδkl 2ρδi jδkl 0

2vSγi jkl 0 2ργi jkl

⎞⎟⎟⎠ δm2 ,
(82)

with the model vector

δmi = (δρi , δvP,i , δvS,i ) , i = 1, 2 , (83)

and the auxiliary variable γ ijkl defined by

γi jkl = δikδ jl + δilδ jk − 2δi jδkl . (84)

This allows us to write eq. (80) in a very convenient form∫
G

K 1↔1
m δm2 d3x =

∫
G

δm1Jδm2 d3x , (85)

where we defined the symmetric 3 × 3 matrix J through

J =
∫

T

⎛⎜⎜⎝
0 2vP tr ε† tr ε 4vS (ε† : ε − tr ε† tr ε)

2vPtr ε† tr ε 2ρ tr ε† tr ε 0

4vS (ε† : ε − tr ε† tr ε) 0 4ρ (ε† : ε − tr ε† tr ε)

⎞⎟⎟⎠ dt . (86)

From eq. (85) we immediately infer that the Hessian kernel K 1↔1
m is explicitly given by

K 1↔1
m = Jδm1 . (87)

It is interesting to note that the P and S wave speed Fréchet kernels, KvP and KvS , from paragraph (3.2) reappear in the matrix J. In fact, we
may write J in the following form

J =

⎛⎜⎜⎝
0 ρ−1 KvP ρ−1 KvS

ρ−1 KvP v−1
P KvP 0

ρ−1 KvS 0 v−1
S KvS

⎞⎟⎟⎠ (88)

The Fréchet kernels for the isotropic medium can thus be recycled for the computation of the Hessian kernel K 1↔1
m .

3.3.2 Physical interpretation of the Hessian kernels

As mentioned in Section 3.2, Fréchet kernels can be interpreted in terms of first-order scattering from within a primary influence zone (see
Fig. 1). Hessian kernels, in contrast, also represent second-order scattering from within secondary influence zones. More specifically, the
Hessian kernel K 1↔2

m = ∫
T u†∇mL(δ1u) dt results from the interaction of the adjoint field u† with the first-order scattered field

δ1u = ∇mu δm1 = lim
ν→0

1

ν
[u(m + ν δm1) − u(m)] , (89)

that is excited when the forward field u impinges upon the model perturbation δm1. The construction of K 1→2
m is very similar to the

construction of the Fréchet kernel Km = ∫
T u†∇mL(u) dt which involves u† and u instead of u† and δ1u. This similarity suggests that the

Hessian kernel K 1→2
m localizes a secondary influence zone where a model perturbation δm2 can cause the first-order scattered field δ1u to

generate a second-order scattered field that affects the observation at the receiver. Fig. 2(a) illustrates this process.
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Figure 2. Schematic illustration of the Hessian kernels K 1→2
m and K 2→1

m that are related to first- and second-order scattering. (a) Construction of the Hessian
kernel K 1→2

m through the interaction of the the adjoint field u† and the first-order scattered forward field δ1u that is generated when the forward field u impinges
on the model perturbation δm1. The Hessian kernel K 1→2

m , shown as the shaded area, localizes the volume where a perturbation δm2 causes δ1u to generate
a second-order scattered field that affects the measurement at the receiver (•). (b) The Hessian kernel K 2→1

m is the superposition of two influence zones that
correspond to the two sources of the differentiated adjoint field δ1u†. The first source, −∇mL†(u†) δm1, excites a scattered field which then generates a
secondary influence zone (left panel). A first-order scattered field that originates from within this secondary influence zone can then be scattered again from
δm1 and finally affect the measurement at the receiver. The second source of δ1u† is −∇u∇uχ

†(δ1u). The corresponding influence zone extends from source
to receiver and accounts for the first-order scattering contribution represented by the approximate Hessian H̃ (right panel).

The interpretation of the Hessian kernel K 2→1
m = ∫

T δ1u†∇mL(u) dt is slightly more involved because the field δ1u† has two sources, as
we have seen already in eq. (46).

One of the two sources, −∇mL†(u†) δm1, excites a scattered adjoint field that is similar to the scattered forward field δ1u but propagates
in the opposite direction. The interaction of the scattered adjoint field with the forward field u generates another secondary influence zone
that connects the perturbation δm1 to the source. Another perturbation δm2 located within this secondary influence zone causes the forward
field u to excite a first-order scattered field δ2u which then interacts with the perturbation δm1 such that the resulting second-order scattered
field affects the measurement made at the receiver. This is shown schematically in the left part of Fig. 2(b).

The second source of δ1u† is −∇u∇uχ
†(δ1u), which is the derivative of the regular adjoint source. It accounts for the changes of the

adjoint source that are due to the perturbation of the forward wavefield u, and it generates an influence zone that extends from the source
to the receiver (Fig. 2b, right-hand side). A comparison with eq. (34) reveals that −∇u∇uχ

†(δ1u) can be interpreted as the source of the
approximate Hessian H̃ which accounts for the first-order scattering contribution to the full Hessian H .

The complete Hessian kernel K 2→1
m is thus a superposition of (1) a secondary influence zone that corresponds to second-order scattering,

and (2) a primary influence zone that corresponds to the first-order scattering represented by the approximate Hessian.
In the interest of a simplified vocabulary, we will henceforth refer to the wavefield

δ1u† = ∇mu† δm1 = lim
ν→0

1

ν

[
u†(m + ν δm1) − u†(m)

]
, (90)

as the scattered adjoint field, though keeping in mind that it is caused by more than scattering sensu stricto.
The Hessian kernel K 1↔1

m = ∫
T u†∇m∇mL(u)(δm1) dt does not appear to have a straightforward intuitive interpretation. It accounts for

the non-linearity introduced by the parameterization. Whether K 1↔1
δm1

is zero or not, depends strongly on the choice of free parameters, as we
have seen already in Section 3.3.1.

4 H E S S I A N K E R N E L G A L L E RY

To bring the previous developments to life, we continue with specific examples of Hessian kernels for a small selection of data functionals
and model perturbations. Given the infinite number of seismic data functionals and Earth model parameterizations, our Hessian kernel gallery
can naturally not be exhaustive. We nevertheless hope that it provides both physical intuition and a useful illustration of the methodology
outlined in Sections 2 and 3.
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Figure 3. Left-hand side: N–S component synthetic seismogram computed using a spectral-element method (Fichtner & Igel 2008). The time window around
the Love wave used to compute Fréchet and Hessian kernels is shaded in grey. The dominant period is 25 s. Right-hand side: Fréchet kernel K̄vS for a
cross-correlation time-shift measurement on the N–S component Love wave shown to the left-hand side. The source and receiver positions are marked by +
and •, respectively.

4.1 Surface wave interaction with point-localized and extended scatterers

We begin with a detailed example where we consider a N–S component Love wave excited by a shallow event at 10 km depth and observed
at an epicentral distance of 25.2◦ (Fig. 3, left-hand side). To quantify the discrepancy between the observed waveform u0(t) and the synthetic
waveform u(t), we measure the cross-correlation time shift T , defined as the global maximum of the correlation function

C(u0, u)(t) =
∫

T
u0(τ ) u(τ + t) dτ . (91)

We have T > 0 when the synthetic waveform arrives later than the observed waveform, and T < 0 when the synthetic waveform arrives
earlier than the observed waveform. Under the assumption that u0(t) and u(t) are merely shifted in time without being otherwise distorted
with respect to each other, the adjoint source corresponding to the data functional X = T is given by (Luo & Schuster 1991)

f†(x, t) = eNS

||u̇||22
u̇(t) δ(x − xr ) , (92)

where eNS and xr denote the unit vector in N–S direction and the receiver location, respectively. The normalization by the squared L2 norm
||u̇||22 = ∫

T u̇2(t) dt ensures that the resulting Fréchet kernels do not depend on amplitude. Treating observed and synthetic waveforms as
time-shifted versions of each other is a simplified but widely used approach because it leads to kernels that are quasi-independent of the actual
data. We can thus compute kernels without explicitly measuring a time shift.

The computation of the Fréchet kernels follows a well-known recipe. First, we solve the forward problem (eqs 62 and 63) to obtain the
forward field u that is stored at sufficiently many time steps. Snapshots of u, computed with the help of a spectral-element discretization of
the seismic wave equation (Fichtner & Igel 2008), are shown in the left panel of Fig. 4. We then select a time window around the waveform
of interest (Fig. 3, left-hand side) and compute the adjoint source given in eq. (92). The adjoint source f† is the right-hand side of the adjoint
eq. (21), the solution of which is the adjoint field u†, shown in the left panel of Fig. 5. While the adjoint field propagates in reverse time, the
previously stored forward field is loaded and used to compute the Fréchet kernels according to eqs (76) and (77).

The S velocity kernel K̄vS corresponding to the cross-correlation time shift measurement on the N–S component Love wave is shown
in the right panel of Fig. 3. The kernel is dominated by negative sensitivities within the first Fresnel zone, where a positive vS perturbation
leads to earlier-arriving waveforms and to a decrease in the cross-correlation time shift T . The width of the first Fresnel zone is proportional
to

√
Td�, where Td and � denote the dominant period and the length of the ray path between source and receiver, respectively.
The Hessian kernel K 1↔1

m can be computed directly from the Fréchet kernels (eq. 88). Additional simulations are needed for K 1→
m

2 and
K 2→

m
1 because these involve the scattered forward field δ1u and the scattered adjoint field δ1u† (eqs 58 and 59). Both scattered fields can be

computed most conveniently with the help of the finite-difference approximations

δ1u = ∇mu δm1 ≈ 1

ν
[u(m + ν δm1) − u(m)] , (93)

and

δ1u† = ∇mu† δm1 ≈ 1

ν

[
u†(m + ν δm1) − u†(m)

]
, (94)

where ν > 0 is a sufficiently small scalar. In our example, we choose δm1 to be a 10 per cent vS perturbation, δvS1, located within a 50 ×
50 × 50 km3 box-shaped basis function right beneath the surface at nearly equal distance from the source and the receiver (Figs 4 and 5).
The vS perturbation almost acts as a point scatterer because its dimension is small compared to the dominant wavelength of around 130 km.
We are therefore close to the Rayleigh scattering regime. The scattered forward field δ1u is excited when the regular wave front reaches δvS1

which acts as a fictitious source. It then propagates towards the receiver (Fig. 4, right-hand side). In contrast, the pure scattering contribution
to δ1u† collapses into the vS perturbation δvS1 (Fig. 5).

The resulting Hessian kernels K̄ 2→1
vS

, K̄ 1↔1
vS

and K̄ 1→2
vS

are shown separately in the top row of Fig. 6. The kernel K̄ 2→1
vS

is a superposition
of two contributions, labelled F and S. These correspond to the primary influence zone represented by the approximate Hessian (F) and to
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Figure 4. N–S component of the forward wavefield u (left column) and the scattered forward wavefield δ1u plotted at the surface. The source is marked by
+ and the receiver by • (epicentral distance =25.2◦). The location of the vS perturbation is indicated by �. The images are dominated by surface waves.
Small-amplitude body waves are hardly visible. The vS perturbation acts as a point scatterer (Rayleigh scattering), and most of the Love wave energy is scattered
in the forward direction.

the secondary influence zone where second-order scattering affects the measurement (See Fig. 2 for a schematic representation). The kernel
K̄ 1→2

vS
only extends from the receiver to δvS1. Second-order scattering from δvS1 to an S velocity perturbation within K̄ 1→2

vS
has an effect on

the measurement. The kernel K̄ 1↔1
vS

is restricted to the volume occupied by δvS1. The complete Hessian kernel K̄ 1
vS

= K̄ 2→1
vS

+ K̄ 1↔1
vS

+ K̄ 1→2
vS

is shown in the bottom row of Fig. 6.
An interesting observation is that the sign of K̄ 1

vS
within the secondary influence zones is opposite (positive) to the sign within the

primary influence zone (negative) that corresponds to the approximate Hessian. The widths of the secondary influence zones is proportional
to

√
Td�s→1 and

√
Td�1→r , where the �s→1 and �1→r signify the length of the ray paths from the source to δvS1 and from δvS1 to the receiver,

respectively. This explains why the secondary influence zones are slim compared to the primary influence zone (labelled F in Fig. 6) where
the width is proportional to

√
Td (�s→1 + �1→r ).

The Hesian kernel K 1
m shown in Fig. 6 can be interpreted as the continuous representation of the row of the Hessian matrix H that

corresponds to the basis function coincident with δvS1. The fully discrete row is obtained by projecting K 1
m onto the basis functions, according

to eq. (61).
The amplitude of the Hessian kernel K̄ 1

vS
for δvS1 located near the centre of the first Fresnel zone is about two orders of magnitude

smaller than the amplitude of the Fréchet kernel. This suggests that the single-scattering approximation is well justified in this particular
scenario. Locating δvS1 further away from the first Fresnel zone rapidly decreases the amplitude of the corresponding Hessian kernels, as can
be seen in Fig. 7. The small second derivatives result from the long propagation distance of the scattered waves that arrive too late to have a
significant effect inside the Love wave time window (Fig. 3, left-hand side).

The recipe for the computation of Hessian kernels is equally applicable when the model perturbation (or basis function) does not
effectively act as a point scatterer, as in the previous example. For a spatially extended model perturbation δvS1, such as the one shown in
Fig. 8, we are in the Mie scattering regime where the characteristic size of the scatterer is much larger than the dominant period. To calculate
the Hessian kernel corresponding to δvS1, we again compute the scattered fields δ1u and δ1u† using the finite-difference approximations from
eqs (93) and (94), respectively. The finite-difference step length ν must be sufficiently small to ensure the convergence of the approximation.
For the specific perturbation in Fig. 8, we found ν = 1/100 to be appropriate.

Slices through the resulting Hessian kernel K 1
vS

are shown in Fig. 9. As expected for Love waves, the Hessian kernel is largest near the
surface and decays rapidly with increasing depth. An interesting observation is the strong asymmetry of the Hessian kernel, as compared to
the one computed for an effective point scatterer (Fig. 6). The origin of the asymmetry is difficult to identify on the basis of purely numerical
simulations, though we hypothesize that it is related to the non-isotropic radiation pattern of the regular source.
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Figure 5. N–S component of the adjoint wavefield u† (left column) and the pure scattering contribution to δ1u† (disregarding the contribution to δ1u† from
the change of the adjoint source) plotted at the surface. The adjoint wavefield emanates from the receiver (•) and propagates in reverse time towards the source
(+). The adjoint source corresponds to the measurement of a cross-correlation time-shift of the N–S component Love wave at a dominant period of 25 s. The
location of the vS perturbation is indicated by �. Most of the Love wave energy is scattered forward, that is, in the propagation direction of the adjoint field.
The contribution to δ1u† that comes from the perturbation of the adjoint source (see eq. 34 and Section 3.3.2) is not shown to enhance the visibility of the pure
scattered wave.

4.2 P body waves and the second-order effect of density

The application of the previously described methodology to other types of seismic waves is straightforward and merely requires the choice of
different time windows. In the following example, we consider the measurement of a cross-correlation time shift on the vertical component
of an 8 s P body wave in the same source–receiver geometry as above. We furthermore extend the analysis to the multiparameter case. The
Fréchet kernels for vP, vS and ρ are displayed in Fig. 10(a). As expected, the P wave traveltime is mostly affected by perturbations in vP,
whereas variations in vS and ρ have hardly any first-order effect.

To study second-order effects on the finite-frequency traveltime of the P wave, we again place a 50 × 50 × 50 km3 P velocity perturbation,
δvP1, in the centre of the first-order first Fresnel zone of the vP Fréchet kernel K̄vP . The dimension of δvP1 is small compared to the wavelength
(∼100 km), meaning that we are close to the Rayleigh scattering regime. The corresponding Hessian kernels, shown in Fig. 10b, contain two
symmetric lobes that meet at the location of the scatterer. These lobes correspond to the second-order scattering contribution to the Hessian,
and are labelled S in the K 1

vP
kernel. The contribution from the approximate Hessian, labelled F, is clearly visible only in K 1

vP
. The Hessian

kernels K 1
vS

and K 1
ρ are small compared to K 1

vP
. This indicates that second-order scattering from perturbations of different nature, that is, one

perturbation in vP and another one in ρ or vS , is rather inefficient.
For a scatterer located outside the first Fresnel zone, we observe a similar decrease of the Hessian kernels as for surface waves (see

Fig. 7). In the specific case of a vP perturbation near the surface, the corresponding Hessian kernels are around two orders of magnitude
smaller than the kernels for δvP1 located in the centre of the Fréchet kernel (Fig. 10c). The fact that scattering from near the surface affects
the traveltime measurement at all, can be explained with the finite-frequency content of the P waveform. Doubly-scattered energy from δvP1

and another vP perturbation located within the support of K̄ 1
vP

can still arrive in the measurement window of the P wave that is around 15 s
long.

The kernels shown in Figs 10(a) and (b) reveal that density perturbations have hardly any effect of the finite-frequency traveltime of
P waves through first-order scattering or second-order scattering that also involves a P velocity perturbation. To see whether second-order
scattering from two density perturbations can influence the P wave traveltime, we repeat the example from Fig. 10(b), but we replace δvP1 by
a density scatterer δρ1. The resulting Hessian kernels, shown in Fig. 10(d), are practically zero, thus indicating that variations in density do
not have any significant second-order effect on P wave traveltimes at all.

This observation is closely related to the characteristics of Rayleigh scattering from density perturbations (e.g. Wu & Aki 1985; Tarantola
1986). For δρ1 �= 0 and δvP1 = δvS1 = 0 most of the energy is scattered in the direction opposite to the propagation direction of the incident
wave (Fig. 11). Therefore, the scattered forward field δ1u does not interact with the adjoint field u†, and the partial Hessian kernel K 1→2

m is
close to zero. Similarly, the scattered adjoint field δ1u† propagates in a direction opposite to the adjoint field u†, so that the interaction of
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Figure 6. Hessian kernels plotted at the surface of the Earth. The position δvS1 is indicated by ◦. Top row: The individual Hessian kernels K̄ 2→1
vS

, K̄ 1↔1
vS

and

K̄ 1→2
vS

(from left-hand side to right-hand side). The kernel K̄ 2→1
vS

has two contributions, labelled F and S. Contribution F represents the primary influence zone
that corresponds to the approximate Hessian. Contribution S, encircled by a dotted curve, is a secondary influence zone where second-order scattering affects
the measurement. (In Section 5.1, we show how the approximate Hessian can be computed separately.) Bottom row: Composite Hessian kernel K̄ 1

vS
. The the

contribution from second-order scattering is again encircled by a dotted curve and marked with S.

Figure 7. Hessian kernel K̄ 1
vS

corresponding to an S velocity perturbation δvS1 that is located in the outer rim of the Fréchet kernel shown in Fig. 3. The

position δvS 1 is indicated by ◦. The amplitude of K̄ 1
vS

is one order of magnitude smaller than in Fig. 6 where δvS 1 was located near the centre of the first
Fresnel zone of the Fréchet kernel.

δ1u† with the forward field u is not possible. It follows that K 2→1
m is approximately zero as well. Finally, we have K 1↔1

m = 0 for pure density
perturbations (eq. 88), and the complete Hessian kernel K 1

m = K 2→1
m + K 1↔1

m + K 1→2
m nearly vanishes.

5 F U L L H E S S I A N V E R S U S A P P ROX I M AT E H E S S I A N

The approximate Hessian H̃ is commonly used as a computationally less expensive substitute of the full Hessian H , because its computation
merely requires first derivatives. To explore the potential differences between H̃ and H , we consider—as an example—a realistic 3-D full
waveform tomography. As a preparatory step, however, we expand on the computation of approximate Hessian kernels, using the methodology
developed in Sections 2 and 3.

5.1 Computing approximate Hessian kernels

The approximate Hessian is defined as that part of the full Hessian that does not contain second derivatives (see eq. 34)

H̃ (δm1, δm2) = 〈∇u∇uχ (δ1u, δ2u)〉 = 〈
δ2u∇u∇uχ

†(δ1u)
〉
. (95)

Our goal is again to isolate the second model perturbation δm2. For this, we define an approximate scattered adjoint field δ1ũ† as the solution
of the adjoint equation

L†(δ1ũ†) = −∇u∇uχ
†(δ1u) . (96)

C© 2011 The Authors, GJI, 185, 775–798

Geophysical Journal International C© 2011 RAS



Hessian kernels 791

Figure 8. Horizontal (top) and vertical (bottom) slice through the extended vS perturbation used to compute the Hessian kernel K̄ 1
vS

shown in Fig. 9. The
maximum perturbation of 0.4 km s−1 near the surface is equal to 10 per cent of the background S velocity.

Figure 9. Horizontal (left-hand side) and vertical (right-hand side) slices through the Hessian kernel K̄ 1
vS

that corresponds to the vS perturbation shown in
Fig. 8.

The comparison of (96) with eq. (46) reveals that δ1ũ† is the contribution to the scattered adjoint field δ1u† that is excited only by the change
of the adjoint source. Inserting (96) into (95) yields

H̃ (δm1, δm2) = − 〈
δ2uL†(δ1ũ†)

〉 = − 〈
δ1ũ†L(δ2u)

〉
. (97)

Then, upon using eq. (48), we can rewrite (97) as

H̃ (δm1, δm2) = 〈
δ1ũ†∇mL(u) δm2

〉
. (98)

From (98) we finally infer that the approximate Hessian kernel K̃ 1
m is given by

K̃ 1
m =

∫
T

δ1ũ†∇mL(u) dt . (99)

With eq. (99) in mind we now delve into our example that allows us to study the potential differences between the approximate and full
Hessians in a realistic application.

5.2 A realistic example (Influences on our perception of the Iceland plume)

We consider a long-period full waveform tomography for the European upper mantle that is summarized in Fig. 12. The data used in the
inversion are three-component seismograms with a dominant period of 100 s, that provide a good coverage of central and northern Europe
(Fig. 12, left-hand side). The inversion was based on the measurement of time- and frequency-dependent phase differences (Fichtner et al.
2008). As initial model we used the 3-D mantle structure from S20RTS (Ritsema et al. 1999) combined with the crustal model by Meier
et al. (2007a,b). After three conjugate-gradient iterations we obtained the tomographic images that are shown in the centre and right panels
of Fig. 12, in the form of perturbations relative to the 1-D model AK135 (Kennett et al. 1995). The achieved waveform fit and the reduction
of the initial misfit by nearly 70 per cent indicate that the tomographic model is at least close to optimal.

One of the most prominent features in the images is the Iceland plume (Fig. 12, right-hand side) that we choose as our model perturbation
δvS1. Horizontal slices through the isolated Iceland plume are shown in the left column of Fig. 13. Then, following the methodology from
Sections 2, 3 and 5.1, we compute the corresponding approximate and full Hessian kernels, displayed in the centre and right columns of
Fig. 13, respectively.
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Figure 10. Fréchet and Hessian kernel gallery for the cross-correlation time-shift on the vertical component of an 8 s P wave. The source–receiver geometry
is the same as in Fig. 3. (a) Fréchet kernels for vP, vS and ρ (from left-hand side to right-hand side). (b) Hessian kernels K̄ 1

vP
, K̄ 1

vS
and K̄ 1

ρ (from left-hand

side to right-hand side) for a vP perturbation δvP1. The position of δvP1 is indicated by ◦. In the K̄ 1
vP

kernel the contributions from the second-order scattering

and the approximate Hessian are outlined by dash-dotted curves and labelled S and F, respectively. The amplitudes of K̄ 1
vS

and K̄ 1
ρ are small compared to the

amplitude of K̄ 1
vP

. (c) The same as in (b) but for a vP perturbation located directly beneath the surface (◦). The kernels are comparatively small but different
from zero, indicating that second-order scattering from far outside the Fréchet kernel may affect the measurement because the P wave window is sufficiently
long (∼15 s). (d) Hessian kernels K̄ 1

vP
, K̄ 1

vS
and K̄ 1

ρ (from left-hand side to right-hand side) for a density perturbation δρ1. The position of δρ1 is indicated
by ◦. The kernels are characterized by rapid variations that are localized around the density perturbation. Compared to the Hessian kernels for a vP perturbation
in (b), the density Hessian kernels have small amplitudes, indicating that ρ has hardly any second-order effect on the finite-frequency traveltime of P waves.

Each of the kernels can be interpreted as the continuous representation of that row in the (approximate or full) Hessian that is associated
with the Iceland plume. The volume occupied by the plume itself, and indicated by dashed circles in Fig. 13, represents the diagonal element.
Off-diagonal elements correspond to volumes outside the plume.

Using this terminology, we can say that the diagonal elements of the approximate and full Hessian kernels are nearly identical at depths
of around 100 km. This similarity, however, decreases steadily with increasing depth. Large differences in the off-diagonal elements, including
opposite signs, are most pronounced beneath Greenland and Central Europe. This indicates that the second-order scattering contribution to
the Hessian may not be negligible, even in the vicinity of the optimal model.

The Hessian kernels from Fig. 13 already provide semi-quantitative insight into where and how our image of the Iceland plume is
affected by vS structure elsewhere in the upper mantle. While structure beneath southern and eastern Europe has no effect on our perception
of the plume (K 1

vS
= 0), its average vS is dependent on vS beneath northern Europe and parts of Greenland (K 1

vS
�= 0). Based on the quadratic

approximation of the misfit functional (eq. 3) we infer that increasing vS in regions where K 1
vS

< 0 can partly be compensated by decreasing
vS within the plume volume, and vice versa. Note that the approximate Hessian kernel K̃ 1

vS
would lead us to the erroneous conclusion that

a decrease (increase) of vS beneath Greenland combined with a decrease (increase) of the average plume vS would have little effect on the
misfit X .
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Figure 11. Vertical slices through the E–W (left-hand side), N–S (centre) and Z components of the scattered velocity field δu̇. The snapshots are taken 30 s
after the P wave reached the density perturbation δρ1, marked by ◦. The direction of the incident P wave is indicated by left-pointing arrows. Clearly visible is
the backward scattering associated with δρ1 > 0 and δvS1 = δvP1 = 0. Hardly any energy is scattered in the propagation direction of the regular wavefield u.

Figure 12. Full waveform tomography for the European upper mantle. Left-hand side: Ray coverage. Centre: Relative S wave speed perturbations at 100 km
depth. Right-hand side: Zoom on the Iceland hotspot at various depth levels. The reference model is AK135 (Kennett et al. 1995).

6 D I S C U S S I O N

In the previous sections, we presented an extension of the well-known adjoint method that allows us to compute the second derivatives of
seismic data functionals with respect to Earth model parameters. The Hessian applied to a model perturbation, Hδm, can be represented by
Hessian kernels that are similar to Fréchet kernels but also involve scattered forward and adjoint fields. This work is intended to serve as
a technical prelude for the implementation of Newton’s method and the development of quantitative resolution analyses in full waveform
inversion. In the following paragraphs, we discuss issues related to computational aspects and to the interpretation of the Hessian kernels.

6.1 Computational requirements and the practical usefulness of Hessian kernels

The computing time required for the calculation of Hessian kernels is twice as long as for Fréchet kernels, because four instead of two
wavefield simulations are needed. First, the regular wavefield u has to be modelled and stored at sufficiently many intermediate time steps.
The Fréchet kernel Km and the partial Hessian kernel K 1↔1

m can be computed during the adjoint simulation from the interaction of u and the
adjoint field u†. Two additional simulations are then needed for the perturbed regular and adjoint fields, u(m + νδm1) and u†(m + νδm1),
that enter the finite-difference approximations for δ1u and δ1u†, respectively (eqs 93 and 94).

The comparatively high numerical costs involved in the computation of Hδm1 ≡ K 1
m naturally constrain the practical usefulness of the

Hessian kernels. The competitiveness of Newton’s method in particular will depend critically on the development of efficient algorithms that
yield good approximate solutions of Newton’s eq. (2) with as few evaluations of Hδm as possible. At least for 1-D full waveform inversion,
a full Newton method has already proven efficient (Santosa & Symes 1988; Pratt et al. 1998).

When second derivatives are used for resolution analysis, then we are in a more favourable situation. This is because the Hessian need not
be inverted to obtain a quadratic approximation of the misfit functional X (eq. 3). The second-order expansion of X about the optimal model
already provides invaluable information about resolution and trade-offs. By choosing model perturbations δm to coincide with well-defined
geological objects, the Hessian kernel formalism can be used to quantify their effect on the misfit as well as mutual dependencies (Fichtner
2010). Only for a covariance analysis sensu stricto, the inverse Hessian needs to be approximated iteratively.
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Figure 13. Comparison of approximate and full Hessian kernels. Left-hand side column: Slices through the Iceland plume, which serves as model perturbation
δm1 = (0, 0, δvS 1). Central column: Slices through the approximate Hessian kernel K̃ 1

vS
. The dashed circle indicates the approximate location of the model

perturbation. Right-hand side column: Slices through the full Hessian kernel K 1
vS

. The colour scales for the approximate and full Hessian kernels are the same
at each depth level.

6.2 Inversion for density?

Our seismically inferred knowledge on density structure is comparatively poor and almost exclusively based on the gravitational effect on
long-period free oscillations (Kennett 1998; Ishii & Tromp 2001, 2004; Resovsky & Trampert 2003; Trampert et al. 2004). This is because
the sensitivity of traveltime observations to density is practically zero (see for instance Fig. 10a). However, 2-D and 3-D synthetic full
waveform inversions suggest that variations in ρ may also be constrained by short-period data where gravity is negligible (Köhn et al. (2010);
Y. Capdeville, private communication, 2008). Our hope was therefore that density structure may have a second-order effect on traveltimes.
Unfortunately, this does not seem to be the case (Figs 10b and d).

While one may argue that traveltime is not an adequate measurement to detect density variations, the scattering characteristics shown
in Fig. 11 suggest that the invisibility of ρ is a more general phenomenon, at least in a transmission tomography setting. Modifications of
the measurement will affect the details of the adjoint field. Yet, the scattering direction of the regular and adjoint fields from a pure density
perturbation with δvS = δvP = 0 will remain to be opposite to the respective incidence directions. It follows that the second derivatives of
any transmission tomography data functional with respect to density are small, provided that the Earth model is parameterized in terms of
vP, vS and ρ. Changing the parameterization for instance to m = (κ , μ, ρ), will cause the density derivatives to become alive, though at the
expense of substantial trade-offs between the parameters.
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6.3 Full Hessian versus approximate Hessian

As we have seen in Section 5, the approximate Hessian H̃ can differ substantially from the full Hessian H , even when the model is close to
optimal. The differences include sign changes and are most pronounced in the off-diagonal elements.

The explanation for the discrepancy between H̃ and H is contained in eq. (6), and it has two components. (1) The inherent non-linearity
of the phase difference measurements and (2) The remaining waveform misfit that is non-zero despite the near-optimality of the model.
Both factors appear to be very general because realistic misfits are never zero, and because any measurement has a non-linear contribution.
Therefore, we hypothesise that the approximate and full Hessians will be different in other applications as well. This conjecture is supported
by the results of Santosa & Symes (1988), who conducted 1-D synthetic waveform inversions.

The extent to which the difference between H̃ and H is practically relevant, depends strongly on the particular application. The
approximate Hessian is likely to be more efficient when only the diagonal elements are used to pre-condition a descent direction within an
iterative optimization scheme. However, in Newton-like methods that include the off-diagonal elements, the full Hessian may effectively lead
to faster convergence. To the best of our knowledge, there is so far no experience concerning this issue. A quantitative comparison between
conjugate-gradient (e.g. Mora 1987, 1988; Tape et al. 2007; Fichtner et al. 2009), quasi-Newton (e.g. Liu & Nocedal 1989; Pratt et al. 1998;
Epanomeritakis et al. 2008; Brossier et al. 2009) and full Newton methods for realistic large-scale problems remains to be done.

In the context of resolution analysis, the full Hessian should be used because the approximate Hessian can lead to erroneous inferences
concerning trade-offs between model parameters, as we have seen in the example from Fig. 13. Only the full Hessian allows us to correctly
account for the effect of non-linearity on model resolution.

6.4 Amplitude of traveltime Hessian kernels

Fréchet kernels describe the first-order effect of structure on the measurement. For instance, a positive vP anomaly placed within the first
Fresnel zone of the Fréchet kernel in Fig. 10(a) decreases the P wave traveltime shift T because the synthetic P wave arrives earlier. The
influence of the second-order effect is less clear because the Hessian kernels contain both strong negative and positive contributions. In
any case, the physical relevance of the second-order effect of course needs to be considered relative to both the first-order effect and the
unknown contributions of orders three and higher. A comparison of the Fréchet and Hessian kernels shown in Figs 3, 6 and 9 reveals, that the
second-order effect on traveltimes can be nearly as large as the first-order effect, provided that the extent of the heterogeneity is sufficiently
large. From our experience, however, we know that traveltime is quasi-linearly related to large-scale Earth structure (e.g. Tong et al. 1998).
This suggests that the cumulative contribution of all higher-order terms may to some extent compensate for the non-linearity that the second
derivatives appear to suggest.

7 C O N C LU S I O N S

We presented an extension of the well-known adjoint method to the computation of the Hessian applied to a model perturbation. The
calculations involve the forward wavefield and the adjoint wavefield, as well as their scattered versions. Our approach naturally leads to the
concept of Hessian kernels that can be interpreted as the continuous representation of rows (or columns) in the discrete Hessian matrix. The
Hessian kernels appear as the superposition of (1) a first-order influence zone that represents the approximate Hessian and (2) second-order
influence zones that represent second-order scattering. The Hessian kernels can be represented in terms of Fréchet kernels, which allows for
their easy computation using codes with pre-existing adjoint capabilities.

In a series of examples, we examined second-order effects on finite-frequency traveltimes of both surface and body waves. From this we
draw the following conclusions: (1) The second-order effect is relevant only when heterogeneities are located within the first Fresnel zone.
This is consistent with ray-theory. (2) Second-order scattering that involves heterogeneities of different nature (e.g. vP and vS perturbations)
appears to be inefficient, at least for P waves. (3) Second derivatives of any data functional with respect to density are nearly zero, provided
that the model is parameterized in terms of density and seismic wave speeds. This result can be explained with the backward-scattering from
density perturbations.

Based on a realistic full waveform tomography for European upper-mantle structure, we have shown that significant differences exist
between the approximate Hessian and the full Hessian, even in the vicinity of the optimal model. These differences are largest for the
off-diagonal elements, and most relevant in resolution and trade-off analysis.
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A P P E N D I X A : C O M PA R I S O N W I T H T H E D I S C R E T E A D J O I N T M E T H O D

The discrete adjoint method is a special case of the more general continuous adjoint method, applied to physical systems that are governed
by algebraic equations. These systems can be either inherently discrete, or they can be the result of a discretization process. In this section,
we establish close links between the continuous adjoint method as presented in Section 2 and the discrete adjoint method as it is commonly
used for 2-D full waveform tomography in the frequency domain (e.g. Dessa et al. 2004; Bleibinhaus et al. 2007, 2009; Smithyman et al.
2009). Our development is slightly more general than the one presented by Pratt et al. (1998) and Pratt (1999) because it does not rely on a
least-squares misfit functional.

A1 First derivatives

We start with the generic form of the space-discretized wave equation in the frequency-domain

−ω2Mū(ω) + Kū(ω) = f̄(ω) , (A1)

where M, K and ū represent the mass matrix, the stiffness matrix and a discrete version of the seismic displacement field. The variables ω

and f̄ are the angular frequency and the discrete external force density. Defining the impedance matrix L(ω) = −ω2M + K, we can rewrite
eq. (A1) in the form of a simple matrix-vector equation

Lū = f . (A2)

The matrix L now contains all the structural information of the Earth model, that is, L = L(m). Furthermore, we assume that the model space
� is finite-dimensional, so that any model m ∈ � can be written in the form of a vector with n < ∞ components

m = (m1, m2, . . . , mn) . (A3)

We are interested in the partial derivatives of the data functional X (m) = X [ū(m)] with respect to the model parameters mi

∂X
∂mi

= ∇uX
∂ū

∂mi
. (A4)

To eliminate ∂ū/∂mi from eq. (A4) we differentiate the discrete wave eq. (A2) with respect to mi

∂L

∂mi
ū + L

∂ū

∂mi
= 0 , ⇒ ∂ū

∂mi
= −L−1 ∂L

∂mi
ū . (A5)
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The appearance of the inverse L−1 in eq. (A5) is purely symbolic. It does not have to be computed in practice. Substituting eq. (A5) into
eq. (A4) yields

∂X
∂mi

= −∇uX
(

L−1 · ∂L

∂mi

)
ū = −ū

[
∂LT

∂mi
(L−1)T

]
∇uX . (A6)

We now define the discrete adjoint wavefield ū† as the solution of the adjoint equation

LT ū† = −∇uX . (A7)

Clearly, eq. (A7) corresponds to the adjoint equation ∇uL†ū† = −∇uχ
† that we found in the continuous case (eq. 21). With the help of the

discrete adjoint field ū† we can now obtain a simple expression for ∂X /∂mi

∂X
∂mi

= ū† ∂L

∂mi
ū . (A8)

As in the continuous case, the computation of the partial derivatives of X reduces to the solution of the adjoint eq. (A7) with an adjoint source
determined by the data functional. The continuous counterpart of eq. (A8) is ∇mX δm = 〈ū†∇mL δm〉 (eq. 22).

A2 Second derivatives

Following the recipe from the previous section, we can derive an expression for the second derivative of X in terms of the adjoint field ū†, as
defined in eq. (A7). Differentiating X first with respect to mi and then with respect to mj gives

Hi j = ∂2X
∂mi∂m j

= H̄i j + ∇uX
∂2ū

∂mi∂m j
, (A9)

where the components of the approximate Hessian are defined as

H̄i j = ∂ū

∂mi
(∇u∇uX )

∂ū

∂m j
. (A10)

In contrast to the full Hessian, Hij, the approximate Hessian merely involves first derivatives which makes its practical computation via the
standard adjoint method comparatively straightforward. To eliminate the second derivative ∂2ū

∂mi ∂m j
from eq. (A9), we differentiate the forward

problem (A2) twice

∂2L

∂mi∂m j
ū + ∂L

∂mi

∂ū

∂m j
+ ∂L

∂m j

∂ū

∂mi
+ L

∂2ū

∂mi∂m j
= 0 . (A11)

The rearrangement of eq. (A11) provides an explicit expression for ∂2ū
∂mi ∂m j

,

∂2ū

∂mi∂m j
= −L−1

(
∂2L

∂mi∂m j
ū + ∂L

∂mi

∂ū

∂m j
+ ∂L

∂m j

∂ū

∂mi

)
, (A12)

that we substitute into eq. (A9)

Hi j = H̄i j − ∇uX
[

L−1

(
∂2L

∂mi∂m j
ū + ∂L

∂mi

∂ū

∂m j
+ ∂L

∂m j

∂ū

∂mi

)]

= H̄i j −
[(

∂2L

∂mi∂m j
ū + ∂L

∂mi

∂ū

∂m j
+ ∂L

∂m j

∂ū

∂mi

)T

(L−1)T

]
∇uX . (A13)

Again defining the adjoint field ū† as the solution of

LT ū† = −∇uX , (A14)

yields the desired formula for Hij that is free of the explicit inverse of L and that does not contain second derivatives of ū

Hi j = H̄i j + ū†
(

∂2L

∂mi∂m j
ū + ∂L

∂mi

∂ū

∂m j
+ ∂L

∂m j

∂ū

∂mi

)
. (A15)

Eq. (A15) is the discrete analogue of the Hessian for time- and space-continuous problems (eq. 44).
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