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S U M M A R Y
We investigate common approximations and assumptions in seismic interferometry. The in-
terferometric equation, valid for the full elastic wavefield, gives the Green’s function between
two arbitrary points by cross-correlating signals recorded at each point. The relation is exact,
even for complicated lossless media, provided the signals are generated on a closed surface
surrounding the two points and are from both unidirectional point-forces and deformation-
rate-tensor sources. A necessary approximation to the exact interferometric equation is the use
of signals from point-force sources only. Even in simple layered media, the Green’s function
retrieval can then be imperfect, especially for waves other than fundamental mode surface
waves. We show that this is due to cross terms between different modes that occur even if a
full source boundary is present. When sources are located at the free surface only, a realistic
scenario for ambient noise, the cross terms can overwhelm the higher mode surface waves.
Sources then need to be very far away, or organized in a band rather than a surrounding surface
to overcome this cross-term problem. If sources are correlated, convergence of higher modes is
very hard to achieve. In our examples of simultaneously acting sources, the phase of the higher
modes only converges correctly towards the true solution if sources are acting in the stationary
phase regions. This offers an explanation for some recent body wave observations, where only
interstation paths in-line with the prevailing source direction were considered. The phase error
resulting from incomplete distributions around the stationary phase region generally leads to
an error smaller than 1 per cent for realistic applications.
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1 I N T RO D U C T I O N

Seismic interferometry is a relatively young and fast expanding field
both theoretically and experimentally (see reviews by Campillo
2006; Curtis et al. 2006; Gouédard et al. 2008a; Snieder et al.
2009). It allows to reconstruct the Green’s function between two
receivers by cross correlating the signals received at both receivers.
A first mathematical demonstration of the principle was provided by
Lobkis & Weaver (2001) assuming that the wavefields were diffuse.
A more general demonstration based on representation theorems
was given by Wapenaar (2004). Experimental proof was given by
Weaver & Lobkis (2001), Campillo & Paul (2003), Larose et al.
(2004) and Malcolm et al. (2004). An elegant intuitive derivation
of the principle is given by Derode et al. (2003), who showed the
connection between interferometry and time reversal, and Snieder
(2004) who applied stationary phase principles. Since then a vast
number of applications have been proposed (Campillo 2006; Curtis
et al. 2006; Gouédard et al. 2008a; Snieder et al. 2009). Most
applications have been in ambient noise tomography (e.g. Sabra
et al. 2005; Shapiro et al. 2005; Yang et al. 2007; Picozzi et al.
2009; Nishida et al. 2009). In these studies, only the fundamental

mode surface wave is retrieved. Our main motivation is to focus on
the retrieval of overtones. Overtones are of great interest for imaging
because they could substantially reduce uncertainties in tomography
and improve depth resolution. Although body wave observations
have been reported in noise studies (Roux et al. 2005b; Gerstoft
et al. 2008), often only the fundamental mode surface waves are
retrieved. The identification of reflections (Draganov et al. 2007,
2009) require a great deal of processing to remove the surface wave
component. In this study we investigate the possibility to retrieve
higher modes in detail.

The most general demonstration of the interferometric theorem is
based on representation theorems of the correlation type (de Hoop
1995). Wapenaar (2004) and van Manen et al. (2006) showed that
the Green’s function between two arbitrary points is given by

Gim(xA, xB, ω) − G∗
im(xA, xB, ω)

= −
∮

S

[
Gin(xA, x, ω)n j cnjkl∂k G∗

ml (xB, x, ω)

− n j cnjkl∂k Gil (xA, x, ω)G∗
mn(xB, x, ω)

]
dS (1)

The left-hand side represents the particle displacement (in the fre-
quency domain) in the i-direction at location xA, due to an impulsive

C© 2010 The Authors 461
Journal compilation C© 2010 RAS

Geophysical Journal International



462 W. P. Kimman and J. Trampert

point force in the m-direction at xB. The asterisk denotes complex
conjugation. The source positions x are located on an arbitrary en-
closed surface S with normal n j . The term n j cnjkl∂k Gil (xA, x, ω)
represents the particle displacement at xA due to a deformation-rate-
tensor source at x. Here ∂k is the partial derivative in the k-direction
of the Green’s function, and cnjkl the stiffness tensor at the source
location. Eq. (1) is exact for a full wavefield in any lossless elastic
medium. The theory can be extended to attenuating media if inter-
ferometry by deconvolution (Wapenaar et al. 2008) is applied. The
Green’s function between points xA and xB can thus be reconstructed
from a summation of cross correlations between a Green’s function
at one receiver, and the traction associated to a Green’s function
at the other. Invoking reciprocity (Aldridge & Symons 2001) one
could consider recording the gradient of the wavefield (Curtis &
Robertsson 2002) to replace the tractions associated to the Green’s
function. This would however require more complicated recording
configurations (involving buried receivers) than usually available,
and the knowledge of the local stiffness parameters. Instead, an ap-
proximation is made to replace the traction (often referred to as a
dipole source) by a scaled Green’s function or displacement (often
referred to as a monopole source). If the wavefield is diffuse and
the energy is equipartitioned (i.e. all elastic modes are excited with
the same amplitude), the approximation leads to the correct Green’s
function (Weaver & Lobkis 2001).

In the real Earth, the distribution of noise sources is not uniform.
This can be a further problem for retrieving the Green’s function.
At around 1 Hz, seismic noise is generated from wind and local
meteorological conditions, while higher frequency noise (>1 Hz)
originates mostly from human activities (Bonnefoy-Claudet et al.
2006a). Lower frequency (<0.5 Hz) noise sources have an oceanic
origin. Microseisms are thought to originate from surface pressure
oscillations caused by the interaction between opposite travelling
waves that have the same frequency in the ocean wave spectrum
(Longuet-Higgins 1950). The exact mechanism of coupling how-
ever is unknown. Microseismic sources can be very limited in aper-
ture and seasonally dependent (Stehly et al. 2006; Tanimoto et al.
2006). Furthermore, local storms and hurricanes can prove to be mi-

croseismic sources (Gerstoft et al. 2008). In general, noise sources
are thought to act close to the surface (Rhie & Romanowicz 2004).
In the following, we investigate the effect of imperfect source dis-
tributions in azimuth, and configurations with free surface sources
only, on the success of the Green’s function retrieval.

For non-diffusive waves, an expression for isolated surface wave
modes in the far field has been derived with the stationary phase
approximation (Halliday & Curtis 2008).

Gim(xA, xB, ω) − G∗
im(xA, xB, ω)

≈ −2iω
∮

S
A(ω)Gip(xA, x, ω)G∗

mp(xB, x, ω)dS, (2)

where A(ω) is a frequency-dependent scale factor. The repeated
subscript p indicates a summation of x-, y-, and z-directional point
forces at every source location on the surrounding integration sur-
face. The term iω in the frequency domain is equivalent to taking a
time derivative in the time domain. Eq. (2) is always valid for iso-
lated surface wave modes. The expression can be summed on both
sides over all modes to yield the full Green’s function. Halliday &
Curtis (2008) predict that the cross terms cancel in the far field
approximation. This summation requires that pure mode Green’s
functions are recorded (right-hand side of eq. 2), but in real appli-
cations the wavefield is multimode, and the frequency-dependent
amplitude factor A(ω) is unknown and ignored. The notation of
Wapenaar & Fokkema (2006) considers the complete wavefield and
gives a similar result, but sources are expressed in pure P- and
S- wave potentials. We generated seismograms using a 3-D finite-
difference code (Kristek et al. 2002; Moczo et al. 2002) which
calculates displacements and stresses. The computed wavefields
are from uncorrelated sources (sequentially fired) on a surround-
ing surface. We first applied eqs (1) and (2) in a homogeneous
medium. This is the canonical case described in Sanchez-Sesma &
Campillo (2006), where the necessary conditions for equipartition-
ing are satisfied in the far field. We find that the recovered Green’s
function matches the directly computed Green’s function for both
equations (Fig. 1). The result is perfectly antisymmetric around t =
0, but for clarity we only plot the causal part. However, as soon as
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Figure 1. On the left-hand side, the typical rectangular source distribution (red dots) used for Figs 1 and 2. This configuration is chosen since it is the simplest
shape to compute the normals in eq. (1), which puts no constraints on the integration shape. The normals at the edge points are taken (± 1
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Dimensions for this example, that of a homogeneous half-space, are 2730 × 1330 m, with a spacing of 7 m. No sources on top of the free surface are required
(Wapenaar 2004). The retrieved component Gxx is compared to the directly computed response (red). The two receivers are located at the free surface, in-line in
the x-direction with an interstation distance of 2100 m. The Green’s function, composed of a direct P, and a Rayleigh wave is retrieved with minor differences.
Medium properties are: Vp = 1200 m s−1, Vs = 700 m s−1 and ρ = 1100 kg m−3. The resulting Rayleigh wave phase velocity is 642.7m s−1. Plotted is the
causal part of the retrieved Green’s function correlated with the source wavelet. All sources are uncorrelated and have the same spectrum, near flat between
2–8 Hz. For computational simplicity, the sources and receivers are interchanged using reciprocity. Since a staggered FD grid is used there is also a slight
discrepancy between the different positions for displacements and stresses.
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Figure 2. Retrieval (black) for the layered model in Table 1, using eq. (1) (top panel), versus the result using three orthogonal point forces only (bottom
panel). The interstation distance is 2940 m in this example. Dimensions of the source grid are 5691 x 1606 m, with a spacing of 7 m. Almost all frequencies
satisfy the far field approximation, and the very dense sampling excludes aliasing effects. The approximate equation fails where the exact equation perfectly
retrieves the true Green’s function (red). From the model in Table 1, we know that the Green’s function contains three overtones arriving at the same time before
the fundamental mode.

the medium is complicated by introducing layering, the monopole
approximation shows amplitude differences and spurious arrivals
(Fig. 2). The amplitude differences are to be expected since we
neglected the unknown scaling A(ω), but the spurious arrivals are
surprising. Snieder et al. (2006) first identified spurious arrivals in
the case of inhomogeneous source distributions. Halliday & Curtis
(2008) also identified spurious events for imperfect source distribu-
tions, and showed that they are due to cross terms between different
modes. In our experiments, we find that the spurious arrivals exist
even with a perfect source distribution (of a surrounding surface),
and we will show that these are due to these same cross terms. This
could be important for the retrieval of overtones because they might
arrive at the same time. Throughout the remainder of the paper we
consider retrieval in a half-space between two stations located at
the free surface. In this case, the complete wavefield can be de-
scribed by a superposition of modes (Nolet et al. 1989; Snieder
2002). Since surface waves dominate the Green’s function retrieval,
it is most convenient to express displacements as a sum of surface
wave modes. Halliday & Curtis (2008) showed that expression (2)
is correct for an isolated mode in the far field. We will adopt this
mode representation and in the following investigate displacements
calculated using surface wave mode summation (Herrmann 1978).

2 G R E E N ’ S F U N C T I O N R E T R I E VA L
U S I N G M O N O P O L E S O U RC E S
W I T H A P E R F E C T D I S T R I B U T I O N

2.1 Single mode Rayleigh waves

Eq. (2) follows from substituting the Rayleigh wave Green’s function
(Aki & Richards 2002) into the exact interferometry equation. The
spatial derivative of the Green’s function can be expressed by a term
proportional to the Green’s function itself. We assume a cylindrical
distribution of sources (Fig. A1) and the layered medium described
in Table 1. The Green’s function can then be represented as

Table 1. A 1-D layered elastic medium with no attenuation.

Thickness Vp Vs Density
(m) (m s−1) (m s−1) (kg m−3)

Layer 1 45 850 500 1350
Layer 2 45 1050 650 1450
Layer 3 90 1400 850 1450
Half-space – 1850 1050 1950

Gim(xA, xB, ω) − G∗
im(xA, xB, ω)

≈ −2iωU (ω)
∫ ∞

0

∫ 2π

0
ρGip(xA, x, ω)G∗

mp(xB, x, ω)rdφdz,

(3)

(Appendix A and Halliday & Curtis 2008). The frequency-
dependent scaling in eq. (2) is given by A(ω) = 2U (ω)ρ, where U
is the group velocity of the specific surface wave mode, and ρ the
density at the location of the source (r is the radius of the source
cylinder). The approximation made in the derivation of eq. (3) is
that the source-receiver distance is far compared to the intersta-
tion distance. This requirement is met by fixing the interstation
distance to 15 km, and the source radius to 100 km, and choosing
the passband filter between 0.5 and 9 Hz. 1800 regularly spaced
sources per depth slice were used and integration performed to the
depth where the eigenfunctions become negligible. Displacement
seismograms resulting from point forces are computed by mode
summation (Herrmann 1978). We confirm that the retrieved and the
directly computed fundamental mode Green’s function are identical
(Fig. 3). We also confirm the derivation of Halliday & Curtis (2008)
that the Green’s function of the complete wavefield can be found by
repeating this process for all individual modes in the corresponding
wavefield. If for each source the individual mode response and the
corresponding group velocity are known, the individually retrieved
modal Green’s functions can be summed. The result of this oper-
ation matches the full displacement waveform directly calculated
using a point force (Fig. 3, bottom panel).
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Figure 3. The top panel shows retrieval of the fundamental mode, according to eq. (3), in red. It correctly matches the directly computed Green’s function
(red). The sum of the retrieved Green’s function for individual modes is shown on the bottom panel. Again this matches the directly computed Green’s function
of the complete wavefield (red).

2.2 Intermodal cross terms

For real data applications, eq. (3) forms the basis of seismic inter-
ferometry. By correlating total displacement rather than individual
modes one assumes that any interaction between different modes
can be ignored. Also, no A(ω) will be appropriate for a displace-
ment composed from several modes and amplitude errors should be
expected. In practice, with real (noise) data, this scaling is ignored,
with the understanding that amplitude information is incorrect any-
way because of an uneven excitation of noise sources, pre-whitening
of the data, 1-bit correlation, etc. Next to the expected amplitude
errors, we also noticed phase errors and spurious arrivals in the
retrieved Green’s function using the approximate equation (Fig. 2).
Neglecting the frequency dependent scaling, we can make the sum-
mation of the retrieved Green’s functions from isolated modes.∑

n

[
Gn

im(xA, xB, ω) − G∗n
im(xA, xB, ω)

]

≈ −2iω

∫ ∞

0

∫ 2π

0

(∑
n

Gn
ip(xA, x, ω)G∗n

mp(xB, x, ω)

+
∑

n

∑
n′ �=n

Gn
ip(xA, x, ω)G∗n′

mp (xB, x, ω)

)
rdφdz. (4)

The cross terms are defined by the cross correlation between modes
of different mode identification number (n �= n′). The total wave-
field (left-hand side of equation 4) is obtained by the sum of cross
correlations of the individual modes. We showed this above (Fig. 3).
Hence the cross terms in the right-hand side of eq. (4) should sum
to zero if we were to retrieve the correct Green’s function. Snieder
(2004) and Halliday & Curtis (2008) conclude that cross terms can
be ignored under certain assumptions.

In Fig. 4 we show retrieval obtained by eq. (3) applied on a full
wavefield, without scaling factor but with a perfect surrounding
source surface. The reference Green’s function is calculated from

the sum of separately retrieved modes, also computed without taking
into account A(ω) (therefore only different from the true Green’s
function by a small mode-dependent amplitude factor). Some noisy
arrivals can be distinguished, implying that the cross terms have not
completely cancelled. To verify this, we show the difference between
the full wavefield correlation and reference Green’s function in the
lower panel. It corresponds exactly to the cross-term interactions,
computed (also without scaling factor) one by one and summed.
This demonstrates that eq. (3) leads to phase and amplitude errors
even if the source distribution is perfect.

It seems puzzling to explain this in the light of the analysis of
Halliday & Curtis (2008). Based on an orthogonality argument (their
equation 9), the cross terms cancel. This is correct, but it should
be noted that this relation holds for cross terms of polarization and
traction vectors, and hence are for the exact interferometric eq. (1).
The result in Fig. 2 shows that the cross terms indeed cancel when
eq. (1) is used. Fig. 4 shows that when a full wavefield is inserted in
eq. (2) or (3), cross terms do not cancel, an illustration of the fact that
the orthogonality relation in terms of polarization only (Halliday &
Curtis 2008, equation D-7) is not exact. Halliday & Curtis (2008)
further showed an example where integration is performed fully
around the two stations, where no stationary phase points exist for
the cross-mode correlations. In our example, however, it appears
that a complete integration surface alone is not enough for the exact
cancellation of these terms. As we will show below, the distance to
the sources crucial.

2.3 Love waves

Unless we have a special source-receiver geometry, the full wave-
field contains Love waves as well as Rayleigh waves. The approx-
imate interferometric equation for single-mode Love waves can be
derived in a similar way to that for Rayleigh waves. It is less in-
volved since the expression for the Love wave Green’s function is
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Figure 4. The Green’s function obtained by applying eq. (3) [ignoring U (ω)] to the full wavefield is shown (black), together with the explicitly computed cross
terms (red). On the bottom we show the difference between the exact and retrieved Green’s function (black). It exactly matches the cross terms (red).

simpler (Aki & Richards 2002). In Appendix B, we show that we
obtain again eq. (3), but now U (ω) is the Love wave group veloc-
ity of the specific mode under consideration. There is a complete
similarity between Love and Rayleigh waves, therefore we do not
show examples of pure Love wavefields. Instead, we investigate the
possible interaction between Love and Rayleigh waves, which could
be another source for cross terms.

2.3.1 Love–Rayleigh interaction in the cross correlation

We use the same cylindrical source configuration as before to re-
trieve the Gxx component of the Green’s tensor, now using a wave-
field containing Love and Rayleigh wave fundamental modes. Since
the stations are oriented in the x-direction, the total Love wave con-
tribution should be zero. The obtained cross correlation indeed is
exactly the same as the pure Rayleigh wave Green’s function. Cross
terms resulting from Love–Rayleigh mode interaction appear in the
individual traces. The summation over this isotropic source distri-
bution however leads to their cancellation.

Next, we consider the case of strong source directionality, or an
inhomogeneous source distribution. In Fig. 5 we show the contri-
butions from all sources as a function of angle φ in the integration
surface. The source strength as a function of azimuth is shown (top
panel), together with the correlation gathers (positive time only).
The main source contribution arrives off the interstation path, lo-
cated at φ = 0◦, and a small variability is introduced. The second
panel shows the case where Love and Rayleigh waves are used,
the third panel the case where Love waves are excluded and the
bottom panel their difference. This difference gather corresponds to
pure Love wave information, and (the much smaller) Love–Rayleigh
cross terms. With complete and homogeneous source coverage, such
a gather sums to zero for Gxx (Fig. 6), because of the lack of station-
ary points. With the inhomogeneous source distribution, however,
Love energy does not cancel and appears in the Gxx component of
the retrieved Green’s function, as illustrated in Fig. 6. Since Love
waves in general travel faster, these false arrivals will always appear

before the fundamental mode Rayleigh wave. Encouraging is the
stability of the retrieved fundamental mode Rayleigh wave.

3 G R E E N ’ s F U N C T I O N R E T R I E VA L
U S I N G M O N O P O L E S O U RC E S AT T H E
S U R FA C E O N LY

3.1 Single mode Rayleigh waves

Microseisms are thought to originate near coastal areas and close
to the Earth’s surface. With sources at the free surface only, the
requirement of an enclosing integration surface is not met. To study
the effect of this source distribution, we repeat our previous anal-
yses, but include sources at the free surface only. Therefore they
are circularly distributed around the two receivers. Although the
integration surface is incomplete, surface waves travel with the
same phase velocity independent of the depth of excitation (Aki &
Richards 2002). Any error introduced is therefore in amplitude only.
This was already noted by Halliday & Curtis (2008). The relative
amplitude errors however can be significant. We show one example
in Fig. 7, for a first Rayleigh wave overtone retrieved using eq. (3).
The correct scaling is applied but only horizontal forces are present
at the free surface. It is one of the more extreme examples of a
perfectly retrieved phase, but where the amplitude error could bias
the group velocity measurement (e.g. with frequency-time analysis)
of this mode.

3.2 Cross terms overwhelm higher modes

To investigate the importance of the uncancelled cross terms dis-
cussed earlier, we consider full wavefield correlations with sources
at the free surface source only. Halliday & Curtis (2008) show,
that spurious events due to cross terms can then occur, depending
on the source distribution at the surface. Retrieval of the Green’s
function is considerably worse (Fig. 8) compared to the case of
perfect source coverage. First, now the amplitude of higher modes
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Figure 5. The cross correlation gathers showing the contribution in every source direction with a strong source directionality (top panel). The contributions
from all depths have been summed. In the second panel, displacements are composed of both Love and Rayleigh wave fundamental modes, in the third panel
only the Rayleigh wave fundamental mode is used. In the bottom panel their difference is shown. Only the causal part is plotted. For clarity only every 10th
source position is shown.

0 5 10 15 20 25 30 35 40

0

1

2

3

Time(s)

The effect of Love waves on retrieval of Gxx, with directional sources
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Figure 6. Illustration of spurious Love wave energy in the Gxx component of the Green’s tensor. The spurious arrivals are caused by incomplete cancellation
of Love wave energy (and Love–Rayleigh cross terms to a smaller extent.) With a complete source distribution, the Love contribution and Love–Rayleigh cross
terms cancel (red-dashed).
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Figure 7. Retrieved first overtone, resulting from horizontal sources at the
free surface. The retrieved Green’s function (black) shows a mismatch, which
is in amplitude only. The difference is a frequency-dependent amplitude
factor, which can be significant though.

in the seismograms is smaller relative to the fundamental mode.
This is because the fundamental mode is generally better excited
by surface sources than overtones. Missing sources at depth there-
fore lead to smaller relative amplitudes for overtones. Neglecting
the scaling factor makes higher modes even weaker because their
group velocity is higher than that of the fundamental mode. Second,
with the incomplete source distribution the amplitude of the cross
terms become larger (Fig. 8). The consequence is that they become
large enough to completely mask the higher modes and the retrieved
Green’s function contains cross terms of a magnitude comparable
to that of the higher modes. We confirm that as in Halliday & Curtis
(2008) with a homogeneous distribution over the free surface, or
a thick boundary region of sources (e.g. Fig. 13), the cross terms
diminish. Also Draganov et al. (2004) find that an irregularly (thick)
boundary region reduces the effect of ghost terms associated with
heterogeneities.

The question remains, whether or not cross terms will vanish
if the assumption of a source boundary very far away is satis-
fied, for both the case of the enclosing integration surface and the
case of sources at the surface only. We have seen, that cross terms
are zero when both point-forces and deformation-rate tensor sources
are used, but not when point forces alone are used. This means, that
the expression regarding source excitation (implicit in the approxi-
mate equation) over the integration surface∫

ρ
(

rn
1 rn′

1 − rn
2 rn′

2

)
dS, (5)

(n and n′ representing different modes, r1 and r2 are the horizontal
and vertical Rayleigh eigenfunctions) is in general not zero, neither
for an enclosing surface nor with sources at the surface. We now
increase the source radius with respect to the receiver interstation
distance, in the case of sources at the surface (Fig. 9). The total
energy of the cross terms over the time-series remains constant
(bottom-right). However, the cross-term signal shifts away from
zero and outside the time window of interest, as a result of the
differences in group velocity of the different modes. Thus, cross
terms remain even if the source boundary could be placed at infinity.
However, they pose no problem to the time window of interest.

4 G R E E N ’ S F U N C T I O N R E T R I E VA L
U S I N G S O U RC E S W I T H A Z I M U T H A L
H E T E RO G E N E I T Y

4.1 Phase errors for a non-dispersive Rayleigh wave

Examples of the distribution of noise sources determined by back-
projection or beamforming from real data can be found in Stehly
et al. (2006) and Yao et al. (2009). They clearly indicate very lim-
ited source distributions. Gouédard et al. (2008b) demonstrated the
ability to retrieve Green’s function dispersion curves with direc-
tional noise. However, the success of interferometry depends on
the presence of sources in the zone of constructive interference, or
stationary phase region (Snieder 2004; Larose 2005; Roux et al.
2005a). If sources are absent in this region, the Green’s function
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Figure 8. Same as Fig. (4) but for sources at the free surface only.
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Figure 9. Cross terms as we increase the source radius. We plot the first 40 s in black (time window of interest). The amplitude is relative to the maximum
amplitude of the Rayleigh wave. The total energy in the selected window (black), and in the total time-series (red) is shown (bottom-right panel). While the
cross terms never disappear, due to the differences in group velocity between different modes they shift away from the time window of interest. In this example,
this means when the source radius r > 12 times the interstation distance D.

retrieval will fail. Furthermore, if sources have a pre-dominant az-
imuthal distribution, the retrieved Green’s function can be biased
(Snieder et al. 2006; Mehta et al. 2008). Efforts have been made to
only extract the Green’s function with sources near the great circle
of both receivers (Roux et al. 2005b), or to correct for the introduced
bias (Roux 2009; Yao & van der Hilst 2009).

When sources are only located on the great circle of both re-
ceivers (and not over the entire stationary phase region), the Love
and Rayleigh Green’s functions have a phase shift of π/4 (Aki &
Richards 2002) compared to the cross correlation which measures
a time-shift only (Bensen et al. 2007; Tsai 2009). Therefore, an
incomplete source distribution can cause phase shifts compared to
the exact Green’s function anywhere between 0 and π/4. We place
sources on a circle around two receivers and vary their distribution
by gradually increasing the number of sources from the interstation
line. We measure the phase difference of the fundamental mode
Rayleigh wave as a function of angular distribution (Fig. 10). We
start at φ = 0 (only one source), and gradually increase the coverage
to φ = ±90◦ (complete coverage for a one-sided Green’s function)
and measure the phase difference with respect to the true Green’s
function. The phase difference is measured by dφ = ω̄dt , where
ω̄ is the average angular frequency, and dt the time difference as
measured by cross correlation. Coverage remains symmetric around
the stationary phase point, an ideal situation, but very instructive.
Snieder (2004) has shown that only sources at the stationary points
contribute to the integral in eq. (2). These stationary points arise be-

cause of constructive interference and lie within a hyperbola which
is defined by the wavelength λ, the interstation distance D and the
assumed maximum phase difference for interference. Larose (2005)
gives an expression for this angle as

� ≈ ±
√

λ

3D
, (6)

assuming that waves interfere if their phase differs by less than π/3.
We show three examples of different interstation distances (Fig. 10).
These examples are for a homogeneous medium to visualize the be-
haviour of a non-dispersive Rayleigh wave for a relatively small
frequency bandwidth. The phase-error decreases fast with increas-
ing angle confirming Snieder’s (2004) stationary phase arguments.
It is interesting to note that expression (6) underestimates the angle
of necessary coverage by a factor of 2.

4.2 Phase errors for a dispersive wave

To investigate this phase problem for dispersive waves, we con-
sider again a layered medium (Table 2) and repeat the procedure
described. We consider frequencies between 0.1 and 1.0 Hz, take
the interstation distance to be 40 km and place sources at 2000 km
distance. For each frequency, we measure the phase shift from the
exact Green’s function. The wavelength depends on frequency. The
source coverage can therefore be sufficient for part of the frequency
band, while other frequencies show too large phase errors. It is
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Figure 10. The left-hand side illustrates the coherent zones where sources interfere constructively. On the left we show the phase difference compared to the
exact Green’s function. When there are only sources on the source-receiver line (φ = 0), the phase difference is π/4 as predicted by the theory.

Table 2. A different 1-D layered elastic medium with no attenuation.

Thickness Vp Vs Density
(m) (m s−1) (m s−1) (kg m−3)

Layer 1 30 1700 360 700
Layer 2 470 1800 700 2000
Layer 3 770 2000 1260 2070
Layer 4 220 3100 1500 2300
Layer 5 830 4500 2760 2550
Layer 6 370 4400 2600 2525
Layer 7 220 3500 1850 2380
Layer 8 1.02 × 104 5500 3080 2600
Layer 9 9.4 × 103 6800 3900 2900
Layer 10 1.86 × 105 8000 4400 2600
Half-space – 10 000 5200 3900

Note: It shows dispersion over a wider frequency range than Table 1.

thought important to consider again a certain ratio of wavelength
to interstation distance. Bensen et al. (2007) advise as a lower limit
to assume an interstation distance of at least 3λ, whereas the upper
limit is constrained by attenuation and data limitations. The phase
errors are plotted for seven different source coverages from the in-
terstation line (Fig. 11, top left-hand side). The ratio of interstation
distance over wavelength is plotted (top right-hand side), and the
resulting angle of constructive interference (eq. 6, bottom left-hand
side). The ratio of the source coverage over the angle of constructive
interference is shown (bottom right-hand side). We see that in the
frequency range of interest where D/λ > 3, phase errors can be per-
sistent even if the coverage is larger than the angle of constructive
interference. The significance of these errors are best expressed in
terms of the resulting error in phase velocity, given by dc

c = λ

2π D dφ.
For example, an error of 1 per cent in dc/c occurs for a phase error
dφ = 0.06π for D/λ = 3. Fig. 12 shows this relative error for the
phase velocity for different angles of azimuthal source coverage as a
function of frequency. We see that with source coverages larger than
25◦ around the stationary phase point, the error remains smaller than
1 per cent. We confirm that the interstation distance smaller than 3λ

would lead to large mistakes in phase velocity measurements, even
if the coverage is wide.

5 C O N V E RG E N C E T OWA R D S T H E
E X A C T G R E E N ’ S F U N C T I O N

5.1 Convergence with uncorrelated and correlated sources

So far we have considered regularly distributed uncorrelated
sources. To investigate retrieval with more realistic noise sources,
we simulate a random wavefield. Sources are ignited randomly in
strength, direction and location within a specified area at the free
surface (Fig. 13). The model is the same as for Figs 2–9. We also
consider sources overlapping in time which is more appropriate to
simulate seismic noise (Bonnefoy-Claudet et al. 2006b; van Wijk
2006). At any given time, 20 sources (randomly from a location
in Fig. 13) act simultaneously. Adding overlapping sources means
that we cross correlate a longer and longer time-series, instead of
summing cross correlations of responses from individual sources.
Furthermore, we investigate the effect of the 1-bit approximation
on convergence behaviour. The commonly applied 1-bit correlation
is a time-normalization operation to use only the phase of the signal
(Larose et al. 2004). Every positive value is set to 1 and every neg-
ative value to −1. Therefore we have the following four different
input signals used as displacement in the applied cross correlation:

(i) the signal from uncorrelated sources,
(ii) their 1-bit equivalent,
(iii) the signal from correlated sources (overlapping in time) and
(iv) their 1-bit equivalent.

Examples of the four types of displacements in the correlations
are shown in Fig. 14. Perhaps the 1-bit uncorrelated case is unre-
alistic for active experiments, polluted by noise. Zeroing out infor-
mation below a certain amplitude threshold can overcome this. We
progressively add more sources and monitor the converge to the
exact Green’s function.

Convergence is relatively fast in the case of uncorrelated sources;
about 1000 sources for a correlation coefficient with respect to the
true Green’s function of 0.9. The final Green’s function is much
better than that of Figs 2 and 8. Having surface sources organized
in a band helps to reduce the cross terms significantly (Draganov
et al. 2004; Halliday & Curtis 2008). The 1-bit corresponding result
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shows an overemphasized amplitude of the overtones. The phase,
however, is correct.

In the case of overlapping sources, the sources are correlated in
time only. The result is therefore expected to converge to the same
result as the uncorrelated case (Wapenaar & Fokkema 2006), given
enough averaging in time. Convergence is, as expected, much slower
(about 106 sources for a correlation coefficient of 0.9).

The corresponding time required for convergence to the Green’s
function is quantified by Weaver & Lobkis (2005a,b). They define

Figure 13. Configuration of source locations (blue), seen from above. All
sources are at the free surface.

the factor of merit; the square of the signal-to-noise ratio. For surface
waves this should be linear with the amount of sources or signal
length that is used. We confirm this linear relationship over the
analysed range for the fundamental mode.

5.2 Convergence of higher modes

There is a notable difference in the convergence behaviour of the
higher modes compared to the fundamental mode. For correlated
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on average 20 sources act simultaneously. Overlapping sources results in a longer signal in time, comparable to noise time-series. No coherent signal is
distinguishable.

sources, the improvement of the match of higher modes sets in much
slower than for the fundamental mode. This seems to be analogous
to real data examples, where retrieval of higher modes is rare. To
investigate this, we consider more specific criteria than the correla-
tion coefficient; the total misfit of the envelope and instantaneous
phase. We divide the seismograms in time windows corresponding
to the fundamental mode and higher modes. We define the envelope
and phase misfits as

MA =
∑N

i=1

(
Ai − Adirect

i

)2

∑N
i=1

(
Adirect

i

)2
, (7)

and

Mφ =
∑N

i=1

[
cos(φi ) − cos

(
φdirect

i

)]2

∑N
i=1

[
cos

(
φdirect

i

)]2
, (8)

where A(t) and φ(t) are the envelope and instantaneous phase
Bracewell (1965) of the signal, respectively. Together they constitute
the analytical signal of the seismogram, which is constructed from
the original signal and its Hilbert transform. The cosine is taken
to prevent a bias by possible cycle-skips. The phase of the funda-
mental mode converges relatively fast for uncorrelated sources and
somewhat slower for correlated sources (Fig. 15). This means, that
a regime can exist, where the envelope is correctly retrieved, but
still errors in phase exist. It is especially difficult to retrieve the cor-
rect phase of overtones using correlated sources (Fig. 15). However,
in controlled source (uncorrelated) experiments, overtones can be
retrieved using interferometric principles. This explains the obser-
vation of overtones in the active source experiments by Halliday
et al. (2008) If we extrapolate on Fig. 15, to retrieve the correct
phase of higher modes, we would need at least a time-series which

is 100 times longer than that needed for the fundamental mode. In
general, the envelope of the signal converges faster than the instan-
taneous phase, which means that it is more reliable to make group
than phase velocity measurements.

5.3 Sources in coherent zones only

With correlated sources (such as ambient seismic noise), conver-
gence is much slower than with uncorrelated sources (as in an active
source experiment). However, observations of P waves from noise
are reported in the literature (Roux et al. 2005b; Draganov et al.
2007, 2009). In the geometry of Roux et al. (2005b), the noise
sources were only in the stationary phase regions by choosing the
station pairs accordingly. To test if this would improve convergence,
we only considered sources at the stationary phase regions given by
eq. (6). Indeed we find that convergence is much faster for both the
fundamental mode and the overtones (Fig. 16), the factor of merit
increased roughly by a factor of 30. We observe again that we need
about 100 times more sources, or 100 times longer time-series to
achieve convergence for the higher modes. We speculate that using
100 times longer time-series would lead to convergence of higher
modes for real data examples as well.

6 C O N C LU S I O N S

In this paper, we have considered a number of common approx-
imations encountered in seismic interferometry and have studied
their effects on the retrieved Green’s functions. In particular, we
have found that most of these approximations can seriously dete-
riorate the retrieval of the higher mode surface waves. Given that
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Figure 16. Misfits, for the case where sources are located in the coherent zones only. (Note the different scale, only up to 105 sources were used.)

the full wavefield is described by summation of individual surface
wave modes, these conclusions apply to body wave studies as well.
The main sources of error in the retrieved Green’s function are (i)
intermodal cross terms, (ii) incomplete cancellation of overlapping
sources and (iii) incomplete coverage around the stationary phase
region (dc/c in general smaller than 1 per cent for interstation dis-
tances larger than 3λ).

We found that with a complete integration surface, the point-
force approximation applied to a full wavefield can still lead to
intermodal cross terms. When sources are distributed at the surface
only, cross terms can overwhelm the higher modes. However, the
cross terms pose no problem if sources are distributed in bands (a
thick boundary), or when sources are far away (r/D > 12).

Convergence towards the Green’s function is considerably slower
with correlated sources (overlapping in time). Two-order more
sources or 100 times longer time-series are required before the
higher modes start to converge. In our examples, phase and en-
velope have not yet converged unlike the solution of uncorrelated
sources. Convergence is much faster when sources are at the sta-

tionary phase regions only, by a factor of 30. It thus appears that for
retrieval of higher modes the directionality of noise can be used to
our advantage. Roux et al. (2005b) describe the retrieval of body
waves, where all interstation paths are taken in the prevalent noise
direction. Most likely, these body waves would not have been ob-
served under the same conditions if the noise field had been more
omnidirectional.
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A P P E N D I X A : S I N G L E - M O D E R AY L E I G H WAV E I N T E R F E RO M E T RY

For a homogeneous isotropic medium the elasticity tensor only depends on the Lamé parameters λ and μ.

cpjkq = λδpjδkq + μ(δpkδ jq + δpqδ jk). (A1)

We subsitute indices p and q in eq. (1) for n and l, respectively. In a layered medium, λ and μ are functions of depth (Aki & Richards 2002).
Eq. (1) is valid for the full wave Green’s function (

∑
n Gn), but also for isolated modes (Gn). We will now consider an isolated mode, and

drop n. Eq. (1) becomes

Gim(xA, xB, ω) − G∗
im(xA, xB, ω) =

∮
S
[λδpjδkq + μ(δpkδ jq + δpqδ jk)]n j [∂k G∗

mq (xB, x, ω)Gip(xA, x, ω)

− ∂k Giq (xA, x, ω)G∗
mp(xB, x, ω)]dS. (A2)

The material parameters are at the source location on the integration surface. We assume a cylindrical surface with radius r (Fig. A1). The
angle of the normal with the x-axis is defined as φ. Eq. (7.147) in Aki & Richards gives the far field Rayleigh wave Green’s tensor due to a
point force excitation in a layered (laterally invariant) medium. The partial derivative in the k-direction gives

∂k Giq (xA) =

⎛
⎜⎜⎝

−ik cos(φ1)Gi x (xA) −ik cos(φ1)Giy(xA) −ik cos(φ1)Giz(xA)

−ik sin(φ1)Gi x (xA) −ik sin(φ1)Giy(xA) −ik sin(φ1)Giz(xA)

∂r1
∂z |h 1

r1(h) Gi x (xA) ∂r1
∂z |h 1

r1(h) Giy(xA) ∂r2
∂z |h 1

r2(h) Giz(xA)

⎞
⎟⎟⎠ . (A3)

r1 and r2 are the Rayleigh wave eigenfunctions of the mode under consideration, h is the source depth. (The angle towards receiver xA is φ1,
and towards receiver xB is φ2.)
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Figure A1. View from above (left-hand side) and view from the side (right-hand side). The normals are zero in the z direction, except at the bottom layer.

C© 2010 The Authors, GJI, 182, 461–476

Journal compilation C© 2010 RAS



Approximations in seismic interferometry 475

Substituting eq. (A3) and its complex conjugate into eq. (A2) leads to the interferometry equation in terms of surface waves

Gim(xA, xB, ω) − G∗
im(xA, xB, ω) =

∮
S
nx (λ + μ)ik(cos(φ1) + cos(φ2))Gi x (xA)G∗

mx (xB)

+ ny(λ + μ)ik(sin(φ1) + sin(φ2))Giy(xA)G∗
my(xB)

+ nx ik(λ sin(φ1) + μ sin(φ2))[Gi x (xA)G∗
my(xB) + Giy(xA)G∗

mx (xB)]

+ nyik(λ cos(φ1) + μ cos(φ2))[Giy(xA)G∗
mx (xB) + Gi x (xA)G∗

my(xB)]

− nx

[
λ

∂r2

∂z

∣∣∣∣
h

1

r2(h)

(
Gi x (xA)G∗

mz(xB) − Giz(xA)G∗
mx (xB)

)

+ μ
∂r1

∂z

∣∣∣∣
h

1

r1(h)
(Giz(xA)G∗

mx (xB) − Gi x (xA)G∗
mz(xB))

]

− ny

[
λ

∂r2

∂z

∣∣∣∣
h

1

r2(h)
(Giy(xA)G∗

mz(xB) − Giz(xA)G∗
my(xB))

+ μ
∂r1

∂z

∣∣∣∣
h

1

r1(h)
(Giz(xA)G∗

my(xB) − Giy(xA)G∗
mz(xB))

]

+ ikμ
[
nx ((cos(φ1) + cos(φ2))(Gi x (xA)G∗

mx (xB) + Giy(xA)G∗
my(xB) + Giz(xA)G∗

mz(xB)))

+ ny((sin(φ1) + sin(φ2))(Gi x (xA)G∗
mx (xB) + Giy(xA)G∗

my(xB)) + Giz(xA)G∗
mz(xB)

]
dS (A4)

Here we left out the nz terms for the sake of brevity, as their total contribution will sum to zero. Also, from the top and the bottom of the
cylinder, the contribution is zero due to the boundary conditions (free surface and radiation condition). On the side, the normals are defined
as

nx = − cos(φ0), ny = − sin(φ0), nz = 0. (A5)

We assume sources far away from A and B, that is, φ1 ≈ φ2 ≈ φ0 ≈ φ. Furthermore, the following relations exist between the different
components in the Green’s tensor (Aki & Richards 2002):

sin(φ)Gi x (xA) = cos(φ)Giy(xA)
r2(h)Gi x (xA) = i cos(φ)Giz(xA)r1(h)
r2(h)Giy(xA) = i sin(φ)Giz(xA)r1(h)

(A6)

Eq. (A4) then simplifies to

Gim(xA, xB, ω) − G∗
im(xA, xB, ω) ≈ − 2ik

∫ 2π

0

∫ ∞

0

((
λ + 2μ + λ

∂r2

∂z

∣∣∣∣
h

1

kr1(h)

)
(Gi x (xA)G∗

mx (xB) + Giy(xA)G∗
my(xB))

+
(

μ − μ
∂r1

∂z

∣∣∣∣
h

1

kr2(h)

)
Giz(xA)G∗

mz(xB)

)
rdφdz. (A7)

By using the fundamental (but only meaningful for isolated modes) relation between surface wave energy integrals (Halliday & Curtis
2008) I2 + I3/2k = cU I1, this can be simplified to

Gim(xA, xB, ω) − G∗
im(xA, xB, ω) ≈ −2iωU (ω)

∫ ∞

0

∫ 2π

0
ρGip(xA)G∗

mp(xB)rdφdz. (A8)

A P P E N D I X B : S I N G L E - M O D E L OV E WAV E I N T E R F E RO M E T RY

Following the same procedure for Love waves, the partial derivative of the Green’s tensor is given by

∂k Giq =

⎛
⎜⎜⎝

−ik cos(φ)Gi x −ik cos(φ)Giy 0

−ik sin(φ)Gi x −ik sin(φ)Giy 0
∂l1
∂z

∣∣
h

1
l1(h) Gi x

∂l1
∂z

∣∣
h

1
l1(h) Giy 0

⎞
⎟⎟⎠ , (B1)
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with l1 the Love wave displacement eigenfunction. Substituting this (and its complex conjugate) into eq. (A2) and simplification leads to

Gim(xA, xB, ω) − G∗
im(xA, xB, ω) ≈ −2ik

∫ ∞

0

∫ 2π

0
2μ(z)(Gi x (xA)G∗

mx (xB) + Giy(xA)G∗
my(xB))rdφdz. (B2)

For Love waves the z-derivative terms cancel. By using the identity I2 = cI1U (Aki & Richards 2002) in eq. (B2) we find again

Gim(xA, xB, ω) − G∗
im(xA, xB, ω) ≈ −2iωU (ω)

∫ ∞

0

∫ 2π

0
ρGip(xA)G∗

mp(xB)rdφdz, (B3)

but now with U (ω) as the Love wave group velocity.
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