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S U M M A R Y
We use a principal component analysis to characterize the finite-frequency sensitivity of seis-
mic observables to anisotropy. A general anisotropic medium may be described in terms of
21 independent elastic parameters, each of which has an associated ‘primary’ sensitivity ker-
nel. Our principal component analysis ranks linear combinations of the primary kernels to
ascertain the dominant anisotropic parameters associated with a particular seismic observ-
able. The principal parameters are those to which a given data set is the most sensitive. We
demonstrate the efficiency of the method for a single arrival associated with a particular
source–receiver combination, and apply it to a small synthetic Love-wave data set with a
simple source–receiver geometry. For direct body wave arrivals, such as P, S and SKS, and
direct Love and Rayleigh surface waves, our principal component analysis finds the same small
combinations of dominant anisotropic parameters previously identified based upon asymptotic
methods. The analysis further confirms the importance of mode coupling in finite-frequency
surface wave sensitivity kernels. Our approach can be directly incorporated into a tomographic
inversion to automatically select the general anisotropic parameters which are best constraint,
for example, without prescribing the model to be transversely isotropic with a particular sym-
metry axis. The computational overhead associated with the calculation of the 21 primary
kernels and the subsequent principal component analysis is minimal relative to an isotropic
calculation.

Key words: Inverse theory; Seismic anisotropy; Seismic tomography; Computational
seismology.

1 I N T RO D U C T I O N

The desire to extend the limits of asymptotic (ray-based) tomogra-
phy has resulted in an intense study of finite-frequency seismic wave
propagation. These studies have revealed complicated 3-D sensitiv-
ity patterns of seismic data to structural parameters (e.g. Marquering
et al. 1999; Zhou et al. 2004; Zhao et al. 2005; Liu & Tromp
2006; Zhao & Jordan 2006; Liu & Tromp 2008; Zhou 2009). In
the presence of anisotropy, the large number of elastic parameters
(21 in the most general case) makes it difficult to objectively as-
sess their relative importance (Sieminski et al. 2007a,b; Panning &
Nolet 2008). Such an assessment is critical for successful, unbiased
mantle imaging.

Seismic anisotropy is an essential aspect of the elastic structure
of the Earth’s mantle, well documented by seismic observations
of shear wave splitting (Vinnik et al. 1989), the Love–Rayleigh
discrepancy (Anderson 1961), and azimuthal variations of surface
wave (Forsyth 1975) and refracted P-wave speeds (Hess 1964;
Backus 1965). Anisotropy is thought to be the result of preferential
orientation of anisotropic minerals due to large-scale deformation

and flow (e.g. Zhang & Karato 1995; Kaminski & Ribe 2002). Map-
ping seismic anisotropy can therefore provide information on past-
and present-mantle dynamics (e.g. Silver 1996; Montagner 1998;
Debayle et al. 2005; Deschamps et al. 2008). General anisotropy
is described by 21 elastic parameters, but it is currently impossi-
ble to image all of these parameters throughout the mantle. New
data and observables would need to be collected and identified to
determine such a large number of parameters with satisfactory res-
olution. More fundamentally, we anticipate that seismic data cannot
resolve all the anisotropic aspects of a medium, simply because
seismic waves do not sample the Earth’s structure in all directions
(Maupin & Park 2007).

The key to imaging mantle anisotropy is therefore to find the
few relevant elastic parameters which explain most of the data. A
possible strategy is to fix the mineralogy a priori, for instance by
assuming hexagonal symmetry (or transverse isotropy) with hori-
zontal, vertical or tilted symmetry axes (Chevrot 2006; Long et al.
2008; Panning & Nolet 2008). This is supported by Becker et al.’s
(2006) study showing that anisotropy in the Earth’s upper man-
tle is dominated by hexagonal symmetry with strong correlations
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between the elastic parameters. Another approach is to estimate
those parameters to which the data are most sensitive. This was
proposed by Montagner & Jobert (1988) for mantle tomography
utilizing fundamental-mode surface waves. Based upon the depth
sensitivity of asymptotic surface waves calculated in a 1-D refer-
ence mantle model, Montagner & Nataf (1986) retained only three
dominant parameters. Subsequent surface wave tomography of az-
imuthal anisotropy extended this approach (Montagner & Tanimoto
1991; Lévêque et al. 1998; Simons et al. 2002; Debayle et al. 2005).

We present a quantitative analysis of finite-frequency sensitivity
of seismic observables to general anisotropy. The idea is to extract
the ‘principal parameters’, that is, those elastic parameters to which
the data are most sensitive. The principal parameters are linear com-
binations of the 21 ‘primary’ components of the elastic tensor. The
approach involves a principal component analysis of the sensitivity
kernels, as explained in Section 2. To demonstrate the efficiency of
the method, we apply it in Section 3 to single source–receiver sensi-
tivity kernels for traveltime data commonly used in mantle imaging.
More generally, in a tomographic inverse problem, the sensitivity
to an entire data set should be considered. In this context, we test
our approach for a simple synthetic tomographic experiment in
Section 4, before discussing its potential for realistic imaging in
Section 5.

2 P R I N C I PA L C O M P O N E N T A NA LY S I S

The elastic properties of a medium are generally described by the
fourth-order elastic tensor cklmn, (k, l, m, n = 1, 2, 3) linking stress
and strain according to Hooke’s law. Because of various symme-
tries, the elastic tensor has only 21 independent components, which
are often written using Voigt’s notation as CIJ , (I , J = 1, . . . , 6)
(Babuška & Cara 1991). Appendix A summarizes the relationships
between these two complementary descriptions. In the following,
we use the notation ci, (i = 1, . . . , 21) to describe the 21 inde-
pendent components of the elastic tensor. Studies of seismic wave
propagation in weakly anisotropic media prefer to use linear com-
binations of the ci, such as Thomsen’s parameters (Thomsen 1986;
Chevrot 2006; Panning & Nolet 2008) or the ‘asymptotic param-
eters’ (Chen & Tromp 2007) written here as ai, (i = 1, . . . , 21).
The definition of the asymptotic parameters is given in Appendix
A; these parameters appear naturally when considering asymptotic
seismic wave propagation in weakly anisotropic media (Smith &
Dahlen 1973; Montagner & Nataf 1986; Chen & Tromp 2007) and
are commonly used in surface wave tomography (e.g. Montagner &
Tanimoto 1991; Trampert & van Heijst 2002; Debayle et al. 2005;
Marone & Romanowicz 2007). The asymptotic parameters empha-
size the directional dependence of wave propagation in anisotropic
media (Table 1).

The sensitivity of seismic data to structural parameters is given
by Fréchet derivatives K m, m = 1, . . . , 21, (hereafter referred to as
‘sensitivity kernels’), which describe how perturbations in structural
parameters, δm, affect observables, δo

δo =
∫

Km(x)δm(x) d3x, (1)

where the integral is taken over the Earth’s volume. We seek linear
combinations of the basic anisotropic kernels Kci , i = 1, . . . , 21,
which maximize the ‘sensitivity power’. We define the sensitivity
power as

∫
[Km(x)]2 d3x and write K p = ∑

j w j Kc j , where p labels
a specific linear combination and wj, j = 1, . . . , 21, are the cor-
responding coefficients. With these definitions, our maximization

Table 1. Azimuthal dependence associated with the 21
elastic parameters describing asymptotic seismic wave
propagation in weakly anisotropic media (Montagner &
Nataf 1986; Chen & Tromp 2007).

Elastic parameters Azimuthal dependence

A C N L F 0ξ

Jc Js Kc Ks Mc Ms 1ξ

Bc Bs Hc Hs Gc Gs 2ξ

Dc Ds 3ξ

Ec Es 4ξ

Notes: The angle ξ is the azimuth along the geometrical
ray path. The parameters A, C , N , L and F describe
anisotropy with hexagonal symmetry and a vertical (or
radial) symmetry axis. These five parameters do not
cause an azimuthal dependence. The parameters
producing azimuthal anisotropy are organized in pairs,
the ‘c’ parameters correspond to a dependence on
cos nξ and the ‘s’ parameters to a dependence on sin nξ

(with n = 1, 2, 3, 4).

problem is

∫ [
K p(x)

]2
d3x∫

d3x
=

∫ [∑
j w j Kc j (x)

]2
d3x∫

d3x
= maximum ≡ λ,

(2)

subject to the condition
∑

j w2
j = 1. The maximization problem (2)

is equivalent to the eigenvalue problem

Mw = λw, (3)

where the components of the symmetric, positive-definite 21 ×
21-dimensional matrix M are

Mi j =
∫

Kci (x)Kc j (x) d3x∫
d3x

. (4)

The 21-dimensional vectors wk satisfying eq. (3) are the orthonor-
mal eigenvectors of M with associated eigenvalues λk . The 21 prin-
cipal kernels K pk associated with the eigenvalues λk are thus

K pk =
∑

j

wk j Kc j , (5)

where wkj denotes the jth component of the kth eigenvector. Or-
dering the λk by decreasing value, the principal kernels are such
that∫ [

K p1 (x)
]2

d3x >

∫ [
K p2 (x)

]2
d3x > · · ·

>

∫ [
K pk (x)

]2
d3x > · · · >

∫ [
K p21 (x)

]2
d3x. (6)

The principal kernels satisfy the orthogonality relation∫
K pk (x)K pl (x) d3x∫

d3x
= λk δkl . (7)

They are therefore linearly independent and describe the principal
(essential) spatial patterns of sensitivity to anisotropy. The elas-
tic parameters pk corresponding to the principal kernels K pk are
obtained from the basic parameters cj based upon the relation

pk =
∑

j

wk j c j . (8)

If the data have limited resolving power, we expect that for some
positive integer n ≤ 21 the eigenvalues λk for k > n become negli-
gible. If the number n is small (e.g. less than 3 or 4), it is possible
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to invert for the parameters associated with the first n principal
parameters pk , k = 1, . . . , n. This results in an inverse problem
of manageable size and guarantees that the model parameter bias
will be small, because we only neglected parameters with small
sensitivity power.

We compute the basic sensitivity kernels Kci , i = 1, . . . , 21, us-
ing a combination of Spectral-Element Simulations of seismic wave
propagation and Adjoint MEthods (SESAME). This method is fully
described in Tromp et al. (2005) and Liu & Tromp (2006, 2008)
for the general case, and in Sieminski et al. (2007a,b) for spe-
cific applications to anisotropic sensitivity kernels. In the adjoint
approach (e.g. Tarantola 1984), sensitivity kernels are constructed
based upon the interaction of the ‘regular’ wavefield, propagat-
ing from the source to the receiver(s), with an ‘adjoint’ wavefield,
propagating from the receiver(s) to the source. The nature of the
interaction depends on the specific structural parameters. The ad-
joint wavefield is generated at the receiver location(s) by an adjoint
point-force source, which depends on the data. In SESAME, the reg-
ular and adjoint wavefields are simulated using a spectral-element
method (Komatitsch & Tromp 2002a,b). The principal component
analysis of anisotropy presented here can be applied to sensitivity
kernels calculated using any other numerical or analytical approach.

Strictly speaking, the volume integrals in eq. (4) should be eval-
uated over the Earth’s volume. The sensitivity kernels are in gen-
eral only significant in a limited zone around the source–receiver
path and the volume integrals can therefore be restricted to a
smaller domain. We only consider one chunk of the ‘cubed-Earth’
(Komatitsch & Tromp 2002a,b) with a 30◦ × 30◦ surface area in
which the sensitivity kernels are numerically computed. Sensitivity
kernels constructed based upon SESAME reflect the source radia-
tion pattern near the hypocentre (Liu & Tromp 2008). This gives
the sensitivity a very specific pattern in the vicinity of the source
location. Because the volume of this source region is very small,
it does not significantly contribute to the principal characteristics
of the sensitivity. We therefore exclude the near-field zone around

the source in our tests, which is defined by one and two wave-
lengths around the hypocentre for surface waves and body waves,
respectively. Finally, the adjoint spectral-element kernels must be
slightly smoothed before being analysed to remove any spurious
values, especially in the vicinity of the sources and receivers. As in
Tape et al. (2007), we convolve the kernels with a 3-D Gaussian. In
Section 3, the half-width of the Gaussian function is selected based
upon the minimum wavelength the mesh can resolve. This choice
will, however, be revisited for the experiment in Section 4.

3 A P P L I C AT I O N T O S I N G L E
M E A S U R E M E N T S

3.1 Fundamental-mode surface waves

We first apply the principal component analysis to single
source–receiver sensitivity kernels of surface waves. The 21 basic
kernels Kci are numerically computed using SESAME and are accu-
rate for periods longer than 15 s. The background model is the spher-
ically symmetric, isotropic Preliminary Reference Earth Model
(PREM; Dziewonski & Anderson 1981). The source mechanism
is the Harvard centroid-moment tensor solution for the 1994 June
9 Bolivia earthquake (www.globalcmt.org). We locate it at 15 km
depth to generate a strong fundamental-mode signal. The half du-
ration is also modified and set to 8 s to be compatible with the
resolution of the spectral-element mesh. We analyse fundamental
mode Love and Rayleigh waves with periods between 40 and 100 s
at two hypothetical stations (labelled A and B). The stations are
located at an epicentral distance of 50◦ and correspond to different
source azimuthal angles (150◦ and 110◦ from due south). Due to
the source radiation pattern, station A mainly receives Rayleigh-
wave energy whereas station B mainly receives Love-wave energy
(Fig. 1).

To isolate the fundamental mode between 40 and 100 s, the
synthetic signals are time-variable filtered (Landisman et al. 1969).
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Figure 1. Vertical (top panel) and transverse (bottom panel) displacement seismograms calculated at station A (left-hand panels) and station B (right-hand
panels) for the Bolivia source mechanism located at 15 km depth in isotropic PREM. The epicentral distance is denoted by � and the source azimuthal by
ξ s. The signals are filtered between 40 and 100 s. Because of the source radiation pattern, station A receives more Rayleigh-wave energy (vertical component
LHZ) and station B more Love-wave energy (transverse component LHT).
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Figure 2. Cumulative sensitivity power (
∑n

k=1

∫
[K pk (x)]2 d3x/∑21

k=1

∫
[K pk (x)]2 d3x) for the 21 principal parameters pk determined from

the principal component analysis (Section 2) of the single source–receiver
sensitivity for the fundamental-mode Rayleigh wave recorded at station A
(triangles) and the fundamental-mode Love wave recorded at station B
(squares) (Fig. 1). The epicentral distance is 50◦ for both stations. We
consider waves in the period range from 40 to 100 s.

The adjoint-source time functions are constructed from the time-
variable filtered signals. We analyse the sensitivity of the traveltime
of these waves as if measured by cross-correlation (Marquering
et al. 1999; Tromp et al. 2005). The cross-correlation traveltime is
equivalent to classical phase adjustments in surface wave processing
(Sieminski et al. 2007a). We follow the convention of a positive
traveltime anomaly for a delay of the observed waves relatively to
the reference.

Fig. 2 shows the cumulative sensitivity power determined for
Rayleigh and Love waves. In these examples the sensitivity is cap-
tured by a small number of parameters: about 90 per cent of the
total sensitivity power is contained in three principal kernels for
Love waves and five for Rayleigh waves. In particular, the first prin-
cipal kernel K p1 carries most of the sensitivity (about 60 per cent of
the total power in both cases). The principal kernels K pk are initially
found as linear combinations of the basic anisotropic kernels Kc j

(eq. 5). It is however more meaningful to express the principal ker-
nels as linear combinations of the asymptotic parameters ai, because
the asymptotic parameters are more readily interpreted physically
(Montagner & Nataf 1986; Chen & Tromp 2007). In the following,
we write

K pk =
∑

i

uki Kai . (9)

The coefficients uki are shown in Figs 3 and 4 for the first three
principal Love and Rayleigh kernels. For the Love wave, the largest
coefficients uki are attributed to the parameters N and Ec,s and
then Mc,s and Dc,s (Fig. 3). For the Rayleigh wave, we find the
dominant parameters L and Gc,s and then Mc,s and Dc,s (Fig. 4).
These parameters are simply those for which fundamental-mode
Love- and Rayleigh-wave sensitivity is broadly distributed in depth
(Sieminski et al. 2007a). As we seek to maximize the sensitivity
power integrated over the crust and mantle, these parameters dom-
inate. Rayleigh-wave sensitivity to the parameters Ec,s is large and
laterally extended (Sieminski et al. 2007a), but it is restricted to
very shallow structure and therefore does not have a large sensitiv-

ity power when integrated over the crust and mantle. Based upon
asymptotic wave propagation, the parameters N , Ec,s and L , Gc,s

were already identified as the primary ones for Love and Rayleigh
waves, respectively (Montagner & Jobert 1988). This is not sur-
prising because the asymptotic description effectively predicts the
sensitivity with depth of finite-frequency fundamental-mode surface
waves (Sieminski et al. 2007a). The parameters Mc,s and Dc,s are in-
volved in SV–SH coupling (Chen & Tromp 2007). They appear here
because the sensitivity kernels are calculated considering full-wave
propagation, which includes Love–Rayleigh coupling. The spatial
pattern of the principal sensitivity kernels (Figs 3 and 4) directly
reflects these effects. The first two principal Love-wave kernels K p1

and K p2 present an elliptical Fresnel-zone pattern, modified by an
azimuthal dependence for K p2 because we have K p2 � −KEs , Es

being a 4ξ azimuthal parameter (Table 1). The same is observed for
the first two principal Rayleigh-wave kernels (K p2 � −KGs and Gs

being a 2ξ azimuthal parameter), but the third principal Rayleigh-
wave kernel K p3 clearly displays ‘V ’ bands of alternating positive
and negative amplitude. While the elliptical pattern is described by
self-coupling in a Born-scattering formalism, the V -band pattern
indicates Love–Rayleigh coupling (Sieminski et al. 2007a).

The first Rayleigh-wave principal kernel in Fig. 4 shows at first
glance a counter-intuitive positive amplitude. However, the corre-
sponding first principal parameter p1 is a combination of the pa-
rameters L and Gs given by p1 � −L − Gs (eq. 8 and Fig. 4). A
negative perturbation of the parameter L (i.e. a decrease of the SV-
wave speed) therefore gives a positive perturbation of the parameter
p1, which results in a positive traveltime anomaly, that is, a delay in
our convention.

3.2 Body waves

In a second series of experiments, the principal component analysis
is applied to single source–receiver sensitivity kernels for body wave
traveltime data. The configuration is the same as for the surface
waves, except that the Bolivia earthquake source mechanism is now
located at its original depth of 647 km to obtain clear body wave
arrivals. We investigate the sensitivity of P-wave cross-correlation
traveltime measurements and the sensitivity of S- and SKS-wave
splitting intensity.

For the P-wave cross-correlation traveltime, the vertical compo-
nent of the adjoint source is constructed from the time-derivative of
the vertical signal in the P-wave time window (Tromp et al. 2005;
Sieminski et al. 2007b). To study the S-wave sensitivity we must
use an observable that characterizes shear wave splitting caused
by anisotropy. The splitting intensity is such an observable. It was
originally defined for SKS waves as the amplitude of the transverse
signal relative to the radial signal in the SKS time window (Chevrot
2000, 2006). For weak anisotropy, the SKS-splitting intensity can
be efficiently retrieved by cross-correlating the radial signal with
the sum of the radial and transverse signal (Sieminski et al. 2008).
With the latter definition, the corresponding adjoint-source func-
tion is constructed from the time-derivative of the radial signal on
the transverse component. The splitting intensity is extended to S
waves by identifying the radial direction with the initial polarization
direction of the waves before they are affected by anisotropy or with
the polarization in an isotropic reference model (Long et al. 2008).
The corresponding transverse direction is then the orthogonal di-
rection in the horizontal plane. We analyse the sensitivity of P-wave
traveltime and S-wave splitting intensity for periods longer than
15 s recorded at an epicentral distance of 50◦. The sensitivity of
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Figure 3. First three principal sensitivity kernels for the fundamental-mode Love wave: (left-hand panels) coefficients uki of the linear combination linking
the principal kernels K pk to the 21 asymptotic kernels Kai and (right-hand panels) spatial patterns of the kernels in map view at 75 km depth (the source is
on the left-hand side). The coefficients uki are linear combinations of the components of the kth eigenvector and are defined such that K pk = ∑

uki Kai (eq. 9).
The quantities λk are the corresponding eigenvalues normalized such that

∑
l λl = 1.

Figure 4. First three principal sensitivity kernels for the fundamental-mode Rayleigh wave: (left-hand panels) coefficients uki of the linear combination linking
the principal kernels K pk to the 21 asymptotic kernels Kai (eq. 9) and (right-hand panels) spatial patterns of the kernels in map view at 75 km depth.

the SKS-wave splitting intensity is analysed for periods longer than
13 s recorded at an epicentral distance of 105◦.

As for surface waves, nearly 90 per cent of the total power of the
sensitivity is reached with a small number of principal kernels: two
principal kernels for the SKS wave, three kernels for the P wave and
four kernels for the S wave (Fig. 5). The values of the coefficients

uki (eq. 9) clearly show that SKS splitting is mainly sensitive to the
Gc,s parameters (Fig. 6), as often assumed (Montagner et al. 2000;
Favier & Chevrot 2003; Chevrot 2006). The parameters Gc,s are
indeed simply linked to Thomsen’s parameter γ (Sieminski et al.
2007b, 2008) as used by Favier & Chevrot (2003) and Chevrot
(2006). As expected, the principal sensitivity kernels are focused on
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Figure 5. Cumulative sensitivity power for the 21 principal parameters pk

for the P-wave traveltime (triangles), the S-wave splitting intensity (squares)
and the SKS-wave splitting intensity (diamonds). For P and S waves, the
epicentral distance is 50◦ and we consider waves in the period range from
15 to 300 s. For the SKS wave, the epicentral distance is 105◦ and the period
range is from 13 to 300 s.

a narrow and shallow region beneath the receiver (Favier & Chevrot
2003; Sieminski et al. 2008) (Fig. 6). For P waves, the dominant
parameters are J c,s and K c,s, which again have previously been
identified as the important parameters for asymptotic P-wave prop-
agation in weakly anisotropic media (Chen & Tromp 2007). We
note the relatively small contribution of the transversely isotropic
parameters (A, C and F) from which the isotropic P-wave speed is
defined. The first principal sensitivity kernels are focused on a small
region beneath the receiver in Fig. 7. However, the spatial pattern
of the sensitivity strongly depends on the source location and more
pronounced sensitivity would be observed on the source side for a
shallower event. More parameters are needed to describe asymptotic
S-wave propagation in weakly anisotropic media (Chen & Tromp
2007). This is confirmed by the principal component analysis of
the S-wave splitting sensitivity. A large number of asymptotic ker-

nels are involved in describing the principal kernels (Fig. 8). We
identify the dominant parameters as Mc,s, Dc,s, K c,s and N for the
case shown in Fig. 8. The spatial pattern of the principal kernels is
very similar to the P-wave case, with foci of sensitivity beneath the
receiver and in the vicinity of the source, and with little sensitivity
in-between. This S-wave sensitivity is a good example of a situation
where the principal component analysis identifies a small number
of independent combinations of a large number of asymptotic pa-
rameters.

3.3 Fundamental-mode surface waves with strong
mode-coupling

In Section 3.1, we investigated surface wave sensitivity under cir-
cumstances involving limited mode coupling. Still, coupling is
present as shown by the significant contributions of the parame-
ters Mc,s and Dc,s and the spatial pattern of the principal Rayleigh-
wave kernel K p3 (Fig. 4). To analyse the effects of mode cou-
pling in greater detail, we now consider the Love wave at station
A and the Rayleigh wave at station B; the experimental setting
is the same as in Section 3.1. Because the source directs more
Rayleigh-wave energy to station A (and more Love-wave energy to
station B) (Fig. 1), the Love-wave signal at station A (the Rayleigh-
wave signal at station B) is expected to be strongly affected by
Rayleigh–Love coupling (Love–Rayleigh coupling). Six to seven
principal kernels are needed to reach 90 per cent of the total sensi-
tivity power (Fig. 9). The kernels related to the parameters N and
Ec,s for the Love wave (Fig. 10) and L and Gc,s for the Rayleigh
wave (Fig. 11) still contribute significantly to the principal kernels,
but the major parameters are now the SV–SH coupling parameters
Mc,s and Dc,s. Accordingly, the first principal kernels for Love and
Rayleigh waves show the characteristic alternating positive and neg-
ative V bands due to Love–Rayleigh coupling as interpreted from
a Born-scattering formalism (Sieminski et al. 2007a). The num-
ber of significant principal components is still small compared to
21, although in practise it would seem challenging to constrain the
structure with six or seven dominant parameters. This is an extreme
case however.

It is important to keep in mind that the sensitivity characteristics
are path dependent. We illustrate this by comparing the sensitivity
kernels of the Love wave recorded at station B and at a third station

Figure 6. First two principal sensitivity kernels for the SKS-wave splitting intensity: (left-hand panels) coefficients uki of the linear combination linking the
principal kernels K pk to the 21 asymptotic kernels Kai (eq. 9) and (right-hand panels) spatial patterns of the kernels plotted in the vertical source–receiver
plane and zooming in on the receiver side (SKS-splitting is not sensitive to the structure until the wave exits the core).
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1192 A. Sieminski, J. Trampert and J. Tromp

Figure 7. First three principal sensitivity kernels for the P-wave traveltime: (left-hand panels) coefficients uki of the linear combination linking the principal
kernels K pk to the 21 asymptotic kernels Kai (eq. 9) and (right-hand panels) spatial patterns of the kernels plotted in the vertical source–receiver plane (the
source is on the left-hand side).

Figure 8. First three principal sensitivity kernels for the S-wave splitting intensity: (left-hand panels) coefficients uki of the linear combination linking the
principal kernels K pk to the 21 asymptotic kernels Kai (eq. 9) and (right-hand panels) spatial patterns of the kernels plotted in the vertical source–receiver
plane.

noted C. Station C is situated at an epicentral distance of 40◦ and
corresponds to a source azimuthal angle of 220◦, which makes
station C receive slightly more Love-wave energy. For the Love
wave at station B (Fig. 3), the average local azimuth along the
path is about 130◦, which leads to KN � −KEc (Table 1). The
kernels K N and KEc therefore combine well with each other and
K p1 � KN − KEc (Fig. 3). For the Love wave at station C, the
average local azimuth along the path is about 240◦. It is now KEs

which combines well with KN (KN � −KEs , Table 1). As a result,

for this path K p1 comes as −KN + KEs (Fig. 12). Although the
sensitivity is not as well localized as for station B (Figs 2 and 9), the
important asymptotic parameters are again N , Ec,s and Mc,s, Dc,s

(Fig. 12). Love–Rayleigh coupling is also significant for this path,
as revealed by the clear V -band pattern observed for K p3 (Fig. 12).

These experiments with single source–receiver configurations
demonstrate the efficiency of the principal component analysis
to extract the essential elastic parameters for a given datum. To-
mographic images are constructed based upon the sensitivity of
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Figure 9. Cumulative sensitivity power for the 21 principal parameters
pk for the fundamental-mode Rayleigh wave at station B (triangles), the
fundamental-mode Love wave at station A (squares) (i.e. when there is
significant Love–Rayleigh coupling), and for the fundamental-mode Love
wave at station C (diamonds).

an entire data set, that is, the combined sensitivity of numerous
intersecting source–receiver paths. In the next section, we test the
principal component analysis on a small synthetic data set.

4 A P P L I C AT I O N T O I N V E R S E
P RO B L E M S

Tomographic inversions seek to minimize the misfit quantified by a
certain relationship between observations (‘data’) and simulations
(‘synthetics’). For example, if we consider the traveltime difference

T obs − T syn, the misfit function S may be defined as

S = 1

2

∑
d

(
T obs

d − T syn
d

)2
, (10)

where the summation is over all sources, receivers and picks. Mini-
mization algorithms, for example, conjugate gradient methods, are
often based upon derivatives of the misfit function with respect to
the structural parameters we wish to image. These derivatives can
be regarded as ‘misfit kernels’ (Tape et al. 2007), because they
represent the sensitivity of the entire data set to a given model pa-
rameter. They are the sum of individual source–receiver kernels K sr

d

weighted by the measurements T obs
d − T syn

d

K S = −
∑

d

(
T obs

d − T syn
d

)
K sr

d . (11)

We test the principal component analysis on a synthetic misfit ker-
nel for a simple source–receiver geometry. The experiment involves
62 stations (a subset of the Orfeus network; see http://www.orfeus-
eu.org) and five events (one real event located in Crete and four
fictitious earthquakes; Fig. 13). The reference signals are computed
in isotropic PREM. We reduce the isotropic S-wave speed by 4 per
cent everywhere in the crust to create the ‘observed’ signals. The
observed signals are therefore associated with perturbations in the
parameters N , L and F. We analyse the fundamental-mode Love
wave between 40 and 100 s. Traveltime anomalies are measured
by cross-correlating time-variable filtered transverse signals, as dis-
cussed previously. In previous sections we slightly smoothed the
kernels by convolving them with a 3-D Gaussian with a half-width
comparable to the shortest wavelength in the numerical simulations.
For tomographic data in a certain period range, it seems more appro-
priate to consider a wavelength representative of the data set. The
best-spatial resolution that can be achieved is likely to be higher
than the shortest wavelength, depending on the source and receiver
distribution. For this experiment, we apply smoothing to the basic

Figure 10. First three principal sensitivity kernels for the fundamental-mode Love wave in the presence of significant Rayleigh–Love coupling (station A):
(left-hand panels) coefficients uki of the linear combination linking the principal kernels K pk to the 21 asymptotic kernels Kai (eq. 9) and (right-hand panels)
spatial patterns of the kernels in map view at 75 km depth.
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Figure 11. First three principal sensitivity kernels for the fundamental-mode Rayleigh wave when there is significant Love–Rayleigh coupling (station B):
(left-hand panels) coefficients uki of the linear combination linking the principal kernels K pk to the 21 asymptotic kernels Kai (eq. 9) and (right-hand panels)
spatial patterns of the kernels in map view at 75 km depth.

Figure 12. First three principal sensitivity kernels for the fundamental-mode Love wave on a path different from the one shown in Fig. 3 (station C): (left-hand
panels) coefficients uki of the linear combination linking the principal kernels K pk to the 21 asymptotic kernels Kai (eq. 9) and (right-hand panels) spatial
patterns of the kernels in map view at 75 km depth. The source is located on the right-hand side for this figure.

misfit kernels in agreement with Love-wave data in the period range
40 and 100 s. The half-width of the Gaussian function is set to half
the minimum wavelength (85 km).

The principal component analysis again reveals that the sensi-
tivity of this data set is accounted for by a small number of prin-
cipal kernels. Four principal kernels describe nearly 90 per cent

of the sensitivity power, and we reach more than 80 per cent with
only three parameters (Fig. 14). It is interesting to note that in
the context of a conjugate gradient method, the misfit kernels are
scaled images of the model update that would be added to the later-
ally homogeneous reference model. We can therefore directly com-
pare the principal misfit kernels to the ‘real’ model to estimate the
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Figure 13. Location of the five events (beach balls) and the 62 stations
(triangles) used in the computation of the fundamental-mode Love-wave
misfit kernel. The stations correspond to a subset of the Orfeus network
in the Euro-Mediterranean region. The event in the south-east is a real
earthquake located in Crete at 12 km depth. The same source mechanism
(from the Harvard centroid-moment tensor catalogue) is used for the other
four simulations.
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Figure 14. Cumulative sensitivity power for the 21 principal parameters
pk from the principal component analysis of the Love-wave misfit sensi-
tivity for the source–receiver geometry shown in Fig. 13. We consider the
fundamental-mode Love wave with periods between 40 and 100 s.

potential tomographic resolution. The first principal kernel is domi-
nated by sensitivity to the parameter N (Fig. 15). This is the expected
result for Love-wave data in a model with isotropic perturbations,
Love waves being relatively insensitive to the parameters L and F
(Section 4). The azimuthal anisotropic parameters (Ec,s, Dc,s and
Mc,s) contribute to the other principal kernels (Fig. 15). This rep-
resents the trade-off between spherically symmetric and azimuthal
parameters. Note, however, that the kernels K p2 and K p3 in Fig. 15
have significant amplitude over small localized areas (in the vicin-
ity of the sources and along the southern boundary of the region).
This spatial pattern suggests that the imperfect resolution we obtain
with this data set is mainly due to gaps in path coverage. Com-
plete coverage of the targeted area with more uniform azimuthal
sampling would further diminish the contributions of the azimuthal

anisotropic parameters and lead to a better reconstruction of the
‘real’ model.

5 D I S C U S S I O N

Sensitivity kernels for individual arrivals (Section 3) show that seis-
mic waves are sensitive to just a few independent anisotropic model
parameters. Most of the sensitivity is explained with a handful of
principal sensitivity kernels. Our principal component analysis of
the finite-frequency sensitivity proves to be a powerful tool for
analysing and characterizing seismic waves. Although it is a purely
mathematical and ‘Earth-blind’ analysis, without any regard for the
kind of the data considered, it gives physically meaningful results.
The analysis confirms the importance of the asymptotic parame-
ters L and Gc,s for fundamental-mode Rayleigh waves, N and Ec,s

for fundamental-mode Love waves, J c,s and K c,s for P waves and
Gc,s for SKS-splitting. It identifies the most significant parameters
among all of those with a potential influence for S-wave splitting.
It also highlights the role of Mc,s and Dc,s for surface waves, which
dominate the sensitivity when significant Love–Rayleigh coupling
is present. We expect this tool to be important for a better under-
standing of less-used and more complex portions of seismograms,
such as multiple-reflected mantle P and S waves or surface wave
overtones (Zhou 2009).

A major advantage of our analysis is that it can be directly in-
corporated in tomographic inversions. The principal component
analysis will be applied to the ‘misfit kernel’ (the gradient of the
misfit function) representing the sensitivity of the entire data set.
Significant progress in imaging is likely to require a better exploita-
tion of complete waveforms, which implies joint inversions of body
and surface waves, as well as other portions of the seismograms.
This is now possible thanks to recent progress in numerical methods
and parallel computing, enabling tomography to consider full-wave
propagation in 3-D media. Tomographic inversions using these ad-
vances in technology have already been tested (Chen et al. 2007;
Tape et al. 2007). Automatic time-window selection algorithms
required to build the necessarily huge data sets have also been de-
veloped (Maggi et al. 2009). We expect the associated misfit kernels
to be quite complicated, due to the mixing of all the data sensitiv-
ities. It will be very difficult to identify ‘by eye’ the few relevant
anisotropic parameters (ci or ai) in these kinds of inversions. The
principal component analysis proposed here will be an essential tool
to properly identify them.

If the sensitivity of a data set is described by a few principal
kernels, the principal component analysis automatically identifies
them. Based upon this information, we can invert the data set for the
corresponding principal elastic parameters. The bias will be mini-
mal, because these parameters are the ones to which the data set is
most sensitive. Another major advantage of the principal component
analysis is that it finds independent combinations of elastic param-
eters, whereas a simple selection of the primary (or asymptotic)
kernels according to a threshold value may select parameters that
the data set cannot constrain independently. The reduction of the
number of parameters based upon the principal component analy-
sis should therefore help to stabilize the inversion. Good azimuthal
coverage of the targeted area is, however, required for sufficient
resolution of the various parameters (Section 4). Once the selected
principal parameters have been inverted for, the cj or ai can be up-
dated by reversing the relationships given by eqs (8) and (A1). In
an iterative inversion scheme (e.g. Tape et al. 2007), the selection
of the elastic parameters should be performed at each iteration. The
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Figure 15. First three principal sensitivity kernels for the Love-wave misfit sensitivity for the source–receiver geometry shown in Fig. 13: (left-hand panels)
coefficients uki of the linear combination linking the principal kernels K pk to the 21 asymptotic kernels Kai and (right-hand panels) spatial patterns of the
kernels in map view at 75 km depth. The grey squares represent the receivers and the sources are located at the grey spheres.

final model obtained based upon this approach can be directly com-
pared to mineral-physics predictions of the elastic tensor for mantle
convection models (Becker et al. 2006). We can also use Browaeys
& Chevrot’s (2004) decomposition of the elastic tensor to extract
the hexagonal component of the final model, from which a more
traditional description of anisotropy in terms of a magnitude and
direction can then be deduced.

The analysis can also take into account certain a priori knowledge
regarding the distribution of anisotropy in the Earth. For example,
if anisotropy is thought to be mainly present in the upper mantle,
we may wish to select the parameters to which the sensitivity is
maximal in this region only. This may be achieved by restricting
the volume integrals in the definition of the M matrix (eq. 4) to the
upper mantle.

As discussed previously, for tomography the principal compo-
nent analysis will be applied once to the misfit kernel (the summed
sensitivity of the data set for all events, all receivers, and all picks).
When adjoint methods are combined with numerical modelling (as
in SESAME), it is possible to calculate, based upon only one simu-
lation, the sum of the kernels for all the data (all receivers and picks)
corresponding to one event, that is, the ‘event kernel’ as defined by
Tape et al. (2007). The misfit kernel is then the sum of these event
kernels. The related computational time is mainly controlled by the
number of events. This makes regional adjoint tomography feasible
on moderate-size clusters (Tape et al. 2007; Chen et al. 2007). With
our method, the calculation of the 21 primary sensitivity kernels has
a computational cost that is basically the same as that associated
with the calculation of isotropic sensitivity kernels, because it is the
simulation of the forward and adjoint wavefields that determines
the numerical cost, not the construction of the kernels. The most
time-consuming part of the principal component analysis is the con-

struction of the M matrix based upon the calculation of the volume
integrals (eq. 4). Overall, the additional computational cost due to
the principal component analysis is rather insignificant.
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A P P E N D I X A : A LT E R NAT I V E
D E S C R I P T I O N S O F A N I S O T RO P Y

The 21 elastic parameters CIJ , I , J = 1, . . . , 6, using Voigt’s notation
with contracted indices, are related to the elements of the elastic
tensor cklmn, k, l, m, n = 1, 2, 3, in spherical coordinates (r̂ pointing
upward, θ̂ to the south and φ̂ to the east) such that

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

cθθθθ cθθφφ cθθrr cθθφr cθθθr cθθθφ

cφφφφ cφφrr cφφφr cφφθr cφφθφ

crrrr crrφr crrθr crrθφ

cφrφr cφrθr cφrθφ

cθrθr cθrθφ

cθφθφ

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A1)
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The 21 anisotropic elastic parameters of Chen & Tromp (2007) are
given in terms of these parameters by the following relations:

A = 1
8 (3C11 + 3C22 + 2C12 + 4C66),

C = C33,

N = 1
8 (C11 + C22 − 2C12 + 4C66),

L = 1
2 (C44 + C55),

F = 1
2 (C13 + C23),

Jc = 1
8 (3C15 + C25 + 2C46),

Js = 1
8 (C14 + 3C24 + 2C56),

Kc = 1
8 (3C15 + C25 + 2C46 − 4C35),

Ks = 1
8 (C14 + 3C24 + 2C56 − 4C34),

Mc = 1
4 (C15 − C25 + 2C46),

Ms = 1
4 (C14 − C24 − 2C56),

Gc = 1
2 (C55 − C44),

Gs = −C45,

Bc = 1
2 (C11 − C22),

Bs = −(C16 + C26),

Hc = 1
2 (C13 − C23),

Hs = −C36,

Dc = 1
4 (C15 − C25 − 2C46),

Ds = 1
4 (C14 − C24 + 2C56),

Ec = 1
8 (C11 + C22 − 2C12 − 4C66),

Es = − 1
2 (C16 − C26). (A2)
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