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S U M M A R Y
Although much effort goes into improving the resolution of tomographic models, investigating
their quality has only just started. Probabilistic tomography provides a framework for the
quantitative assessment of uncertainties of long-wavelength tomographic models. So far, this
technique has been used to invert maps of surface wave phase velocities and normal-mode
splitting functions. Including body waves would substantially increase the depth resolution in
the lowermost mantle. In surface wave tomography, the construction of phase velocity maps
and splitting functions is a well-defined inverse problem, and the depth inversion is less well
constrained but characterized by a small number of dimensions suitable for a Monte Carlo
search. Traveltime tomography is mostly based on ray theory that covers the 3-D Earth, thus
the dimension of the inverse problem is too large for a Monte Carlo search. The ray-mode
duality suggests to apply the path-average approximation to body wave traveltimes. In this
way the measured traveltime residual as a function of ray parameter can be inverted using
path-average kernels, which depend on depth only, similar to surface wave tomography.

We investigate the validity of the path-average approximation for delay times in both the
forward and the inverse problem using the velocity model S20RTS as well as random models.
We numerically illustrate the precision of such kernels compared with ray-theoretic and finite-
frequency ones. We further invert traveltime residuals, calculated from Fermat rays, using the
path-average kernels. We find that the agreement between classical ray theory and path-average
theory is good for long wavelength structures. We suggest that for mapping long wavelength
structures, body waves can be inverted in two steps, similar to surface waves, where the ray
parameter and the vertical traveltime play the role of frequency and phase velocity, respectively.
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1 I N T RO D U C T I O N

Seismic tomography is the most powerful probe into the Earth’s
deep interior. Seismic waves from large earthquakes travel through
the Earth or along the surface, and their arrival times and shapes
contain information on the medium they travelled through. Tomog-
raphy inversions consists of working out the Earth’s 3-D (an)elastic
structure (generally expressed as a perturbation from a reference
model) from large quantities of arrival times, body or surface wave
forms and free oscillation data, and has been a very active field of
research since the first systematic efforts in the early 1980s. Over
the years, considerable progress has been made and many reviews
have been written on the subject (e.g. Dziewonski & Woodhouse
1987; Woodhouse & Dziewonski 1989; Masters 1989; Romanowicz
1991; Montagner 1994; Masters & Shearer 1995; Ritzwoller &
Lavely 1995; Dziewonski 1996; Masters et al. 2000; Fukao et al.
2001; Romanowicz 2003; Trampert & van der Hilst 2005). It is
encouraging to see that a great amount of overlapping information
is emerging from different tomographic studies using different data
and/or different techniques.

The imaging of the 3-D velocity structures is of course only a
first step towards fully understanding their physical causes. Indeed,
seismic tomography maps the current thermodynamic and compo-
sitional state of heterogeneity and thus imposes strong geometric
constraints on possible models of mantle convection. The thickness
of continental roots (Deschamps et al. 2002), the depth extent of
the mid-ocean ridges and the change of lithospheric velocity versus
age (e.g. Su et al. 1992; Zhang & Tanimoto 1992) give important
clues on the formation and evolution of continental and oceanic
lithosphere. It has long been recognized that there is a correla-
tion between the geoid and seismic models, and therefore judicious
integration of both types of information (gravity and seismologi-
cal) should give access to robust 3-D density variations within the
Earth (e.g. Ishii & Tromp 1999). These few examples illustrate that
seismic tomography is central in a strong interdisciplinary effort
aimed at understanding the structure and the evolution of the Earth’s
interior.

Although much effort has been made to improve the lateral and
depth resolution of the models, investigating their quality has only
just started. Model appraisal, however, is essential if we want to
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advance from a predominantly qualitative to a more quantitative
interpretation of seismic tomography (Trampert & van der Hilst
2005). It is well known that the tomographic problem is an ill-
posed and ill-conditioned inverse problem (e.g. Trampert 1998).
The ill-ness is reduced by imposing some form of regularization.
This improves the conditioning and keeps the data error propaga-
tion under control. Ill-posed means that the inferred model is not
unique (model nullspace), some data cannot be associated to any
model (data nullspace), or the model does not depend continuously
on the data (Bertero & Boccacci 1998). The last condition can lead
to multiple minima in the cost function, even for a linear inverse
problem and a standard regularization could therefore find a solution
in a local minimum which might not be the most likely. Beghein
et al. (2002), Resovsky & Trampert (2003) identified two such
cases while studying anisotropy in the inner core and density in the
mantle, respectively. The presence of nullspaces is more generally
acknowledged, and it is well known that the model nullspace leads
to large valleys in the data misfit function, which a least-squares
method seeks to minimize. In this case, regularization is needed
to eliminate the valley. This makes the cost function quadratic and
the solution unique. Regularization can thus be seen by picking
one particular solution from the original valley in the data misfit
function. In the Bayesian approach (e.g. Tarantola 1987), the regu-
larization consists of statistical prior information, which is obtained
by other physical experiments. If the regularization is just chosen
by ad hoc mathematical arguments, as in most cases, the solution
loses connection to the real world and formal uncertainty analysis is
meaningless. In the absence of realistic prior information, the val-
ley should be properly explored by a full model search technique.
In this case, a family of solutions is obtained, and it emerged that
often their statistics have useful and interpretable properties due to
sufficient data constraints (Shapiro & Ritzwoller 2002; Resovsky
& Trampert 2003). We refer to the statistical constraints from such
a family of solutions as ‘probabilistic tomography’ (Resovsky &
Trampert 2003; Trampert et al. 2004).

Based on a forward sampling technique, probabilistic tomogra-
phy associates a probability to each random model based on some
definition of misfit. When sufficient models have been drawn, prob-
ability density functions are estimated for each model parameter.
This probability density function is all the information that can
ever be gained from the data on that particular parameter and can
therefore be seen as a compact representation of the given data
themselves. The curse of dimensionality quickly limits the size of
the problem, which can be solved with a forward sampling tech-
nique to a few tens of unknowns (e.g. Curtis & Lomax 2001). So
far this technique has been used to invert surface wave phase veloc-
ity maps and normal-mode splitting functions (e.g. Beghein et al.
2002; Resovsky & Trampert 2003). The construction of phase ve-
locity maps and splitting functions from the seismic measurements
is a relatively well-defined linear inverse problem. Their local depth
inversion, however, is less well constrained and the biggest source
of non-uniqueness in the final models, but a problem which can be
represented with a limited number of unknowns. The latter part is
therefore ideally suited for probabilistic tomography. So far, body
wave data have not been included into probabilistic tomography,
although they would considerably increase depth resolution. Body
wave traveltime residuals are generally analysed using ray theory,
which covers the 3-D Earth. It is therefore not straightforward to de-
compose the problem into a mapping of body wave residuals with a
function on the sphere which can then locally be inverted for depth.
Using rays means parametrizing the whole Earth, which makes the
problem too big for probabilistic tomography.

Evoking the ray-mode duality, it is possible to apply the path-
average approximation to body wave traveltimes in a spherically
symmetric earth model. In the following section, we show that the
measured traveltime residual as a function of ray parameter can, to
lowest order, be inverted using a simplified kernel which depends
only on depth. In Section 3, we show comparisons of traveltime
residuals calculated using Fermat rays, finite-frequency kernels and
the path-average approximation using 3-D earth models with vary-
ing complexity. In Section 4, we then illustrate that the path-average
approximation, commonly used for surface waves and normal-mode
splitting, gives good inversion results for long wavelength structures
when applied to body wave residuals.

2 S I M P L E K E R N E L S F RO M R AY- M O D E
D UA L I T Y

The path-average approximation has successfully been used in many
long-period waveform inversions (e.g. Woodhouse & Dziewonski
1984, 1986; Tanimoto 1988; Su et al. 1994; Kustowski et al. 2008).
The theory shows that for minor arc phases, the phase adjustment to
each mode in the seismogram depends on the average phase velocity
perturbation between source and receiver and therefore only on the
horizontally averaged structure. This is, of course, a very good ap-
proximation for surface waves but not necessarily for body waves. Li
& Romanowicz (1995) proposed an extension to the theory, which
involves cross-branch coupling, and investigated its limitations for
the calculation of body waveforms. The good agreement of the long
wavelength structure between many tomographic models shows that
the path-average approximation nevertheless provides meaningful
results. It can be shown (e.g. Dahlen & Tromp 1998) that the con-
straints on the Earth’s internal structure from high-frequency normal
modes and body wave traveltimes are the same to the lowest order.
Secondary data popularly derived from body waveforms are trav-
eltime residuals. We therefore suggest to employ the path-average
approximation for the description of body wave traveltime residuals
rather than full waveforms.

In a spherically symmetric earth model, the normal-modes of the
Earth can be seen as the constructive interference of body waves
with the same ray parameter. Brune (1964, 1966) was the first to
analyse body wave arrival times in terms of equivalent normal-mode
frequencies using simple arguments of constructive interference.
For large angular orders l, the normal-mode frequencies are asymp-
totically equivalent to the inverse intercept time of a ray with ray
parameter p:

ωτ (p) = 2π (n + α), (1)

where ω is the angular frequency of the mode, n its overtone number
and α is a fraction which depends on the body wave considered
(Zhao & Dahlen 1993). The ray-theoretic intercept time is defined
by:

τ (p) = 2
∫ a

r (bot)

(
1

v(r )2
− p2

r 2

)1/2

dr, (2)

where v(r) is the wave speed of either the P or the S wave under
consideration and the integration runs from the turning radius of
the ray to the Earth’s surface a. Together with Jean’s relation (1927)
this allows to calculate the mode spectrum of a spherically symmet-
ric Earth with remarkable precision (for high l) compared with the
direct integration method, which is the standard (see illustrations
in Zhao & Dahlen 1993). The ray-mode duality goes much further
and by rewriting the constructive interference principle of eq. (1)
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differently, Zhao & Dahlen (1995a) arrived at asymptotic expres-
sions for the modal eigenfunctions and the corresponding Fréchet
kernels (Zhao & Dahlen 1995b). A local eigenfrequency perturba-
tion at constant l is related to a local phase velocity perturbation at
constant ω (e.g. Dahlen & Tromp 1998) by

δωlocal

ω
= U

c

δclocal

c
, (3)

where U = �(p)/T (p) is the group velocity defined simply as the
ratio of the epicentral distance and the traveltime, and c = p−1 is the
phase velocity of the normal-mode corresponding to a body wave
with ray parameter p (Dahlen & Tromp 1998). Inserting these in the
expressions of Zhao & Dahlen (1995b), the local vertical traveltime
perturbations are related to local velocity perturbations by

δτ (p, θ, φ) = −2
∫ a

r (bot)

1

v(r )2

(
1

v(r )2
− p2

r 2

)−1/2

δ ln v(r, θ, φ) dr.

(4)

The physical meaning of this expression is that a ray with ray pa-
rameter p in a spherically symmetric earth model v(r) experiences
a local vertical two-way traveltime perturbation due to a local ve-
locity perturbation at point (r , θ , φ) in the Earth (Fig. 1). Note that
eq. (4) is simply the differential of (2) assuming a local velocity
perturbation for a constant p. The equation is valid for P, PcP, S and
ScS waves, which all have one down- and one up-ward leg to their
path. For PP and SS waves, the factor of 2 is replaced by a factor of
4, for PPP and SSS waves by a factor of 6, etc., corresponding to the
number of legs in their path. We assumed here that the source is at
the surface, but a generalization to an epicenter at depth is straight-
forward. These kernels very strongly resemble those of Zhao &
Jordan (1998) for the case of along branch coupling which isolates
the minor arc sensitivity. The observed traveltime residual δT (p)

Figure 1. The local two-way vertical traveltime perturbation δτ is obtained
by integrating a local velocity perturbation δv at the point (r , θ , φ) in
a spherically symmetric Earth. The kernel is schematically depicted by
bands of varying grey shades (black is the maximum). The total traveltime
perturbation is determinated by averaging laterally the local δτ . For an
anomaly close to the bottom of the ray, depicted in green, the ray-theoretical
and path-average residuals are close. For an anomaly close to the surface,
the difference will be large.

for this ray is then simply the average δτ (p, θ , φ) between source
and receiver, which is the body wave equivalent of the path-average
approximation for modal frequencies:

δT (p) = 1

�

∫ �

0
δτ (p, θ, φ) d�, (5)

where � is the epicentral distance. This formulation is equivalent
to that of surface wave tomography, where the role of frequency
ω is taken by the ray parameter p and the local phase velocity
perturbation is replaced by the vertical traveltime perturbation.

So far, we approached the problem from the modal description
and used asymptotic expressions for high l or high ω. The same
kernels can of course be found by starting from ray theory, the
high-frequency approximation to the elastodynamic wave equation.
Fermat’s principle states that the traveltime of a ray is extremum,
minimum or maximum, with respect to nearby possible paths. This
means that the traveltime perturbation due to a velocity perturbation
is to first order:

δT (p) = −
∫




δ ln v(r, θ, φ)

v(r )
d
, (6)

where 
 denotes the ray path. If we assume that the velocity per-
turbation between source and receiver depends on radius only, we
can transform the integral over 
 into an integral over radius r
(e.g. Bullen 1963):

δT (p) = −2
∫ a

r (bot)

1

v(r )2

(
1

v(r )2
− p2

r 2

)−1/2

δ ln v(r ) dr. (7)

It is interesting to note that this is how Bullen constructed his 1-D
velocity models. In the Earth, the velocity perturbation of course
changes laterally as well, but if we are content to retrieve a lateral
average of this perturbation between source and receiver, we arrive
again at eq. (5).

To address the validity of the path integral approximation, we
need to estimate by how much the velocity can change laterally for
(5) to remain valid. By considering a small segment of a ray, it is
easy to see that the approximation holds locally when

δ ln v⊥
δ ln vr

� tan i, (8)

where i is the angle of incidence. This equation shows that the path
integral approximation is acceptable when the horizontal changes in
velocity are small in parts, where the ray travels vertically. Near the
bottom of the ray, where the propagation is close to horizontal, no
limitations are needed. The local condition (8) cannot be generalized
to a global constraint, but it is clear that the precision of eq. (5) will
depend on the distance and the wavelength of the structural changes.
In the following, we will numerically illustrate the precision of the
path-average kernels using random media and the velocity model
S20RTS (Ritsema et al. 1999).

3 T H E F O RWA R D P R E C I S I O N

S20RTS (Ritsema et al. 1999) is a 3-D tomographic velocity model
expressed as perturbations from PREM (Dziewonski & Anderson
1981). The parametrization consists of a spherical harmonic ex-
pansion (up to degree 20) of the lateral perturbations and a spline
expansion (21 splines) of the vertical perturbations between the
Moho and the core–mantle boundary. We traced rays in PREM
and calculated ray-theoretic traveltime perturbations in S20RTS us-
ing eq. (6). We then compared those with path-average predictions
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Figure 2. Scatter-plots comparing ray-theoretic and path-average approximations to traveltime perturbations for S, SS, ScS, SSS phases and a spherical harmonic
cut-off 5. The red line is the fitted line obtained by linear regression, and the green line has the ideal slope 1. Each graph displays results for 1000 random
source–receiver paths.

using eq. (5). The complexity of the model is varied by consider-
ing different spherical harmonic cut-offs. We generated a random
distribution of source–receiver paths. We fixed a certain epicentral
distance and randomly generated epicenter coordinates, azimuths
(between 0◦ and 360◦) and source depth (between 0 and 700 km)
and calculated the corresponding station coordinates. For each seis-
mic phase, we generated 1000 paths and plotted the ray-theoretic
versus the path-average traveltime perturbations.

Figs 2 and 3 show scatter-plots for S, SS, SSS and ScS waves for
different spherical harmonic degrees and epicentral distances. The
plots exhibit a clear linear trend and in the ideal case, all points
should align on the green line with slope 1. Instead, they scatter
around the fitted red line obtained by linear regression. The fitted
line is often close to the ideal line, but we see that the deviations
from the green line increase with spherical harmonic degree and
epicentral distance as expected. To quantify these deviations, we
calculated the linear correlation coefficient (Fig. 4), which is a
measure of the probability that a linear relationship exists between
the two residuals. Fig. 4 depicts the correlation coefficient as a
function of epicentral distance and spherical harmonic degree. In
general, it is higher than 0.7 and decreases with increasing spherical
harmonic degree and epicentral distance. Plots for the SSS phase
show a very high correlation. This is due to the nature of SSS
waves. With increasing bounce points, properties of body waves
are closer to properties of surface waves. Since the path-average

approximation works very well for surface waves, it is also a good
approximation for SS and, in particular, SSS phases.

Another important measure is the deviation from ray theory. We
defined the relative uncertainty as the ratio between the standard
deviation from the line with slope 1 and the quadratic mean of
points described by the green line. We chose to show the relative
uncertainty, because it is independent on the amplitude of the model.
In Fig. 5, which exhibits the relative uncertainties in S20RTS, there
is a slight dependence on distance and, hence, on ray parameter. In
an inverse procedure, this theoretical uncertainty would simply add
to the measured data uncertainties (e.g. Tarantola 1987).

Ray theory, a high frequency approximation, is only valid if the
structure changes little on the scale of the wavelength and/or the
Fresnel zone (Wang & Dahlen 1995). In practice, the waves are of
finite frequency and scattering effects might be important. Dahlen
et al. (2000) formulated an efficient theory for calculating such
finite-frequency sensitivity kernels for body-wave arrival times.
These kernels have banana–doughnut shapes for direct phases and
have a strong and narrow sensitivity close to the source and receiver
and weaker and broader sensitivity near the turning point (e.g. Hung
et al. 2000). Our simplified kernels differ most near the source and
receiver, and therefore it is interesting to compare finite-frequency
kernel predictions with our predictions. We used the code ‘raydyn-
trace.f’ (Tian et al. 2007a), together with the paraxial approxima-
tion to calculate the finite-frequency kernels assuming a dominant
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Figure 3. Same as Fig. 2, but up to spherical harmonic degree 20.

Figure 4. Linear correlation coefficient as a function of epicentral distance and spherical harmonic degree for S, SS, ScS, SSS phases.
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Figure 5. Relative uncertainty between ray- and path-average theory in S20RTS as a function of epicentral distance and spherical harmonic degree for S, SS,
ScS, SSS phases.

Figure 6. Linear correlation coefficient (top panels) and relative uncertainty (bottom panels) as a function of epicentral distance, and spherical harmonic
degree for S and ScS phases comparing the banana–doughnut and the path-average approximation.

period of τ = 20 s. We then integrated the kernel multiplied with
the velocity perturbation numerically around the first few Fresnel
zones.

The scatter-plots of banana–doughnut versus path-average travel-
time pertubations for S20RTS are very similar to those in Figs 2 and
3, indicating that finite-frequency effects are small, which is to be
expected for long wavelength models. In Fig. 6, we show the linear
correlation coefficient (top panel) and the relative uncertainty (bot-

tom panel) as functions of epicentral distance and harmonic degree.
They are very close to those in Figs 4 and 5. The paraxial ap-
proximation breaks down for waves producing caustics (Tian et al.
2007b). Our simple integration scheme can therefore not be applied
to SS and SSS phases, restricting our banana-doughnut comparison
to S and ScS waves only.

Some of the features in the previous figures are due to the nature
of S20RTS, which has a varying spectrum as a function of depth.
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Figure 7. Same as Fig. 4, but using a random model.

Figure 8. Same as Fig. 5, but using a random model.

Inspired by Baig et al. (2003), we investigated the behaviour of
our path-average kernels generating random models characterized
by flat spherical harmonic power spectra. Again, we compared the
ray-theoretic and the path-average traveltime residuals using now
random velocity models for different spherical harmonic cut-offs
and epicentral distances. Fig. 7 (Fig. 8) shows the correlation coef-
ficient (the relative error) as a function of epicentral distance and
spherical harmonic degree. Because we drew random spherical har-
monic coefficients between (−1, 1), the amplitude of the traveltime

residuals has values between ∼100 and ∼3000 s, compared with
less than 20 s for S20RTS. The relative error, however, is comparable
to those exhibited for S20RTS. This shows that relative uncertainty
doesn’t depend on the amplitude of the model.

Comparing Figs 4 and 7 (5 and 8), the trend of the correlation
(relative uncertainty) is the same for SS- and SSS-phases, but it is
different for S- and ScS-waves. For the model S20RTS, the rela-
tive uncertainty decreases at long distances, whereas it increases
with increasing distance for random media. This effect is most
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evident for the S-phase. The explanation is that S20RTS is domi-
nated by harmonic degree 2 in the lowermost mantle. The effects
of the cut-off degree are clearer in the random models, which give
uncertainties due to the path-average approximation, unbiased by
their power spectrum.

4 T H E I N V E R S E C A S E

In the previous section, we saw that the path-average approxima-
tion provides a good estimation of traveltimes in long-wavelength
earth models. We now present the results of a tomographic inver-

Figure 9. Shear velocity perturbation maps of model S20RTS on the left-hand side, from the inversion using classical ray theory in the centre and the
path-average approach on the right-hand side at different depths. Ray-theoretic traveltime data were calculated up to degree 20. The perturbations are given in
per cent with respect to PREM. Yellow circles are hotspots and yellow lines represent plate boundaries.

sion of body-wave traveltime residuals for realistic source–receiver
paths. We used 73 394 S-, 60 114 SS- and 3020 ScS-waves (Ritsema,
personal communication, 2008). To construct velocity perturbation
maps, we calculated traveltime residuals in S20RTS using Fermat
rays and then inverted for d ln v S using simplified kernels from the
path-average approximation (eq. 5).

S20RTS is parametrized laterally with spherical harmonic func-
tions up to degree 20 and 21 spline functions for depth. The number
of unknows therefore is 9261. The inversion is performed adopt-
ing a damped least-squares method, which introduces a trade-off
parameter γ to find a solution by minimizing a cost function
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S = || �d − Â �m||2 − γ || �m||2, where �d is the data vector, �m the
model vector and Â the partial derivative matrix. The trade-off
(or damping) parameter compromises between minimizing the data
misfit and the size of the model.

Maps of relative deviation from the average shear wave velocity
(PREM) at seven depths are shown in Fig. 9. For each depth, we
reproduce model S20RTS on the left-hand side, results from the in-
version using classical ray theory in the centre and the path-average
theory on the right-hand side. Blue regions denote faster than aver-
age and red regions denote slower than average velocity. For shallow
depths (between 150 and 500 km), there are clear discrepancies in
amplitude between S20RTS, and the other two results due to data
coverage used in our test. Indeed, body waves are more suitable to
study the deeper interior of the Earth and thus to detect heterogene-
ity in the lower mantle; whereas surface waves resolve better small-
scale structure in the upper mantle. Since model S20RTS combines
body waves, surface waves and normal-modes, it provides better
constraints in the shallow part of the Earth’s mantle. Increasing the
depth, the agreement in terms of amplitude between maps improves
considerably, and in particular, in the lowermost mantle, the neg-
ative velocity anomalies beneath the Pacific and Africa from the
three maps show a similar amplitude. Comparing S20RTS to the
middle column in Fig. 9 is like a checkerboard test and gives an
idea on the resolution power of the data for the chosen damping; the
comparison between the middle and right-hand side column shows
the difference between ray- and path-average theory.

The differences and similitaries between maps in Fig. 9 appear
more clearly by directly computing their correlations, as well as
comparing their amplitudes.

Fig. 10 shows the correlation between S20RTS and the path-
average model on the left-hand side and between classical ray theory,

Figure 10. Correlation as a function of the depth for different maximum harmonic degrees between the S20RTS and the path-average model on the left-hand
side and between the classical ray theory and path-average maps on the right-hand side.

Figure 11. Same as Fig. 10, but for the amplitude ratio as a function of the depth for different maximum harmonic degrees.

and our approach on the right-hand side as a function of the depth for
different harmonic degrees. We note that in the upper mantle, there
are less differences in the trends of the correlation with increasing
spherical harmonic degree. Instead, in the mid- and lower mantle,
the long wavelength features correlate much better. In the lower
mantle, the lowest correlation is around 1500 km corresponding
to a distance ∼ 60◦. S20RTS is characterized by small amplitudes
at that depth, and the error due to the path-average approximation
becomes comparable to the data value itself. Of course, this affects
the correlation between velocity perturbation maps as well. We do
not think that this drop in correlation is a problem for imaging the
real Earth, because S20RTS seems quite heavily damped compared
with other models using similar data (Trampert & Spetzler 2006)
but is a reminder that it remains difficult to extract signal from data
below the noise level.

In Fig. 11, we show the amplitude ratios between S20RTS and
the inverted maps as function of depth and maximum harmonic
degree. The trend depends little on harmonic degree. The amplitude
ratio between S20RTS and the path-average model is more than 7
in the uppermost mantle, then declines rapidly around 1.0. The
amplitude ratio between maps from ray theory and path-average
theory decreases from 2.5 in the upper mantle to 1 in the lower
mantle. The reason is that the ray-theory maps and path-average
maps are constructed using only body waves, which do not provide
a good coverage in the upper mantle.

To show that body waves and surface waves can be treated using
the same formalism, we applied a two-step inversion to the Fermat
traveltime residuals used above. We expanded traveltime data for
ray parameter, where we had enough data coverage in spherical
harmonics up to degree 8 and then inverted the maps of δT (p)
locally for depth. In practice, rays with constant ray parameter are
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Figure 12. Sensitivity kernels for the path-average theory as function of the depth and ray parameter for selected S- (left-hand bottom panel) and SS-phases
(right-hand bottom panel).

difficult to find (except for diffracted phases). We therefore construct
maps of δT (p) using rays in a narrow range. Sufficient rays are found
for S waves with ray parameter p = 479 and 499.5 ± 0.5 s deg−1

and for SS waves bottoming between 970 and 1100 km with a range
of p equal to 5 s deg−1. Fig. 12 shows the path-average sensitivity
kernels corresponding to the selected rays. Fig. 13 exhibits S-wave
velocity perturbation maps obtained from this two-step inversion.
The agreement with the model S20RTS (left-hand column of Fig. 9)
in terms of pattern and amplitude is quite good only at a depth of
1000 km and in the lowermost mantle. The reason is of course that
the maps are obtained with only S and SS phases, which bottom at
depth ∼2890 and ∼1000 km, respectively.

5 D I S C U S S I O N A N D C O N C LU S I O N

In the asymptotic limit, it is possible to express a duality between
high-frequency normal-modes and propagating body waves. This
ray-mode duality suggests to apply the path-average approximation,
which is typically used for normal-modes and surface waves, to body
wave traveltimes. We expressed the traveltime residual between
source and receiver as the lateral average of the local vertical two-

way traveltime perturbation. In this way, surface and body waves
can be treated using the same formalism, where the frequency ω

corresponds to the ray parameter p and the local phase velocity
perturbation is comparable to the vertical traveltime perturbation. It
is therefore possible, in theory, to build traveltime residual maps as
functions of the ray parameter comparable to phase velocity maps
as functions of frequency and invert those locally for depth.

The aim of this paper was to test the validity of such path-average
kernels for both the forward and the inverse problem. Although we
only showed results for S, SS, SSS, ScS phases, we tested that the
same approach works for P, PP, PPP, PcP phases.

In body wave tomography, it is important to take into account the
errors due to the source mislocations. Two different approaches have
been proposed to deal with this. (1) The relocation procedure and the
tomographic inversion can be performed simultaneously (Bijwaard
& Spakman 2000). (2) Earthquake relocation parameters are esti-
mated by fitting observed traveltimes to predictions in a smooth
degree-12 velocity model (Ritsema et al. 2004). A relocation error
can then be estimated and simply subtracted from the measured
traveltime residuals before the tomographic inversion. This latter
procedure is most easily incorporated in a two-step path-average
approach.
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Figure 13. Shear velocity perturbation maps at different depths from the two-step inversion. The first step consists of a spherical harmonic expansion of the
measured traveltime residuals up to degree 8, and the second one is their depth inversion using the kernels in Fig. 12. The perturbations are given in per cent
with respect to PREM. The maps show hotspots (yellow circles) as well as plate boundaries (yellow line).

Using the velocity model S20RTS (Ritsema et al. 1999) and
random media, we compared the ray-theoretic delay time and the
banana-doughnut traveltime residual with the traveltime perturba-
tion, using simple kernels from the path-average approximation
for different distances and spherical harmonic cut-offs. For long-
wavelength structure, the agreement is good, and it improves further
for low epicentral distances. We estimated a relative uncertainty that
is independent of the amplitude of the model and depends slightly
on the distance and, thus, on the ray parameter. It is not necessary to
establish strict bounds of validity for the path-average approach, but
relative uncertainties can properly be included in the construction
of the tomographic models.

To test the effectiveness of the path-average approximation for
body waves in tomographic inversions, we used traveltime residuals,
calculated from Fermat theory, to image the velocity perturbation
using both classical ray theory and the theory presented here. For
long wavelength models, the results are comparable in the lower
mantle. Our tests show that a two-steps approach is also possible,
but data coverage is such that it cannot be used for body wave
tomography alone. However, two-way traveltime maps can be added
to surface-wave phase velocity maps and normal-mode splitting
functions. This allows to construct mantle models using the same
mathematical formalism for body and surface waves.
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