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3Ruhr University Bochum, Universitätsstrasse 150, NA3/165, 44780 Bochum, Germany

Accepted 2008 February 4. Received 2008 February 4; in original form 2006 November 6

S U M M A R Y
We explore the Rayleigh-wave phase velocity structure of the east-central US in a broad period
range (10–200 s). Using a recent implementation of the two-stations method, we first mea-
sure interstation dispersion curves of Rayleigh-wave phase velocities along 60 paths. We then
invert our collection of dispersion curves for isotropic and azimuthally anisotropic (2� and
4�) phase–velocity maps. The inversion is performed by a damped, smoothed LSQR, and
the output model is parametrized on a triangular grid of knots with a 140 km grid spacing.
Using the isotropic component of the phase velocity maps to constrain regional variations
in shear velocity and Moho-depth, we observe that over the upper-middle crust depth range
(z < 30 km) shear wave velocities are lower beneath the Grenville and Appalachian oro-
genic provinces than beneath the Central Plains to the west. The amplitude of (2�) anisotropy
and the azimuth of the fast-propagation direction at periods between 20 and 34 s vary later-
ally. Beneath the Grenville and Appalachian provinces, the amplitude of anisotropy reaches
1 per cent of the average phase velocity, and the azimuth of the fast-propagation direction is
uniform and equal to 32◦. West of the Grenville front, the average amplitude falls to 0.5 per cent,
and the azimuth of the fast-propagation direction is less uniform. In the period range 45–60 s,
anisotropy is smaller in amplitude (∼0.5 per cent) and with a regionally uniform azimuth of
the fast-propagation direction of around 165◦. Around 140 s, the amplitude of 2� anisotropy
is larger again (>1 per cent), and the azimuth of the fast-propagation direction is uniform over
the entire region and equal to 54◦. Our results suggest that azimuthal anisotropy beneath the
east-central US is vertically distributed in three distinct layers, with a different geodynamic
origin for each of them.
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1 I N T RO D U C T I O N

Azimuthal anisotropy is of great interest to infer past and present

deformation in the lithosphere and asthenosphere, and can be re-

trieved by studying either the polarization of seismic waves speeds

(mainly SKS and S), or the azimuthal dependence of body or surface

wave speeds. In one given region, lithospheric and asthenospheric

deformations are often discussed as alternative origin for azimuthal

anisotropy. Stratification of anisotropy, however, has increasingly

been revealed by recent surface wave observations, sometimes com-

bined with shear wave splitting data (e.g. Simmons et al. 2002;

Smith et al. 2004; Sebai et al. 2006; Marone & Romanowicz 2007).

In this paper, we build an anisotropic model of Rayleigh-wave phase

velocity in the east-central US (31◦N–41◦N, and 82◦E–92◦E), and

observe different azimuthal anisotropy patterns in three distinct pe-

riod ranges, suggesting that in this region azimuthal anisotropy is

vertically distributed in at least three layers.

The tectonics of the east-central US is dominated by the southern

part of the Grenville and Appalachian orogenic belts. During the

Grenville orogeny, which was active between 1.3 and 1.0 Gyr, small

continents accreted to the Laurentia supercontinent (see Hoffman

1988 for a review; and Karlstrom et al. 2001, for a recent study). The

southern portion of the Grenville front (thick curve in Fig. 1) runs

southwestwards down to 34◦N latitude, and bends westwards. The

Appalachian front (thick dashed curve in Fig. 1) is associated with

a more recent orogeny (350–300 Ma), during which Gondwana and

North America collided (e.g. Ziegler 1989). It also runs southwest-

wards down to 32◦N latitude, where it bends westwards (Ouachitas

mountains). West of the Grenville front are the stable cratonic Cen-

tral Plains. These terrains are believed to have experienced little or

no tectonic activity during the past 1.6 Gyr (Hoffman 1988).

Strong shear wave splitting has been reported in the east-central

US (Barruol et al. 1997; Fouch et al. 2000). Fouch et al. (2000)

measured shear wave splitting at each station of the MOMA
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Figure 1. Tectonic setup. The background map shows surface topography from GTOPO30, and the dark green contour lines represent the Moho depth from

crust2.0 (http://mahi.ucsd.edu/Gabi/rem.html) interpolated on a 0.2◦ × 0.2◦ grid mesh. The thick plain and dashed black curves denote the Grenville and

Appalachian fronts, respectively. Also shown are the regional absolute plate motion (Gripp & Gordon 1990), shear wave splitting from Fouch et al. (2000) and

Barruol et al. (1997), and Pn-anisotropy from Smith & Ekström (1999). Circle sizes are proportional to the amount of splitting.

network, and found splitting times between 0.5 and 2.2 s, depending

on the station (Fig. 1, blue symbols). Barruol et al. (1997) compiled

measurements in a wider region, and found similar directions of fast

propagation, with more scatter (Fig. 1, red symbols). The directions

of fast propagation fit well the regional absolute plate motion (Gripp

et al. 1990) (Fig. 1, green arrows), supporting the hypothesis that

shear wave splitting in this region results primarily from astheno-

spheric deformation due to the relative motion of the lithosphere and

asthenosphere. However, due to the tectonic context, it is reasonable

to assume that frozen fabric due to past deformation is also present

in the lithosphere beneath the Appalachian and Grenville provinces,

producing seismic anisotropy. This hypothesis is supported by Pn-

anisotropy measurements (Smith & Ekström 1999), which shows

different directions of fast propagation beneath the Central Plains

and beneath the Grenville and Appalchian provinces (Fig. 1, orange

symbols). Interestingly, the direction of fast propagation beneath

the Grenville and Appalachian provinces is compatible with that

inferred from shear wave splitting in this region.

Shear wave splitting measurements have an excellent lateral res-

olution, but poor radial resolutions and therefore cannot locate the

anisotropy unambiguously. On the contrary, surface waves are sen-

sitive to different depths depending on their period, and can thus

constrain azimuthal anisotropy with a better radial resolution than

shear wave splitting. Arrays are well suited to retrieve isotropic

and anisotropic regional structures sampled by surface waves, but

methodology and data availability often limit the explored period

range (e.g. Friederich & Huang 1996; Freybourger et al. 2001; Li

et al. 2003). Recently, dense arrays allowed the construction of

high-resolution models of Rayleigh-wave phase velocity in vari-

ous regions. For instance, Yang & Forsyth (2006) built a Rayleigh-

wave phase velocity model for southern California in the period

range 25–143 s, and retrieved regional average azimuthal anisotropy,

which they attributed to both lithospheric deformation and astheno-

spheric flow, the latter locally disrupted by small-scale convection.

Pedersen et al. (2006) measured Rayleigh wave dispersion curves

for the Baltic Schield in a broad (15–190 s) period range, and
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Figure 2. Data setup. Seismic stations are represented by different symbols, depending on the network they belong to. Selected paths used to compute the

anisotropic model are shown in orange. The red crosses indicate the knots of the triangular grid on which the phase velocity model is calculated.

inferred azimuthal anisotropy in this region between 20 and 100 s.

The amplitude of azimuthal anisotropy they observed was small

between 20 and 60 s (sampling the lower crust and uppermost litho-

spheric mantle), but strongly increased in the period range 70–100 s

(sampling the deep lithospheric mantle). Here, we measured

dispersion curves of Rayleigh-wave phase velocity using a new

implementation of the two-station method (Meier et al. 2004). Ap-

plication of this technique to high-quality broad-band data enables

measurements of interstations dispersion curves in a period range

(10–200 s) that is broad enough to sample the Earth from the middle

crust down to the subcratonic asthenosphere.

2 DATA A N D R E G I O N A L S E T T I N G

To investigate the Rayleigh-wave phase velocity structure of the east-

central US (31◦N–41◦N, and 82◦E–92◦E), we used seismograms

recorded at 17 seismic stations located in this area (Fig. 2). Most

of these stations belong to permanent seismic networks (USNSN

and NM), but we also used data from the Florida to Edmonton

(FLED) temporary PASSCAL experiment (http://epsc.wustl.edu/

seismology/FLED/proposal.html). Each pair of stations defines a

path along which we can measure, data permitting, a phase–velocity

dispersion curve for the fundamental Rayleigh mode.

The two-station method requires that the angles between the great

circle connecting a pair of stations and the great circles connecting

the stations and the event are not too large. In this study, we put

this limit to 10◦. Epicentral distances are between 10 and 170◦,

and all distances between pairs of seismic stations are smaller than

800 km. From the IRIS database, we extracted more than 20 000

records satisfying these criteria, from more than 3000 events. Events

and source regions are different for each pair of stations. As an

example, Fig. 3 shows event locations and great circles connecting

events to the seismic stations for the pairs BLO-LRAL and MPH-

MYNC. Due to global (distribution of source regions along the path

azimuth) and local (site and instrumental qualities, station history)

factors, the number of selected events greatly varies from one pair

to another (Table 1). The interstation dispersion curve for a path

connecting a pair of stations is averaged from all measurements

for this pair of stations. Data availability and selection procedures

resulted in the construction of average phase–velocity curves for 60

different paths (Fig. 2).

3 D I S P E R S I O N C U RV E S O F T H E

F U N DA M E N TA L R AY L E I G H M O D E

A collection of dispersion curves, one for each path connecting a

pair of seismic stations of an array, can be used to constrain regional
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Figure 3. Events and great circles from events to stations for the pairs BLO-LRAL and MPH-MYNC. Red and green dots indicate the selected events for the

pair BLO-LRAL and MPH-MYNC, respectively.

2-D variations in phase velocity beneath the array. The two-station

method, first introduced by Sato (1955), has been extensively used

to measure dispersion curves of surface waves (for a review of early

works, see Knopoff 1972). In this study, we use a recent imple-

mentation of the cross-correlation approach (Meier et al. 2004). As

shown below, this implementation allows measurements of disper-

sion curves in a broad period range (10–200 s).

For each selected event, the vertical components of the displace-

ment recorded at the two stations of a pair are cross-correlated. To

minimize the effects of noise and interferences, the cross-correlation

function is first filtered with a frequency-dependent Gaussian band-

pass filter. Side lobes caused by correlations of the fundamental

mode with scattered waves or higher modes are then down weighted

by applying in the time domain a frequency-dependent Gaussian

window to the filtered cross-correlation function. This approach to

filtering and windowing is effective as long as the fundamental mode

has the largest amplitude on the seismogram and, consequently, on

the cross-correlation function. The cross-correlation is then trans-

ferred in the frequency domain, and its complex phase �(ω) is used

to calculate the phase velocity c(ω) following

c(ω) = ω (�1 − �2)

ζ (ω)
, ζ (ω) = arctan

{
Im [�(ω)]

Re [�(ω)]

}
+ 2nπ, (1)

where �1 and �2 are the epicentral distances to each of the two

stations. Because of the 2π ambiguity of the arctan function, the

solution of eq. (1) is non-unique and is represented by an array of

curves (one for each n ∈ N ). Phase velocity is measured within a fre-

quency range that is chosen interactively. Several non-overlapping

frequency ranges can be selected for one single event. Seismic-

wave diffraction and interference of Rayleigh- and Love-wave, fun-

damental and higher modes can bias the measurements. These ef-

fects, however, have a strong frequency dependence, which mani-

fests itself in irregularities and roughness of measured curves. Se-

lection of only smooth portions of the curves, removal of outliers
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Table 1. Selected pairs.

Pair D (km) Az (◦) N eve Nt f (mHz) σ C (m s−1)

BLO-FA05 634.1 −11.1 77 51 7.0–79.5 26.8

BLO-FA07 493.1 1.9 31 18 12.0–89.0 25.5

BLO-LRAL 682.3 3.5 67 43 4.5–77.5 36.5

BLO-MPH 541.8 33.0 153 85 5.0–100.0 31.6

BLO-MYNC 285.5 −24.4 123 43 4.0–110.4 31.2

BLO-WVT 356.8 18.5 72 33 7.5–129.4 30.5

FA05-FA07 195.7 −48.5 50 13 17.5–132.9 33.5

FA06-FA08 489.0 −39.9 16 10 24.5–79.5 16.1

GOGA-LRAL 331.8 81.8 65 37 4.0–101.5 33.1

GOGA-MYNC 194.2 −18.1 171 50 5.0–119.4 25.0

GOGA-OXF 562.6 −75.8 110 48 4.5–94.0 29.6

GOGA-WVT 500.4 −51.7 110 34 3.5–110.4 36.1

LRAL-MYNC 348.3 48.7 32 32 7.0–122.4 30.4

LRAL-WVT 351.7 −12.3 73 58 3.0–79.5 34.4

MPH-FA06 383.0 −69.6 22 14 25.5–89.0 27.5

MPH-FA07 297.5 −80.7 31 20 16.5–94.0 27.6

MPH-GOGA 624.8 −70.5 117 80 3.0–81.5 33.9

MPH-MYNC 529.2 88.9 39 24 4.5–96.5 28.3

MPH-PLAL 170.1 −84.2 130 113 5.0–81.5 31.5

MPH-SIUC 294.6 12.4 145 86 5.5–126.0 28.5

MPH-UTMT 166.2 35.2 103 65 6.5–129.4 29.6

MPH-WCI 473.8 42.3 47 40 14.5–110.4 26.9

MYNC-OXF 487.3 81.2 91 32 16.5–96.5 30.5

MYNC-WVT 355.3 −69.7 68 30 5.0–126.0 38.9

PLAL-GOGA 459.1 −66.4 98 63 5.0–110.4 41.8

PLAL-OXF 132.8 66.5 89 13 15.0–69.5 46.5

PLAL-PVMO 216.4 −42.3 101 31 21.5–116.4 25.6

PLAL-SIUC 320.1 −18.3 203 41 3.0–91.5 53.8

PLAL-USIN 333.0 6.2 24 27 15.0–107.4 20.6

PLAL-UTMT 166.9 −25.1 172 22 5.0–96.5 27.2

PVMO-GOGA 659.6 −57.9 36 22 7.0–79.5 24.0

PVMO-LRAL 449.1 −32.7 127 68 6.0–119.4 26.4

PVMO-MYNC 525.4 −72.0 34 12 9.0–89.0 27.2

PVMO-OXF 212.7 −7.0 81 17 7.5–67.5 24.3

PVMO-USIN 249.5 45.8 44 37 14.0–132.9 20.9

PVMO-WVT 170.9 −78.8 45 18 7.0–77.5 29.9

SIUC-FA06 506.0 −34.2 37 29 5.5–104.5 25.3

SIUC-FA07 400.5 −33.5 48 31 8.5–77.5 30.2

SIUC-GOGA 706.7 −45.9 157 73 3.5–77.5 34.3

SIUC-LRAL 557.0 −20.6 92 43 4.0–96.5 31.3

SIUC-MYNC 542.4 −55.8 69 26 8.0–94.0 28.6

SIUC-OXF 355.8 2.7 98 25 3.5–107.4 26.8

SIUC-USIN 139.4 78.0 108 30 6.5–58.5 37.2

SIUC-UTMT 155.5 −11.6 235 15 19.5–63.5 26.5

SIUC-WVT 215.0 −34.7 171 61 5.0–143.4 36.3

USIN-GOGA 632.1 −35.8 98 45 4.0–84.0 21.9

USIN-LRAL 550.3 −6.1 94 49 4.5–75.5 31.7

USIN-MYNC 450.9 −43.6 89 32 7.0–119.4 29.6

USIN-OXF 414.0 21.7 43 16 20.0–107.4 20.3

USIN-UTMT 209.2 30.2 55 22 18.5–99.0 26.8

USIN-WCI 123.8 75.9 91 44 24.5–163.4 46.3

UTMT-FA06 369.9 −44.2 29 15 27.5–89.0 23.8

UTMT-FA07 264.7 −46.9 36 15 28.5–84.0 25.1

UTMT-GOGA 590.8 −55.1 98 40 5.0–94.0 31.8

UTMT-LRAL 404.8 −24.5 94 31 5.0–96.5 30.4

UTMT-MYNC 451.1 −70.5 65 31 15.0–96.5 27.6

UTMT-OXF 209.0 13.5 75 10 20.0–126.0 27.6

UTMT-WCI 309.5 47.6 53 37 17.5–155.4 27.5

WCI-WVT 269.9 29.9 81 24 18.0–126.0 34.1

WVT-UTMT 95.9 −75.5 68 23 22.5–75.5 31.3

Note: For each pair, we list the distance between the two stations (D), the

azimuth of the path (Az), the number of event downloaded from the IRIS

database (N eve), the number of events used to build the phase velocity

dispersion curve (Nt), the frequency range of the dispersion curve (f ), and

the estimated average standard deviation in phase velocity (σ C).

(unrealistically far from the reference), and subsequent averaging

over many measurements strongly minimize these effects and turn

out to be sufficient to warrant the accuracy of the measured disper-

sion in almost all cases (Meier et al. 2004; Lebedev et al. 2006;

Pedersen 2006). Remaining biases are substantial only in areas of

exceptionally strong lateral heterogeneity. Even in these cases, how-

ever, the biases are usually easy to identify by inconsistency from

measurements on waves arriving from different source regions, es-

pecially from the opposite directions.

The selection of the frequency ranges is thus based on the smooth-

ness of the dispersion curves and on the consistency between these

curves and an initial a priori dispersion curve. Further information

for the selection of frequency range(s) is given by time–frequency

plots of the two seismograms and of the cross-correlation func-

tion, illustrating the properties of the waveforms of the fundamental

Rayleigh mode (Meier et al. 2004). Scattering and noise are easily

detected on these plots. The operations described are performed on

the records of all selected events, leading to a collection of phase

velocity measurements in various frequency ranges (Figs 4a–d). Se-

lected measurements for a given pair of stations are then assembled

to compute averages and standard deviations of the phase velocity

along the path that connects the two stations. This averaging reduces

biases due to seismic-wave diffraction and interferences between the

fundamental and higher modes.

We constructed dispersion curves for 60 different paths (Fig. 2,

orange lines). Depending on the number and characteristics of

available seismograms, the accuracy of the dispersion curves and

the frequency range in which they were measured vary from path

to path. For instance, the dispersion curve for path MPH-FA07

(Figs 4d and h) was constructed with 20 events, but poor quality

of the data did not allow estimates of the velocity outside the fre-

quency range 16.5–94 mHz (period range 11–60 s). For most paths,

however, data allowed the determination of phase velocity between

10 and 80 mHz (100 and 12 s) with a standard deviation around

30 m s–1 (Table 1). All 60 paths cover the frequency range 30–

55 mHz (period range 18–34 s). For many paths (33) the dispersion

curve extends down to a frequency of 7 mHz (up to a period of 140 s),

and for about 1/3 of the paths (e.g. GOGA-USIN, Figs 4a and e, and

OXF-SIUC, Figs 4c and g), we could measure the dispersion curve

down to a frequency of 5 mHz (up to a period of 200 s). The regional

coverage also varies with period (Fig. 5). The path density is slightly

higher in the western half than in the eastern half at all periods, but

on the whole the selected paths fully cover the explored area, even at

T = 10 s where only 27 paths are available. The azimuthal repartition

of paths (histograms in Fig. 5) shows a slight excess of paths with

azimuth between −90◦ and 0◦ (in particular around � = −40◦).

Our collection of dispersion curves thus covers a broad period

range and yields a dense coverage of the explored area for peri-

ods between 12 and 140 s. Given the sensitivities of Rayleigh waves

(Fig. 6), we can expect our dispersion curves to constrain the seismic

structure of both the lower crust and the upper half of the upper man-

tle. A qualitative comparison between the phase velocity curves for

each path and the regionally averaged phase velocity curve (dashed

red curves in Figs 4e–h) reveal substantial variations in the phase

velocity. These anomalies may be both isotropic and anisotropic in

origin.

Although our dispersion curves are each averaged from many

measurements and are overall smooth, a certain roughness of small

scale and small amplitude is still present. To test whether this small-

scale roughness has some effect on the phase velocity maps, we

computed the maps both using the original curves and using the

curves that were smoothed further. This additional smoothing was
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Figure 4. Phase velocity dispersion curves for four different paths. Panels (a–d) plot measurements used to construct the average curves. The direction of

propagation is indicated by the colour code (red or blue). In panels (e–h), the bold black lines represent the average smoothed dispersion curves, and the shaded

areas cover one standard deviation around this average. The red dashed curve in each plot shows the phase velocity curve averaged over all the 60 paths.

Panels (i–l) show the differences between the original and smoothed average dispersion curve.

performed by means of inverting each dispersion curve for a radial

model of shear wave velocity (as in Section 5). The inversion is

regularized very weakly. It produces a (not necessarily realistic)

radial model from which we calculate a theoretical phase velocity

curve that is taken as the smoothed version of the original curve.

It is important to note that the smoothed dispersion curves fit well

within the observed standard deviations and are very similar to the

observed average dispersion curve (Figs 4i–l). This approach is in

line with the realization that a path-average VS profile can be seen

as a summary of the dispersion properties of the medium along a

path for one ore more surface wave modes (Yoshizawa & Kennett

2002; Visser et al. 2007). When we inverted the phase–velocity

curves with and without the additional smoothing, we found that

the differences in the resulting phase–velocity maps were minimal.

In the following we use the smoothed curves but acknowledge that

the smoothing has not produced any appreciable effect. This could

be expected given that the differences between the smoothed and

original curves are small and well within the error bars.

The standard deviation in the measured phase velocity at each

period is a good estimate of the error in the dispersion curve. The

error generally increases with period. In this study, we compute

phase–velocity maps by inversions of dispersion curves at differ-

ent periods that are set up independently from each other (Sec-

tion 4), rather than by inverting single-path dispersion curves for

path-averaged VS profiles. The phase velocity maps will be thus af-

fected by variations in the errors from one path to another, rather

than by the frequency dependence of the errors. For this reason,

we chose to use a frequency-independent estimated error for every

dispersion curve and fixed the value of this error to the rms of the

observed error over the frequency range of the curve.

4 R E G I O N A L A N I S O T RO P I C P H A S E

V E L O C I T Y M A P S

To separate isotropic and anisotropic contributions to the Rayleigh-

wave phase velocity anomalies, we performed simultaneous inver-

sions for regional variations in these contributions at each period.

The anisotropic part is described by a 2� and a 4� contribution

(Smith & Dahlen 1973). Previous studies (Montagner & Tanimoto

1991; Trampert & Woodhouse 2003) showed that 4�-anisotropy is

not negligible and should be accounted for in the inversion. The total

phase velocity anomaly at longitude ϕ and latitude θ is given by

δC(ϕ, θ ) = δCiso(ϕ, θ ) + δC2� (ϕ, θ ) + δC4� (ϕ, θ ), (2)

where δC iso is the isotropic anomaly, and δC2� and δC4� are the

2�- and 4�-anisotropic anomalies defined by

δC2� (ϕ, θ ) = A2� cos(2�) + B2� sin(2�), (3a)

δC4� (ϕ, θ ) = A4� cos(4�) + B4� sin(4�), (3b)

respectively, where � is the local azimuth of the ray, and A2� , B2� ,

A4� and B4� are four anisotropic coefficients defined for each lon-

gitude ϕ and latitude θ . The amplitudes of anisotropic anomalies,
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Figure 5. Path coverage at six periods. For each period (or period range) the Np selected paths are shown in dark grey, and the azimuthal distribution of the

selected paths is plotted in a histogram.

�, and the directions of fast propagation, , are given by⎧⎨⎩ �2� =
√

A2
2� + B2

2�

2� = 1
2

arctan
(

B2�

A2�

) and

⎧⎨⎩ �4� =
√

A2
4� + B2

4�

4� = 1
4

arctan
(

B4�

A4�

) . (4)

We thus invert our collection of phase velocity dispersion curves

for five parameters, δC iso and the four anisotropic coefficients.

The model is parametrized on a triangular grid (Wang & Dahlen

1995) of 32 knots with a grid spacing of 140 km. In post-processing

(inversion for radial models of VS), we did not account for the

C© 2008 The Authors, GJI, 173, 827–843

Journal compilation C© 2008 RAS



834 F. Deschamps et al.

20s
30s
40s
60s

0

300

200

100

50

150

250

D
e

p
th

 (
k
m

)

dC/dVS (x10-6)

0 5 10 15 20-5
0

300

200

100

50

150

250

D
e

p
th

 (k
m

)

80s
100s
140s
200s

(a)

dC/dVS (x10-6)

0 5 10 15 20-5

(b)

Figure 6. Depth sensitivity kernels of Rayleigh waves for periods between 20 and 200 s. The Frechet derivatives are for isotropic terms, but they can also give

an idea of the radial distribution of the azimuthal anisotropy (Montagner & Nataf 1986).

Figure 7. Trade-off curves. The variance reduction is plotted and as a function of the smoothness coefficient ε (dotted curves) and of the roughness in the

distribution of 2�-anisotropy anomalies (plain curves). Smoothness coefficients for isotropic anomalies and 4�-anisotropic terms are kept constant. The circles

indicate our preferred model. (a) T = 24 s; preferred model is for ε = 4.2. (b) T = 140 s; preferred model is for ε = 3.1.

peripheral knots, where resolution is poorer, and kept only 17 knots

(red crosses in Fig. 2). At each period, the average phase–velocity

anomaly along the path i is

δCi =
∫

ϕ

∫
θ

Ki (ϕ, θ ) δC (ϕ, θ ) dθ dϕ, (5)

where the local anomalies δC(ϕ,θ ) are given by eqs (2) and (3). The

sensitivity kernels Ki(ϕ,θ ) contain the weight of each knot for that

particular path (Lebedev & van der Hilst 2006), and were approxi-

mated by paths of finite width. In the calculations, we fixed the path

width to 20 km. We varied the path width between 10 and 300 km,

but did not find significant differences in the results. The rms of

the discrepancies between solutions obtained with different values

of the path width is about 2 m s–1, that is, much less than the rms

of the estimated error bar on isotropic and anisotropic parameters,

which is around 8–12 m s–1. This result suggests that the effect of the

assumption of the width of the sensitivity area is limited. For each

period, we build a system of linear equations (one equation for each

available path at the period, i.e. maximum 60) based on a discrete

version of eq. (5) (see Appendix). We then solve this system using the

LSQR method (Paige & Saunders 1982) with lateral smoothing and

slight norm damping. Isotropic and anisotropic terms are smoothed

and damped independently. Choosing the amount of smoothing and

damping is always subjective. We defined our preferred model as a

compromise between model smoothness and ability to explain ob-

served data (variance reduction). Compromise can be visualized on

trade-off curves, as those plotted in Fig. 7. The smoothing we im-

posed penalizes the second spatial derivatives of each term. Strong

smoothing will therefore result in a constant gradient in the inferred

distribution.

Estimates of uncertainties due to measurement errors

LSQR does not provide covariances matrices. In order to estimate

error bars in the model parameters due to measurement errors, we

perform a Monte Carlo search. At each period, we randomly perturb

the dispersion curves within their uncertainties. The random noise

is generated from a Gaussian probability distribution with a zero

mean and standard deviations equal to the curve uncertainties. We

then invert this set of perturbed dispersion curves for a perturbed re-

gional model of phase velocity (including isotropic and anisotropic

anomalies). By repeating these operations a large number of times
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(100 000), we obtain a set of phase velocity models, from which we

compute the average anomalies (isotropic and anisotropic) and their

standard deviations. These standard deviations are good estimates

of the uncertainties in dispersion measurements. The regional rms

of these uncertainties vary between 8 and 12 m s−1, depending on

the period and the parameter considered.

Importance of anisotropy

To test the significance of anisotropy in explaining our data, we first

performed an inversion in which anisotropic terms are neglected.

Damping and smoothing are similar to those of the preferred model.

Because the number of inverted parameters is not the same, com-

paring the variance reductions obtained in each inversion is mean-

ingless. Instead, we computed the reduced χ2 defined as (Trampert

& Woodhouse 2003)

χ 2 = 1

(Np − T )
(d − Gm)TC−1

d (d − Gm), (6)

where Np is the number of data, T the trace of the resolution matrix,

d and m the data and model vectors, G the kernel matrix (eq. A3)

and Cd the covariance matrix. Fig. 8 plots the resulting χ2 as a

function of period. Models with lower reduced χ2 explain the data

better. To decide whether differences in reduced χ2 are significant,

we performed F-tests (Bevington & Robinson 1992). For all peri-

ods, the reduced χ 2 is smaller when anisotropy is accounted for

(Fig. 8). This difference is the largest in the period ranges 16–

34 s and 120–160 s, and F-tests show that these differences are

99 per cent significant. Between 36 and 80 s, the decrease in χ2 is

modest, and F-tests indicate that it is only 36 per cent significant.

Note that at periods greater than 160 s, the reduced χ 2 is large even

when anisotropy is accounted for. In this period range, our results

may be less reliable due to poorer data and azimuthal coverage. The

reduced χ2 decrease further when 4� terms are accounted for, but

compared to the model with isotropic and 2� terms only, differ-

ences are very small and F-tests show that they are not significant.

These tests demonstrate that azimuthal 2�-anisotropy is needed to

explain the data in period ranges 16–34 s, 120–160 s.

Figure 8. Reduced χ2 as a function of period. Inversion is performed for

isotropic anomalies only (diamonds), isotropic and 2�-anisotropy anoma-

lies (squares), and isotropic and full anisotropy (2� and 4�) (circles). The

damping and smoothing factor are those of the preferred model.

Preferred model

The isotropic and anisotropic anomalies of our preferred model

are displayed in Fig. 9 for various periods. Throughout this pa-

per, isotropic and anisotropic anomalies are relative to a reference

model that is defined as the regional average of the isotropic disper-

sion curve (Fig. 10c). The regional rms amplitudes of the relative

isotropic, and 2�-anisotropic anomalies are shown in Fig. 10. The

4�-anisotropic terms are not needed to explain the data (see previ-

ous subsection), and in the remainder of the paper we will focus on

isotropic and 2�-term (hereafter simply referred to as anisotropy)

anomalies.

Isotropic phase–velocity anomalies

The distribution and average amplitude of isotropic anomalies

strongly depends on the period. Largest anomalies are found in the

period range 16–34 s. At 20 s, for instance, the average amplitude

is ∼0.8 per cent of the reference velocity, but the maximum ampli-

tude is close to 1.7 per cent. Between 40 and 140 s, deviations from

the regional average are small, 0.3 per cent on average. At longer

periods (160 s and above), amplitudes of anomalies increase again,

and are comparable to those observed between 16 and 32 s.

The dominant feature in the distribution of isotropic anomalies

is a negative velocity gradient from SW to NE in the period range

12–50 s. This gradient is strongest between 16 and 32 s. There are

some indications for the persistence of the SW–NE gradient up to

60 s, but on the whole, between 55 and 100 s, fast anomalies are

confined to the SW portion. Finally, at periods larger than 120 s, we

observe a pocket of fast anomalies that increases in amplitude with

increasing period.

Anisotropic phase–velocity anomalies

We observe strong anisotropy between 20 and 34 s, with signifi-

cant regional variations in the amplitude and azimuth of the fast-

propagation direction. Beneath the orogenic terrains (Grenville and

Appalachian), the average amplitude reaches 1 per cent of the ref-

erence velocity, and the azimuth of the fast-propagation direction

is regionally uniform. West of the Grenville front, the average am-

plitude is smaller (∼0.5 per cent), and the fast-propagation direc-

tions are less uniform. Between 45 and 60 s, in contrast, azimuthal

anisotropy is weaker, reaching only ∼0.5 per cent in amplitude. The

direction of fast propagation is laterally uniform and equal to 165◦,

that is, nearly perpendicular to the fast-propagation direction ob-

served in the range 20–34 s. We do not see indications for strong

azimuthal anisotropy in the period range 65–100 s. The average am-

plitude is small (<0.4 per cent), and the azimuth of fast-propagation

direction is not regionally uniform. Around 140 s, we observe sub-

stantial anisotropy again. The amplitude of anisotropy is large,

>1 per cent on average, and the azimuth of fast-propagation di-

rection is regionally uniform around 54◦. At 160 s, the average

amplitude and the azimuth of fast-propagation direction are compa-

rable to those at 140 s, but there is more variability in the azimuths.

Finally, at 180 s and longer periods (not shown), the amplitude of

anisotropy is large, but the azimuth of the fast-propagation direction

is not regionally coherent. Only 23 paths could be used at these long

periods (compared to 60 for periods between 20 and 34 s, and 33

around 140 s), and most of them have an azimuth between −90◦

and 0◦, which probably biases the model.

C© 2008 The Authors, GJI, 173, 827–843

Journal compilation C© 2008 RAS



836 F. Deschamps et al.

Figure 9. Relative isotropic and anisotropic anomalies of our preferred model at various periods. The length and the direction of the bars denote the amplitude

and the fast-propagation direction of anisotropy, respectively. All anomalies are relative to the regional average dispersion curve (Fig. 10c). The value of the

reference velocity at each frequency is indicated on each plot.

Influence of regularization

The type and strength of smoothing influence the results of the

inversions. The smoothing we imposed penalizes the second lateral

derivatives of the phase velocity distribution, and is therefore well

suited to retrieve regular gradients in seismic anomalies. Large-

scale gradients in phase velocity anomalies will be recovered by

our inversions, whereas small local anomalies, if present, will be

averaged out by smoothing and will not appear in our models.

The choice of the amount of smoothing is subjective. To esti-

mate the influence of the smoothing coefficient ε on the models, we

both plotted trade-off curves (Fig. 7) and examined the results of in-

versions with different values of the smoothing coefficients. Fig. 11

shows the influence of the smoothing of anisotropy at 24 s. There are

large discrepancies between the anisotropic patterns obtained with

small smoothing coefficients (ε = 2.5 and less), but interestingly,

the azimuths of fast-propagation direction obtained with values of ε

larger than 3.0 are not very sensitive to ε. The influence of smoothing
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Figure 9. (Continued.)

on the amplitude of anisotropy is stronger. The rms of the ampli-

tude of anisotropy at 24 s with ε = 3 and 10 are equal to 0.8 and

0.5 per cent, respectively.

Data sampling varies with the period. All 60 paths sample the pe-

riod range 18–34 s, but periods outside this range are more sparsely

sampled (for instance, only 20 paths sample periods up to 200 s). If

we use the same damping coefficients with our damping scheme

at all periods, the maps at period with weak sampling will be

oversmoothed. To avoid such oversmoothing, we have adjusted the

damping coefficient with period.

Trade-off and resolution matrices

To estimate the trade-off between isotropic and anisotropic terms,

we defined test models mtest in which the isotropic anomalies are

equal to those of the preferred model, and the anisotropic anomalies

have been set to zero. We then compute test data

d test = Gm test, (7)

and invert them for phase velocity anomalies (Fig. 12). Damping

and smoothing coefficients are similar to those used for the preferred

model. Clearly, the isotropic anomalies are very close to those of

our preferred model. Between 20 and 40 s, there are small discrep-

ancies in the structure (for instance, the southeast corner at 24 s is

now slower than average), but the regionally average amplitudes are

80 per cent of that observed in our preferred model. At longer peri-

ods, the amplitude discrepancy slightly increases. More importantly,

the amplitudes of artificial 2�-term anisotropy are very small, about

2 m s−1 on average, at all periods. This series of inversions suggest

that trade-off between isotropic and anisotropic terms do exist, but

are small.

The LSQR method does not directly provide resolution matrices.

It is possible, however, to reconstruct the resolution matrix R by ‘in-

verting’ each column j of the kernel matrix G (Trampert & Lévêque

1990). Given the LSQR operator, L, we have

R = LG (8)

and, therefore, for each column j,

R j = LG j . (9)

Fig. 13 shows resolution matrices at 24 and 140 s. If the inverted

parameters are perfectly resolved, the resolution matrix is equal to

the identity matrix, whereas smearing indicates linear dependencies

between inverted parameters. Fig. 13 confirms that trade-offs be-

tween isotropic and anisotropic terms are present, but limited. In

the diagonal submatrices, stronger lateral (or geographical) trade-

offs in the distribution of each of the isotropic and anisotropic terms

are apparent. These geographical trade-offs are mostly due to the

imposed smoothness.

The effect of smoothing is to spread out local anomalies. As a con-

sequence, narrow anomalies of the same sign can be distinguished
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Figure 10. The rms amplitude and error of relative isotropic anomalies (a)

and 2�-anisotropy anomalies (b) as a function of period. Errors are due

to the uncertainties in the dispersion curves. (c) Regional average isotropic

dispersion curve.

only if they are distant enough. The shortest distance at which they

can be resolved is the resolution length, also equal to the half width

of the image of a δ-function anomaly as it would appears in the

model (Lebedev & Nolet 2003). Note that anomalies wider than the

resolution length and sharp transitions with anomaly sign change

are correctly retrieved. To measure the resolution length for our pre-

ferred model, we defined a series of test models in which we set the

isotropic and anisotropic parameters (eqs 2 and 3) to zero except

at two selected gridpoints, where we set them to the same arbitrary

values. We then computed test data (eq. 7) and inverted it for phase

velocity anomalies. Smoothing and damping are as for our preferred

model. By varying the distance between the two selected spots and

their location on the grid, we estimated the resolution length and its

geographical variations. We found resolution lengths of ∼200 km

for isotropic anomalies, and ∼300 km for anisotropy anomalies.

5 I S O T RO P I C D I S P E R S I O N C U RV E S

A N D S H E A R WAV E V E L O C I T Y

We inverted the isotropic phase velocity maps locally for radial mod-

els of shear wave velocity (VS). The inversion is a Gauss–Newton

gradient search. The VS-profiles are parametrized with boxcar and

triangular basis functions. Given a reference background radial

model, the gradient search iteratively updates the model parame-

ters, calculates a synthetic phase velocity curve from the new VS-

profiles, and compares it to the observed dispersion curve. Synthetic

phase velocities are calculated following the method of Schwab &

Knopoff (1972). The inversion is stopped when the synthetic phase

velocity curve fits the observed one with a prescribed precision.

Norm damping penalizes deviations from the reference profile. Pa-

rameters corresponding to all of the basis functions are damped

independently. The depth of the Moho is also a parameter of the

inversion. The difference between its inverted and reference (here,

crust2.0, http://mahi.ucsd.edu/Gabi/rem.html) values is penalized

using an independent damping factor.

We have inverted the isotropic dispersion curve at each gridpoint

(red crosses in Fig. 2) for a local radial VS profile, and assembled

these profiles in order to constrain the shear speed structure in this

region. At periods larger than 30 s (Fig. 14) our measured dispersion

curves are similar to a reference curve computed for an ak135 mantle

profile and a region average crustal model accounting for crust2.0.

At shorter periods, the measured Rayleigh wave phase velocity are

larger than the reference. The difference between the measurement-

average and reference phase velocities reaches 150 m s−1 at 10 s.

Inverted shear wave velocities are higher than those in crust2.0 down

to the middle crust, but are indistinguishable from ak135 in the

mantle.

In Fig. 15, we plotted the variations in Moho depth and shear

wave velocity anomalies (relative to the regional average) that re-

sult from our inversions. The distributions in Fig. 15 are affected

by three main sources of uncertainties. First, the uncertainties in

measured dispersion curves propagate to the VS-profiles. Second,

inversion of the dispersion curve for VS profiles is sensitive to the

applied regularization, and various damping values will result in

different profiles. Finally, VS anomalies in the lower crust and up-

permost mantle adjacent to the Moho can trade-off with variations

in the Moho depth. Rough estimates of the total uncertainties are

∼3 per cent in VS anomalies and ∼4 km in the Moho depth. Even

accounting for uncertainties of a few kilometres, however, the Moho-

depths we inferred are substantially different from those in crust2.0

in this region. The average Moho depth is 41.7 km, that is, more than

3.0 km deeper than in crust2.0. The biggest differences are found

in the southeastern part, where the Moho we observe is deeper than

that in crust2.0 by about 10 km. The Moho is deeper beneath the oro-

genic regions (43.4 km) than beneath the central plains (39.7 km).

It is shallowest in the southwestern part, in agreement with crust2.0

but with shallower (up to 5 km) values. It is interesting to note

that the Moho correlates with surface topography, as expected for

Airy isostasy, deepest Moho being found beneath the Appalachian

mountain range. The shear wave velocity structure is more uncer-

tain, with amplitude of VS anomalies comparable or smaller than

the estimated uncertainties, except in the upper and middle crust

(Fig. 14b).

Comparing radial profiles of the average isotropic anomalies

(Fig. 14b) beneath the orogenic terrains (including the Grenville and

Appalachian provinces, light blue curve), and beneath the Central

Plains (west of the Grenville front, orange curve), we observe that

the upper-middle crust is faster than crust2.0 beneath both regions,

whereas crustal shear wave velocities are higher beneath Central

Plains than beneath the orogenic terrains. This is consistent with

the pattern seen in the phase velocity maps at short periods (Fig. 9).

In the lower crust, shear wave velocities are close to those in crust2.0

beneath both the Central Plains and the orogenic terrains. Finally,

shear velocities beneath the Central Plains and the orogenic terrains

are very close to those in ak135 in the lithospheric upper mantle.
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Figure 11. Influence of the 2�-anisotropy smoothing coefficient (ε) on the output model. The smoothing coefficients for isotropic and 4�-anisotropic anomalies

are kept constant. The period is T = 24 s. At each point, the direction and the size of the bar indicate the direction of the fast axis and the amplitude of the

2�-anisotropic relative anomalies, respectively. The relative isotropic anomalies are also displayed, as indicated by the colour scale.

The grey shaded area in Fig. 14(b) covers twice the estimated un-

certainties due to errors in the data. These uncertainties are smaller

than the actual uncertainties in VS because we did not account for

the effect of trade-offs between parameters at different depths. Even

with these underestimated uncertainties, it is clear that the data do

not require that the VS-profiles in the mantle deviate from ak135.

6 C O N C L U D I N G R E M A R K S

The main result of this study is the observation of strong anisotropy

below east-central US in three distinct period ranges: 20–34, 45–60

and 140–160 s. The amplitude of 2�-term anisotropic anomalies is

slightly larger around 140 s than between 20 and 34 s, and the az-

imuths of the fast-propagation directions in the two period ranges are

slightly different from one another. Between 45 and 60 s, anisotropy

is smaller in amplitude. Although anisotropy is not required to ex-

plain phase–velocity data in this period range, the mapped direction

of fast propagation is regionally uniform and perpendicular to that in

the period ranges 20–34 and 120–160 s. The anisotropic properties

of the mantle layer sampled by Rayleigh wave at 45–60 s are thus

distinct from those in the layers above and beneath. In terms of ra-

dial structure, our results strongly suggest that azimuthal anisotropy

beneath the east-central US is stratified in at least three separate lay-

ers. This is in good agreement with recent observations for North

America (Marone & Romanowicz 2007).

The azimuths of the fast-propagation directions we inferred in the

period range 20–34 s agree very well with those of Pn-anisotropy

reported by Smith & Ekström (1999). Smith & Ekström (1999)

also observe that azimuthal anisotropy west of the Grenville front

is weaker and has a different fast-propagation direction compared

to that beneath the Grenville and Appalachian provinces (see their

Fig. 11a). The agreement with Pn anisotropy suggests that the

anisotropic layer responsible for the phase–velocity anisotropy we

observe at 20–34 s includes the uppermost mantle immediately be-

low the Moho. Depth-sensitivity kernels (Fig. 6) predict that this

layer may extend from about 25 to 70 km (lowermost crust and

uppermost mantle). Interestingly, the azimuth of fast-propagation

direction in the Grenville and Appalachian provinces is parallel to

the orogenic sutures. Thus, the azimuthal anisotropy we observe in

this region is likely the result of deformation during these oroge-

nies, with the anisotropic fabric frozen since then. Both compression

and lateral extrusion of the lithospheric roots (Meissner & Mooney

1998; Meissner et al. 2002) provide possible mechanisms of de-

formation. West of the Grenville front, the cratonic Central Plains

are likely to have experienced much less deformation during the

orogenies, which explains the weaker and less uniform azimuthal

anisotropy.

The azimuth of fast-propagation direction we observe at 140 s

agrees very well with previously measured direction of shear wave

splitting (Barruol et al. 1997; Fouch et al. 2000), and is also parallel
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Figure 12. Trade-off between isotropic and anisotropic terms. Input isotropic distributions are those of the preferred model (Fig. 9), and input anisotropic

distributions are set to zero. Smoothness coefficients are those of the preferred model.

to the direction of the absolute plate motion predicted by HS2-

NUVEL1 (Gripp & Gordon 1990) for the east-central US. The

anisotropy observed around 140 s is therefore likely due to cur-

rent and recent deformation linked to asthenospheric flow. Rayleigh

wave sensitivity kernels at these periods indicate that this flow is

likely to be located around 150–250 km depth.

Precise estimates of the contribution of each anisotropic layer

to the observed shear wave splitting are beyond the scope of this

paper. However, we would like to point out that 1–2 per cent of shear

velocity anisotropy at 25–70 km (corresponding to the maximum

sensitivity range of phase velocity at 20–34 s) would produce shear

wave splitting of only 0.1–0.2 s. Phase velocity at 120–160 s sample

a thicker layer (say, 150 to 300–350 km depth) and show stronger

stronger (1.5 per cent), indicating that shear velocity anisotropy is

this layer probably exceeds 2 per cent. This is sufficient to account

for the ∼1 s shear wave splitting observed in this region. We thus

conclude that most of shear wave splitting observed in the east-

central US originates in the asthenosphere.
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Figure 13. Resolution matrices at 24 s and 140 s without damping and smoothing (left-hand side) and with damping and smoothing similar to those of

the preferred model (right-hand side). Each line (column) of the matrix represents a parameter (here, 5 terms at 17 geographical locations, i.e. a total of 85

parameters). For presentation, we separate each matrix in submatrices (dashed lines) of size 17 × 17, that is, that the lines (columns) of the submatrices represent

the geographical knots of our model. The diagonal submatrices indicate lateral trade-offs, that is, trade-offs between parameters representing a given term

(isotropic anomalies, 2�-anisotropy, or 4�-anisotropy) at different geographical locations. These trade-offs are in large part due to smoothing. The off-diagonal

matrices indicate trade-offs between model parameters of different types (isotropic anomalies, and 2�- and 4�-anisotropy terms).
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A P P E N D I X : G E N E R A L I Z E D M AT R I X

The system of linear equations that we solved to determine the lateral isotropic and anisotropic anomalies assembles a discrete version of

eq. (5) for each path, and can be noted

d = Gm (A1)

The data vector d contains the path-average Rayleigh-wave phase velocity anomaly measured on the dispersion curve at the selected period

(see Section 3). The model vector m includes five terms (one for isotropic anomalies, 2 for 2� anisotropy, and 2 for 4� anisotropy) for each

knot of the grid (eqs 2 and 3). If N is the number of paths available at a given period, and M the number of knots, the transposed data and

model vectors are

dT = (δC1 · · · δC N ) (A2a)

and

mT = (
δCiso,1 · · · δCiso,M A2�,1 · · · A2�,M B2�,1 · · · B2�,M A4�,1 · · · A4�,M B4�,1 · · · B4�,M ,

)
(A2b)

respectively. The generalized matrix is composed of five submatrices:

G = (
Giso GC2� GS2� GC4� GS4�

)
(A3)

with

Giso =

⎛⎜⎝ K11 · · · K1M

· · · · · · · · ·
KN1 · · · KN M

⎞⎟⎠ ,

GC2� =

⎛⎜⎜⎝
a1 K11 · · · a1 K1M

· · · · · · · · ·
aN KN1 · · · aN KN M

⎞⎟⎟⎠ , GS2� =

⎛⎜⎝ b1 K11 · · · b1 K1M

· · · · · · · · ·
bN KN1 · · · bN KN M

⎞⎟⎠ ,

GC4� =

⎛⎜⎜⎝
c1 K11 · · · c1 K1M

· · · · · · · · ·
cN KN1 · · · cN KN M

⎞⎟⎟⎠ , GS4� =

⎛⎜⎜⎝
d1 K11 · · · d1 K1M

· · · · · · · · ·
dN KN1 · · · dN KN M

⎞⎟⎟⎠ .

In these matrices, the Kij are the weights of path i for knot j (or sensitivity areas), and the azimuthal dependence is accounted for by the

constants ai = cos(2� i), bi = sin(2� i), ci = cos(4� i) and di = sin(4� i), where � i is the azimuth of the path i.
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