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S U M M A R Y
In land seismics, near-surface conditions often vary within surveys, resulting in differences in
source strength and signature. Furthermore, discrepancies between closely spaced recordings
are also commonly observed. Processing and interpretation of recorded data require that data
are corrected for these source and receiver perturbations in the early stages of processing. How-
ever, existing surface-consistent deconvolution techniques are applicable to primary reflection
data only, and therefore require that ground roll and multiples are suppressed prior to the appli-
cation. This is usually performed with multichannel filter operations. The performance of these
filter operations, however, rapidly deteriorates in presence of acquisition-related amplitude and
phase perturbations. We propose an alternative approach to compensate for acquisition-related
amplitude perturbations, which has the advantage of being purely a pre-processing step. It
has the following characteristics: (i) it can be applied to complete recordings, hence does not
require the isolation of primary reflections in the data, (ii) no assumptions are imposed on
the subsurface and (iii) it is applicable to multicomponent data. The procedure is based on
reciprocity of the medium response, so that differences between normal and reciprocal traces
can be attributed to source and receiver perturbations. The application of reciprocity requires
symmetric data acquisition, that is, identical source and receiver patterns, identical locations,
and the source orientations have to be identical to the receiver components. Besides reciprocity,
additional constraints are required to determine the lateral source and receiver amplitude vari-
ations fully. We use criteria based on minimizing total energy differences between adjacent
common source and common receiver gathers, and in common offset panels of the medium
response. Synthetic tests demonstrate that acquisition-related amplitude differences can be
significantly reduced using this method.
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1 I N T RO D U C T I O N

Amplitude anomalies of reflections in seismic recordings have been
used for many decades. Initially, the focus was the search for high-
intensity seismic reflections, so-called bright spots, in stacked seis-
mic sections. These bright spots could indicate hydrocarbon ac-
cumulations, particularly gas. An important development was the
introduction of amplitude-versus offset (AVO) interpretation tech-
niques (Ostrander 1984), where observations of reflection coeffi-
cients for different angles of incidence can be used to discriminate
different lithologies. This allows the separation of gas- and non-gas-
related amplitude anomalies. Other applications are the detection of
oil reservoirs and of porosity in carbonates (Castagna & Backus
1993).

However, before we can interpret amplitudes in recorded data, we
have to compensate for near-surface and acquisition-related effects,
such as source strength and receiver coupling variations, preferably
in the early stages of the processing. These variations influence
all common-midpoint (CMP) based processing, since traces with
different sources and receivers are combined in a CMP stack. This
degrades the quality of the stack and could lead to biased AVO trends,
particularly when related to slowly varying near-surface conditions.

For multicomponent data, it is important to realize that
acquisition-related perturbations distort the vector-wavefield char-
acteristics, since coupling has a different effect on horizontal and
vertical source and receiver components (Krohn 1984). This can
bias the observed polarization (Li & MacBeth 1997; Michaud &
Snieder 2004). For example, determining the polarization direction
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of the leading split shear wave involves simultaneous rotation of
the horizontal source and receiver coordinates to conform with the
principal axes of an azimuthal anisotropic medium (Alford 1986).
This can only be achieved after separating the acquisition-related
amplitude effects on the different recorded wavefield components
from the medium response effects.

Amplitude corrections can be performed using surface-consistent
processing techniques (Taner & Koehler 1981; Levin 1989; Cambois
& Stoffa 1992; Cary & Lorentz 1993). Surface consistency refers
to the following approximations: the source and receiver amplitude
terms can be expressed as finite-impulse response filters, which do
not vary throughout the recording time and are independent of the
direction of propagation of the incident wavefield. These existing
techniques are applicable to primary reflections which have to be
isolated in the data, and common-depth point (CDP) gathering is
assumed to be valid. The isolation of primary reflections requires
the suppression of ground roll and multiples, which is commonly
performed using multichannel filter operations. However, the per-
formance of these multichannel filter operations rapidly deterio-
rates in presence of amplitude and phase perturbations as a result
of the wavefield acquisition. This was already recognized decades
ago by Newman & Mahoney (1973), who demonstrated that the
performance of source and receiver arrays is sensitive to source
and receiver perturbations. Therefore, it is not surprising that care-
ful pre-processing is required before multiples can be successfully
eliminated (Kelamis & Verschuur 2000).

We developed an alternative approach to compensate for source
and receiver perturbations which is essentially a pre-processing step.
It takes full seismic waveforms into account, and does not require
mid-point binning. The approach uses reciprocity of the medium
response for evaluating lateral source and receiver amplitude vari-
ations: differences between normal and reciprocal traces can be
attributed to differences in source strength and receiver coupling.
Karrenbach (1994) and Luo & Li (1998) applied this technique to
determine the seismic source wavelets, assuming that there are no
lateral variations in receiver coupling. We show how the latter con-
straint can be relaxed. This method is also suitable for application
to multicomponent data for which the conventional methods cited
above often fail because it is more difficult to identify and isolate
primary reflections.

Application of reciprocity requires symmetric data acquisi-
tion. This includes identical source and receiver positions and
shot/receiver patterns, and identical source and receiver compo-
nents. Multicomponent recordings require thus repeated experi-
ments with horizontal and vertical vibrators.

This paper focuses on the theoretical development and validation
of the methodology. van Vossen et al. (2006) present a field data
application of the developed method.

2 B A C KG RO U N D T H E O RY:
C O N V O L U T I O N A L M O D E L A N D
R E C I P RO C I T Y

Multicomponent data (3C × 3C), excited by sources located at x j

and recorded at location xi can be represented as a matrix of traces
(Auld 1973; Alford 1986; Tatham & McCormack 1991):

V(t, i, j) =

⎛
⎜⎝

Vxx (t, i, j) Vxy(t, i, j) Vxz(t, i, j)

Vyx (t, i, j) Vyy(t, i, j) Vyz(t, i, j)

Vzx (t, i, j) Vzy(t, i, j) Vzz(t, i, j)

⎞
⎟⎠ , (1)

with the top row corresponding to the in-line (x) geophone traces
from in-line (x), crossline (y) and vertical (z) sources. The second
row contains crossline geophone traces, and the third row vertical
geophone traces. We assume that the source and receiver positions
are located on a line. The indices i and j refer to the receiver and
source location numbers, respectively.

Considering the Earth as a linear system for the propagation of
seismic waves, the recorded traces V (t , i , j) satisfy the convolu-
tional model (Wapenaar et al. 1990),

V(t, i, j) = R(t, i) ∗ G(t, i, j) ∗ S(t, j), (2)

where R (t , i) is the receiver response at surface location xi , S

(t , j) is the source signature at surface position x j , and G (t , i ,
j) is the corresponding medium response. The asterisk (∗) denotes
convolution in the time domain.

We assume that R (t , i) and S (t , j) are surface consistent.
This means that effects associated with a particular source or re-
ceiver remain constant throughout the recording time, and affect
all wave types similarly, regardless of the direction of propagation.
The time dependence in R (t , i) and S (t , j) denotes the length of
the finite-impulse response filters. We also assume that sources and
geophones are perfectly aligned, and that crosscoupling between
different source and receiver components can be neglected. Then,
the geophone and source responses R (t , i) and S (t , j) are diagonal
matrices of time series with the principal components given by the
scalar functions of the in-line, crossline, and vertical geophones and
sources.

The objective at this stage is to determine the medium response G

(t , i , j), or to remove the influence of lateral source and receiver vari-
ations from the recorded data. To achieve this, we have to determine
the individual components in the convolutional model (eq. 2). We
can reduce the number of unknown parameters using reciprocity.
Because the medium response is reciprocal, differences between
recordings of a reciprocal source/receiver pair can be attributed to
lateral differences in source strength and receiver coupling. Reci-
procity of the medium response is expressed as (Knopoff & Gangi
1959; White 1960):

G(t, i, j) = GT (t, j, i), (3)

where GT is the transpose of G. Reciprocity can only be applied to
data if symmetry conditions are satisfied during data acquisition: the
source positions should be identical to the receiver positions, and ap-
plication of reciprocity to multicomponent recordings thus requires
repeated experiments with horizontal and vertical vibrators.

3 F O R M U L AT I O N O F T H E I N V E R S E
P RO B L E M

Let us consider an acquisition geometry with N coinciding
source/receiver positions. Then, the convolutional model and reci-
procity result in a system of equations which constrain the individual
terms in the convolutional model. Similar to surface-consistent de-
convolution, we can formulate a linear inverse problem in the log/
Fourier domain (Taner & Koehler 1981; Cambois & Stoffa 1992).
The log/Fourier transform of a time function X (t) is defined as

X̃ (ω) = log

[∫ ∞

−∞
X (t)e−iωt dt

]
, (4)

where log denotes the complex natural logarithm. The inverse trans-
form is defined by:

X (t) = 1

2π

∫ ∞

−∞
eX̃ (ω)+iωt dω. (5)
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Since convolution in the time domain is equivalent to summation
in the log/Fourier domain, the convolutional model becomes in the
log/Fourier domain:

Ṽ(ω, i, j) = R̃(ω, i) + G̃(ω, i, j) + S̃(ω, j), (6)

where the components of Ṽ(ω, i, j) are the log/Fourier transform of
the components of V (t , i , j):

Ṽ(ω, i, j) =

⎛
⎜⎝

Ṽxx (ω, i, j) Ṽxy(ω, i, j) Ṽxz(ω, i, j)

Ṽyx (ω, i, j) Ṽyy(ω, i, j) Ṽyz(ω, i, j)

Ṽzx (ω, i, j) Ṽzy(ω, i, j) Ṽzz(ω, i, j)

⎞
⎟⎠ . (7)

The real part of eq. (6) describes the decomposition of the natural
logarithm of the Fourier amplitude spectra into the source, receiver,
and medium response terms, whereas the imaginary part of eq. (6)
gives the decomposition of the phase. In the following, we only
consider the amplitude component of the problem.

For the analysis of the system of equations, it is convenient to
recast eq. (6) in a matrix-vector form:

d(ω) = Am(ω), (8)

where A is the coefficient matrix, m(ω) contains the unknown pa-
rameters in the log/Fourier domain, and the data-vector d(ω) con-
tains the measurements of the wavefield Ṽ(ω, i, j). The model vec-
tor m(ω) is partitioned into the individual components:

m(ω) = (
mT

G(ω) mT
R(ω) mT

S (ω)
)T

, (9)

where mG(ω) contains the medium response, mR(ω) the receiver
terms, and mS(ω) the source wavelets. The coefficient matrix A is
frequency independent. It only contains ones and zeros. We give
an example for the structure of the coefficient matrix for single
component data in Appendix A.

We treat reciprocity of the medium response as an exact rela-
tionship. Instead of inserting the reciprocal eq. (3) in the coefficient
matrix A, we directly reduce the number of unknown parameters
in mG(ω) by explicitly substituting the reciprocal medium response
terms using eq. (3). Since the number of unknowns is reduced, this
approach is computationally favourable.

Furthermore, we can only solve for relative source and receiver
differences. Consequently, we can impose a zero-mean constraint on
the source and receiver terms without loss of generality. We also treat
this as an exact relationship and implement it in a similar fashion as
the reciprocity constraints.

4 A N A LY S I S O F R E C I P RO C I T Y
C O N S T R A I N T S O N S I N G L E
C O M P O N E N T DATA

In this section we analyse the constraints on the source, receiver
and medium response terms using single component data. We use
singular value decomposition (Lanczos 1961) to analyse these con-
straints on the model parameters. Consider a source and receiver
array with N = 41 coinciding source and receiver positions. For
N > 5, there are more data ND = N 2 than unknown parameters
NU = (N + 1)N/2 + 2(N − 1): mG has (N + 1)N/2 unknown
coefficients, and both mR and mS contain N − 1 unknown terms.
In this example, there are 941 unknown parameters. The singular
values of A are shown in Fig. 1. There are N − 1 zero singular
values, thus N − 1 degrees of freedom in the inverse problem.

In order to gain more insight in the nullspace of the inverse prob-
lem, we consider the following equations for a reciprocal source–
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Figure 1. Normalized singular values for reciprocity/convolutional model
inversion with N = 41 source/receiver positions. There are 941 model pa-
rameters in this example, and N − 1 zero singular values, thus N − 1
remaining degrees of freedom.

receiver pair:

Ṽ (ω, i, j) = R̃(ω, i) + G̃(ω, i, j) + S̃(ω, j), (10)

Ṽ (ω, j, i) = R̃(ω, j) + G̃(ω, i, j) + S̃(ω, i), (11)

where the indices i , j = 1, . . . , N . Substracting eq. (11) from (10)
and adding eq. (11) to (10) yield the following two equations:

Ṽ (ω, i, j) − Ṽ (ω, j, i) = (R̃(ω, i) − S̃(ω, i))

− (R̃(ω, j) − S̃(ω, j)), (12)

Ṽ (ω, i, j) + Ṽ (ω, j, i) = (R̃(ω, i) + S̃(ω, i))

+ (R̃(ω, j) + S̃(ω, j))

+ 2G̃(ω, i, j). (13)

Eq. (12) shows that the differences R̃(ω, i) − S̃(ω, i) are con-
strained up to a constant (one remaining degree of freedom) when
at least three coinciding sources and receivers are used, that is, when
N > 3. However, the sum R̃(ω, i) + S̃(ω, i) cannot be determined
using reciprocity constraints. Eq. (13) shows that there is a trade-off
between the obtained responses for the Green’s functions G̃(ω, i, j)
and the sum of the source and receiver responses at surface locations
i and j. Thus, given the reciprocity constraints, the number of de-
grees of freedom is equal to the number of sources or receivers N +
1. Since we only solve for relative source and receiver perturbations,
the number of degrees of freedom in the inverse problem reduces to
N − 1. Hence, additional information is required to obtain a unique
solution to the inverse problem.

5 R E G U L A R I Z AT I O N C R I T E R I A

We investigate regularization using energy criteria and minimum
variation in common-offset sections of the medium response. En-
ergy criteria give prior information on the source and receiver terms,
and the variation criterion provides information about the medium
response. Prior information (or the reference model), denoted by
m0, is included in the inverse problem defining a cost function:

Y = (Am − d)T C−1
d (Am − d) + (m − m0)T C−1

m (m − m0), (14)

where C−1
d is the inverse of the data covariance matrix which we take

to be diagonal, and C−1
m is the inverse of the prior model covariance
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matrix. It is a block-diagonal matrix and can be written in partitioned
form:

C−1
m =

⎛
⎜⎝

C−1
mG

0 0

0 C−1
m R

0

0 0 C−1
mS

⎞
⎟⎠ , (15)

where CmG , Cm R and CmS are the covariance matrices describing
prior information on the medium response, receiver, and source
terms, respectively. The least squares solution of eq. (14) is found
by setting the derivatives with respect to the model parameters equal
to zero, and is given by (e.g. Tarantola 1987):

m̃ = (
AT C−1

d A + C−1
m

)−1 (
AT C−1

d d + C−1
m m0

)
. (16)

The model resolution matrix is then:

R = (
AT C−1

d A + C−1
m

)−1
AT C−1

d A. (17)

The resolution operator tells us to what extent we can retrieve the
chosen model parameters independently from the inverse operator.
The total number of independent parameters used to construct the
estimated model is given by the trace of the resolution matrix.

An alternative approach is to add information only to the nullspace
of the unregularized inversion. The procedure of adding nullspace
information while retaining the data fit was originally proposed by
Deal & Nolet (1996) for tomographic inverse problems. We con-
sider this approach less flexible in dealing with data contaminated
by noise, and therefore we only show results for the conventional
implementation using regularization criteria shown in eq. (16).

In the following sections we show that prior information given by
a minimum variation criterion and energy criteria can be incorpo-
rated in the conventional formalism, that is, we derive expressions
for the prior model and for the prior model covariances for the pro-
posed regularization criteria. The derivations are given for single
component data, but are readily generalized for multicomponent
data.

5.1 Minimum variation in common-offset domain

Prior information on the medium response can be obtained by mini-
mizing variation in common-offset sections of the medium response.
It follows from the convolutional model that insufficient corrections
for the source and receiver variations result in perturbations of the
medium response. This causes larger variation in common-offset
sections of the medium response. Thus, if we correctly retrieve these
lateral source and receiver variations, the amplitude variations in the
common-offset sections of the medium response are reduced to the
minimum required by the data.

We define variation in the common-offset medium response using
a measure of length (Menke 1984):

L(xo) = [mG(xo) − μG(xo)]T [mG(xo) − μG(xo)]

= [Al (xo)mG(xo)]T [Al (xo)mG(xo)], (18)

where mG(xo) denotes the partition of mG with offset xo, and the
elements of μG(xo) are the average of mG(xo):

[μG(xo)] j =
∑N (xo)

i=1 [mG(xo)]i

N (x0)
, j = 1, . . . , N (xo), (19)

with N (xo) the number of traces with offset xo. The matrix
Al (xo) is the coefficient matrix, and is defined such that Al (xo)
mG(x0) = mG(xo) − μG(xo).

We define the minimum variation cost function L by combin-
ing all common-offset sections, using the number of traces in each

common-offset section as weights, that is, this criterion provides
more reliable information using common-offset sections with many
traces, since the mean value and variation with respect to this mean
value can be determined more accurately. The cost function is given
by:

L =
∑

xo

N (xo)L(xo) = [AlmG]T Wm[AlmG(ω)]. (20)

The coefficient matrix Al comprises all individual matrices Al (xo),
and the diagonal matrix Wm contains the corresponding weighting
factors N (x0) and is normalized such that the maximum value of

max
[
AT

l WmAl

] = 2

N + 1
. (21)

This maximum is set equal to the ratio of the number of unknowns
in mR or mS over mG . This normalization has been chosen to re-
duce the dependency of the damping parameters on the number of
sources/receivers.

The minimum variation criterion can be included in the inverse
problem (eq. 14), with the inverse of the medium-response model
covariance given by:

C−1
mG

= θAT
l WmAl , (22)

where θ is the overall damping parameter. We set the prior medium
response

m0
G = 0. (23)

The choice of the prior medium responses do not influence the
inversion results when these are set to a constant value. This criterion
minimizes differences with respect to the average value in common
offset panels.

5.2 Energy criteria

Consider a common source gather for a source positioned at x j with
N receivers. The energy for frequency ω in this gather is proportional
to the squared sum of all traces:

E(ω, j) =
N∑

i=1

|v(ω, i, j)|2. (24)

Inserting the convolutional model (eq. 2) into eq. (24) yields:

E(ω, j) = |S(ω, j)|2
(

N∑
i=1

|R(ω, i)|2 |G(ω, i, j)|2
)

. (25)

The energy in the common source gathers for the adjacent source
position, with geophones positioned at similar offsets, is given by:

E(ω, j + 1) = |S(ω, j + 1)|2

×
(

N∑
i=1

|R(ω, i + 1)|2 |G(ω, i + 1, j + 1)|2
)

.

(26)

For closely spaced sources, we may assume that differences in the
medium response only occur close to these sources. Consequently,
energy differences between two adjacent common source gathers are
primarily due to differences at the source. This leads to the follow-
ing approximation for the energy difference between two adjacent
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common source gathers:

E(ω, j + 1) − E(ω, j) ≈ [|S(ω, j + 1)|2 − |S(ω, j)|2]

× 1

2

{
N∑

i=1

|R(ω, i)|2|G(ω, i, j)|2

+ |R(ω, i + 1)|2|G(ω, i + 1, j + 1)|2
}

.

(27)

The last term in eq. (27) is the average of the medium response and
the receiver terms of the two adjacent common source gathers (eqs
25 and 26). It is assumed that this accurately represents the medium
and receiver responses for both sources.

Using a similar approximation for E(ω, j + 1) + E(ω, j), we
obtain for the division of the energy difference by its sum:

E(ω, j + 1) − E(ω, j)

E(ω, j + 1) + E(ω, j)
≈ |S(ω, j + 1)|2 − |S(ω, j)|2

|S(ω, j + 1)|2 + |S(ω, j)|2 . (28)

Eq. (28) is equivalent to

|S(ω, j + 1)|2 − E(ω, j + 1)

E(ω, j)
|S(ω, j)|2 = 0. (29)

We obtain expressions in the log/Fourier domain by taking the nat-
ural logarithm of eq. (29):

S̃(ω, j + 1) − S̃(ω, j) = 1

2
log

[
E(ω, j + 1)

E(ω, j)

]
, (30)

where the energy term on the right of eq. (30) is calculated from
the data alone. Hence, this equation imposes additional data-derived
constraints on the source terms. Since we can only solve for relative
source variations, we can impose a zero-mean constraint on the
source terms. This imposes an artificial absolute scale on the Green’s
functions which is always required in seismic data processing. Eq.
(30) can be written in matrix-vector form:

A0m0
S(ω) = d0

S(ω), (31)

where m0
S(ω) contains the prior source variations, d0

S(ω) is the data
vector, and A0 is the coefficient matrix. We obtain the prior model
estimate for m0

S using the least-squares solution of eq. (31).
A similar analysis can be performed in the common receiver

domain. This results in the following system of equations for the
prior receiver terms:

R̃(ω, i + 1) − R̃(ω, i) = 1

2
log

[
E(ω, i + 1)

E(ω, i)

]
. (32)

Eq. (32) in matrix-vector form is written as:

A0m0
R(ω) = d0

R(ω), (33)

where m0
R(ω) contains the prior receiver model parameters, and

d0
R(ω) is the data vector.
We use the covariance matrices Cm R and CmS to impose the energy

criteria upon the model vector. We define these as:

C−1
m R

= 2θφλ AT
0 A0

max
[
AT

0 A0

] , (34)

C−1
mS

= 2θφ(1 − λ) AT
0 A0

max
[
AT

0 A0

] , (35)

where θ is the overall damping parameter. The smaller the value
of θ , the more the model parameters are allowed to vary around

Figure 2. Model resolution matrix for data acquired with N = 11 coinciding
sources and receivers. The ordering of the model parameters is explained in
Appendix A.

the energy and minimum variation constraints, and the better the
data can be explained. The parameter φ determines the strength of
the energy criteria relative to the variation criterion, and λ controls
the relative strength of the energy criteria applied in the common
source domain compared to the common receiver domain, and may
take values between 0 and 1. The denominator in eqs (34) and (35)
is used to reduce the dependency of the damping parameters φ

and λ on the number of sources/receivers considered in the inverse
problem.

5.3 Resolution of regularized inverse problem

An example of the model resolution matrix R of the regularized
inverse problem (eq. 17) is shown in Fig. 2. It is computed for a
system of constraints obtained with N = 11 sources and single
component receivers. The values of the damping parameters were:
θ = 0.001, φ = 0.5 and λ = 0.5, respectively. The ordering of the
model parameters is explained in Appendix A.

The resolution matrix shows that the source and receiver terms
are best resolved, whereas the Green’s functions have larger trade-
offs. Note that the trade-offs are largest for the zero-offset Green’s
functions. This is a result of the absence of reciprocity constraints
on zero-offset data.

6 S Y N T H E T I C E X A M P L E

We illustrate the method with a synthetic example on single compo-
nent data, and analyse the influence of the selection of the damping
parameters.

6.1 Data description

Consider the model shown in Fig. 3 with a synclinal structure and
lateral heterogeneity close to the free surface. The model parameters
are listed in Table 1. Synthetic data were computed with a viscoelas-
tic finite-difference code (Robertsson et al. 1994). The first source
and receiver are positioned at 100 m, the last ones at 900 m. The shot
and receiver spacing is 20 m: there are 41 source and receiver posi-
tions. Both sources and receivers are located at the free surface. The
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Figure 3. Synclinal model used to generate synthetic data, with layers num-
bered for identification.

Table 1. Values for velocity, density, and attenuation for each layer in the
model shown in Fig. 3.

Layer number α (m s−1) β (m s−1) ρ (kg m−3) Qp Qs

I 1100 280 1700 100 50
II 900 250 1700 100 50
III 1500 400 2000 10 000 10 000
IV 2200 600 2100 10 000 10 000
V 2500 700 2150 10 000 10 000
VI 3000 800 2200 10 000 10 000

source mechanism is a vertical force source, which emits a Ricker
wavelet with a 40 Hz central frequency. The time sampling interval
is 0.001 s, and a trace has 4000 samples.

Two common-offset panels of the data are shown in Fig. 4. The
ground-roll is the most energetic event in the data. The near-surface
lateral heterogeneity results in different amplitudes and traveltimes
in the P–P reflected waves between 0.10 and 0.20 s, and causes
backscattering of surface waves. These are the events with the high-
moveout velocities in the zero-offset section. The synclinal struc-
ture is easily recognized in the zero-offset panel. The structure is
repeated due to reverberations in the near-surface low-velocity layer.
The 200 m common-offset panel shows that the near-surface het-
erogeneity results in different moveout velocities for the ground

Figure 4. Common-offset panels for (a) 0 m and (b) 200 m offset.

Table 2. Values for average resonant frequencies and
damping factors of source and receiver perturbations
and the standard deviations.

fc (Hz) fg (Hz) fs (Hz) ηc ηg ηs

μ 120 4.5 120 1.0 1.0 0.8
σ 40 0.5 40 0.2 0.2 0.2

roll, which are the large amplitude events between 0.8 and 1.0 s.
The signature of the synclinal structure is less pronounced in these
data.

At the receiver side, data are perturbed using a damped har-
monic oscillator description. This represents both the response of the
geophone–ground coupling, and of the instrument response (Hoover
& O’Brien 1980; Krohn 1984). The complex response can be written
as:

R( f ) =
−( f

fg

)2[
1 + i

( f
fc

)
ηc

]
[
1 − ( f

fg

)2 + i
( f

fg

)
ηg

][
1 − ( f

fc

)2 + i
( f

fc

)
ηc

] . (36)

In this model, fg and fc are the resonant frequencies, and ηg and ηc

are the damping factors for the geophone’s internal spring, denoted
with subscript g, and for the geophone ground coupling, indicated
with subscript c. Critical damping occurs when ηg or ηc = 2. In this
equation, i denotes the imaginary unit

√−1.
We also used a damped harmonic oscillator description to rep-

resent the coupling of the source (vertical vibrator) to the ground
(Sallas 1984):

S( f ) =
−[

1 + i
( f

fs

)
ηs

]
[
1 − ( f

fs

)2 + i
( f

fs

)
ηs

] , (37)

where fs and ηs are source coupling resonant frequency and damp-
ing parameter. For each source and geophone, the resonant frequen-
cies and damping parameters are selected randomly from a Gaussian
distribution. The parameters which characterize these distributions
are listed in Table 2.

We only used the damped-oscillator description for the source and
receiver perturbations in these synthetic examples. The inversion
method does not use any constraints that follow from this model, and
is thus independent from the damped-oscillator parametrization.

Since we are only able to solve for relative source and receiver
perturbations in the log/Fourier domain, we decompose the source
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Figure 5. Misfit curves obtained for various source and receiver perturbations. The curves are labelled showing the values of the parameters (φ, λ). (a) shows
the data misfit with the reduced chi-squared measure, and (b) shows the true model misfit.

and receiver terms into an average and a perturbation term:

R(ω, i) = R̄(ω)

[
1 + �R(ω, i)

R̄(ω)

]
= R̄(ω)�′

R(ω, i), (38)

S(ω, j) = S̄(ω)

[
1 + �S(ω, j)

S̄(ω)

]
= S̄(ω)�′

S(ω, j), (39)

where R̄(ω) is the geometric mean of the different receiver terms:

R̄(ω) =
[

N∏
i=1

R(ω, i)

]1/N

. (40)

The relative source and receiver terms are �′
S(ω, j) and �′

R(ω, i),
respectively. The geometric mean in the Fourier domain corresponds
to the arithmetic mean in the log/Fourier domain. Thus, the arith-
metic mean of the relative source and receiver terms �′

S(ω, j) and
�′

R(ω, i) is zero in the log/Fourier domain.

6.2 Results

We first study inversion results for a single frequency. To gain an
idea of the influence of φ and λ on the model estimate, we minimize
eq. (14) many times, systematically varying the parameters φ and
λ. We added errors to the data drawn from a Gaussian distribution
with a standard deviation σ d = 0.10 in the log/Fourier domain.
This corresponds to errors with a standard deviation of 10 per cent
of the values of the synthetic data in the frequency domain. The
experiments are repeated with different manifestations of random
noise. We performed experiments for different resonant frequencies
and damping parameters for the source and receiver perturbations,
and plot the reduced χ 2 as a function of independent parameters in
the final model. We define the reduced χ2 as:

χ 2 = 1

ND − M
(Am − d)T C−1

d (Am − d), (41)

where ND is the number of data and M = trace (R). Furthermore, we
compare the estimated model to the true solution mtrue. We quantify
the true-model misfit with

ξ 2 = (m̃ − mtrue)
T (m̃ − mtrue)

NU
, (42)

where NU is the number of unknown parameters. The measure ξ has
been chosen such that it can be interpreted as an average uncertainty
in the estimated model parameters.

Fig. 5 shows misfit curves for the data and model uncertainty for
f = 50 Hz. These misfit curves are computed varying the overall
damping parameter θ , and consequently the trace of R using eq. (17).
If we reduce the overall damping θ , that is, allowing more inde-
pendent parameters in the inversion, the data are better explained,
resulting in small values for χ2. As we reduce the overall damping,
χ 2 monotonically tends towards 1, as expected.

Both the data and the model misfit measures indicate that best
results are obtained if φ ≤ 1. For a fixed value of trace (R), the
data are better explained for φ ≤ 1. For larger values, both the data
and model misfit increase. Thus, the source and receiver terms are
better constrained by the data than the individual medium response
terms, that is, all equations in a common source gather constrain
the individual source term, whereas there is only one equation for
a particular Green’s function. Hence, imposing prior information
on the source and receiver terms potentially has a larger influence
on data and model misfit than prior information on the medium
response terms. Sensitivity tests for λ, the trade-off parameter be-
tween source and receiver terms, indicated that the inversion results
are not influenced by variations in this parameter.

An example of the inversion for lateral source and receiver per-
turbations is shown in Fig. 6. In Fig. 6(a), the ordinate value Rzz

represents the vertical component of the receiver correction, and Szz

in Fig. 6(b) represents the vertical component of the source correc-
tion. The frequency f = 50 Hz, and the damping parameter values
are θ = 0.001, φ = 0.01 and λ = 0.5, resulting in trace (R) ≈ 901.
Inversion results are shown for data without additional Gaussian
noise, and for data contaminated with additional Gaussian noise
with standard deviation 0.10. In order to quantify the error, we use
the measure ξ R,S for the source and receiver amplitude terms:

ξ 2
R,S =

(m̃R − mR true)
T (m̃R − mR true) + (m̃S − mS true)

T (m̃S − mS true)

2N
.

(43)

For the data without additional Gaussian noise, there is a good fit
to the reference solution, which is the true solution for the lateral
source and receiver amplitude variations: ξ R,S = 0.036. For the data
contaminated with the additional Gaussian noise, the fit is slightly
less good: ξ R,S = 0.042.

Fig. 7 shows inversion results for sources and receivers 10, 20
and 30 as a function of frequency for the data contaminated with
the Gaussian noise. The overall trends of the source and receiver
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Figure 6. Inversion results for relative (a) receiver and (b) source perturbations at frequency f = 50 Hz. The inversion results are computed with the following
damping parameter values: θ = 0.001, φ = 0.01, and λ = 0.5, which results in trace(R) ≈ 901, and are compared to the true solution. Results are shown for
unperturbed data, and for data contaminated with 10 per cent Gaussian noise.

perturbations are well resolved, although the inversion results for
the different frequencies are scattered around these curves.

Instead of using directly the inversion results for the medium
response mG , we use the lateral source and receiver terms to com-
pensate the recorded data for these effects. This allows us to use an
additional requirement that the source and receiver terms have a fi-
nite impulse response (e.g. Drijkoningen 2000). This constraint was
not imposed explicitly in our implementation, the presented pro-
cedure yields estimates for each frequency independently, and this
corresponds to a smoothing operator in the frequency domain. Thus,
we use smoothed versions of the source and receiver terms, and these
agree well with the source and receiver perturbations added to the
data (Fig. 7).

Thus, the compensation scheme consist of the following steps:
first we estimate the filters which compensate for lateral source and
receiver variations in the log/Fourier domain. These inverse filters
are obtained by reversing the sign in the log/Fourier domain. Then,
we apply the inverse log/Fourier transform and limit the impulse
response in the time domain. This operation is performed such that
the resulting filters are zero phase, and the filter length is 0.03 s.
Finally, we correct the recorded data for lateral source and receiver
amplitude variations by convolution in the time domain.
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Figure 7. Inversion results for receiver (a) and source (b) perturbations as a function of frequency. Shown are curves for source/receiver positions 10 (black),
20 (blue) and 30 (red). The solid curves represent the true solutions, and the dashed curves are the inversion results. The values for the damping parameters
are: θ = 0.001, φ = 0.01, and λ = 0.5, and the data are contaminated with 10 per cent Gaussion noise.

We illustrate the performance of this compensation scheme on
the synthetic data described in the previous section. We added
errors drawn from a Gaussian distribution with a standard devi-
ation of 10 per cent of the values of the synthetic data in the
time domain, followed by a low-pass filter with 100 Hz cut-off
frequency, and use the same values of the damping parameters
as in the previous example. Figs 8 and 9 show the results on the
recorded zero-offset data. Fig. 8 shows the results of the first ar-
rival. The amplitudes in Fig. 9 are blown up to focus on the reflected
waves.

The results are compared to a reference solution which includes
the phase shifts induced by the lateral source and receiver variations
and the average source and receiver terms. Thus, the reference so-
lution is the input data which are compensated for the lateral source
and receiver amplitude variations, and do not contain the additional
Gaussian errors. The phase differences are included in the reference
solution to be able to demonstrate the performance of the amplitude
correction scheme. Otherwise, we would obtain differences between
the compensated data and the reference solution due to the phase
differences for which we do not compensate.

Both for the first arrival and for the reflected waves, the dif-
ferences of the corrected solution with the reference solution are
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Figure 8. Effect of source and receiver amplitude corrections on zero offset data: focus on ground roll. Shown are (a) perturbed data, (b) difference between
perturbed data and reference solution, (c) corrected data and (d) difference between these corrected data and reference solution.

significantly smaller than for the perturbed data. The large errors
in the first 0.1 s of Fig. 9(d) correspond to the residue shown
in Fig. 8(d).

Similar results are obtained for amplitude corrections for 200 m
offset data (Figs 10 and 11). Amplitude errors in both the ground
roll and the reflected waves are reduced.

Figure 9. Effect of source and receiver amplitude corrections on zero offset data: focus on reflected waves. Shown are (a) perturbed data, (b) difference between
perturbed data and reference solution, (c) corrected data and (d) difference between corrected data and reference solution.

In order to quantify the performance of the amplitude correction
scheme, we consider the ratio �E/E ref, where �E is the energy
of the difference between either the perturbed data or the corrected
data and the reference solution, and E ref is the energy of the refer-
ence solution. We computed the ratio �E/E ref using all data traces.
For the data considered, this ratio decreases from 0.032 to 0.0049
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Figure 10. Effect of source and receiver amplitude corrections on 200 m offset data: focus on ground roll. Shown are (a) perturbed data, (b) difference between
perturbed data and the reference solution, (c) corrected data and (d) difference between these corrected data and the reference solution.

after applying the corrections for the source and receiver amplitude
perturbations.

This synthetic example demonstrates that the proposed technique
significantly reduces effects of lateral source and receiver variations
from the data, without having to select primary reflections and with-
out prior structural information.

Figure 11. Effect of source and receiver amplitude corrections on 200 m offset data: focus on reflected waves. Shown are (a) perturbed data, (b) difference
between perturbed data and the reference solution, (c) corrected data and (d) difference between these corrected data and the reference solution.

7 D I S C U S S I O N

The correction for lateral source and receiver variations is based on
the assumption that the conditions for reciprocity are applicable to
seismic data acquisition. In practice, however, positioning of sources
and receivers at identical positions is difficult to realize. Moreover,
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we also need to consider an explosive source in addition to a vertical
force source (vibrator), and source patterns are also commonly used
in land seismics.

Fenati & Rocca (1984) conducted a field test to assess the applica-
bility of reciprocity in the field using both explosive and vibratory
sources. They observed a good coherence between the direct and
reciprocal traces regardless of the source, except at near offsets and
early times with explosive sources. Furthermore, we performed sen-
sitivity tests to evaluate the effect of non-identical source–receiver
positions. These tests indicated that the results are not influenced by
small differences in source and receiver positions when the distance
between the reciprocal sources and receivers remains constant. For
example, this allows sources at a shallow depth, while the receivers
are positioned at the surface. We also expect that the results are
not sensitive to a small displacement between parallel source and
receiver lines.

It is important to realize that, contrary to conventional surface-
consistent processing techniques (Taner & Koehler 1981; Levin
1989; Cambois & Stoffa 1992; Cary & Lorentz 1993), reciprocity
constrains source and receiver effects only, which do not include
wavefield propagation effects of the near surface. Thus, we assume
that the amplitude perturbations for each source and receiver com-
ponent are independent of the wave type and the angle of incidence.
Since we do not include wavefield propagation effects through the
near surface, surface consistency does not assume wave propagation
in which seismic energy travels through the near surface along verti-
cal paths, as in static corrections. Therefore, the presence of ground
roll in the data will not necessarily violate the surface-consistent
assumption.

Application to field data requires the computation of the inverse
operator for (AT C−1

d A +C−1
m ) (eq. 16). In practice, however, the ma-

trix will be too big to invert and to retain in memory. In such cases,
the data should be decomposed into smaller sets, each of which
would be processed separately. This is common practice in con-
ventional surface-consistent processing techniques, and it is argued
that this does not degrade the accuracy of the estimated operators
(Wiggins et al. 1976; Cambois & Stoffa 1992).

It should be explicitly stated that we do not impose the damped-
oscillator description on the source and receiver terms. We only
used this description in our synthetic experiments to obtain realistic
amplitude perturbations. Therefore, this method can potentially be
used to validate the damped-oscillator description for source and re-
ceiver coupling, and this could improve our understanding of source
and receiver coupling effects in seismic data.

We illustrated the developed method on single component data.
Application of the method to multicomponent data would in prin-
ciple require repeated experiments with horizontal and vertical vi-
brators. Then, we have reciprocity constraints on both vertical and
horizontal component recordings, and we expect results with a sim-
ilar accuracy as presented in this paper for the single component
case.

Interesting is whether we can still obtain corrections for the case
with multicomponent recordings and a single component source.
Consider multicomponent data generated by a vertical vibrator.
Then, we do not have reciprocal constraints on the horizontal com-
ponent recordings. Nevertheless, the following approach might be
feasible. First, we can compute and apply source and receiver cor-
rections to the vertical component data using the method presented
in this paper. Then, it might be possible to derive corrections for the
horizontal component data using the proposed regularization crite-
ria, that is, using the energy constraints and the minimum variation
constraints.

Finally, we only considered the decomposition of amplitudes into
source, receiver, and medium response terms in the log/Fourier do-
main. Problems associated to the phase are due to the cycle skips of
the phase: only the principal value of the original phase is known,
and this introduces discontinuities in the phase function. We did
not succeed in finding a suitable regularization for the inverse prob-
lem to perform the decomposition of the phase in source, receiver,
and medium response terms. Thus, finding a pre-processing method
to compensate data for source and receiver phase perturbations is
subject of future research. Nevertheless, phase perturbations can be
dealt with during the later stages of the processing, for example,
residual static corrections. It should be noted that the performance
of cross-correlation based methods, which are commonly used for
estimating time differences, is better after waveform equalization,
which is achieved with the presented method.

8 C O N C L U D I N G R E M A R K S

Existing surface-consistent deconvolution techniques are applica-
ble to primary reflection data only, and assume that common-
depth point gathering is valid. Since multichannel filter operations,
which are commonly used to suppress ground roll and multiples,
are sensitive to source and receiver perturbations, corrections for
these effects should be done in the early stages of the processing
sequence.

We presented a pre-processing technique to compensate for these
source and receiver perturbations, which is applicable to the whole
seismic trace. Furthermore, it does not impose additional require-
ments on the subsurface. The approach is based on reciprocity of
the medium response, so that differences between normal and re-
ciprocal recordings can be attributed to the source and receiver
perturbations.

Reciprocity does not fully constrain lateral source and receiver
amplitude perturbations. Additional information is required to ob-
tain a unique solution to the inverse problem. We used a criterion
based on minimizing energy total differences between adjacent com-
mon source and receiver gathers, and based on minimizing variation
in common-offset panels of the medium response.

We developed the theoretical framework both for single and mul-
ticomponent data. Synthetic tests on single component data demon-
strated that this method significantly reduces the effects of lateral
source and receiver variations.
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A P P E N D I X A : S T RU C T U R E O F T H E
C O E F F I C I E N T M AT R I X A

In this section, we illustrate the structure of the data vector d(ω), the
model vector m(ω), and the coefficient matrix A for single compo-
nent data. We adopted the matrix-vector notation

d(ω) = Am(ω), (A1)

to analyse the constraints on m (ω) given by the convolutional model
and reciprocity. Here, we give the expressions for d(ω), m(ω), and
A for a configuration with two coincident source and receiver po-
sitions. It is straightforward to generalize the obtained expressions
for N coincident source–receiver positions and for multicomponent
(3C × 3C) recordings.

We denote the data generated by the ith source and the jth receiver
with Vi j , the source term of the ith source with Si, and the receiver
term of the jth receiver with Rj. Then, the data vector d can be
written as:

d = (
V11 V12 V21 V22

)T
. (A2)

We order the unknown terms in the model vector according to:

m = ( G11 G12 G22|R1 R2|S1 S2 )T . (A3)

Note that reciprocity is used to reduce the number of unknown
Green’s functions explicitly: Gi j not only denotes the Green’s func-
tion for data generated by the ith source and the jth receiver, but
also for the reversed source–receiver positions. Given the data and
model vectors, the coefficient matrix reads:

A =

⎛
⎜⎜⎝

1 0 0 1 0 1 0
0 1 0 0 1 1 0
0 1 0 1 0 0 1
0 0 1 0 1 0 1

⎞
⎟⎟⎠ . (A4)

The vertical lines in this matrix indicate the separation between
the columns corresponding to the medium response terms, receiver
terms, and source terms, respectively. The entries in A relate the
data vector components to the unknown model components: they
describe the decomposition of the data according to the convolu-
tional model in the log/Fourier domain (eq. 6).
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