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S U M M A R Y
We compared surface wave tomography models obtained using finite-frequency kernels and
ray theory. We systematically changed regularization in both cases and plotted data misfit
against the number of independent parameters in the solution. Our tests show that models
from finite-frequency kernels and ray-theoretical kernels are statistically similar. This means
that any model obtained using one forward theory can be obtained using the other one by
appropriately changing the damping constant. It is clear that finite-frequency theory is a better
forward theory to represent the wavefield, but the associated inverse problem is not less ill
posed. Indeed, current data coverage is such that the solution is dominated by the chosen
regularization. This prevents us from achieving a resolution of the order of the Fresnel zone,
or beyond, and noticing the benefits of a better forward theory.

Key words: finite-frequency kernels, inverse theory, model comparison, phase velocity, ray
theory, surface wave tomography.

1 I N T RO D U C T I O N

Surface waves, fundamental and overtone modes, have been cen-

tral to understanding the 3-D earth structure ever since tomography

started. With the development of automatic measuring techniques

and the online availability of large quantities of digital seismo-

grams in well-kept databases, data coverage has grown exponentially

in recent years. Accordingly, the degree of detail in the resulting

maps has increased. The theoretical foundations have, for simplic-

ity mainly, continued to rely on geometrical ray theory, known to

be a high-frequency approximation (Woodhouse 1974). Wang &

Dahlen (1995) derived empirically that ray theory breaks down if

the scale length of heterogeneity is smaller than the width of the

first Fresnel zone. We have clearly reached this limit (Spetzler et al.
2001) and we should move beyond ray theory if smaller-scale struc-

ture is to be mapped more reliably. A convenient way to include the

finite-frequency content of surface waves is to use scattering theory

based on the first Born or Rytov approximation (Snieder 1986). The

integral along the ray is then replaced by the integral over an influ-

ence zone, the shape of which depends on the approximations made

(Snieder & Nolet 1987; Yomogida & Aki 1987; Friederich et al.
1993; Meier et al. 1997; Clévédé et al. 2000; Ritzwoller et al. 2002;

Spetzler et al. 2002; Yoshizawa & Kennett 2002, 2005; Zhou et al.
2004; de Hoop & van der Hilst 2005). It has been shown that scat-

tering theory is superior to ray theory (Hung et al. 2001; Spetzler

et al. 2005) because it models the finite zone of sensitivity of a trav-

elling wave and accounts for first-order diffraction effects. It is less

clear if better physics is a guarantee for better models, a possibil-

ity already mentioned by de Hoop & van der Hilst (2005). Indeed,

Ritzwoller et al. (2002), Yoshizawa & Kennett (2004) and Zhou

et al. (2005) report improved tomographic models, while Sieminski

et al. (2004) and Levshin et al. (2005) claim that ray theory can pro-

duce similar models, at least with reasonable ray coverage and in the

presence of noise. This apparent discrepancy is most likely the result

of comparing models somewhat arbitrarily. We propose to turn to

statistics, which offers several approaches to deal with the difficult

problem of model comparisons. To focus the discussion, we require

that better models should verify at least several of the following

criteria:

(i) to be derived using a better forward theory,

(ii) to achieve a better data fit,

(iii) to be less sensitive to data errors,

(iv) to achieve a better resolution and

(v) to be less dependent on arbitrary choices of regularization.

2 M E T H O D A N D DATA

The exact nature of surface wave dispersion depends on the details

of the 3-D earth and the seismic source. In the framework of single

scattering, this relation can be written as (Zhou et al. 2004):

δ ln c̄(ω) =
∫

V

[
K α

3D(x, ω)δ ln α(x) + K β

3D(x, ω)δ ln β(x)

+ K ρ

3D(x, ω)δ ln ρ(x)
]

d3x, (1)

where δ ln c̄ is the average relative phase velocity perturbation at

frequency ω measured between a source and a receiver, K α,β,ρ

3D is a

3-D sensitivity kernel for relative P-velocity perturbation (δ ln α),
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relative S-velocity perturbation (δ ln β) and relative density pertur-

bations (δ ln ρ), respectively, and the volumetric integration is over

all points x in the 3-D earth. The shape of K α,β,ρ

3D depends on mode

coupling, the source radiation, directional scattering of the waves

and the frequency content of the measurement (Zhou et al. 2004).

If the kernels are calculated in a spherically symmetric reference

model (typical of a first iteration in a non-linear inverse process),

forward scattering prevails (Snieder 1988). Further neglecting mode

coupling, the 3-D kernels reduce to a 2-D kernel (Zhou et al. 2004),

and we may write

δ ln c̄(ω) =
∫

S
K c

2D(ŝ, ω)δ ln c(ω) d2ŝ, (2)

where δ ln c is the local phase velocity perturbation at point ŝ on

the unit sphere. Expressions for K c
2D can be found in Spetzler et al.

(2002). The local phase velocity perturbation is of course linearly re-

lated to a local 1-D (spherically symmetric) structure by the Fréchet

derivatives K α,β,ρ

F (e.g. Dahlen & Tromp 1998), which may be in-

serted in the previous equation to yield

δ ln c̄(ω) =
∫

S

∫
radius

K c
2D(ŝ, ω)

[
K α

F (r, ω)δ ln α(x)

+ K β

F (r, ω)δ ln β(x) + K ρ

F (r, ω)δ ln ρ(x)
]

dr d2ŝ. (3)

In the high-frequency limit, K c
2D = 1/� on the ray path l, where

� is the epicentral distance. Eq. (3) then reduces to the commonly

used expression for surface wave rays:

δ ln c̄(ω) = 1/�

∫
ray

∫
radius

[
K α

F (r, ω)δ ln α(x) + K β

F (r, ω)δ ln β(x)

+ K ρ

F (r, ω)δ ln ρ(x)
]

dr dl. (4)

In the following, we will compare tomographic models obtained

using finite-frequency kernels (eq. 3) and ray theory (eq. 4). The

usual approximations are made, neglecting density perturbations

and scaling δ ln α to δ ln β using relations from Ritsema & van

Heijst (2002). δ ln β is expanded laterally into spherical harmonics

up to degree and order 20 and each coefficient is parametrized on a

cubic spline basis (18 knots) along the radius. The parametrization is

equivalent to that of model S20RTS (Ritsema et al. 1999) and com-

prises some 8000 unknowns. We used a total of 1.5 million phase

velocity measurements (table 1) from fundamental mode Rayleigh

waves between 40 and 150 s (Trampert & Woodhouse 1995) and

the first five Rayleigh wave overtones between 40 and 130 s (van

Heijst & Woodhouse 1999). These data formally provide sensitivity

to a depth of at least 1000 km. Here it is important to note that we

neglected mode coupling. While this is approximately correct for

fundamental modes, coupling is important for overtones, which in

all rigour requires 2-D vertical kernels (Li & Tanimoto 1993; Li

& Romanowicz 1995) rather than the 1-D kernels KF we are using

throughout this study. As pointed out by Mégnin & Romanowicz

(1999), the difference is important for the resolution in the mid-

mantle. It is not our purpose to present detailed earth models, but to

compare different forward theories. Our conclusions should, there-

fore, not be affected, since both sets of models are built using the

same approximation. All data are corrected for crustal effects using

Crust5.1 (Mooney et al. 1998). In each 5◦x5◦ cell, the local phase

velocity is calculated exactly in a local 1-D model. The relative

crustal correction is evaluated from the phase velocities in mod-

els consisting of Crust5.1 superimposed on PREM and of PREM

alone. The corrections to the measurements are made using eq. (2)

where K c
2D represents the finite-frequency or ray-theoretical kernel,

respectively.

Eqs (3) or (4) result in a linear inverse problem for the coefficient

vector m given the average phase velocity measurements gathered

in a data vector d. We minimize the cost function

C = (d − Gm)t C−1
d (d − Gm) + mt Dm, (5)

where the superscript (t) denotes matrix transpose. Eq. (5) expresses

the competing requirements of data misfit and some chosen quality

of the model (e.g. size, roughness). The estimated model is then

found by applying a linear operator L to the data vector:

m = Ld = (
Gt C−1

d G + D
)−1

Gt C−1
d d, (6)

where G is the matrix built from the kernels projected onto the hor-

izontal and vertical basis functions and Cd is the diagonal data vari-

ance matrix, estimated by cluster analyses for similar paths where

Gaussian statistics are assumed. It is very difficult to assess whether

phase velocity data really follow Gaussian statistics, but again this

uncertainty should not affect our conclusions since we are compar-

ing models based on the same assumptions. D is a regularization

matrix of which we considered three end members used individu-

ally or as a mixture in various studies. In the case of minimum norm

damping, D = λI, where λ is a constant and I the identity matrix. We

also separately imposed horizontal and vertical smoothing, in which

case D is λ times an operator, which either describes the horizontal

gradient on the sphere, or the radial derivative. The quality of the

estimated model is characterized by the resolution (e.g. Tarantola

1987)

R = LG = (
Gt C−1

d G + D
)−1

Gt C−1
d G (7)

and by the posterior model covariance (e.g. Matsu’ura & Hirata

1982; Tarantola 1987)

Cm = (
Gt C−1

d G + D
)−1 = (I − R)D−1(I − R)t + LCd Lt . (8)

Reducing λ (within the limits of stability) in eq. (6) will decrease

the data misfit, increase the chosen model quality (eq. 5) and in-

crease the resolution (eq. 7). The number of independent parameters

from which m is built, which is equal to the trace of the resolution

matrix (Tarantola 1987), is thus also increased. In general, more

complex models will always fit the data better. The question is thus

whether a better fit is balanced by the increase in model parameters

or if the data really prefer one model over another, in which case

we qualify the improved fit as significant. Intuitively, if two models

give the same misfit, we tend to choose the simplest (e.g. smallest

number of parameters, smallest size, smoothest) model. We refer

to this as Occam’s razor or the principle of simplest explanation.

There are a number of statistical measures, which can be used to

determine whether a better data fit is significant. Bayesian infer-

ence embodies Occam’s razor implicitly (e.g MacKay 2003) and

models can be ranked using the Bayesian evidence. In our case, D
is not a covariance operator and hence derivative damping is not a

proper prior (normalized probability density function) and the in-

terpretation of the Bayesian evidence is meaningless. Other popular

criteria for model comparisons are the Akaike information criterion

(AIC) (Akaike 1973) and the Bayesian information criterion (BIC)

(Schwarz 1978). AIC and BIC are both based on penalized model

likelihoods and, therefore, depend on the correct characterization of

data errors. For an increasing number of data points, they will both

either favour increasingly complex or increasingly simple models

depending on the value of det Cd . A more conventional statistical

answer to this question is given by the F-test (e.g. Bevington &

Robinson 1992), which is based on the reduced χ2 defined by

χ 2 = 1

N − M
(d − Gm)t C−1

d (d − Gm), (9)

C© 2006 The Authors, GJI, 164, 394–400

Journal compilation C© 2006 RAS



396 J. Trampert and J. Spetzler

Table 1. Number of Rayleigh wave phase velocity measurements used to

construct the models.

Number of picked Number of

frequencies measurements

Branch on the branch on the branch

Fundamental mode 10 755 150

First overtone 15 208 507

Second overtone 12 172 116

Third overtone 8 141 261

Fourth overtone 7 112 196

Fifth overtone 4 59 153

total 56 1 448 383

Table 2. Minimum difference in χ2 needed to conclude with 99 per cent

confidence that 2 models are different. The difference depends on χ2 itself

and the number of free parameters N − M .

N − M = 103 N − M = 104 N − M = 105 N − M = 106

χ2 = 2.0 0.156 0.051 0.016 0.005

χ2 = 1.5 0.117 0.038 0.012 0.004

χ2 = 1.0 0.078 0.025 0.08 0.003

where N is the total number of data points (Table 1) and M =
trace(R) is the number of independent parameters in m. The ratio

of χ 2 from two different models is F distributed. This allows one to

calculate the probability whether two χ2 are significantly different or

due to random fluctuations in the data. In Table 2, we show minimum

differences in χ 2 to have a 99 per cent probability that this difference

is due to a better model. There thus remains a 1 per cent chance

that the difference is due to random fluctuations in the data. While

this indicative table shows that with an increasing number of data,

increasingly smaller changes in χ2 become significant, the F-test

depends less on the exact knowledge of data errors than Bayesian

tests because the key number is a ratio of χ 2. Because solutions

from scattering theory or ray theory use different G matrices, the

resulting model will be different even if the same regularization is

used. The important quantities to compare are the misfit, of course,

and the number of independent parameters in m. We performed

multiple inversions, varying systematically λ and plotted χ2 as a

function of independent parameters M from which the solution is

built. Visual inspection of the curves immediately tells us which

model is preferred by the data. Plotting misfit as a function of model

norm or smoothness (Yoshizawa & Kennett 2004; Zhou et al. 2005)

should give the same results, but we chose M because it is a more

fundamental parameter of the solution.

3 R E S U LT S

Fig. 1 shows that models from finite frequency and ray theory are

statistically similar, except perhaps for some marginal cases using

purely vertical smoothing. The important point, demonstrated by

these results, is that one cannot construct a finite-frequency model,

which cannot also be obtained from ray theory by changing λ appro-

priately. This is a confirmation of the conclusions of Sieminski et al.
(2004) and Levshin et al. (2005). Why then have different authors

come to opposite conclusions? Ritzwoller et al. (2002) compared

models using the same regularization. Such models can be identi-

fied by close by circles on the trade-off curves. They show that for

equal λ, the finite-frequency model is built from less parameters

than the corresponding ray-theory model. We further found that the
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Figure 1. Trade-off curves for inversions using finite frequency and ray the-

ory. Different regularization operators are specified on the figure. The width

of the lines indicates the 99 per cent confidence level calculated from the

F-distribution (Table 2.). If the difference between two curves at a given M =
trace(R) is greater than this width, it is statistically significant. Neighbouring

circles indicate equal values of λ.

finite-frequency model norm is always bigger than the ray-theory

model norm for the same damping. This explains the observations

of Ritzwoller et al. (2002). Their results are amplified compared

to those shown here, because they used truncated and simplified

finite-frequency kernels (Levshin et al. 2005). Yoshizawa & Kennett

(2004) and Zhou et al. (2005) compared different models plotting

misfit versus model norm or smoothness curves. Without a proper

assessment of the significance of their observed differences, the

question of which model is to be preferred remains unanswered.

Some readers might argue that significance tests hinge on a par-

ticular definition of misfit (eq. 9) or a statistical test. As a more

intuitive approach, we simply plot several model vectors against

each other (Fig. 2). This reiterates the point that finite-frequency and

ray-theoretical models with comparable regularization are similar.

The main difference in the models does not come from the for-

ward theory but from the applied regularization. For high λ, around

1000 independent model parameters, the data clearly favour hori-

zontal smoothing over norm damping and vertical smoothing. Only

from 3000 independent model parameters onwards are the solu-

tions independent of the nature of damping (minimum norm versus

smoothness). The model norm will of course increase further as

λ is reduced. How much we can reduce λ depends on the eigen-

value spectrum of the problem at hand. It is common practice in

tomography to show ‘nice’ (smooth) models, while ‘blobby’ mod-

els are generally suspected to be unstable. Fig. 3 shows models

built from 1000 independent parameters using horizontal and ver-

tical smoothing, respectively. We recognize some well-documented

features such as strong heterogeneity near the surface with a sharp

decline in amplitude below 200 km. Continent–ocean differences

are well mapped out, but the depth extent of the structures (e.g.

thickness of continents, depth of mid-ocean ridges, mass transfer

through the 660 km discontinuity) crucially depends upon regular-

ization. In terms of horizontal versus vertical streakiness, the norm-

damped model lies in between those shown in Fig. 3. This model,

built with approximately 1000 independent parameters and χ2 =
1.825, is almost identical to model S20RTS (Ritsema et al. 1999) in

the top 1000 km, indicating that S20RTS is heavily norm damped.

Because Fig. 1 leads to the inference that the data favour horizontal

smoothing, a rash interpretation could be that ridges and continents
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Figure 2. Scatter plots for different models. Plotted are the model coefficient vectors rather than shear velocity at a particular depth. FF are finite-frequency

models and RT are the ray-theoretical ones. The number in the legend represents the independent parameters in the solution and h and v stand for vertical and

horizontal smoothing, respectively. The only scatter plot with a clear deviation (horizontal trend) from the grey line (slope 1) is the top right one, as already

inferred from Fig. 1. The bottom right plot shows some outliers, but retains a clear trend along the grey line.

are shallow features and that we should expect little vertical mass

transfer.

In practice, things are unfortunately not as easy. Why should we

select models built from 1000 independent parameters out of a possi-

ble 8000? Fig. 1 shows that χ2 does not change significantly beyond

3000 independent model parameters. Applying Occams’s razor, we

should clearly consider models up to this point, because only be-

yond M = 3000 do models become more complicated without any

change in χ 2. A look at the eigenvalue spectra (Fig. 4) shows that

they are slowly decaying, but that the first 3000 eigenvalues remain

bigger than 1. There is thus no prospect of instability if we use the

first 3000 eigenvalues in the solution. In fact this is what is recom-

mended by the analyses of Matsu’ura & Hirata (1982), in agreement

with what we would choose using Occam’s razor in Fig. 1. Mod-

els built from 3000 independent parameters are shown in Fig. 5.

The models are now very similar despite different regularization

strategies. The rms amplitude of the anomalies has doubled. The

fast decay of the amplitude below 200 km has disappeared, suggest-

ing the mantle might contain much more smaller-scale structure

with higher amplitude than previously assumed. Such interpreta-

tions clearly need further investigation and are beyond the scope of

this work, but demonstrate that a subjective choice of regularization

has tremendous consequences for our understanding of the Earth’s

interior, while the forward theory has not. We have only shown verti-

cal slices of models obtained from finite-frequency theory, the slices

for ray-theoretical models being similar as demonstrated in Figs 1

and 2. This shows that the dependence of the solution on arbitrary

choices of regularization is similar for both theories and one of the

main sources of uncertainty in existing models. Recently, we ac-

quired the capability to calculate exact seismograms in 3-D earth

models using Beowulf clusters (Komatitsch et al. 2002). This will

allow us to address this questions more systematically by comparing

seismograms from our 3-D models against observed seismograms.

The question of data error propagation is more difficult and has

two contributions as can explicitly be seen on the right-hand side of

eq. (8), which splits the total uncertainty into a term due to imper-

fect resolution and a term due to data error propagation. At 1000

independent parameters, on average for any regularization strategy,

the total rms uncertainty is 0.2 and 75 per cent comes from im-

perfect resolution. This is huge compared to rms amplitude of the

models, which is around 0.003, and indicates that the valley in the

cost function (eq. 5) is locally rather flat. This does not come as a

surprise since we found that the solution strongly depends on the

regularization (norm, smoothing, etc.). If we just look at data error

propagation, rms (diag(LCd Lt )) = 0.05, which is still big and shows

that if we want to keep data error propagation under control with

damping, we really have to look at very strongly damped models.

This puts us in the awkward situation that the solution depends too

heavily on the adopted regularization philosophy. At 3000 indepen-

dent parameters, the total rms uncertainty has risen to 0.8, but the

contributions from imperfect resolution and data error propagation

are now equally split. In severely ill posed inverse problems, there

can be multiple solutions, even for a linear problem, which casts

doubts on derivative techniques. Furthermore, D is not a proper

covariance operator. We, therefore, believe that the interpretation

of Cm , or parts of it, is essentially meaningless, and is maybe an

excuse why error analysis is notoriously absent in seismic tomogra-

phy. A promising direction for physically meaningful error analyses

is a full model space search by forward modelling (e.g. Trampert

et al. 2004). This avoids the pitfalls of instabilities in the inverse

problem, but comes at a huge computational cost. Returning to our

comparisons between finite-frequency and ray-theoretical models, a

comparison is more meaningful because both posterior covariances

have the same limitations. We find that finite-frequency models sys-

tematically show a slightly higher (10 per cent) uncertainty for the

full Cm or LCd Lt alone. This can also be seen in the eigenvalue

spectra (Fig. 4.) which decay slightly faster for finite-frequency the-

ory giving a higher uncertainty (Matsu’ura & Hirata 1982). Overall

though, this difference has a minor effect, as can be seen in the left

column of Fig. 2. Both sets of models clearly show similar trends,
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398 J. Trampert and J. Spetzler

Figure 3. Vertical slice along the equator through the top 1000 km of two models built from 1000 independent parameters using finite-frequency theory and

vertical (bottom panel) and horizontal (middle panel) smoothing. Note the fundamental difference in appearance between the two models.
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Figure 4. Eigenvalue spectrum of the normalized problem using finite fre-

quency and ray theory. Matsu’ura & Hirata (1982) recommend to normalize

the problem to unit data and model covariances and cut off the eigenvalues

below 1 to guarantee a solution with optimal uncertainty.

with the scattering in the plots probably due to different model un-

certainties.

4 C O N C L U D I N G R E M A R K S

We have shown that surface wave tomography models obtained from

finite-frequency and ray-theoretical kernels are statistically alike,

meaning that for every finite-frequency model, we can obtain a sim-

ilar model using ray theory if we change λ appropriately. To be

more specific, how do they perform for each individual criterion

mentioned in the introduction? We stated that better models should

verify at least several of the following criteria:

(i) to be derived using a better forward theory,

(ii) to achieve a better data fit,

(iii) to be less sensitive to data errors,

(iv) to achieve a better resolution and

(v) to be less dependent on arbitrary choices of regularization.

It is clear that finite-frequency kernels are more accurate [crite-

rion (i)] than ray theory in describing wavefield characteristics in

C© 2006 The Authors, GJI, 164, 394–400

Journal compilation C© 2006 RAS



Ray versus finite-frequency tomography 399

Figure 5. Vertical slice along the equator through the top 1000 km of 2 models built from 3000 independent parameters using vertical (bottom panel) and

horizontal (middle panel) smoothing. Note the similar appearance of the two models as predicted by our trade-off curves.

complicated structures (Hung et al. 2001; Spetzler et al. 2005). Our

main result is that changing the damping constant appropriately,

the achieved data fit [criterion (ii)] and resolution [criterion (iv)]

is similar using either forward theory. Another important finding is

that regularization dominates significant aspects of our recovered

models and finite-frequency and ray-theoretical models are simi-

larly affected [criterion (v)]. This means that the null space (due

to uneven or insufficient data coverage) is still too large to attempt

to recover structures of the size of Fresnel zones. To fix ideas, the

Fresnel zone width for a fundamental mode surface wave at 100 s

propagating over a distance of 90 degrees is about 2000 km. Data

error propagation is slightly worse for finite-frequency kernels (cri-

terion iii), but given the large influence of the regularization on the

solution, this is a minor problem.

These conclusions, strictly speaking, are only valid for surface

wave tomography. We speculate, however, that the situation is not

much different for body waves. The reason is that rays, or banana–

doughnuts, are spanning the 3-D sphere and the inhomogeneity of

the coverage is worse than in the case of surface waves. This means

that the null space is at least equal, if not larger for body wave

tomography. An equivalent model to that of Montelli et al. (2004)

can probably be obtained from ray theory alone. In fact, van der

Hilst & de Hoop (2005) showed that their model is not as different

as initially thought.

Does this mean that finite-frequency kernels are unnecessary? Of

course not. It is clear that finite-frequency kernels are more accurate

than ray theory and they should be used if data with large frequency

variations are combined (de Hoop & van der Hilst 2005) or explicit

antispectral leakage operators are employed (Spetzler & Trampert

2003). To increase the resolution of the current models, we have

to remove the ill posedness in the inverse problem, which in turn

spares us the need of regularization. The only option is to increase

or homogenize the data coverage. While we keep trying to persuade

the funding agencies that ocean bottom arrays are worth investing

in, another possibility has recently emerged. With the ability to cal-

culate accurate seismograms in 3-D earth models (Komatitsch et al.
2002), Tromp et al. (2005) recently showed how we can use this new

tool to increase data coverage. So far, we only use very little infor-

mation from the complete seismogram (first arrival times of a few
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400 J. Trampert and J. Spetzler

main waves). It becomes now possible to associate each measurable

wiggle in the seismogram with its Fréchet derivative, each one sam-

pling the Earth differently. These Fréchet derivatives are nothing

else than finite-frequency kernels or generalizations thereof. While

they might not fulfil their promise right now, finite-frequency kernels

should open the doors to a new generation of tomographic models

in the years to come.
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