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The effect of scattering in surface wave tomography
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S U M M A R Y
We present a new technique in surface wave tomography that takes the finite frequency of
surface waves into account using first-order scattering theory in a SNREI Earth. Physically,
propagating surface waves with a finite frequency are diffracted by heterogeneity distributed on
a sphere and then interfere at the receiver position. Paradoxically, surface waves have the largest
sensitivity to velocity anomalies off the path of the geometrical ray. The non-ray geometrical
effect is increasingly important for increasing period and distance. Therefore, it is expected
that the violation of ray theory in surface wave tomography is most significant for the longest
periods.

We applied scattering theory to phaseshift measurements of Love waves between periods of
40 and 150 s to obtain global phase velocity maps expanded in spherical harmonics to angular
degree and order 40. These models obtained with scattering theory were compared with those
constructed with ray theory. We observed that ray theory and scattering theory predict the same
structure in the phase velocity maps to degree and order 25–30 for Love waves at 40 s and to
degree and order 12–15 for Love waves at 150 s. For reasons of spectral leakage, a smoothness
condition was included in the phaseshift inversions to construct the phase velocity maps, so
we could not access the small length-scale structure in the obtained Earth models.

We carried out a synthetic experiment for phase velocity measurements to investigate the
limits of classical ray theory in surface wave tomography. In the synthetic experiment, we
computed, using the source–receiver paths of our surface wave data set, the discrepancy between
ray theoretical and scattering theoretical phase velocity measurements for an input model with
slowness heterogeneity for increasing angular degree. We found that classical ray theory in
global surface wave tomography is only applicable for structures with angular degrees smaller
than 25 (equivalent to 1600 km) and 15 (equivalent to 2700 km) for Love waves at 40 and
150 s, respectively. The synthetic experiment suggests that the ray theoretical great circle
approximation is appropriate to use in present-day global surface wave tomography. On the
other hand, in order to obtain reliable models with a higher resolution we must take the non-ray
geometrical effect of surface waves into account.

Key words: finite-frequency effects, Fresnel zone, group velocity, phase velocity maps, ray
theory, Rytov approximation, single-mode scattering theory.

1 I N T R O D U C T I O N

In surface wave tomography, global as well as regional models are
being obtained with increasing resolution. This increase in spa-
tial resolution allows a comparison between tomographic models
and detailed tectonic features. Most techniques for surface wave
tomography are based on simplified versions of ray theory; see,
for instance, Backus (1964), Dziewonski (1984), Woodhouse &
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Dziewonski (1984), Trampert & Woodhouse (1995), van der Lee
& Nolet (1997) and van Heijst & Woodhouse (1999) who all ap-
ply the great circle approximation to compute Earth models from
surface wave data. However, ray theory introduces an inconsistency
from a methodological point of view. It is only valid if the length-
scale of velocity perturbations is larger than the wavelength and the
width of the Fresnel zone. This condition is often violated for high-
resolution S-velocity models compiled with ray theory because the
characteristic length of heterogeneity in present surface wave mod-
els is comparable with the width of Fresnel zones (Passier & Snieder
1995).

Several examples of scattering theory used to explain wave prop-
agation in heterogeneous media are given in the literature. Yomogida
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& Aki (1987), Yomogida (1992), Woodward (1992), Snieder &
Lomax (1996) and Spetzler & Snieder (2001) use the Rytov approx-
imation to derive the frequency-dependent time-shift. In Spetzler
& Snieder (2001), it is demonstrated explicitly that the time-shift
can be computed as an integration of the slowness perturbation
field multiplied by a sensitivity kernel (also known as the Fréchet
kernel). Furthermore, Spetzler & Snieder (2001) confirm through
a numerical experiment that the regime of scattering theory is im-
portant when the length-scale of inhomogeneity is smaller than the
width of the Fresnel zone. Woodhouse & Girnuis (1982) and Snieder
(1993) use normal-mode theory to compute the Fréchet kernel for
degree l and order m in surface wave tomography using spherical
harmonics to expand the slowness perturbation field. Marquering
et al. (1998, 1999), Tong et al. (1998), Dahlen et al. (2000), Hung
et al. (2000) and Zhao et al. (2000) apply a cross-correlation
function to introduce the frequency-dependent time-shift in body
wave tomography. It is shown in several of these articles that the
sensitivity kernel for 3-D wave propagation vanishes on the geo-
metrical ray and that the maximum sensitivity to slowness pertur-
bations is off the path of the ray. However, surface wave tomogra-
phy is a 2-D problem and the scattering theoretical sensitivity to
slowness perturbations is non-zero on the ray path, although not
maximum.

In this study, we develop a frequency-dependent scattering theory
for minor and major arc surface waves by using the first-order Rytov
approximation. The theory is applicable for unconverted surface
waves in a SNREI Earth model. The scattering theory can be applied
to both phase and group velocity measurements. Given the same
strength of inhomogeneity, diffraction of surface waves becomes
increasingly important when the dominant period in the phaseshift
data set or the source–receiver distance increases. It is shown how
relative phaseshifts and group delays measured from surface waves
are related linearly to the coefficients of the spherical harmonics for
relative phase and group velocity, respectively. Relative phaseshift
measurements for Love waves at 40 and 150 s from Trampert &
Woodhouse (2001) are inverted to obtain phase velocity maps using
scattering theory.

We show a synthetic experiment wherein, given the source–
receiver paths in our surface wave data set, the relative error intro-
duced by ray theory is computed for slowness heterogeneities with
increasing angular degree. The synthetic experiment shows that the
diffraction of surface waves is dominant if the structure of the Earth
exceeds an angular degree of 15 (corresponding to a length-scale
of inhomogeneity of about 2700 km) for surface waves at 150 s
and angular degree 25 (the characteristic length of heterogeneity is
1600 km) for surface waves at 40 s. This is close to the current limit
of resolution that we obtain in the phase velocity maps in this work.
In addition, the synthetic experiment demonstrates that small-scale
structures in surface wave tomographic models obtained using ray
theory may contain systematic errors.

In Section 2, the width of the Fresnel zone for surface waves is de-
rived, and it is shown how to relate surface wave measurements (i.e.
relative phaseshift and group delay) with relative phase and group
velocity perturbations on a sphere using ray theory and scattering
theory. Additionally, the properties of the Fréchet kernels owing to
non-ray geometrical effects are discussed. In Section 3, the set-up of
the surface wave experiment using Love waves between periods of
40 and 150 s is explained. In Section 4, the results of the inversion
of relative phaseshifts for Love and Rayleigh waves at 40 and 150 s
are given. In Section 5, a discussion of the small-scale structures of
the Earth is given, and thereby the synthetic experiment is shown.
The conclusions are drawn in Section 6.

2 T H E O R Y

2.1 The width of Fresnel zones on the sphere

Fresnel zones are defined in terms of the difference in propagation
length of rays with adjacent paths. The points inside the Fresnel
zone are those points giving single-scattered waves that have a de-
tour smaller than a certain fraction of the wavelength λ compared
with the ballistic ray (e.g. Kravtsov 1988). This fraction of the wave-
length is denoted by λ/n, where n = 8/3 for waves propagating
in two dimensions (Spetzler & Snieder 2001). Physically, waves
scattered by points inside the first Fresnel zone interfere construc-
tively at the receiver position. In the rest of this paper, the Fresnel
zone refers strictly speaking to the first Fresnel zone. It is shown in
Appendix A how to derive the maximum width of Fresnel zones
on the sphere. The epicentral distance between a given source and
receiver geometry is denoted by �off. The maximum width LF of
Fresnel zones in radians is then given by

LF =
√

3λ

2
tan

(
�off

2

)
, (1)

where �off ∈ [0, π ] and the wavelength is in radians. The width
of Fresnel zones increases with increasing wavelength and epi-
central distance. In the limit where the source–receiver distance
goes towards π , the Fresnel zone converges to the whole sphere.
The formula in eq. (1) is derived using second-order perturbation
theory. Accordingly, the tangent function goes to infinity for the
source–receiver offset �off going to π (i.e. the approximation breaks
down).

2.2 Phase and group velocity maps using ray theory

Trampert & Woodhouse (1995), for instance, apply the ray theo-
retical great circle approximation (e.g. Backus 1964; Jordan 1978;
Dahlen 1979) to express the average relative phaseshift δϕ/ϕ0 along
minor arcs (i.e. 0 < �off < π ) and major arcs (i.e. π < �off < 2π )
in terms of the local relative phase velocity perturbation δv/v0 av-
eraged over the ray path between the source and receiver, hence

δϕ

ϕ0
(�off) = − 1

�off

∫ rR

rS

δv

v0
(θ, ϕ) dr , (2)

where dr is in radians. The location of the source and receiver on
the unit sphere are denoted by S and R, respectively, and the epicen-
tral distance between the source and receiver is �off. Furthermore,
Trampert & Woodhouse (1995) expand the local relative phase ve-
locity perturbation as a sum over spherical harmonics, thus

δv

v0
(θ, ϕ) =

lmax∑
l=0

l∑
m=−l

Cm
l Y m

l (θ, ϕ). (3)

The upper limit in the spherical expansion of the relative veloc-
ity perturbation is denoted by lmax, and the coefficient of spherical
harmonics to angular degree l and order m for the relative phase
velocity is written as Cm

l . The relative phaseshift is then expressed
in spherical harmonics by inserting eq. (3) in eq. (2) which gives
that

δϕ

ϕ0
(�off) =

lmax∑
l=0

m=l∑
m=−l

Cm
l K ray,ph

l,m (�off), (4)
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with the ray theoretical sensitivity kernel for angular degree l and
order m equal to

K ray,ph
l,m (�off) = − 1

�off

∫ rR

rS

Y m
l (θ, ϕ) dr . (5)

Similarly, group velocity maps may be retrieved from group de-
lays measured by bandpass-filtered surface waveforms. In terms of
ray theory, the time-shift δt(�off) at epicentral distance �off is given
by

δt(�off) =
lmax∑
l=0

m=l∑
m=−l

U m
l K ray,gr

l,m (�off), (6)

where the coefficient of spherical harmonics to degree l and order m
for the relative group velocity is denoted by U m

l , and the sensitivity
kernel for relative group velocity is

K ray,gr
l,m (�off) = − R

u0

∫ rR

rS

Y m
l (θ, ϕ) dr . (7)

The reference group velocity at the central frequency is denoted by
u0, and R is the radius of the Earth.

Ray theory is valid when the characteristic length a of heterogene-
ity is much larger than the wavelength λ and the width of Fresnel
zones LF. Hence in non-dimensional numbers the condition for ray
theory is written as

λ

a
� 1 and

LF

a
� 1, (8)

see Menke & Abbot (1990).

2.3 Phase and group velocity maps using scattering theory

The theory of diffracted surface waves is developed for minor and
major arc measurements using the first-order Rytov approximation.
First, the relative phaseshift for minor arcs is derived for a reference
system using co-latitude coordinates with the source position at
(π/2, 0) and the receiver position at (π/2, �off). We derive the scat-
tering sensitivity kernels, which linearly relate the relative phaseshift
and group delay to the phase and group velocity, expanded in spher-
ical harmonics. Then, we show how the kernels for major arcs using
scattering theory are derived from the theory developed for minor
arcs. Finally, we show that phase and group velocity measurements
for any source–receiver configuration can be computed in a fast way
using rotating tabulated sensitivity kernels in the reference system.

Snieder & Nolet (1987) and Snieder & Romanowicz (1988) lin-
earize the Lamé coefficients λ and µ and the density ρ to write the
Born vector wavefield u1(rr) as

u1(rr) = P(R, θr, ϕr)[P(R, θs, ϕs) · F]

×
∫ �off

0

∫ π

0

exp i (k R�2 + π/4)√
π

2 k R sin(�2)

× V (R, θ, ϕ)
exp i

(
k R�1 + π

4

)
√

π

2 k R sin(�1)
R2 sin(θ ) dθ dϕ, (9)

which is derived for wave propagation on the sphere. The adia-
batic assumption (i.e. there is no mode conversion between differ-
ent modes of Love and Rayleigh waves) is applied in eq. (9) so
there is no summation over modes and mode conversions are ab-
sent. The polarization vector at the source (R, θs, ϕs) and at the
receiver (R, θr, ϕr) is P, the wavenumber is k for surface waves, the
epicentral distances between the source and scatterer and between

the scatterer and receiver are denoted by �1 and �2, respectively,
the Fourier transform of the point source function is F and the scat-
tering coefficient is V. Snieder (1986) shows that for unconverted
surface waves the interaction term V can be written as

V (R, θ, ϕ) = − k2

2

δv

v0
(R, θ, ϕ), (10)

where the reference phase velocity and the phase velocity pertur-
bation is v0 and δv, respectively. The expression for the interaction
term in eq. (10) is strictly speaking valid for forward scattering only.
However, according to Snieder (1988), the surface wave radiation
patterns for unconverted modes do not vary much as a function of the
scattering angle, which implies that the scattering term in eq. (10)
is a reasonable approximation for near-forward scattering at scat-
terer points inside the Fresnel zone.

Given the measurement of the i-component of the displacement,
the average phaseshift δϕ(i)(�off, ν) along the path of the surface
waves is obtained from

δϕ(i)(�off, ν) = Im

[
ui

1(rr )

ui
0(rr )

]
, (11)

where the unperturbed vector wavefield u0(rr ) is given by

u0(rr ) = P(R, θr, ϕr)
exp i

(
k R�off + π

4

)
√

π

2 k R sin(�off)
[P(R, θs, ϕs) · F], (12)

for the epicentral distance �off between the source and receiver
(Snieder 1986). The expression in eq. (11) generalizes the Rytov
approximation (e.g. Yomogida & Aki 1987; Snieder & Lomax 1996;
Spetzler & Snieder 2001) to elastic waves.

The detour �1 + �2 − �off and the geometrical factors sin(�1)
and sin(�2) in eq. (9) are perturbed to second and zeroth order
in the path deflection (θ − π

2 ), respectively. For a source–receiver
geometry along the equator line, the detour is given by

�1 + �2 − �off ≈
(
θ − π

2

)2

2

sin(�off)

sin(ϕ) sin(�off − ϕ)
, (13)

and the geometrical factors are

sin(�1) ≈ sin(ϕ) and sin(�2) ≈ sin(�off − ϕ), (14)

(see Appendix A). The relative average phaseshift δϕ(i)/ϕ0(�off, ν)
at the single frequency ν is derived by inserting eqs (9), (10)
and (12) in eq. (11), dividing by the phase ϕ0 = 2πνR�off/v0

and finally using the Taylor approximation for the detour and for
the geometrical factors in eqs (13) and (14), respectively. Finally,
the single-frequency relative phaseshifts δϕ(i)/ϕ0(�off, ν) have to
be integrated over a frequency band from ν0 − �ν to ν0 − �ν, since
phase velocity measurements at a single frequency are not possi-
ble owing to the finite sampling of the seismograms and the finite
parametrization of the dispersion curve in the measurement process.
Hence, the relative average phaseshift δϕ(i)/ϕ0(�off, ν0) at a central
frequency ν0, including non-ray geometrical effects, is given by

δϕ(i)

ϕ0
(�off, ν0) =

∫ �off

0

∫ π

0

K ph(R, θ, ϕ)
δv

v0
(R, θ, ϕ) dθ dϕ.

(15)

The sensitivity kernel K ph(R, θ, ϕ) for the relative phase velocity
perturbation field is given by
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K ph(R, θ, ϕ) = − sin(θ )
√

R sin(�off)

2�ν�off

×
∫ ν0+�ν

ν0−�ν

√
ν sin

[
πνR
v0(ν)

(
θ − π

2

)2 sin(�off)
sin(ϕ) sin(�off−ϕ) + π

4

]
√

v0(ν) sin(ϕ) sin(�off − ϕ)
dν,

(16)

where the reference velocity v0(ν) generally depends on the
frequency.

The relative velocity perturbation δv

v0
(R, θ, ϕ) is written as an

expansion of spherical harmonics as shown in eq. (3). The relative
phaseshift in eq. (15) is then given by

δϕ(i)

ϕ0
(�off, ν0) =

lmax∑
l=0

l∑
m=−l

Cm
l

×
∫ �off

0

∫ π

0

Y m
l (θ, ϕ)K ph(R, θ, ϕ) dθ dϕ

=
lmax∑
l=0

l∑
m=−l

Cm
l K scat,ph

l,m (�off, ν0). (17)

The right-hand side of the relative phaseshift caused by scattering in
eq. (17) has the same form as the ray theoretical phaseshift in eq. (4),
but with the scattering sensitivity kernel at the central frequency ν0

for minor arcs given by

K scat,ph
l,m (�off, ν0) =

∫ �off

0

∫ π

0

Y m
l (θ, ϕ)K ph(R, θ, ϕ) dθ dϕ. (18)

The sensitivity kernels needed to obtain group velocity maps us-
ing scattering theory can easily be derived from those for phase
velocity. To see this, we start from the fundamental relation con-
necting group velocity u and phase velocity v,

u = v

1 − ν

v

∂v

∂ν

. (19)

Using first-order perturbation theory on eq. (19), the relative group
velocity δu/u expressed as δ(1/u) can be related to δ(1/v) (propor-
tional to the relative phase velocity) through

δ
1

u
= δ

1

v
+ 2

νδv

v3

∂v

∂ν
− ν

v2

∂δv

∂ν
, (20)

where the second term and third term take the dispersion of the
reference phase velocity and phase velocity perturbation, respec-
tively, into account. Differentiation of the relative phase velocity
with respect to frequency leads to

∂(δv/v)

∂ν
= 1

v

∂δv

∂ν
− δv

v2

∂v

∂ν
. (21)

Eq. (21) is inserted in eq. (20), and we find that

δu/u = δv/v + ν
u

v

∂(δv/v)

∂ν
. (22)

Noting that the relative phase velocity perturbation is minus the
relative phaseshift and defining kernels similar to eq. (15), we may
write that

K gr(R, θ, ϕ) = − R�off

2�ν

∫ ν0+�ν

ν0−�ν

[
1

u(ν)
K ph(R, θ, ϕ)

+ ν

v(ν)

∂K ph(R, θ, ϕ)

∂ν

]
dν, (23)

where here K ph has to be taken at a single frequency rather than
frequency averaged as in eq. (16). The measured group delay at a
central frequency ν0 can then be expressed as

δt (i)(�off, ν0) =
lmax∑
l=0

l∑
m=−l

U m
l K scat,gr

l,m (�off, ν0), (24)

where the minor arc, scattering theoretical sensitivity kernel for the
relative group velocity in eq. (24) is given by

K scat,gr
l,m (�off, ν0) =

∫ �off

0

∫ π

0

Y m
l (θ, ϕ)K gr(R, θ, ϕ) dθ dϕ, (25)

The frequency averaging in eq. (23) has to correspond to the band-
pass of the filter used in the group delay measurement.

The relative phaseshift for major arcs is obtained using the scat-
tering theory for minor arcs. This is because major arc scattering
sensitivity kernels can be constructed from three scattering sensi-
tivity kernels for minor arcs; one sensitivity kernel for the minor
arc between the source S and the receiver antipod R A, between the
receiver antipod and the source antipod S A and between the source
antipod and the receiver R, respectively. For major arcs, the scat-
tering sensitivity kernel for relative phase velocity derived in the
reference system is

K scat,ph
l,m (�off, ν0) = 1

�off

[
(�off − π )K scat,ph,S→R A

l,m (�off − π, ν0)

+ (2π − �off)K scat,ph,R A→S A
l,m (2π − �off, ν0)

+ (�off − π )K scat,ph,S A→R
l,m (�off − π, ν0)

]
,

(26)

where K scat,ph,S→R A
l,m (�off − π, ν0), K scat,ph,R A→S A

l,m (2π − �off, ν0)

and K scat,ph,S A→R
l,m (�off − π, ν0) are the relative phase velocity sen-

sitivity kernels owing to scattering for the minor arc between the
source and receiver antipod, between the receiver antipod and the
source antipod and between the source antipod and receiver, re-
spectively. Similarly, the major arc sensitivity kernel for the relative
group velocity using scattering theory is given by

K scat,gr
l,m (�off, ν0) = K scat,gr,S→R A

l,m (�off − π )

+ K scat,gr,R A→S A
l,m (2π − �off, ν0)

+ K scat,gr,S A→R
l,m (�off − π, ν0). (27)

The expansions in eqs (26) and (27) are derived in Appendix B.
Dziewonski (1984) and Dahlen & Thromp (1998) explain how to

rotate the reference system so that the source–receiver configuration,
originally aligned along the equator, can be anywhere on the sphere.
In Appendix C, the relative phaseshift related to the relative phase
velocity for any minor arc, as well as major arc is derived. The
sensitivity kernel in the observed coordinate system is given by

K scat,ph
l,m (�off, ν0) = exp(im�)

l∑
n=−l

exp(in�)Qm,n
l (�)

× K scat,ph
l,n (�off, ν0), (28)

where �, � and � are the three Euler angles, Qm,n
l (�) are

the elements of the rotation matrix and the sensitivity kernel
K scat,ph

l,n (�off, ν0) is computed in the reference system where the
source and receiver lie on the equator. This result also holds for
group velocity measurements.

C© 2002 RAS, GJI, 149, 755–767



Surface wave scattering 759

Figure 1. The scattering sensitivity kernel for relative phase velocity perturbations computed point by point on the sphere. The epicentral distance is 70◦ for
the minor arc and 290◦ for the major arc. The central period of the sensitivity kernel is 150 s. The source position is denoted by S, the receiver antipode position
by R A, the source antipode position by S A and the receiver position by R. The sensitivity kernel owing to scattering theory for the major arc surface wave is
constructed by three scattering sensitivity kernels for minor arc surface waves. The first Fresnel zone is clearly visible, while sidelobes of the sensitivity kernel
vanish owing to the frequency-averaging, inherent to the measurement. At this period, the relative phaseshift is therefore only sensitive to the relative phase
velocity inside the Fresnel zone.

The regime of surface wave scattering theory is significant when
the scalelength of heterogeneity is smaller than the width of the
Fresnel zone (e.g. the conditions for ray theory are not satisfied).
Let the characteristic length of the inhomogeneity be a = 2π/ l (in
radians) for angular degree l. By using the condition for scattering
theory, we can derive the limits of classical ray theory expressed in
the angular degree of the spherical harmonics. Hence, when

LF

a
> 1 ⇒ l >

√
8π2

3λ tan (�off/2)
, (29)

the regime of scattering theory is important.

2.4 The properties of the scattering sensitivity kernels

Although we give explicit expressions for group velocity kernels,
in the following, we are only discussing phase velocity kernels.

If the reference velocity is (approximately) constant, the fre-
quency integration in the sensitivity kernel owing to scattering the-
ory in eq. (16) can be performed analytically. The integration of the
function

√
x sin(ax + π/4) is∫ √

x sin

(
ax + π

4

)
dx =

√
x√

2a

[
sin(ax) − cos(ax)

] +
√

π

4

a3/2

×
[

C

(√
2ax

π

)
− S

(√
2ax

π

)]
,

(30)

where the functions C and S are the Fresnel cosine and sine integrals,
respectively. See Abramowitz & Stegun (1970) for a description of
the Fresnel cosine and sine integrals. This analytical result can be
used to compute the scattering sensitivity kernels in eqs (18) and

(25) in an efficient and accurate manner. On the other hand, if the
reference velocity is dispersive, the frequency integration must be
carried out numerically.

It is instructive to look at the sensitivity kernel for the relative
local phase velocity for a minor arc surface wave and a major arc
surface wave as shown in Fig. 1. The source position is located at
a latitude (0◦, 0◦), and the receiver position is at (0◦, 70◦), thus the
epicentral distance for the minor arc is 70◦, while for the major arc
the source–receiver distance is 290◦. The radius of the sphere is set
to 6371 km. The sensitivity to the relative phase velocity is com-
puted with eq. (16) using the PREM phase velocity for Love waves
as a reference velocity and the half frequency band �ν = 2.5 mHz
for the phase velocity measurements of Trampert & Woodhouse
(2001). The black zones in the near-field of the source, source an-
tipod, receiver antipod and receiver show the singularities in the
geometrical factors of the scattering sensitivity kernels for minor
and major arcs. In form, the sensitivity kernel resembles the Fresnel
zones for point sources. It clearly shows the first Fresnel zone, while
higher-order Fresnel zones are less visible because of the frequency
averaging, inherent to the measurement. Scattering sensitivity ker-
nels for phase velocity measurements are also shown by Woodhouse
& Girnuis (1982) and Snieder (1993) who apply normal-mode the-
ory to compute the sensitivity to slowness perturbations owing to
scattering theory in surface wave tomography. Note that the sensi-
tivity kernels in Woodhouse & Girnuis (1982) and Snieder (1993)
have oscillations along the great circle as a result of the interference
of different surface wave orbits. In contrast, the ray-theoretical sen-
sitivity kernel is only non-zero on the great circle passing through
the source and receiver at 0◦ latitude.

In Fig. 2, cross-sections of scattering sensitivity kernels similar
to that in Fig. 1 are plotted for different periods and epicentral off-
sets. The sensitivity kernels are shown at half the epicentral offset
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Figure 2. Cross-sections of the scattering sensitivity kernels for rela-
tive phase velocity perturbations computed at the half epicental distance.
(A) The epicentral distance is 160◦ for the three curves. The cross-section
of the sensitivity kernel for relative phase velocity fluctuations is computed
for the central period at 40 s (solid line), 100 s (dashed line) and 150 s (dot-
ted line). (B) Sensitivity kernels at the central period of 150 s for relative
phase velocity fluctuations. The epicentral distance for the cross-section of
the scattering sensitivity kernel is 60◦ (solid line), 110◦ (dashed line) and
160◦ (dotted line).

where the width of the Fresnel zone is maximum. In Fig. 2(A),
the sensitivity kernels for relative phase velocity are estimated for
periods at 40 s (solid line), 100 s (dashed line) and 150 s (dotted
line) using the PREM model for the reference velocity, the half
frequency-band �ν = 2.5 mHz, and the epicentral distance is set to
160◦. For the short-period sensitivity kernel at 40 s, the sidelobes do
not cancel out completely, whereas they have almost disappeared
in the long-period Fréchet kernel at 150 s. We noticed that com-
puting the scattering sensitivity kernel using the PREM phase ve-
locity at the central frequency as a constant reference velocity in
the whole frequency range yields virtually identical result to us-
ing the frequency-dependent PREM phase velocity in the range of
frequency integration. The sensitivity kernels in Fig. 2(B) are com-
puted with the period fixed to 150 s, and the epicentral distance is
60◦ (solid line), 110◦ (dashed line) and 160◦ (dotted line). The fre-
quency band is again 2.5 mHz. In brief, Fig. 2 shows that the width
of the central lobe of the scattering sensitivity kernel increases for
increasing period and source–receiver distance.

Ray theory and scattering theory predict the same relative phase-
shift when the length-scale of heterogeneity is larger than the width
of the Fresnel zone (i.e. the condition for the regime of ray theory)
since it follows from expression (16) that∫ �off

0

∫ π

0

K ph(R, θ, ϕ)
δv

v0
(R, θ, ϕ) dθ dϕ

= − 1

�off

∫ �off

0

δv

v0
(θ, ϕ) dr, (31)

when the characteristic length of the relative phase velocity is larger
than the width of the Fresnel zone.

The maximum width W of the central lobe of the scattering sen-
sitivity kernel is computed by setting the sine function in eq. (16)
equal to zero, hence

0 = sin

[
πνR

v0(ν)

(
θ − π

2

)2
sin(�off)

sin(ϕ) sin(�off − ϕ)
+ π

4

]

⇒
(

θ − π

2

)2

= 3λ

4

sin(ϕ) sin(�off − ϕ)

sin(�off)
, (32)

where λ = v0(ν)/(νR) is the central wavelength in radians. The max-
imum width W = 2|θ−π/2|of the central lobe is obtained by setting
ϕ = �off/2 in eq. (32) which gives

W =
√

3λ

2
tan

(
�off

2

)
. (33)

By comparing the maximum width of the central lobe in eq. (33)
with the width LF of Fresnel zones on the sphere in eq. (A8), the
number n that defines the width of the Fresnel zone is given by

n = 8

3
. (34)

This result is also derived in Spetzler & Snieder (2001) in a 2-D,
Cartesian coordinate system. Additionally, we identify the central
lobe of the scattering sensitivity kernel as the Fresnel zone on the
sphere.

According to eq. (29), scattering theory is significant when the
width of the Fresnel zone is larger than the length-scale of het-
erogeneity. We see in Fig. 2 that the Fresnel zone of surface waves
enlarges for increasing period and epicentral offset. Therefore, given
the same strength of heterogeneity, scattering theory is most impor-
tant for the longest-period surface waves and if there are many long
epicentral offsets in a given surface wave data set.

3 S E T U P O F T H E S U R F A C E
WA V E E X P E R I M E N T

The data set of observed average relative phaseshifts is from
Trampert & Woodhouse (2001), who calculate global phase ve-
locity maps of Love and Rayleigh waves for periods between 40
and 150 s using the great circle approximation. We use these 41 000
phaseshifts to compute new phase velocity maps for Love waves
at 40 and at 150 s, but using the fundamental-mode surface wave
scattering theory.

The maximum degree of the spherical expansion of the phase
velocity maps is 40, thus the number of unknown model parame-
ters to be inverted is 1681. In addition, we use the same inversion
procedure as Trampert & Woodhouse (2001); an a priori Laplacian
smoothness condition is implemented so that truncation problems
are avoided. In this manner, using the same data set and inversion
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Figure 3. The difference between the phase velocity maps obtained using scattering theory and ray theory for Love wave at 40 and 150 s. The difference in
relative phase velocity are given in per cent on a scale between ±2 per cent. Plate boundaries and hotspots are drawn with white lines and circles, respectively.
The coastlines are marked with black lines on the difference between the phase velocity maps compiled using scattering theory and ray theory. (A) Love wave
at 40 s. The smoothness factor γ = 1 × 10−4. (B) Love waves at 150 s. The smoothness factor γ = 1 × 10−2.

method, it is possible to make a direct comparison between global
phase velocity maps between periods at 40 and 150 s inferred from
ray theory and scattering theory, respectively.

4 R E S U L T S

In this section, we present the phase velocity maps from Love wave
phase measurements between periods of 40 and 150 s that are ob-

tained with ray theory and scattering theory, respectively. We do
not show any results for Rayleigh waves, which lead to the same
conclusions. We hardly find any discrepancy between the phase ve-
locity maps for Love waves at either 40 and 150 s obtained from
ray theory and scattering theory. The difference between the phase
velocity maps compiled with scattering theory and those computed
using ray theory are shown in Figs 3(A) and (B) for the global Love
wave experiment at 40 and 150 s, respectively.
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Figure 4. The power spectra of the estimated phase velocity maps for Love
waves at 40 and 150 s using ray theory and scattering theory. The degree of
the coefficients of spherical harmonics is shown on the abscissa, while the
magnitude of the power spectra is plotted on the ordinate. It is observed that
the phase velocity models for Love waves at 40 and 150 s have the same large-
scale structure when using scattering theory and ray theory. However, it is
not possible to obtain reliable smaller-scale structures in the obtained phase
velocity maps because the observed relative phaseshifts require a Laplacian
smoothing. The smoothness factors applied in the inversion of phase velocity
measurements for Love waves at 40 and 150 s are the numbers given in
parentheses.

The power spectra of the phase velocity maps in Fig. 4 confirm the
qualitative observation that ray theory and scattering theory produce
the same models. For Love waves at 40 s, the Laplacian smoothness
factor γ = 1×10−4, while for the surface wave study at 150 s, γ =
1 × 10−2. Phase measurements for Love waves at 150 s are noisier,
which would cause small-scale instabilities in the phase velocity
maps using too small a value for the smoothness factor. Owing
to the Laplacian smoothness parameter, small-scale structures for
angular degrees higher than 20–25 and 10–15 (e.g. heterogeneity
with a characteristic length of 1600–2000 and 2700–4000 km) are
strongly suppressed in the phase velocity maps for Love waves at
40 and 150 s, respectively.

The smoothness parameters for the scattering theoretical inver-
sion of Love waves at 40 and 150 s are determined in the following
way; the derivative matrix G (see Menke 1989) built from the ker-
nels Kl,m is not the same for ray and scattering theory. Thus, the two
theories will, in general, not resolve models identically for a given
smoothness parameter. We require that for a given period the trace
of the resolution matrix for ray theory is close to that for scattering
theory. We then can compare models built from the same number
of parameters.

5 D I S C U S S I O N

In the inversion of Love wave phase shift data between periods of 40
and 150 s, ray theory and scattering theory retrieve the same large-
scale structures as shown in Fig. 3. Because of the large value of
the smoothness parameter, it is not possible to comment on the
presence of smaller-scale structures in the Earth. In order to examine
a possible discrepancy between ray theory and scattering theory in
surface wave tomography, synthetic tests have to be carried out
using an input model with heterogeneity much smaller in size than
the width of the Fresnel zone.

Figure 5. The synthetic experiment for phase velocity measurements show-
ing that the relative error introduced by ray theory increases for decreasing
characteristic length of velocity anomalies in a global surface wave exper-
iment with Love waves between 40 and 150 s. The length-scale of het-
erogeneity is expressed in angular degree ranging between 1 and 40. The
relative error between surface wave data owing to ray theory and scatter-
ing is calculated using the source–receiver positions in the Love wave data
set. The thick horizontal line indicates the observed relative error at each
period.

Spetzler & Snieder (2001) and Spetzler et al. (2002) show that
scattering theory is very accurate in the prediction of time-shifts
obtained from a finite-difference solution of the acoustic wave equa-
tion and from a laboratory ultrasonic wave experiment, respectively,
wherein the length-scale of heterogeneity is smaller than the width
of the Fresnel zone. We assume that the same holds for surface wave
tomography, meaning that the discrepancy shown below is entirely
the result of the inadequacy of ray theory.

In Fig. 5, we show with a synthetic surface wave experiment that
the discrepancy between ray theory and diffraction theory in global
surface wave tomography is important for heterogeneity with the
angular degree larger than l = 25 and 15 for Love waves at 40 and
150 s, respectively. These estimations are slightly lower than those
published in Spetzler et al. (2001) owing to a problem we found in
our frequency averaging code. The fundamental conclusion, how-
ever, that our current models are close to the limits of validity of ray
theory remains unchanged. We define the relative error (in per cent)
introduced by ray theory using the source and receiver positions of
our Love wave data set as

relative error = 100 per cent

N

N∑
i=1

∣∣∣∣d ray
i − dscat

i

dscat
i

∣∣∣∣ , (35)

where N is the number of source–receiver geometries and d ray
i and

dscat
i are the surface wave data owing to ray theory and scattering

theory, respectively. To avoid numerical instability, source–receiver
pairs with |dscat

i | ≤ 1 × 10−3 for phase velocity measurements have
not been included in eq. (35). The velocity perturbation is set to
10 per cent and the angular order m is fixed to zero, while the angular
degree goes from 1 to 40, corresponding to a velocity heterogeneity
of between 40 000 and 1000 km in the synthetic experiment. The ray
theoretical approach based on the great circle approximation and the
first-order scattering theory are both linear theories, so the amplitude
of the velocity perturbation does not influence the relative error in
eq. (35). Thus, for realistic Earth models with either a white or a red
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Figure 6. Plots of the scattering theoretical phaseshift versus the ray theoretical phaseshift for spherical harmonic models with the characteristic length of
heterogeneity expressed as an angular degree l. The case of Love waves at 150 s is considered, and the source–receiver positions for the computation of the
phaseshifts are from Trampert & Woodhouse (2001). The two solid lines indicate the measurement error in the surface wave data set for Love waves at 150 s.
(A) l = 1, (B) l = 5, (C) l = 15, (D) l = 20, (E) l = 30, (F) l = 40.

spectrum, the synthetic experiment presented in this paper indicates
to what extent the ray theoretical great circle approximation differs
from a more exact scattering theory. The relative error owing to the
great circle approximation should not exceed the observed relative
error in the data. The phase velocity measurements from Trampert &
Woodhouse (2001) have a relative error of about 20 per cent for Love
waves at 40 s and a relative error of 40 per cent for Love waves at
150 s. Using the results in Fig. 5, we see that ray theoretical surface
wave tomography is limited to angular degrees smaller than approx-
imately l = 25 and 15 for Love waves at 40 and 150 s, respectively. If
we want to retrieve higher angular degrees in our models we should

take the non-ray geometrical effect of surface waves into account.
Otherwise, we may obtain inaccurate surface wave Earth models
because of an inappropriate usage of ray theory.

In Figs 6(A)–(F), we present plots of the scattering theoretical
phaseshift versus the ray theoretical phaseshift for Love waves at
150 s. Fig. 6 is similar to the plots that are found in Baig et al.
(2000). Again, the source–receiver positions are from the data set of
Trampert & Woodhouse (2001). Spherical harmonic input models
with the length-scale of inhomogeneity related to the angular degree
l are used in Figs 6(A) l = 1, (B) l = 5, (C) l = 15, (D) l = 20,
(E) l = 30 and (F) l = 40. We have chosen to plot the normalized
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phaseshifts calculated with scattering theory and ray theory. The
solid lines indicate the error in the Love waves data set at 150 s. We
see in Figs 6(A) and (B) that there is a one-to-one correspondence
between the scattering theoretical phaseshifts and the ray theoretical
phaseshifts. In Figs 6(C) l = 15 and (D) l = 20 where the angular
degree of inhomogeneity is at the limit of the regime of the great
circle approximation for Love waves at 150 s, it is noted that several
points of dscat versus d ray are outside the observed error in the data
set. It is also apparent in Figs 6(C) and (D) that the points in the plot
are slightly rotated anticlockwise compared with the dashed-dotted
line with a slope of one through the origin. There is therefore a
tendency for there to be a systematic error.

In Figs 6(E) and (F), the picture differs more and more from that
in the previous plots of Fig. 6. The points of dscat versus d ray are
rotated more and more anticlockwise with increasing angular order.
In Fig. 6(F), the best-fitting line (not shown) is such that the positive
scattering theoretical phaseshift corresponds to a negative ray the-
oretical phaseshift and vice versa. Hence the ray theoretical great
circle approximation produces global maps with the wrong sign in
the small-scale structure. Another such example of the failure of
ray theory is found in Fig. 4 of Spetzler & Snieder (2001) where
it is clearly shown that ray theory not only produce too large time-
shifts compared with the observed ones, but the sign of the predicted
residual times owing to ray theory also has the wrong sign. Yet an-
other example of this trend is demonstrated in Spetzler et al. (2002)
where ray theory and scattering theory are tested in a laboratory
experiment and in a numerical finite-difference experiment using
heterogeneous small-scale structured media.

It is not difficult to compute the sensitivity kernels discussed
here. The developed scattering approach for surface waves is just as
easy to use as the ray theoretical great circle approximation. On a
250 MHz Ultrasparc machine, it takes a few days of CPU time
to compute the tabulated scattering sensitivity kernels for rela-
tive phase velocity measurements or group velocity measurements
needed to carry out the inversion of surface wave data for a phase
or group velocity map to angular degree and order 40.

In a second stage of inversion, it can be envisaged that we would
update the Fréchet kernels in a heterogeneous reference model. This
would take bending, focusing and defocusing of the wavefronts
into account using essentially the same theory as presented above.
Theoretically, this is possible, but is still limited by computational
resources.

6 C O N C L U S I O N S

We have investigated the non-ray geometrical effect in global sur-
face wave tomography. The first-order Rytov approximation was
used to derive a linear relationship between surface wave phase and
group velocity measurements and relative phase and group veloc-
ity perturbations, respectively. The scattering approach takes the
finite-frequency effect of surface waves into account, which is not
possible with conventional ray theory in surface wave tomography.
For finite-frequency surface waves, the sensitivity to the relative
phase velocity is maximum in magnitude off the path of the ray
trace. The scattering sensitivity kernel for the relative phase veloc-
ity at short periods only has sidelobes outside the first Fresnel zone.
Given the same strength of heterogeneity, scattering of surface waves
becomes increasingly important for increasing period and epicentral
distance.

We applied phaseshift measurements for Love waves with peri-
ods of between 40 and 150 s from Trampert & Woodhouse (2001)

to compile global phase velocity maps to angular degree and or-
der 40 using scattering theory. These models for diffraction theory
were matched with those computed with ray theory. We applied an
a priori Laplacian smoothness condition in the inversion proce-
dure, resulting in that only structures to angular degree 20–25 for
Love waves at 40 s and to angular degree 10–15 for Love waves at
150 s are present in the phase velocity maps, which is close to the
limit of resolution in current global surface wave tomography. We
saw that ray theory and scattering theory produce the same tomo-
graphic models in the regime for which the conditions for ray theory
are satisfied.

However, in a synthetic experiment with a velocity inhomogeneity
with increasing angular degree, we showed that the scattering of
surface waves is dominant at angular degrees greater than l = 15
and 25 for surface waves at 150 and 40 s, respectively. The regime
of surface wave scattering theory starts at the limits of present-
day resolution in surface wave tomography. Consequently, in order
to obtain detailed higher-degree surface wave models using long-
period surface waves or a data set with many long source–receiver
distances we must take the finite-period effect of surface waves into
account.

In the USArray project, the United States will be covered with a
dense array of 2000 seismographs having a uniform station spacing
over the next ten years (see Levander et al. 1999). The purpose of
the USArray is to increase the resolution of tomographic images of
the North American shield. However, it is not enough to increase
the data coverage of the area of interest, but it is also important to
improve the tomographic imaging methodology that is to be applied
in inversions of data from the USArray project.

A C K N O W L E D G M E N T S

These investigations were (in part) supported by the Netherlands
Geosciences Foundation (GOA) with financial aid from the
Netherlands Organization for Scientific Research (NWO) through
project no 750.297.02. We thank Tony Dahlen for discussions and
suggesting Fig. 6. Goran Ekström and an anonymous reviewer made
constructive comments that improved the manuscript considerably.

R E F E R E N C E S

Abramowitz, M. & Stegun, I.A., 1970. Handbook of Mathematical Func-
tions: with Formulas, Graphs and Mathematical Tables, Dover, New York.

Backus, G.E., 1964. Geographical interpretation of measurements of average
phase velocities of surface waves over great circular and great semi circular
paths, Bull. seism. Soc. Am., 54, 571–610.

Baig, A., Dahlen, F.A. & Hung, S.H., 2000. The efficacy of Born kernels for
computation of traveltimes in random media, abstract at AGU 2000 Fall
meeting, S62A-01.

Dahlen, F.A., 1979. The spectra of unresolved split normal mode multiplets,
Geophys. J. R. astr. Soc., 58, 1–33.

Dahlen, F.A. & Tromp, J., 1998. Theoretical Global Seismology, Princeton
University Press, Princeton, NJ.

Dahlen, A., Hung, S.H. & Nolet, G., 2000. Fréchet kernels for finite-
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A P P E N D I X A : P E R T U R B A T I O N
T H E O R Y O F T H E P R O P A G A T I O N
L E N G T H O F S C A T T E R E D R A Y P A T H S ,
T H E W I D T H O F T H E F R E S N E L Z O N E
A N D T H E G E O M E T R I C A L F A C T O R

According to Fig. A1 the epicentral distance between the source
and receiver is denoted by �off, and the epicentral distance between
the source and scatterer point and the scatterer point and receiver
are marked as �1 and �2, respectively. The perpendicular distance
from the source–receiver geometry to the scatterer at the offset ϕ is
|θ − π/2|. Using the law of cosines on a sphere to relate �1 with
|θ − π/2| and ϕ, we obtain

cos(�1) = cos

(∣∣∣∣θ − π

2

∣∣∣∣
)

cos(ϕ) + sin

(∣∣∣∣θ − π

2

∣∣∣∣
)

× sin(ϕ) cos

(
π

2

)
= cos

(∣∣∣∣θ − π

2

∣∣∣∣
)

cos(ϕ). (A1)

Isolating �1 from eq. (A1) and assuming that the ray deflection
|θ − π/2| is small gives

�1 = arccos

[
cos

(∣∣∣∣θ − π

2

∣∣∣∣
)

cos(ϕ)

]

≈ arccos

[
cos(ϕ) − 1

2

(
θ − π

2

)2

cos(ϕ)

]

≈ ϕ +
(
θ − π

2

)2

2 tan(ϕ)
. (A2)

Figure A1. Explanation of the variables applied in the derivation of the
propagation length of a scattered ray path, the width of the Fresnel zone
on the sphere and the geometrical factor using second-order perturbation
theory.
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Similarly, we have for �2 that

�2 = (�off − ϕ) +
(
θ − π

2

)2

2 tan(�off − ϕ)
. (A3)

The detour (i.e. �1 + �2 − �off) is then given by

�1 + �2 − �off =
(
θ − π

2

)2

2

[
1

tan(ϕ)
+ 1

tan(�off − ϕ)

]

=
(
θ − π

2

)2

2

sin(�off)

sin(ϕ) sin(�off − ϕ)
. (A4)

The condition for Fresnel zones on a sphere that the detour is less
than the wavelength divided by a number n is given by

�1 + �2 − �off ≤ λ

n
, (A5)

where λ is the wavelength measured in radians. The equality sign in
eq. (A5) is used to calculate the Fresnel zone boundary. By inserting
the detour in eq. (A4) in the Fresnel zone condition in eq. (A5), the
half-width (θ − π

2 ) of Fresnel zones is derived, hence(
θ − π

2

)
=

√
2λ sin(ϕ) sin(�off − ϕ)

n sin(�off)
, (A6)

which has the largest value for ϕ = �off/2. For that case, the half-
width of the Fresnel zone is given by(

θ − π

2

)
=

√
λ

n
tan

(
�off

2

)
. (A7)

The maximum width LF of Fresnel zones on the sphere is twice the
half-width (θ − π

2 ) in eq. (A7), thus

LF =
√

4λ

n
tan

(
�off

2

)
, (A8)

where LF and λ are measured in radians.
The geometrical factors sin(�1) and sin(�2) are derived to a

zeroth-order approximation using eqs (A2) and (A3), thus

sin(�1) = sin(ϕ) and sin(�2) = sin(�off − ϕ), (A9)

where it is assumed that (θ −π/2)2/[2 tan(ϕ)] � 1 and (θ −π/2)2/

[2 tan(�off − ϕ)] � 1.

A P P E N D I X B : T H E S C A T T E R I N G
S E N S I T I V I T Y K E R N E L F O R
M A J O R A R C S

The scattering sensitivity kernel to compute phase velocity maps for
major arcs (e.g. π < �off < 2π ) can be constructed by three scatter-
ing sensitivity kernels for minor arcs. Let the scattering sensitivity
kernels for the minor arcs between the source (S ) and the receiver
antipod (RA), between the receiver antipod and the source antipod
(SA) and between the source antipod and receiver (R) be given by

K scat,ph,S→R A
l,m (�off − π, ν0) =

∫ �off−π

0

∫ π

0

Y m
l (θ, ϕ)

× K ph,S→R A(R, θ, ϕ) dθ dϕ, (B1)

K scat,ph,R A→S A
l,m (2π − �off, ν0) =

∫ π

�off−π

∫ π

0

Y m
l (θ, ϕ)

× K ph,R A→S A(R, θ, ϕ)dθ dϕ,

(B2)

and

K scat,ph,S A→R
l,m (�off − π, ν0) =

∫ �off

π

∫ π

0

Y m
l (θ, ϕ)

× K ph,S A→R(R, θ, ϕ)dθ dϕ, (B3)

where the sensitivity kernels K ph,S→R A(R, θ, ϕ), K ph,R A→S A

(R, θ, ϕ) and K ph,S A→R(R, θ, ϕ) are equivalent to the sensitivity
kernel in eq. (16) but having the epicentral distance substituted with
�off − π , 2π − �off and �off − π , respectively. In order to derive
the sensitivity kernel K scat,ph

l,m (�off, ν0) owing to scattering theory for
major arcs, the integration along the source–receiver line is split up
into the three minor arc integrations. Hence,

K scat,ph
l,m (�off, ν0) = 1

�off

[
(�off − π )K scat,ph,S→R A

l,m (�off − π, ν0)

+ (2π − �off)K scat,ph,R A→S A
l,m (2π − �off, ν0)

+ (�off − π )K scat,ph,S A→R
l,m (�off − π, ν0)

]
,

(B4)

which is the formula in eq. (26). Similarly, by dividing the major
arc into three minor arcs, the formula in eq. (27) for the scattering
sensitivity kernel for group velocity measurements can be derived.

A P P E N D I X C : R O T A T I O N O F
S C A T T E R I N G S E N S I T I V I T Y K E R N E L S

Dziewonski (1984) and Dahlen & Thromp (1998) show that the
transformation of the spherical harmonics of angular degree l and
order m from a reference coordinate system to a new coordinate
system is given by

Y m
l (θ, ϕ) = exp(im�)

l∑
n=−l

exp(in�)Qm,n
l (�)Y n

l (θ ′, ϕ′), (C1)

with the three Euler angles denoted by �, � and �, and the elements
of the rotation matrix are Qm,n

l (�). The sensitivity kernel for minor
arcs in eq. (18) depends linearly on the spherical harmonics. This
means that the sensitivity kernel for the relative phase velocity using
scattering theory can be transformed from the reference coordinate
system into the observed coordinate system using the relation for the
transformation of spherical harmonics in eq. (C1). Let K ph∗(R, θ, ϕ)
denote the sensitivity kernel in the observed coordinate system,
which is equivalent to the sensitivity kernel K ph(R, θ, ϕ) in eq. (16)
in the reference coordinate system. The formula in eq. (C1) is in-
serted in the scattering sensitivity kernel in eq. (18). The sensitivity
kernel K scat,ph

l,m (�off, ν0) for the epicentral offset �off in the new co-
ordinate system is then

K scat,ph
l,m (�off, ν0) =

∫ ∫ rR

rS

Y m
l (θ, ϕ)K ∗(R, θ, ϕ) dθ dϕ

= exp(im�)
l∑

n=−l

exp(in�)Qm,n
l (�)

×
∫ �off

0

∫ π

0

Y n
l (θ ′, ϕ′)K (R, θ ′, ϕ′) dθ ′ϕ′

= exp(im�)
l∑

n=−l

exp(in�)Qm,n
l (�)

× K scat,ph
l,n (�off, ν0), (C2)
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with the scattering sensitivity kernel for relative phase velocity being
given by

K scat,ph
l,n (�off, ν0) =

∫ �off

0

∫ π

0

Y n
l (θ ′, ϕ′)K ph(R, θ ′, ϕ′) dθ ′ dϕ′,

(C3)

at an offset of �off computed in the reference coordinate
system.

The scattering sensitivity kernels in eqs (26) and (27) for major
arcs are composed of three scattering sensitivity kernels for minor
arcs. It is therefore possible to apply the transformation of spherical
harmonics in eq. (C1) on each scattering sensitivity kernel for minor
arcs in order to obtain the same result as in eq. (C2), but with the
scattering kernel for major arcs computed in the reference coordinate
system. In addition, the result in eq. (C2) is valid for major arc
sensitivity kernels using scattering theory to compute group velocity
maps.
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