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Abstract

We use a neighborhood algorithm to explore the fit to long period seismic data of a wide variety of long wavelength
mantle models. This approach to the global tomographic inverse problem yields probability distributions for seismic
velocities, density, and related properties as functions of depth. Such distributions can be robust even when individual
models are not, and allow us to test several assumptions about the Earth that have long been enforced a priori in
inversions. In particular, we are able to test the paradigm of deep mantle heterogeneity that is dominantly thermal in
origin, producing velocity and density perturbations that are well correlated and have relative amplitudes given by
Slnp/dlnvy < 0.5. Our distributions show that such relationships are unlikely, and even though the results are
consistent with recent best fitting models from damped seismic inversions, they demonstrate that many specific
properties of such models are not robust. The data clearly favor density perturbations that are poorly or negatively
correlated with velocity heterogeneity and have amplitudes several times larger (yielding 8lnp/Slnvs > 1.0) than
damped inversions allow. These characteristics are most pronounced in the upper mantle transition zone and the base
of the lower mantle, suggesting layered convection. The negative density—velocity correlations favored at these depths
imply dominantly chemical heterogeneity, while the likelihood of relatively high amplitude density variations suggests
that variable iron content is an important component of this heterogeneity. These results, which we show to be
consistent with independent gravity constraints, represent a profound change in the interpretation of seismic
constraints. In addition, the distributions show that even though best fitting density models from recent inversions or
our sampling are consistent with the data, most specific properties of such models are not robust. This implies that it
is more appropriate to use seismic model distributions, rather than individual models, to make geodynamic and
geochemical inferences.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Seismic images of density variations in the deep
‘ Earth can provide crucial constraints on the com-
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more weakly sensitive to density. This means that
in traditional inversions of measurements and sen-
sitivities of Earth models, the density portion of
the models must be strongly damped (relative to
the velocity components) in order to retrieve sta-
ble results. This damping is a form of a priori
regularizing information that can almost com-
pletely conceal any real information the data con-
tain about the most poorly resolved parameters
[1].

In fact, the global seismic inverse problem is
mathematically ill-posed. In addition to the null
space of data errors and imperfect model param-
eterization resulting in data that cannot be fit, the
data resolution is poor enough that there is also a
null space of combinations of model parameters
that are effectively invisible to the data. Because
of these two null spaces, the functions describing
model misfit to the data can have multiple mini-
ma, even for a linear inverse problem [2]. This is
why inversions (or other searches) for best fitting
models must be stabilized by imposing regulariz-
ing assumptions.

Stable damped inversions for density generally
produce models in which lateral density perturba-
tions relative to the spherical average (dlnp) are
less than half the size of relative shear velocity
perturbations (dlnvs). This relative amplitude ratio
of 8lnp/dlnvs = 0.4 corresponds closely to the rel-
ative resolution of the p and v, parameters [3].
Inversions are often further stabilized by assum-
ing that density and velocity heterogeneity are
perfectly correlated and scale with the above ratio
[4].

The use of such inversion constraints has prov-
en to be reasonably consistent with the paradigm
of mantle models in which both heterogeneity and
dynamics are dominantly thermal in nature.
Under this set of assumptions, lateral variations
of seismic velocity and density are directly caused
by lateral variations in temperature maintained by
a convective process. This implies, according to
high temperature and pressure extrapolations of
the behavior of near surface minerals dating back
more than 30 years [5], that deep mantle p and v,
are perfectly correlated, with dlnp/dlnvs=0.4.
This ratio matches that imposed by the most nat-
ural regularization of seismic inversions, guaran-

teeing that models from those inversions appear
to validate the assumption of thermal heterogene-
ity, although anelastic effects must be incorpo-
rated for full consistency [6]. In addition, geody-
namic modeling dominated by thermal convection
has proven to be consistent with the same ratio, in
the sense that particular viscosity models can be
combined with particular examples of correlated
velocity and density models to explain surface
geodetic and tectonic observables [7,8].

On the other hand, a variety of geophysical
studies, old and new, suggest alternatives to the
paradigm of dominantly thermal heterogeneity in
the deep mantle. Even half a century ago it was
proposed that pressure effects serve to decrease
the importance of temperature variations in the
deep mantle, and that iron oxides could produce
strong chemical heterogeneity [9], and these ideas
were developed further in recent decades [10]. Still
more recent results from mineral physics and geo-
chemistry seem to confirm these inferences. It is
now clear that even small variations in iron con-
tent can produce large density variations in the
deep mantle without significantly perturbing seis-
mic velocities [6]. Geodynamical modeling with
deep mantle chemical heterogeneity has shown
that such structure can also be consistent with
surface observables [11-13], and preliminary ther-
mochemical convection models indicate that large
density variations can develop and remain stable
over geological times [14-16]. Finally, several re-
cent seismic inversions have produced joint mod-
els of shear and bulk sound velocities that are best
explained by including significant chemical het-
erogeneity in the deep mantle [17-19], although
inconsistencies among such models make this evi-
dence somewhat ambiguous.

Recent order-of-magnitude improvements in
the quantity and quality of seismic data, together
with the emergence of new computational tools,
now make it possible for seismologists to test the
perfect correlations and low dlnp/dlnvs scaling as-
sociated with the thermal heterogeneity paradigm
by looking at seismic constraints on density with-
out a priori damping which enforces that para-
digm. The past several years have seen the pub-
lication of extensive normal mode (NM)
catalogues measured using spectral fitting [20]
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and generalized spectral fitting [21]. These data
have diverse sensitivities to long wavelength veloc-
ity and density heterogeneity throughout the man-
tle, and have been applied to new attempts to
produce density models. The best known of these
is model SPRD6 [22], in which the assumption of
correlated velocity and density was removed, and
density was found to be partly decorrelated from
the pattern of velocity heterogeneity, particularly
in the deepest mantle. However, this was still a
damped inversion, and both earlier [23] and later
[24] studies with similar data showed that the re-
sults were not robust with respect to choices of
damping.

Probabilistic tomography is the necessary ex-
tension of these studies, in that it is an approach
that not only does away with damping that biases
‘best fit’ solutions, but also describes important
details of the complex model space associated
with an ill-posed problem, including the model
null space. It does so by creating model space
‘maps’ that display the fit of a wide range of
models to the data [25]. These maps can display
multiple minima, and contain much more infor-
mation about seismic constraints on the mantle
than when these constraints are expressed only
as a single best fitting inversion model. In partic-
ular, the ‘maps’ show not only the kinds of mod-
els that best fit the data, but also which models
yield poor fits and which model characteristics are
invisible to the data. This information can be ex-
pressed by a variety of statistical measures, such
as the distributions for correlations and ratios re-
cently presented for dlnvs and 8lnv, [26], and com-
pared to mineral physics constraints [6,27]. The
neighborhood algorithm (NA) [28,29], together
with the emergence of new parallelized computing
facilities, permits the efficient construction of
these maps.

Synthetic experiments have already shown that
this approach can be applied reliably to the use of
long period data to obtain robust constraints on
long wavelength density and velocity heterogene-
ity in the mantle. These experiments suggested
that robust density constraints could be achieved
if the NM data are combined with the latest sur-
face wave (SW) data, because the latter help
break tradeoffs in NM sensitivity to the upper

mantle and lower mantle structures [30]. We
now employ real data to do just this, providing
a new and more robust test of consistency be-
tween seismic data and the paradigm of a mantle
dominated by the effects of thermal heterogeneity.

2. Data and methods

We have combined the NM data sets listed in
Section 1 with two recent catalogues of SW fun-
damentals [31] and overtones [32]. In addition, we
employ a small but important set of recently mea-
sured splitting functions for mantle v, multiplets
[33] recently measured with generalized spectral
fitting, a new NM catalogue compiled using an
autoregressive form of spectral fitting [34], and a
large new collection of NM fundamental and
overtone splitting functions retrieved using re-
gionalized stripping [35]. The recent SW cata-
logues have been augmented, at very long periods,
by older measurements [36]. No measurements
sensitive to the inner core are included, and all
measurements are corrected to remove the signal
of the 3D crustal model CRUSTS.1 [37], so that
this is a purely mantle-sensitive data set. The NM
catalogues are accompanied by uncertainty esti-
mates. Errors for the SW data are assigned using
comparisons of the results of several different
studies [26]. The period range of NM catalogues
is 100-2000 s and for the SW data it is 40-300 s.

All of these data are converted into the form of
structure coefficients. These are the yc! multipliers
of the Y? spherical harmonics in expansions of the
form:

kF(ev(p) :ch; Y§(97¢) (1)

The functions ;F are global patterns of surface
wave velocities and free oscillations that emerge
from combinations of many strong earthquakes
recorded by widely distributed networks of broad-
band seismometers. The index k identifies the cen-
tral frequency and/or eigenfunction of each mea-
surement. Structure coefficient measurements are
retrieved from the raw data using linearized re-
gressions, and each is a linear functional of a
single harmonic component of Earth structure:
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Here, perturbations to a spherically symmetric
Earth model are given by:

Slnm(r) = é;“‘((r’))

and by relative perturbations 8ln/, to the loca-
tions of radical discontinuities indexed with d,
all expanded as in Eq. 1. These are related to
the structure coefficients via radial kernels
M(r)=[P(r), S(r), R(r)] and boundary factors
H,;, which are derived from a perturbation theory
approximation [38]. The approximate indepen-
dence of the equations for individual harmonic
components is a great advantage of structure co-
efficient data representation, and is achieved
through careful regressions of geographically di-
verse seismograms [21].

Earth structure is modeled from NM and SW
data using the inverse of Eq. 2. This is an approx-
imate relation whose validity depends on &lnm
<1 and appropriate accounting for theoretical
errors in the structure coefficient regressions. Re-
moving crust and inner core effects helps to meet
the perturbation requirement, while most of the
recent NM and SW data catalogues have been
constructed using methods that greatly reduce
theoretical errors such as cross-coupling, source
error, and truncation. The reduction of theoretical
error also means that data errors become approx-
imately Gaussian. This has been observed directly
in the case of the generalized spectral fitting mea-
surements, which are the most important data in
our study and are accompanied by the most de-
tailed error analysis [21]. Older, more approxi-
mate catalogues [20,36] are assigned greater mea-
surement uncertainties (r0%). These greater
uncertainties serve to eliminate the modeling in-
stabilities inherent in having inconsistent measure-
ments in our combined data set.

In all, we have 678 splitting coefficient measure-
ments for each of the five independent degree 2
structural components, and 646 for each of the
nine degree 4 components. Our data, error tables,
and kernels are available upon request. For the
present we have not extended our analysis to
higher degrees (shorter wavelengths) or odd de-

= [8lnvy(r), Slnvy(r), Slnp(r)]  (3)

grees, where there are significantly fewer lower
mantle-sensitive measurements. Because of the
well established dominance of the degree 2 signal
in the deep mantle [39], and the frequent discus-
sion of very large-scale features like seismically
observed ‘superplumes’ [17], even probabilistic to-
mography for only degrees 2 and 4 is a significant
test of the thermal paradigm.

We construct our 3D Earth models using dlnvs,
dlnv,, and Slnp perturbations relative to spheri-
cally symmetric preliminary reference Earth mod-
el PREM [40] in five layers: uppermost upper
mantle (UUM, 24-400 km depth); transition
zone (TZ, 400-670 km); outer lower mantle
(OLM, 670-1200 km); middle lower mantle
(MLM, 1200-2000 km); and lowermost lower
mantle (LLM, 2000-2891 km). We also allow per-
turbations to the 670 km and core-mantle bound-
ary (CMB) discontinuities of the spherical PREM
model, for a total of 17 model parameters for
each structural component. The effect of the pa-
rameter space boundaries is minimized by allow-
ing each parameter to vary in a relatively wide
range and adjusting the sampling density within
those limits until stable results are achieved.

The number of layers is rather small, and was
restricted by the computational requirements of
searching more highly dimensioned model spaces
more than by data resolution. Several tests [22,30]
have shown that 7-12 radial layers can be re-
solved by the available data. Such underparame-
terization is not as great a problem for us as it is
in performing inversions, in which the choice and
effects of regularization and damping are usually
strong functions of the parameterization. Model
space searches without damping will produce the
same average characteristics for a wide layer as
the mean of the properties of any sublayers into
which it is divided. Nonetheless, the use of wide
layers will tend to average away interesting struc-
ture with shorter radial length scales.

In order to test the thermal paradigm as well as
possible with the current data set and a single
parameterization, we have chosen layers which
we believe give us the best chance of detecting
the signature of chemical heterogeneity in the
mantle, without necessarily constraining its scale
length or ruling out significant chemical heteroge-
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neity of scale lengths much smaller than that of
our parameterization. The UUM layer, in partic-
ular, is too wide to account for data sensitivity to
relatively strong radial gradients of structure
likely to exist above 400 km depth. However,
the focus of any long period seismic study is on
the sensitivity of these data to greater depths, and
greater resolution of the UUM could prove mis-
leading because it will tend to absorb any errors
in our crustal corrections and because degree 2
and 4 structure has less relative importance at
those depths than elsewhere.

The TZ is a major feature of the PREM model
and has a width that corresponds roughly with
the resolving power of our data, while the OLM
and LLM approximate the widest regions pro-
posed for lower mantle boundary layers [14,15,
41,42]. If we are able to detect a contrast between
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the OLM or LLM and the presumably homoge-
neous MLM, this could be evidence of the pres-
ence of boundary layers. Failure to detect con-
trast will not rule out boundary layers, because
there is some chance that our wide layers will
average away interesting structure with shorter
radial scale lengths. Much more computational
power is now available than when this study
was begun, and it is already feasible to use finer
layering to refine the upper mantle model and
constrain the width of the potential lower mantle
boundary layers. This will be the subject of future
work.

We do not believe the resolution and relevance
of our model space ‘maps’ will be enhanced by
changing to a parameterization with radially
smooth basis functions. Although the details of
layered models are less plausible than smooth
models, we are not concerned here with exact
models but with depth-averaged characteristics.
The two types of parameterizations are different
depth averages that yield the same gross charac-
terizations of the mantle, as has been demon-
strated by the consistency of layered [39] and
smooth [22] long wavelength v models.

-
Fig. 1. (a) An example of an NA sampling of a model space.
In this case the algorithm has sampled models that fit the
subset of long period seismic data sensitive only to the de-
gree 2 zonal spherical harmonic component of 3D mantle
structure. The models consist of perturbations to this compo-
nent of v, v,, and density heterogeneity in five layers and to-
pography on two radial discontinuities, for a total of 17 pa-
rameters. 100000 models have been generated with a
sampling density that increases with improving model fit to
the data. Here, model fits (darker colors indicate better fits)
are projected onto two dimensions of the model space: dlnv
and dlnp in the OLM. The ‘x’ marks the prediction of model
SPRD6, and the ‘+’ marks the best fitting model. The axes
give perturbations relative to the spherical PREM model. (b)
An example of a 2D probability density marginal. The model
space sampling of panel a has been resampled with NA so
that sampling density exactly corresponds to the y> misfit in
all parts of model space. While the original sampling was
concentrated on a single most likely model, the resampling
reveals another broad region of good fit near the origin. This
region includes the SPRD6 model prediction (white triangle).
Note that the prediction has a slight positive correlation for
these two parameters, while the best fitting model and the
overall distribution each imply a negative correlation (or co-
variance).
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Fig. 2. The covariance matrix for the 17-dimensional model
space map projected in Fig. 1b. Each element here is a scalar
value describing the shape of a 2D marginal like Fig. 1b.
More intense shades indicate greater ellipticity and more sig-
nificant positive (dark) or negative (light) tilt. The circle indi-
cates the element corresponding to Fig. 1b. The diagonal ele-
ments give the variance (squared standard deviation) of each
parameter. Density parameters have the greatest uncertainty.
The limited model search range allowed for the topography
parameters (approximately the amplitude of SPRD6 topogra-
phy) contributes to their small variances.

For each of the 14 degree 2 and 4 spherical
harmonic components, the NA is first used to
produce a set of approximately 100000 models
accompanied by a measure of the misfit of each
to the corresponding harmonic component of the
data. The misfit of a model (m) for N data (d) is
defined by:

m_ ./__d .t 1/2
mZ; — [i(l‘ s gc‘&‘)2:| (4)

—~ (kol)?

where "¢/ is calculated using a discretized version
of Eq. 2. Fig. la shows an example of such a
model sampling, projected from 17-dimensional
space onto two dimensions. These sets are then
NA resampled to produce smooth 1D probability
distributions of each model parameter, selected
2D likelihood marginals (Fig. 1b), covariance ma-

trices (Fig. 2), and collections of most likely pa-
rameter ranges (Fig. 3). All are evaluated using a
posterior probability density (PPD) defined by
PPD(m) = exp(™y2/2) [29]. This definition of the
PPD makes it easy to confirm the ill-posed nature
of our inverse problem because the approximately
Gaussian nature of our data errors would pro-
duce Gaussian marginals if our inverse problem
were well-posed.

We must then combine the ‘maps’ for individ-
ual spherical harmonic components of structure
to find the probability distributions of overall
model amplitudes and geometries. We do this by
drawing random deviates from the relevant mar-
ginals. To compare, for instance, likely dlnvs and
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Fig. 3. Most likely 8lnv,, dlnv,,, dlnp density model parame-
ters from NA model space maps in the LLM (below 2000
km depth). The thin solid lines show the parameter space
search limits and thick lines give the predictions of model
SPRD6. The error bars approximate the range of likely val-
ues for model parameters, and, though the distributions are
generally asymmetric, are centered on the most likely value
for convenience of display. Most likely models and error
bars come from 1D marginal projections of 2D marginals
like those in Fig. 1b. The error bars give the fraction of each
1D marginal with amplitudes within 1/e of the maximal like-
lihood. Individual most likely density coefficients are not
often robustly different from SPRD6 or PREM. However,
unlike the velocity coefficients, they usually have greater am-
plitudes than the model predictions.
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dlnp models in the OLM at degree 2, we construct
vs and p models from a set of five random devi-
ates, one drawn from each of the five OLM de-
gree 2 Slnvs—dlnp 2D marginals (including that of
Fig. 1b). We use a sequence of similar 2D random
deviates to insure consistency with all 2D margin-
al projections of the model space. This is an ap-
proximation to consistency with the full model
space, which, unfortunately, cannot be output
by NA without a significant decrease in computa-
tional efficiency. The amplitudes and correlations
of each set of random deviates are recorded. With
enough repetitions of this process (10°-107, de-
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pending on the specific application), stable prob-
ability distributions of correlations and ampli-
tudes emerge. These are shown in Figs. 4 and 5
as distributions of likelihood, which is a dimen-
sionless renormalization of probability.

We also combine dlnys and 8lnv, to produce
distributions for bulk sound (v.) perturbations.
In the usual models of thermal heterogeneity,
shear modules (u), bulk modulus (x), and density
vary together at each depth in such a way as to
maintain perfect correlations in the lateral varia-
tions of p, v=+/u/p, vp=+/(x/p) +4(1/3p),
and v.=+/x/p. Thus, seismic constraints on
these correlations are an important test of the
extent to which the assumption of dominantly
thermal heterogeneity is valid.

3. Results

The 2D marginal of Fig. 1b, the covariances of
Fig. 2, and the output parameters of Fig. 3 are
typical of our model space maps, and imply that
most velocity and density parameters are resolved
within our search bounds and independently con-
strained by the data. The high likelihood regions
are well within most of our model space bound-
aries, and most off-diagonal covariances are sig-
nificantly weaker than parameter variances. In
fact, there is only one off-diagonal covariance,

-
Fig. 4. Likelihood distributions for correlations of lateral ve-
locity and density heterogeneity in five mantle layers, as de-
termined by model fit to long period seismic data. With a
discrete probability density, P(x;) defined so that 2;
P(x;)A, =1, likelihood is defined by L(x;)=P(x;)/A;. In this
sense, likelihoods are normalized probabilities. 1000000
models were generated by drawing random deviates from 2D
dlnv—dlny, and Olny,—dlnp marginals (Fig. 1b) for each
spherical harmonic component and layer. Distributions are
shown for combined degree 2 and 4 models. Full-scale verti-
cal lines show the correlations given by the coefficients of
our most likely model. Half-scale vertical lines give the corre-
lations for these layers predicted by model SPRD6. The dis-
tributions for 8lnvs—8lnp subjected to a gravity filter (see Sec-
tion 4) are also shown. The great likelilhood of low or
negative dlnvg-dlnv, and S8lnvs—dlnp correlations is the most
notable feature of these plots. Anticorrelations for density—
velocity are most likely in the TZ and LLM layers.
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that between the deepest and shallowest density
layers, that is strong for enough individual pa-
rameters to be a significant consideration in our
layer-average statistics. This tends to increase the
uncertainty of LLM by an amount that depends
on the amplitude of UUM structure, an effect
which is measured by our probabilistic approach.
The tradeoff also suggests that crustal errors
could contaminate LLM results in a manner not
quantified by the NA ‘maps’, but we have found
that for our data such effects are dominated by
crustal thickness, errors in which are quite small
as degrees 2 and 4. The topography parameters
for the 670 and CMB (not shown) are also con-
strained within the search boundaries, with little
topography—density tradeoff.

Figs. 1, 2 and 3 also illustrate the relationship
between model space ‘maps’ and the more con-
ventional seismic inversion outputs. Fig. 1b re-
veals a velocity—density tradeoff, details of which
are concealed by the more common representa-
tion as a single element of the correlation matrix
in Fig. 2. The high likelihood region of the full 2D
marginal is double peaked and extends from the
origin in the direction of positive density pertur-
bations and negative vs perturbations. The multi-
ple local minima are a characteristic signature of
the null space of an ill-posed inverse problem [2],
and show why both damped inversions and
‘downhill’ searches for best fits can misrepresent
the model space. The predictions from model
SPRD6 shown in Figs. 1 and 3 demonstrate
that the high probability regions of model space
‘maps’ are consistent with inversion results. The
inversions associated with the SPRD6 study use
starting models near the origin of Fig. 1 so it is
not surprising that the damping produced results
within the likelihood peak nearest that origin and
failed to find the high probability models with
larger density perturbations.

As demonstrated by Fig. 3, all but a handful of
the high likelihood ranges for individual parame-
ters are consistent with SPRD6 values, despite the
fact that our likeliest values are often more differ-
ent from SPRD6 than SPRD6 is from PREM. At
the same time, it is evident that while most veloc-
ity parameters are robustly non-zero, most of the
density perturbation ranges include zero. Thus,

specific density models are not very robust, which
is consistent with the conclusions of several inver-
sion studies [23,24]. However, Fig. 3 also demon-
strates more general characteristics of our density
models that prove to be both robust and distinct
from inversion results. In contrast with the most
likely v and v, perturbation parameters, which
are well correlated with one another and have
amplitudes near those predicted by SPRDG, it is
evident that the most likely density coefficients for
the LLM are poorly correlated with the velocities
and are of consistently greater amplitudes than
the SPRD6 model predictions. Figs. 4 and 5
show that these characteristics are present in other
layers and are robust.

Fig. 4 displays likelihood distributions for var-
ious lateral correlations of seismic velocities and
density. Velocity—velocity and velocity—density
correlations for our most likely models generally
are consistent with the peaks of the overall distri-
butions and also fairly consistent with the SPRD6
results. The ve—v, distributions show that the long
period data distinctly favor positive correlations
at all depths. Because v; and v, have similar de-
pendence upon y, this is the expected result, and
serves as confirmation of the method. However,
correlations as high as those of SPRD6 are seen
to be unlikely. Indeed, fewer than 10% of our
models in any layer have correlations above the
90% confidence level for perfect positive correla-
tion at both degrees 2 and 4 [43], and the peaks of
our distributions are near the much lower corre-
lation levels reported by other inversion studies
[44]. In contrast, v, depends only on x and p,
and the distributions of Fig. 4 favor dlnv, poorly
or negatively correlated with dlnv,. Together,
then, the velocity—velocity correlation distribu-
tions imply that our seismic data strongly favor
uncorrelated or anticorrelated lateral variations in
bulk and shear moduli. This is difficult to explain
without the existence of significant chemical het-
erogeneity [6,13].

We observe greater consistency among the p—v;
correlation results (SPRD6, most likely, and like-
lihood distribution peaks) than among the veloc-
ity—velocity correlations. In other tests, we have
found that our density models tend to be as con-
sistent with one another and with SPRD6 density
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Fig. 5. Probability distributions for RMS amplitudes of glob-
al models of dlnv,, Slnv, and 8lnp, constructed from margin-
als as in Fig. 4, except that marginal tails are excluded. Dis-
tributions are shown only for degrees 2 and 4 together. Full-
scale and half-scale vertical lines show, respectively, the am-
plitudes of our most likely model and those predicted by
model SPRD6 for each layer. The SPRD6 model predictions
underestimate our observed d8lnp amplitude distributions,
which are likely to exceed dlnvy everywhere below 400 km
depth. Density distributions subjected to a gravity filter (Sec-
tion 4) are included. These confirm that the elevated densities
below 400 km are consistent with static gravity data.

as are various well-established long period veloc-
ity models [17,19,44] with one another. The den-
sity models also are much better correlated with
one another than they are with velocity models.
This implies that the data contain a coherent sig-
nal from mantle density heterogeneity unex-
plained by density that scales with velocity. We
also observe that our density models in the vari-
ous layers do not tend to display strong positive
or negative correlations with CMB or 670 topog-
raphy, but it is unclear if resolution of these cor-
relations is good enough to make them meaning-
ful.

While our most likely density—velocity correla-
tions confirm the low correlations of SPRD6 and
our most likely velocity—velocity correlations are
consistent with several inversions [17,19,44,45], it
is the possession of complete distributions that
allows us to draw robust conclusions about the
unlikeliness of high correlations for vs—v. and
vs—p. This is relevant because of the existence of
apparently conflicting inversion results which
yield more strongly positive v.—vs correlations
[18], and observations of a wide range of accept-
able velocity—density correlations [23,24]. The dis-
tributions in Fig. 4 have wide ranges of likely
values, demonstrating that the observed variety
of inversion results is consistent with the data,
and can result from the use of different reasonable
choices of damping. At the same time, it is clear
that high positive correlations are much less likely
than small or negative values.

Correlations are useful for detecting chemical
heterogeneity, but more information is needed to
determine which combinations of thermal and
chemical heterogeneity best explain the seismic
data. Complementary constraints are provided
by heterogeneity amplitudes. Fig. 5 displays like-
lihood distributions for the root-mean-squared
(RMS) amplitudes of Slnvs, dlnv,, and 8lnp mod-
els. These are constructed in the same manner as
the correlation distributions, except that we use
only the portion of the 2D marginals with like-
lihoods greater than 1/e of the peak likelihood.
This adjustment is necessary because amplitude
distributions are strongly non-linear functions of
the coefficient marginals and are unstable with
respect to the shape of the tails of the coefficient
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distributions. The primary characteristic of the
amplitude distributions is that, relative to
SPRD6 values, the ranges for v, and p distribu-
tions are more strongly elevated than the vy dis-
tributions. The amplitudes of CMB and 670 to-
pography, which are not shown because they are
poorly resolved, are similarly elevated relative to
SPRD6 amplitudes, but within the range estab-
lished by other topography studies [46-48]. It
should also be noted that density distributions
are everywhere wider than the velocity distribu-
tions, which reflects the fact that the resolving
power of the data is poorer for density than for
velocity.

These amplitude distributions contradict the
usual conclusion that long period seismology sup-
ports dlnv,/dlnvs and Slnp/dlnv, ratios less than
unity throughout the mantle. The most noticeably
elevated amplitudes are for dlnp in the TZ and
LLM Ilayers, where most of the density distribu-
tions are to the right (higher amplitudes) of the vy
distributions. In addition, the favored ranges for
dlnp and Olnv, amplitudes in the OLM and
MLM, as well as that for dlnv, in the TZ, mostly
overlap the corresponding v, distributions. Thus
dlnv,/8lnvs < 1.0 is favored only in our top and
bottom layers, and dlnp/dlnvs < 1.0 is unlikely
everywhere below 400 km depth.

The implications of this observation are pro-
found enough that we have performed several ad-
ditional tests to confirm that it is robust. First, we
have confirmed that the v,—v,—p interdependences
implied by our 2D marginals (Fig. 1b) do not
result in different ratios than those implied by
the separate amplitude distributions of Fig. 5.
This is done by using the random deviates to ac-
cumulate distributions for the amplitude ratios.
Distributions were accumulated both for whole-
model RMS amplitudes and point-by-point model
comparisons. We also constructed distributions in
which only well correlated velocity and density
models were included. In all cases the distribu-
tions were peaked near the ratios implied by the
peaks of the distributions of Fig. 5.

Second, we have inspected our full suite of 1D
and 2D marginals to investigate the sources of the
difference, visible in Fig. 5, between the velocity
and density amplitudes implied by our single most

likely model and those implied by the peaks of the
likelihood distributions. The amplitudes of the
most likely model are uniformly to the left (lower
amplitudes) than the amplitude distribution
peaks. This can result from either: (1) individual
model parameters exhibiting null space effects
such as asymmetric and/or multipeaked probabil-
ity distributions like those of Fig. 1b, or (2) rela-
tively wide distributions centered on small values
like most of those for LLM density in Fig. 3.

With the first type of amplitude effect, the null
space of our ill-posed problem results in low am-
plitude most likely models that are poor represen-
tatives of a full model distribution for which mean
or median models have higher amplitudes. We
have found this to be the dominant effect in the
TZ density amplitude distribution of Fig. 5. In
such cases the amplitude of the most likely model
is much less relevant for geophysical inferences
than is the location and width of the amplitude
distribution peak. With the second type of ampli-
tude effect the likelihood of high amplitudes is
primarily attributable to poor resolution. In this
case, the amplitude of the most likely model is
important because it serves as an approximate
lower bound on model amplitudes. It can do so
because it contains information about well re-
solved features like the 1(4,4) component of the
LLM density in Fig. 3, which are unlikely to dis-
appear if and when resolution is improved.

The amplitude effects for the other peaks in
Fig. 5 are a mixture of the two effects that dom-
inate the LLM and TZ density peaks. With these
taken into account, our observation of elevated
dlnv,/dlnvs and Slnp/dlnv, ratios appears to be ro-
bust. Even in the least resolved case of 8lnp in the
lowermost mantle, the lower limit for the dlnp/
dlnvy is still ~0.6, considerably higher than that
suggested by recent inversion studies [22,49].

4. Application: consistency with gravity data

The distributions of Figs. 4 and 5 are robust
representations of the constraints on mantle ve-
locity and density provided by the long period
seismic data. However, distributions for density
are relatively wide. This serves to remind us that
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seismic resolution is poor, and other forms of
data could reveal the density of the ‘true’ Earth
to differ significantly from that implied by the
peaks of the seismic distributions. Gravity mea-
surements are an important example of such data,
and were employed in the SPRDG6 inversions
[22]. In that study, the gravity data could only
be incorporated through joint inversions that
introduced further a priori damping and certain
geodynamic assumptions. With the seismic con-
straints represented as distributions, we can now
incorporate additional data constraints a posteri-
ori. This avoids the problem of finding damping
that appropriately weights different kinds of data.
Combining data in this way to make inferences
about the interior of the Earth is where our new
seismic probability distributions may find their
most useful application.

Here, we reconsider the example of combining
seismic and gravity constraints. In so doing, we
can avoid geodynamic assumptions, because our
distributions reflect all tradeoffs between density
at various depths and topography on the CMB
and 670, and it is trivial to calculate the static
gravitational potential for each model of density
and topography. The gravity contribution of the
CRUSTS.1 model is also calculated and sub-
tracted from measurements of the gravitational
potential [50] to yield mantle gravity data set.
The error in this data set is dominated by uncer-
tainty in the crustal correction, which we estimate
by comparing the CRUSTS.1 correction to that of
an earlier version of the same model. We then
remove from our random deviate distributions
all density models inconsistent with the crust-cor-
rected gravity data and errors.

This creates new, ‘filtered’ likelihood distribu-
tions that are shifted relative to the original dis-
tributions, as seen in Figs. 4 and 5. Only shifts of
the vs—p correlations and dlnp peaks are shown
because the other peak shifts are negligible. The
gravity data give enough new information about
density to produce visible peak shifts. The most
notable shifts are movements of amplitude peaks
to lower values. This is not surprising, because
of the tendency of amplitude distributions to be
elevated by the very distribution tails that are
reduced by the improved resolution gravity

provides. However, all pairs of filtered and un-
filtered peaks are separated from one another by
less than a half-width, suggesting that the two
data sets are reasonably consistent with one an-
other. Thus, Figs. 4 and 5 clearly demonstrate
that the poor vy—p correlations and high dlnp am-
plitudes favored by the seismic data are consistent
with existing gravity data.

In an earlier test, we performed gravity filtering
on a distribution of density models that was in-
consistent with the model space because the ran-
dom deviates were not drawn from a complete set
of 2D marginals (tradeoffs between the density
parameters of different layers had been ignored).
In that case, consistency with the gravity data was
much poorer, with shifts of the correlation peaks
as large as the current shifts in the amplitude
peaks and clear separation of some filtered and
unfiltered amplitude distributions. This enabled
us to diagnose the problem in our random devi-
ates.

5. Discussion

Figs. 4 and 5 are simple representations of a
wealth of information about long period seismic
constraints that we have obtained in this study,
and we will eventually employ our probability
marginals in much more detailed analyses. None-
theless, these figures provide several immediately
useful pieces of information. In particular: (1)
high positive dlnvs—0dlnv, and dlnv—dlnp correla-
tions at long wavelengths are unlikely almost any-
where in the mantle; (2) the seismic data favor
dlnp amplitudes equal to or greater than dSlnvg
amplitudes in the TZ and below; and (3) these
characteristics are most pronounced in the TZ
and LLM, although less robust in the latter.
Our model space observations are only as good
as the data that inform them, but should be more
representative of seismic constraints than are the
often very different results from damped inver-
sions of similar data.

As noted in Section 3, observation (1), com-
bined with the relative strength of the degree 2
and 4 signal in deep mantle seismics [21], implies
that thermal heterogeneity does not dominate
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chemical heterogeneity below 400 km depth. Ob-
servation (2) offers an important clue to the na-
ture of the chemical component of heterogeneity.
Recent studies have confirmed that density varia-
tions of greater relative amplitude than velocity
variations are most readily achieved with variable
iron concentrations [6]. Iron contamination from
the core or iron repartitioning among mantle min-
erals is a potential source of such variation in the
deepest mantle [51], and the formation of iron-
depleted cratons [12,52] is a potential source in
the upper parts of the mantle. Observation (3)
suggests that processes of mantle formation or
convection have concentrated the chemical het-
erogeneity above the major seismic discontinuities
of the mantle, although, due to resolution limita-
tions, our evidence for chemical heterogeneity in
the OLM and MLM is almost as strong as for
that in the LLM.

While this kind of heterogeneity could not per-
sist in the most typical models of thermally driven
whole-mantle convection [53], it may well be com-
patible with recent models of ocean crust recy-
cling [54], partial convective layering [14,15,55],
or more complete models of thermo-chemical
convection [16]. Such hypotheses can be tested
by extending this study to shorter wavelengths
and greater radial resolution and then extracting
more detailed information from our model prob-
ability marginals. The most obvious tests to be
performed include the accumulation of probabil-
ity distributions for density and velocity at each
point on the globe. The way these distributions
vary from place to place can then be compared
to maps of subduction history [45,56], or to re-
sults of body wave tomography for the CMB re-
gion [57]. Geographical correlations of these
properties can determine how long wavelength
density heterogeneity and other geophysical ob-
servables are related. Additionally, the statistical
nature of our model space ‘maps’ makes them
well suited to comparisons with statistical descrip-
tions of geodynamic models. These include prob-
ability distributions for Bullen’s parameter [58],
heterogeneity spectra [59], and correlation length
[60,61].

As long as no systematic errors are believed to
exist in the long period data, the above evidence

for geochemical convection and stratification
from robust tomography should be accounted
for in any future geochemical and geodynamic
mantle models. In addition, the contrast between
our results and those of damped inversions serves
to highlight the misrepresentation of data that can
be produced by damping. We hope that this mo-
tivates the use of robust approaches to other in-
verse problems.
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