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INVERSE PROBLEMS IN SEISMOLOGY

J TRAMPERT, J-) LEVEQUE AND M CARA

ABSTRACT

Seismologists have been confronted with inverse problems for a long time. At the beginning
of the century, Herglotz and Wiechert showed that, under certain assumptions, the seismic
velocity distribution with depth could be uniquely determined from travel time data. With this
method, Jeffreys proposed in 1939 the first practical and still widely used Earth model. The
seismological inverse problem took a major turning with the works of Backus and Gilbert at
the end of the sixties. They introduced the concepts of resolution and trade-off between error
and resolution, setting thus the basis for a more theoretical approach to the inverse problem in
seismology. Franklin (1970) introduced in a stochastic approach the covariance operators for
gaussian probability densities, and Jackson (1979) extended these results to non-gaussian
densities. Wiggins (1972) first applied the singular value decomposition to a seismological
inverse problem. Finally, a more general statement of the inverse problem has been proposed
by Tarantola and Valette in 1982. With the effort to describe the Earth as precisely as
possible, new problems arose, namely the trade-off between different model parameters and
the inconsistency problem. Seismic tomography is after the hypocenter determination the
most common inverse problem in seismology. Waveform inversion, while containing the
most possible information, needs generally a carefully chosen formulation in order to deal
with the :more complicated relationship between data and model. The introduction of an
inexact theory relating data and model can be very interesting for non-deterministic
formulations. We show recent examples to illustrate these different techniques and difficulties
going with them and, as a copclusion, point out current research topics of inverse problems
in seismology.

1. INTRODUCTION

At the beginning of the century, seismologists were first confronted with inverse problems,
As soon as it was understood that recordings could be related to earthquakes happening
thousands of kilometers away (fig. 1), they tried to use observed travel time curves (travel
time as a function of distance) to retrieve the seismic velocity distribution of the Earth’s
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132 INVERSE PROBLEMS IN SEISMOLOGY

interior. This non-linear inverse problem was simultaneously solved by Herglotz (1907) and
Wiechert (1907). Under the assumption of a monotonous increase of the relevant parameter
(Earthradius/velocity) with depth, the method yields a unique and analytical solution of the
velocity as a function of depth.

Jeffreys (1939) applied this technique to all available data at that time to compute an
Earth model which is stil! widely used as a reference model (fig. 2).

In the last 20 years, inverse problems have been intensively studied in seismology. It
has become such a vast subject that a complete review of its importance and application in
seismology would need a book on its own. Therefore, we have chosen to focus on some
illustrative problems of inverse theory encountered in seismology.
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Figure 1: Seismogram, recorded in Strasbourg, of the 19 September 1985 Michoacan
earthquake, which caused extensive damage in Mexico City.

The seismogram shown in figure 1 has some characteristic features (such as P and S
body waves and dispersed surface waves) which are the result of the seismic source, the
constitution of the Earth through which the waves propagate and the characteristics of the
seismic recorder. %ue to the linearity of the problem of elastic wave propagation, the Earih's
displacement u(t) seen at a seismic station can be written as

u(t) = s{t) * ple,t) *i(t) n

where s(t) describes the source mecanism, p(e,t) the propagation in the given Earth model e
and i(t) the instrument response. The unknowns are typicatly the source s, and the Earth
structure e. The aim of seismology is to extract data from such seismograms which allow to
solve for the chosen unknowns. Formally
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(Z): h{u,p,i) @

where h is the inverse operator. Ideally, we should invert the whole seismogram to obtain s
and e, but this still presents considerable theoretical and technical problems.
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Figure 2: Earth model after Jeffreys, 1939.

Seismologists prefer to partition the problem in two different ways. First, in seismic
source studies, the Earth structure is generally c$nsidered to be perfectly well known, while
the seismic source is fixed for Earth structure inversions. Second, the seismic records (data)
are commonly partitionned as well. First arrival times of P and S waves are used to compute
the daily hypocenter determinations of the recorded earthquakes. In seismic tomography,
these arrival times compared to theoretical arrival times give 3D velocity anomalies around a
reference model (Dziewonski, 1984). The waveforms of body waves are used to infer focal
mecanisms (Kanamori and Cipar, 1974; Langston and Helmberger, 1975; Deschamps et al.,
1980) and the detail of the seismic rupture processes (Das and Kostrov, 1990). Other
interesting observables are dispersion curves (velocity as a function of frequency) of surface
waves. They give good information on the shallow Earth structure such as crust and upper
mantle (Wiggins, 1972; Montagner and Nataf, 1988). The waveforms of surface waves are
mainly used for the study of the mantle struciure (Woodhouse and Dziewonski, 1984;
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Tanimoto, 1987; Nolet, 1987; Cara and Leveque, 1987). Free oscillations, a standing wave
pattern, excited by strong earthquakes, put the whole Earth into vibration and give long
wavelength heterogeneities on a global scale (Woodhouse et al., 1986).

Most of the inverse problems treated in seismology are linear or linearized and
minimize an Ly norm. With this assumption, we present the most important concepts, show
some recent applications and discuss current research activity.

2. GENERAL CONCEPTS OF LINEAR INVERSE PROBLEMS

In matrix form, the basic equation for a linear discrete problem is
d=Gm 3)

where d are the measured data and G describes the theory operating on the model parameters
m. The inverse problem consists in finding m from d. In the case where G is a non-singular
square matrix,the solution of (3) is obvious. The general case is not as easy to Sf)lvc. G may
be either square and singular, or non-square, or €rrors in the data make that relation (3) is not
exact. The solution may then be given by the classical least squares where several cases need
to be distinguished: .

(i) We have enough information to evaluate all model parameters, but some equations
are contradictory due to measurement €rrors. The problem is then said to be purely
overdetermined and G'G is regular, which yields the solution

m* = (G'Gy1GHd @)

where the L2 norm Hd-Gmil has been minimized.

(i) There are no contradictions in the available informations, but.we don't have
enough equations to evaluate all the model parameters. The problem is said to be purely
underdetermined and GGt is regular. The solution is

m* = I(,:t(GGl)-ld &)

and the model fits exactly the data (d-Gm!l = 0). It should be noted that in this case, an
infinite number of models exactly fit the data, and the model chosen by (5) is the one with 2
minimum norm. With erroneous data, this last solution is physically unacceptable. As the
predicted model exactly fits wrong data, m" is necessarily wrong. . ' .

(iii) Finally, the last and most common case, We have contradictory information on
some model parameters, and at the same time some other parameters cannot be assessed due
to a lack of information. In order to smooth the effect of data errors on the predicted model,
Levenberg (1944) introduced a damped least squares solution given by
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m* = (G'G+621)-1Gtd
= G{GG+021)-1d (6)

where 62 is a constant. This al gorithm can be applied regardiess the nature of G.

Franklin (1970) formalized the intuitive notion of the damping parameter in terms of
covariance operators over the model parameters and the data. His stochastic view assumes
gaussian probability densities. Jackson (1979) extended Franklin's results to the case of non-
gaussian probability densities which includes the case of rigid bounds. A more general
approach has been described by Tarantola and Valette (1982 a,b) and can be applied with any
probability density function as well as to non-linear problems.

2.1. The Backus-Gilbert method

Since Jeffreys' Earth model (1939) until the early sixties, seismologists have hardly done any
other inverse problems than locating earthquakes using equation (4). In a series of papers,
Backus and Gilbert (1967, 1968, 1970) drew the seismologists' attention 10 a more general
way of addressing the inverse problem. To solve (3), they want the estimated model m* to
be a linear combination of the data:

m* =Hd %)
using (3), they may write that
m* =HGm =Rm (8)

R is called the resolving kermnel and describes a filter through which the true model m
is seen. We can arbitrarily choose the operator H. In the case of perfect data, Backus and
Gilbert introduced the J-deltaness criterion, for example, which consists in choosing H in a
way that R is closest to the identity operator and they have to minimize

IR-T0I 9

. . .
In the case of noisy data, they choose the coefficients of H in such a way that the
estimated model is optimal with respect to the resolution kernel and the estimated model
error. In this case, the minimization involves the quantity

(1-0)IR-TI + &t tr (Cpp#) (10)

where 0 € & € 1 determines the trade-off between error and resolution. The better the
resolution of the final model, the higher its error and vice versa. The estimated model still
exactly fits the data and we have already seen that this is physically unacceptable. Gilbert
(1971) extended the method to the case where the data are to be fitted only within the error
bars, which is physically more satisfying.
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2.2.The generalized least squares

Tarantola and Valette (1982 a,b) following a stochastic approach, formulated the inverse
problem in very general terms using different states of information described by probability
densities. Using Bayes' theorem, they combine the different states of information to obtain a
unique solution. If the probability laws describing these states of information are gaussian,
the generalized least squares formalism is obtained. Assuming that there are no correlations
between the data and the model parameters, and that the theory G is perfectly well known,
their formalism reduces to the stochastic inverse described by Franklin (1970), where the
minimized cost function is

6-Gml +|m-mj ‘
K ca an

which gives the solution
m* =mg + (GICq'1G + Cy1)-1GICy-1(d-Gmyy)
=mg + CpGHGCy, Gt + Cq)y 1(d-Gmyg) (12)

with my, the a priori model, Cyy, the covariance operator describing the error ellipsoid around
mg and Cd the covariance operator corresponding to the data. It is easily seen that (6)isa
special case of (12) (e.g. Aki and Richards, 1980). Expressions (4) and (5) are not special
cases of (12), but only limit cases of (12). Indeed, due to the definition of covariance
operators, neither Cg nor Cm-! can be 0. Expression (11) reflects a trade-off between the
data misfit and the model variation. For a given metric Cg-!, the metric Cpyy~1 can be thought
of a parameter describing the trade-off. Imagine the case where you have a good a priori
model and you are not too sure about the quality of your data. A high Cy-1 will force the
estimated model to stay close to m,. For good quality data, the high Cd’l, will give the most
weight on the data misfit.

On the other hand it can be shown that minimizing (11) is equivalent to minimizing
the trace of the covariance matrix Cyy+ of the estimated model (Tarantola, 1987). As

I
Cm* = I-R)Cpp, (13

modifying Cy, describes then a trade-off between error and resolution similar to the one
introduced by Backus and Gilbert.

2.3. Other methods

A different approach to the linear inverse problem, based on the singular value
decomposition, has been developped by Penrose (1955). He shows that each matrix G can
be associated to a generalized inverse, which is the classical inverse G-1,if G is regular.
Lanczos (1961) describes how to build this inverse and shows that this method consists in
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projecting the real data to the sub-space of all possible data G{m}, and to choose among all
possible models which exactly fit the data, the model which has no component in the sub-
space associated with the zero eigenvalues. The solution is equivalent to (5). Wiggins (1972)
proposed a modification of Lanczos’ method to obtain a physically acceptable solution in the
case of noisy data. The stabilization of the final model is obtained by truncating the
eigenvector bases. Wiggins' inverse is similar to the damped least squares (6). Finally , the
generalized inverse obtained by spectral decomposition as described by Matsu'ura and Hirata
(1982) establishes the relationship with the stochastic inverse of Franklin (1970).

2.4. Specific problems due to multi-parameter inversions

Solving a multi-parameter inverse problem is conceptually and mathematically identical to a
mono-parameter problem. Physically, however, the complications are increased. Consider
the problem of solving simultaneously for the P-wave velocity (Vp) and the density (p) as a
function of depth. It will become extremely difficult to define a resolution width. Any
resolution width will imply a coupling between different physical parameters (Vp and p) at
different depths. The interpretation of the estimated model is very delicate in such a sitvation.
The only acceptable resolution would be a Dirac-like shape, which will result in a big error in
the final model. In multi-parameter problems it seems very difficult to obtain an optimal
trade-off between error and resolution. Similarly, the choice of Cp, in the generalized least
squares is a major problem. Already we don't know very well the error on a single physical
parameter, its correlation with other physical parameters is even more difficult to estimate.
Even if we know that in an elastic Earth, the velocity is related to the density via the Lame
constants at a certain depth, the Lame constants themselves are not known so that such a
theoretical relationship is of no great help.

Another interesting problem is coming from inconsistency. In a problem involving
different physical parameters, there are several equivalent ways of formulating the problem.
For instance choosing [Vp,Vs] or [Vp,Vp/Vs] should give comparable results for a given
inverse operator. Unfornately, very often, the same algorithm applied 1o different parameter
sets and the same data give incompatible results, and the inverse operator is said to be
inconsistent. The problem comes from the a priori model covariance which is implicit in
some inverse operators. Remember that Cy, defines the metric in (11) with which the model
variation is weighted. Take for instance the Backus-Gilbert inversion. It assumes and implicit
model covariance Cyy=sel (Tarantola, 1987). If we change the parameterization from m to
m' (m'=Pm), and if we apply Backus-Gilbert again, the inversion assumes now Cpy=cel.
The two different norms defined by the metrics Cpy~! and Cpy1 used in the inversion are
incompatible. Covariances change according to certain rules when changing the parameters,
and the right covariance to be used is Cp=PC,P! which is generally different from eol.
The compatible Cy;r however cannot be naturally introduced in the Backus-Gilbert scheme.

A practical example has been given by Leveque and Cara (1985) who tried to study
the anisotropic parameter E=Vgy2/Vgy?2 in the upper mantle of the Pacific Ocean. In two
different inversions of 28 phase velocity data, they have chosen the physically equivalent
parameterizations of the problem [Vgy,Vgy] and [§,Vgy]. They used Wiggins' (1972)
algorithm and the same eigenvalue cut-off level in the two inversions. The two models are
very different, making the geophysical interpretation strongly dependent on the choice of
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parameters (fig. 3). Again the explanation is that Wiggins' algorithm uses an implicit unavoidable to normalize the problem in a proper way before inversion. Obviously, a lot of
diagonal model covariance, which is not compatible in the two parameterizations. research has to go into the correct estimation of Cp,.
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Due to the coupling (or trade-off) between physically different parameters and due to 1066A [
the inconsistency problem, the choice of the set of parameters is of primary importance when
inverting multi-parameter systems. The comparison of two different inversion results is not SRl ey e 1066B -
straightforward and this might be the main reason for differences between different models | \
published so far in seismological literature. Both problems show the importance of the a — H |
priori model covariance. When using an algorithm with implicit model covariance, it seems e il

Figure 4: Earth models after Gilbert and Dziewonski, 1975.
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3. RECENT APPLICATIONS IN SEISMOLOGY
3.1. Backus-Gilbert inversion

A first example is taken from Gilbert and Dziewonski (1975). They used 1066 independent
normal mode data to solve a double inverse problem. In a first step, they solve for the Earth’s
structure and in a second step for the source mecanism of the different earthquakes. The two
problems are not independent, but they decoupled them and developed an iterative method of
processing the observed data. They used the Backus-Gilbert method to fit the data in their
error bars (Gilbert, 1971). We show (fig.4) the two Earth models 1066A and 1066B
obtained with the same algorithm but for two different starting models (one without and one
with discontinuities). These discontinuities are also the essential differences in the final
models.

This work has set the start for a general search in better Earth models, and
emphasized the importance of a common database for different swdies, which can then more
easily be compared.

3.2, Seismic tomography

Seismic tomography is after hypocenter determinations the most common inverse problem in
seismology. The data are generally travel time residuals, the difference between the observed
travel times and the theoretical ones read in travel time tables. The residuals are assigned to
velocity heterogeneities around a laterally homogeneous reference model. The problem is
entirely linear and can be solved using any of the previously discussed algorithms. Figure 5
shows the result of a project in the upper Rhinegraben (Achauer et al.1989). The cross
section indicates a well marked low velocity graben and high velocity mountain roots in the
Vosges mountains and the Black Forest.

In general, the correlation of tomographic images with surface tectonic features is
well established, while the interpretation of deep heterogeneities is more difficult.

3.3. Waveform modelling of surface waves |

The retrieving of the Earth's mantle structure from the waveform of long-period Rayleigh
waves leads to another interesting inverse problem. In the example presented here (Leveque
et al., 1991), the highly non-linear dependency between data and parameters is avoided by a
reparameterization of the problem. The information contained in the seismogram is
concentrated into a few “secondary observables" by filtering and other signal processing
methods. These new observables are designed to have a more linear behaviour with respect
to the model parameters. An actual seismogram of at least 128 data points can be compacted
into 21 secondary observables, leading to a very simple inverse problem. It can be seen on
figure 6 that very few information is lost, since the synthetic seismogram obtained from the
final model is very close to the recorded one.
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This example illustrates how a well-chosen reparameterization can simplify the
inverse problem, even if the initial physical problem is very difficult 10 handle. The remaining
question is how to find such well-behaved secondary observables? Unfortunately, there is no
general answer, as far as we know.

3.4. Inexact theory

Due to unknowns in the physical modelling of the problem, it is sometimes better to use a
probabilistic theory instead of a deterministic one. An illustration of such a situation is shown
on figure 7a, where the polarity of the first seismic wave is represented as a function of the
geographic position of the recording station (compressions are shown in black and dilatations
in white) (Rivera, 1990). For stations located far away from a nodal plane of the seismic
radiation (black-white border), there is little doubt about the theoretical polarity: the wave is
clearly a compression or a dilatation, and we only have 10 account for measurement noise,
fixed 10 a probability of 0.2 here. When the station moves closer to a nodal plane, the
theoretical amplitude decreases and the importance of the unknown source process increases,
For a station located on a nodal plane, the probability for the theoretical data to be "black” or
"white" is 0.5.

This kind of loose theory is easily accepted in Tarantola and Valette's (1982)
formulation of the inverse problem, and has been used to process polarity diagrams from
many earthquakes in France in order to obtain a regional stress tensor compatible with the
whole set of data (Delouis, 1988). This stress tensor is represented (figure 7b) by its 3
eigendirections 61, 62 and 63, and is compatible with the NW-SE push of the African plate
against the European plate in this region.

4. CURRENT RESEARCH TOPICS

The philosophy of the linear (or linearized) inverse problem is now very well
understood, and seismologists have all the necessary 1ools to solve it and make an
interpretation of the final model. As pointed out before, the chosen parameterization of the
problem is of great importance. It seems very promising to look for a parameter set which
concentrates the same amount of information in fewer data (Trampert, 1990; Leveque et al.,
1991). This allows to take into account a greater number of information without drastically
increasing the dimensions of the problem. Related to the paramelerization is the choice of the
a priori information. A lot of effort goes into the search of how to introduce a priori
information from different geophysical fields in the data (Nataf, 1986). For instance, how
could we constrain,prior to the inversion, the core-mantle boundary topography.

The non-linear approach has essentially been attempted with Monte-Carlo techniques
(Keilis-Borok and Yanovskaya, 1967; Press, 1968), but we are basically at the point to try to
understand how non-linear inversions work (e.g. Snieder, 1990). An interesting thing to
notice is that it is not the problem itself which is linear or not, but its parameterization. The
idea is then to find a parameterization which is as linear as possible with respect to the model.
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If you are interested in the elastic quality factor for instance, you know that the variation in
amplitude of a wave is exponentially related to Q. Using the logarithm of the amplitude
instead of the amplitude itself will naturally linearize the problem. Here we join the previous
discussion of the importance of a good parameterization.

Finally, we should drop the ad hoc separation of the problem into source and
structure. A more general formulation seems necessary to analyse the importance of the trade-
off between source and structure. This needs a complete waveform tomography, and even if
we manage 10 concentrate the information, we still have to invert very large problems. It is
thus necessary to try to improve the algorithms in terms of speed and memory consumption.
Most algorithms used in seismology directly solve (4), (5), (6) or (12) in matrix form. It is
easily seen that this needs a considerable amount of computer memory, so that we are soon
limited in the size of the problem which can be treated. Interesting alternatives are the row-
action and projection methods (e.g. Van der Sluis and Van der Vorst, 1987). The row-action
methods act on the matrix G as it stands without making any change to it. They work on one
row of G at a time, hence their name, and update the model iteratively. The most popular
method of this type in seismology is the Simultaneous Iterative Reconstruction Technique
(SIRT) designed by Gilbert (1972) for medical tomography. It handles elegantly and simply
a very large system, but has the drawback of introducing implicit a priori information
depending of the theory matrix G itself. Trampert and Leveque (1990) showed how to
correct this implicit behaviour and changed the original algorithm so that it becomes a special
case of (12). With a proper normalization, using covariance operators, before inversion, it is
possible to solve any linearized problem with SIRT introducing explicitly any mg, Cqyy and
Cg in the solution. Other interesting approaches are the projection methods. The system is
projected into the Krylov sub-space and solved iteratively without explicitly computing the
projection. The Least Squares Conjugate Gradient method (LSQR) developped by Paigne
and Saunders (1982) seems to be particutarly fast and efficient (Nolet, 1985). The solution
has the form of (5), and, as it is not a special case of the generalized least squares, it is not
obvious how to normalize the problem so that you can explicitly take into account any a priori
information.
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