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License information 
 

me is free software: you can redistribute it and/or modify it under the terms of the GNU General 

Public License as published by the Free Software Foundation, either version 3 of the license, or (at 

your option) any later version. 

me is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without 

even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 

PURPOSE. See the GNU General Public License for more details. 

You should have received a copy of the GNU General Public License along with 'me'. If not, see 

<https://www.gnu.org/licenses/>. 
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1. Program versions 
 

The multiple-Einstein program is available as source code written either in Fortran or in FreePascal. 

These codes are freeware and may be changed and incorporated in different software at your taste. 

Updates of these codes are available at: http://www.geo.uu.nl/~jacobs/Downloads.  

The method used in these programs is suitable to construct thermodynamic databases of multi-

component systems for application in large ranges of pressure and temperature. Because the 

calculation of thermodynamic properties in such systems requires efficient high-speed 

computational techniques, the treatment of physical details of static, vibrational and electronic 

effects in the programs is necessarily kept simple. The method is detailed in Jacobs et al. (2013) 

and it is based on representing the vibrational density of states of a substance with multiple Einstein 

frequencies. The method is semi-empirical, and model parameters were obtained by an inversion 

technique by a separate program. Although the method lacks the rigor of a complete lattice 

dynamics theory, we showed in Jacobs et al. (2017), that experimental data are represented with 

engineering precision. 

Many equations are given in this manual, which seems superfluous. They are intended for 

programming and serve as a check of the code. The source code refers to these equations, making 

extensions to the program easier. 

 

 

1.1. FreePascal code 

The FreePascal source of the multiple-Einstein program, me, is based on simplified procedures and 

functions of program XiPT, which has been employed for carrying out thermodynamic analyses of 

experimental data. XiPT contains an optimizer which established the model parameters of the 

multiple-Einstein description of each substance given in this manual. The input files for XiPT are 

more complicated relative to those for the multiple-Einstein program, me, mainly because of the 

large number of phases and thermodynamic models that can be treated. To avoid time-sinks in 

addressing problems with the input, raised by users, program XiPT is only very sparsely distributed, 

until a good manual is available. Instead we follow the idea of copying the most successful models, 

present in XiPT, into a new program, which is called the multiple-Einstein program, me. Because 

the input for that program is much simpler, our work will be more transparent to other investigators. 

An additional advantage is that the code is easier incorporated into other open thermodynamic 

software, such as in OpenCalphad (see www.opencalphad.com).  

The main unit 'me.pas' of the FreePascal code shows thermodynamic models that are incorporated 

in the source code, including a To-Do list of features that will be programmed in the future. 

 

 

1.2. Fortran code 

The Fortran code is based on thermodynamic expressions of the multiple-Einstein method given by 

Jacobs et al (2013). The routines and functions were programmed independently from the XiPT 

code, serving as a check of XiPT itself. Constructing software code in Fortran, starting from the 

original mathematical expressions of models, consumes more time relative to the copy-paste 

method used in the FreePascal code. Therefore a time-lag may be expected before the same features 

as in the FreePascal code are available. 
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2. Installation 
 

The multiple-Einstein program, me, runs in the linux environment of Ubuntu or it may be run in 

Windows. Executables of me are included, but if they do not run, FreePascal is needed to compile 

the source code. 

 

In Linux: 

A.  Install FreePascal. 

You can use the software manager, or alternatively: 

1.  Open a terminal window by pressing simultaneously: 

cntrl-alt-t 

2.  At the command prompt in the terminal window type: 

sudo apt-get install fp-compiler 

 

B.   Install program ‘me’: 

3.  Open a terminal in Ubuntu by pressing simultaneously: 

cntrl-alt-t 

4.  Unpack me.tgz in the directory of your choice and type at the command prompt: 

tar -zxf me.tgz 

5.  Compile the program by typing: 

fpc me.pas 

6.  Run the program by typing: 

./me mgo.mef 

 

In Windows 

A.  Install FreePascal: 

1.  Download FreePascal from https://www.freepascal.org: 

   fpc-3.04.i386-win32.cross.x86_64-win64.exe and fpc-3.04.i386-win32.exe 

2.  Execute both programs 

 

B.   Install program ‘me’: 

3.  Open a powershell window (windows10) or command prompt (windows7) 

4.  Unzip me.zip in the directory of your choice by typing: 

unzip me.zip 

5.  Compile the program by typing: 

fpc me.pas 

6.  Run the program by typing: 

.\me mgo.mef 

 

 

 

An example of how to use ‘me‘ is given in section 4. 
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3. Substances in file demo.mef 
 

Substances in file demo.mef are given in Table 3.1. A thermodynamic analysis of orthoenstatite, 

forsterite and platinum is given by Jacobs et al. (2013). The description for periclase (MgO) is a 

simplification of that by Jacobs et al. (2017) treating substances in the system MgO-SiO2. The 

description for periclase allows calculating the shear modulus.  

 

 

Table 3.1. Nomenclature and structure of substances in demonstration file demo.mef 

Formula Name Abbreviation Number of Einstein 

temperatures 

Structure 

MgO periclase pc  5 mFm3  

Mg2SiO4 forsterite fo 60 Pbnm  

MgSiO3 orthoenstatite oen 60 Pbca  

Al aluminium Al 30 mFm3  

Pt platinum Pt 30 mFm3  
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4. Using FreePascal program 'me' to calculate thermodynamic properties 
 

The central equation of the multiple-Einstein method programmed in 'me' is the Helmholtz energy, 

and it is partitioned in static lattice, vibrational, electronic, magnetic and defect contributions: 

 

  ),()()(),()(),( VTATATAVTAVUUVTA defectelcfvibstaticref +++++= − λ                       (4.1) 

 

The reference energy, U
ref

 in Eq. (4.1), is a constant, and determined by e.g. available heats of 

formation of the substances or phase boundary data. The second term represents the static lattice 

energy for a substance in which vibrational motions are absent. This contribution is determined by 

the equation of state, such as expressions of Birch-Murnaghan (1952), Vinet et al (1987, 1989), or 

Keane's (1954) equation of state. Expressions for the static lattice contribution to thermodynamic 

properties are given in the next chapter. Vibrational motions are represented by the third term in Eq. 

(4.1). The fourth term in Eq. (1) deals with electronic contributions, such as the crystal-field 

electronic contribution in fayalite Fe2SiO4, described in Jacobs et al (2019) to represent the heat 

capacity below 100 K. The fifth term in Eq. (1) represents the magnetic contribution, which is e.g. 

applicable to specific modifications of FeSiO3 and Fe2SiO4. The last term gives a contribution to 

thermodynamic properties due to defects in the crystal. The mathematical expressions for these 

terms are detailed by Jacobs et al. (2013, 2017, 2019) and some extensions are given in this manual 

in chapters 6 - 14.  

 

 

The input file, demo.mef, contains data that can be used in the multiple-Einstein program, me. On 

website http://www.geo.uu.nl/~jacobs/Downloads, more examples in the form of databases are 

present. Program 'me' calculates thermodynamic properties, including shear modulus for a pure 

substance, such as for MgO. The output of 'me' is stored in a table containing these properties on a 

pressure-temperature grid. To enable to start quickly with 'me' an example is given below. 

 

 

Example: 

Calculate thermodynamic properties of MgO between 0 and 3000 K with steps of 500 K and 

between 0 and 20 GPa with steps of 10 GPa. Use a 5-Einstein model. 

 

To construct a table with thermodynamic properties we follow the 5 steps described below: 

 

1.  Select the description of MgO given in section 3, Table 3.1, given in file demo.mef. 

 

 

2.  Copy the data from demo.mef and store them on a new file 'mgo.mef'. File 'mgo.mef' will look 

like: 

 
# Comment: File mgo.mef with data copied from file demo.mef 

# 

 <MgO-pc>                   (* Name of the substance *) 

   40.304000                (* Mass of the substance in gr/mol *) 

  2.00000000000000E+000     (* Number of atoms in 1 molecular formula unit *) 

 -6.21124727753588E+005     (* Static lattice energy in J/mol *) 

  1.12027710146365E-005     (* Volume/m3/mol at zero K and zero Pa *) 

  1.10725544416607E-005     (* Volume/m3/mol of the static lattice at zero Pa *) 

  2                         (* 1=Vinet, 2=Birch-Murnaghan, 3=Keane, 4=Qin EoS of the static lattice 

  3                         (* Order of Birch-Murnaghan EoS of the static lattice *) 

  1.71365000000000E+011     (* Static lattice bulk modulus/Pa at zero Pa *) 

  4.18588900000000E+000     (* Pressure derivative of the static lattice bulk modulus at zero Pa *) 

  1.39801200000000E+011     (* Static lattice shear modulus/Pa at zero Pa *) 

  2.27420100000000E+000     (* Pressure derivative of the static lattice shear modulus at zero Pa *) 

  2.06860800000000E+000     (* Vibrational parameter of the shear modulus *) 
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0                         (* 0=No Landau contribution, 1=2nd order, 2=Tricritical, 3=1st order *) 

0                         (* 0=No magnetic contribution, 1=magnetic contribution *) 

0                         (* No electronic contribution *) 

0                         (* 0=No cation disorder, 1=model of O’Neill and Navrotsky (1983,1984)*) 

0                         (* 0=No monovacancy defects, 1=monovacancy defects: Dorogokupets &…*) 

# Anharmonicity is described with perturbation theory of Oganov & Dorogokupets (2004): a=a0(V/V0)^z 

  5                         (* Number of Einstein modes *) 

  2                         (* 1=Gruneisen expression by Al'tshuler et al, 1987 and 2=that by 

Stixrude & Lithgow-Bertelloni, 2005 *) 

#  j   Theta/K   Fraction          Gamma      Mode_m(q)   Gamma_inf  a0             z 

# ------------------------------------------------------------------------------------------- 

   1   103.6373  8.906551151E-003  1.5153760  1.3987510   0.0000000  9.108297E-006  7.2990600 

   2   310.9115  1.518128083E-001  1.5153760  1.3987510   0.0000000  9.108297E-006  7.2990600 

   3   518.1859  4.489913319E-001  1.5153760  1.3987510   0.0000000  9.108297E-006  7.2990600 

   4   725.4603  3.115346305E-001  1.5153760  1.3987510   0.0000000  9.108297E-006  7.2990600 

   5   932.7346  7.875467817E-002  1.5153760  1.3987510   0.0000000  9.108297E-006  7.2990600 

# 

# sum of all fractions:  1.000000000E+000 

############################################################################################## 

 

 

3. Next the pressure-temperature ranges with their steps must be attached to file 'mgo.mef'. 

Go to the last part of file 'demo.mef' and copy the lines: 

 
# Comment: last part of file demo.mef: these lines must be changed manually 

# ------------------------------------------------------------------------------------------- 

# Isobaric calculation 

 1                          (* 1=Isobaric calculation, 2=Isothermal calculation *) 

 10    2000   30            (* Temperature range and step: T_start/K, T_end/K, T_step/K *) 

 1e+05 1e+05  0.0           (* Pressure range and step   : P_start/Pa, P_end/Pa, P_step/Pa *) 

 1                          (* Output: 1=Output to screen and file, 0=Output to file only *) 

# Output file name 

 /home/michel/geodata/mgo/mgo.out 

# ------------------------------------------------------------------------------------------- 

############################################################################################## 

 

 

4. Insert these lines into file 'mgo.mef', and change them to the desired ranges of pressure and 

temperature. The final resulting file 'mgo.mef' will look like: 

 

 
# Comment: File mgo.mef with data copied from file demo.mef: final result 

# 

 <MgO-pc>                   (* Name of the substance *) 

   40.304000                (* Mass of the substance in gr/mol *) 

  2.00000000000000E+000     (* Number of atoms in 1 molecular formula unit *) 

 -6.21124727753588E+005     (* Static lattice energy in J/mol *) 

  1.12027710146365E-005     (* Volume/m3/mol at zero K and zero Pa *) 

  1.10725544416607E-005     (* Volume/m3/mol of the static lattice at zero Pa *) 

  2                         (* 1=Vinet, 2=Birch-Murnaghan, 3=Keane, 4=Qin EoS of the static lattice 

  3                         (* Order of Birch-Murnaghan EoS of the static lattice *) 

  1.71365000000000E+011     (* Static lattice bulk modulus/Pa at zero Pa *) 

  4.18588900000000E+000     (* Pressure derivative of the static lattice bulk modulus at zero Pa *) 

  1.39801200000000E+011     (* Static lattice shear modulus/Pa at zero Pa *) 

  2.27420100000000E+000     (* Pressure derivative of the static lattice shear modulus at zero Pa *) 

  2.06860800000000E+000     (* Vibrational parameter of the shear modulus *) 

0                         (* 0=No Landau contribution, 1=2nd order, 2=Tricritical, 3=1st order *) 

  0                         (* 0=No magnetic contribution, 1=magnetic contribution *) 

  0                         (* No electronic contribution *) 

0                         (* 0=No cation disorder, 1=model of O’Neill and Navrotsky (1983,1984)*) 

0                         (* 0=No monovacancy defects, 1=monovacancy defects: Dorogokupets &…*) 

# Anharmonicity is described with perturbation theory of Oganov & Dorogokupets (2004): a=a0(V/V0)^z 

  5                         (* Number of Einstein modes *) 

  2                         (* 1=Gruneisen expression by Al'tshuler et al, 1987 and 2=that by 

Stixrude & Lithgow-Bertelloni, 2005 *) 

#  j   Theta/K   Fraction          Gamma      Mode_m(q)   Gamma_inf  a0             z 

# ------------------------------------------------------------------------------------------- 

   1   103.6373  8.906551151E-003  1.5153760  1.3987510   0.0000000  9.108297E-006  7.2990600 

   2   310.9115  1.518128083E-001  1.5153760  1.3987510   0.0000000  9.108297E-006  7.2990600 

   3   518.1859  4.489913319E-001  1.5153760  1.3987510   0.0000000  9.108297E-006  7.2990600 

   4   725.4603  3.115346305E-001  1.5153760  1.3987510   0.0000000  9.108297E-006  7.2990600 

   5   932.7346  7.875467817E-002  1.5153760  1.3987510   0.0000000  9.108297E-006  7.2990600 

# 
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# sum of all fractions:  1.000000000E+000 

############################################################################################## 

# Comment: last part of file demo.mef: these lines are now changed manually 

# ------------------------------------------------------------------------------------------- 

# Isobaric calculation 

 1                          (* 1=Isobaric calculation, 2=Isothermal calculation *) 

 0     3000     500         (* Temperature range and step: T_start/K, T_end/K, T_step/K *) 

 0   20e+09  10e+09         (* Pressure range and step   : P_start/Pa, P_end/Pa, P_step/Pa *) 

 1                          (* Output: 1=Output to screen and file, 0=Output to file only *) 

# Output file name 

 /home/michel/programs/me/mgo.out 

# ------------------------------------------------------------------------------------------- 

############################################################################################## 

 

 

5. The table of thermodynamic properties is constructed by calling the multiple-Einstein program 

'me' with the input file as argument.  

-  Open a terminal in Ubuntu by pressing simultaneously: cntrl-alt-t. 

  (Alternatively in Windows: open powershell or command prompt) 

-  Go to the directory where program 'me' is present 

-  When file 'mgo.mef' is present in the same directory as program 'me' type: 

./me mgo.mef  

(Alternatively in Windows powerhell: .\me mgo.mef) 

-  The output file is created in the desired directory. 
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5. Static contributions 
 

5.1. n
th
 order Birch-Murnaghan equation of state 

 

We follow Stixrude and Lithgow-Bertelloni (2005) for expressing Helmholtz energy and elastic 

constants in Eulerian finite strain, ‘f’. Some details are also given by Anderson (1998). We denote 

the order of Equation of State by ‘n’, which is the largest exponent of strain in the Helmholtz 

energy. 
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Table 5.1 shows to 4
th

 order in strain, relations between the coefficients in eqn. (5.1) - (5.4) and 

bulk modulus, shear modulus and their pressure derivatives at the static volume, V0
static

. V0
static

 is the 

volume of the static lattice in which no vibrational motion is present, at zero static pressure. 

 

 

Table 5.1. Relation between coefficients in the expressions (5.1) and (5.2) and static properties to fourth 

order in strain in the expression for Helmholtz free energy. The coefficients apply at zero static pressure, at 

which the volume equals V0
static

. Temperature is not defined in a static lattice. 
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Values for the coefficients av and bv are quite large. To represent the curvature in bulk modulus of 

orthoenstatite one obtains values comparable to, a2 = 1.069×10
12

 Pa, a3 = 1.111×10
13

 Pa, and a4 = -

3.125×10
14

 Pa. Computations using an optimizer, such as present in XiPT, are more efficient when 

use is made of smaller values of coefficients. In that case one is able to keep track on the evolution 

of the values for static bulk and shear modulus at 0 Kelvin and 0 Pa, K0
static

 and G0
static

. Expression 
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(5.1) – (5.3) are rewritten in terms of K0
static

 by defining coefficient xv and inserting it in these 

expressions: 
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Values for coefficients xv are smaller than for av and dimensionless: for orthoenstatite, x2 = 1, x3 = 

5.20, x4 = -48.7. Apart from that, K0
static

 instead of a2 is a fitting variable. Because x2 = 1 only 

values for v ≥ 3 are written in the input file of ‘me’. Table 5.2 gives relations between bulk 

modulus and its pressure derivatives and coefficients xv. 

 

 

When use is made of the Birch-Murnaghan equation of state and the order of the equation of state 

is larger than 3, values for K0
static

 and xv (v ≥ 3) are given in the input file of ‘me’. If the order of 

the equation of state is 3, values for K0
static

 and its pressure derivative, (K0
static

)’, are given in the 

input file. 

 

 

To keep track on the evolution of static shear modulus in an optimizer, and to obtain smaller values 

for shear modulus coefficients, we insert eqn. (5.6) into eqn. (5.4). Additionally we use the 

coefficient yv and rewrite (5.4) to: 
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v
v

staticstatic
shear

fxfKfyGffG

2
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!)2(

0
−

=
vG

b
y

static

v
v         v≥2                                                   (5.11) 

 

 

Note that the last term in eqn. (5.10) is the same expression as for the static pressure, eqn. (5.8). 

Because y2 = 1 only values for v ≥ 3 are written in the input file of ‘me’. 

 

 

When use is made of the Birch-Murnaghan equation of state and the order of the equation of state 

is larger than 3, values for G0
static

 and yv (v ≥ 3) are given in the input file of ‘me’. If the order of 

the equation of state is 3, values for G0
static

 and its pressure derivative, (G0
static

)’, are given in the 

input file. 
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Table 5.2. Relation between coefficients in the expressions (5.7) - (5.10) and static properties to fourth 

order in strain in the expression for Helmholtz free energy. The coefficients apply at  zero static pressure at 

which the volume equals V0
static

. 

EoS 

order 
ν xv yv 

2 2 1 1 

3 3 ( )4
2

3 '
0

−st
K  ( )

7
13

0

'
00 −

−

st

stst

G

GK
 

4 4 ( ) 





+−+

9

143
7

2

3 '
0

'
0

''
00

stststst
KKKK  ( ) ( )( )

st

stststststst

G

GKGKGK

0

0
'
0

'
00

''
0

2

0

2

63163139 +−−+
 

 

 

5.2. Example input file:  
Part of an input file for MgSiO3 orthoenstatite. Pressure derivative coefficients, xv and yv are on the 

blue coloured lines below. From Table 5.2: 4644.7'
0

=stK , 1''
0

4361.0 −−= GPaK st ,  

5022.1'
0

=stG , 1''
0

2056.0 −−= GPaG st  

 
<MgSiO3-oen>             (* Name of the substance *) 

  100.388000             (* Mass of the substance in gr/mol *) 

  5.00000000000000E+000  (* Number of atoms in 1 molecular formula unit *) 

 -1.60212051918842E+006  (* Static lattice energy in J/mol *) 

  3.12229309698018E-005  (* Volume/m3/mol at zero K and zero Pa *) 

  3.08364030030436E-005  (* Volume/m3/mol of the static lattice at zero Pa *) 

  2                      (* 1=Vinet, 2=Birch-Murnaghan, 3=Keane, 4=Qin EoS of the static lattice *) 

  4                      (* Order of Birch-Murnaghan EoS of the static lattice *) 

  1.18827700000000E+011  (* Static lattice bulk modulus/Pa at zero Pa *) 

  5.19662000000000E+000  (* --- 1st pressure derivative coefficient of the static lattice bulk mod 

 -4.87038000000000E+001  (* --- 2nd pressure derivative coefficient of the static lattice bulk mod 

  8.32000400000000E+010  (* Static lattice shear modulus/Pa at zero Pa *) 

 -4.84827300000000E+000  (* --- 1st pressure derivative coefficient of the static lattice shear mod 

 -1.18652500000000E+002  (* --- 2nd pressure derivative coefficient of the static lattice shear mod 

  1.69055600000000E+000  (* Vibrational parameter of the shear modulus *) 

  0                      (* 0=No Landau contribution, 1=2nd order, 2=Tricritical, 3=1st order *) 

  0                      (* 0=No magnetic contribution, 1=magnetic contribution *) 

  0                      (* No electronic contribution *) 

0                      (* 0=No cation disorder, 1=model of O’Neill and Navrotsky (1983,1984) *) 

0                      (* 0=No monovacancy defects, 1=monovacancy defects: Dorogokupets &…*) 

# Anharmonicity is described with perturbation theory of Oganov & Dorogokupets (2004): a=a0(V/V0)^z 

  60                     (* Number of Einstein modes *) 

  . 

  . 

 

 

5.3. Vinet's Equation of state 

 

The expressions of static Helmholtz energy, pressure and bulk modulus belonging to the 3
rd

 order 

Equation of State by Vinet (1987,1989) are given below: 
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Eqn. (2.8) illustrates that the Helmholtz energy is zero when the volume equals the static volume at 

zero pressure, st
V

0
. For large volume Helmholtz energy behaves asymptotically: 
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5.4. Keane's Equation of State 

 

The expressions of static Helmholtz energy, pressure and bulk modulus belonging to the 3
rd

 order 

Equation of State by Keane (1954) are given below: 
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st

V

V

0
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The parameter stK '
0  is the pressure derivative of bulk modulus at zero pressure, whereas stK '

∞  is the 

pressure derivative of isothermal bulk modulus at infinite pressure.  

Jacobs et al (2013) showed for Aluminium, that Keane's Equation of State has the advantage that 

shock-wave-reduced data and ab-initio predictions up to 1000 GPa can be accurately represented, 

whereas that was not possible with a 4
th

 order Birch-Murnaghan Equation of State. The description 

for Aluminium employing Keane's (1954) EoS  is present in file demo.mef. 

 

A part of the input file is given below, with the relevant lines in blue. 

 
<Al-30E-Keane>              (* Name of the substance *) 

   40.304000                (* Mass of the substance in gr/mol *) 

  1.00000000000000E+000     (* Number of atoms in 1 molecular formula unit *) 

 -8.33195291982642E+003     (* Static lattice energy in J/mol *) 

  9.87223791700162E-006     (* Volume/m3/mol at zero K and zero Pa *) 

  9.77267467875569E-006     (* Volume/m3/mol of the static lattice at zero Pa *) 

  3                         (* 1=Vinet, 2=Birch-Murnaghan, 3=Keane, 4=Qin EoS of the static lattice 

  4                         (* Order of Keane EoS static of the lattice *) 

  8.18497800000000E+010     (* Static lattice bulk modulus/Pa at zero Pa *) 
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  5.02000000000000E+000     (* Pressure derivative of the static lattice bulk modulus at zero Pa *) 

  2.34000000000000E+000     (* Pressure derivative of the static lattice bulk modulus at infinite... 

  0                         (* 0=No Landau contribution, 1=2nd order, 2=Tricritical, 3=1st order *) 

  0                         (* 0=No magnetic contribution, 1=magnetic contribution *) 

  1                         (* Free electron gas model *) 

# Cv=a*T*(V/V0)^gamma_el 

  6.66666700000000E-001     (* Electronic Gruneisen parameter, gamma_el *) 

  1.35000000000000E-003     (* Electronic coefficient, a, in J/mol/K/K *) 

  0                         (* 0=No cation disorder, 1=cation disorder: model of O'Neill and Navr 

  0                         (* 0=No monovacancy defects, 1=monovacancy defects: Dorogokupets & Oga 

# Anharmonicity is described with perturbation theory of Oganov & Dorogokupets (2004): a=a0(V/V0)^z 

  30                        (* Number of Einstein modes *) 

  1                         (* 1=Gruneisen expression by Al'tshuler et al, 1987 and 2=that by Stix 

#  j   Theta/K     Fraction          Gamma      Mode_m(q)   Gamma_inf  a0             z 

# --------------------------------------------------------------------------------------------- 

   1    12.696713  0.000000000E+000  2.1400000  2.0100000   0.7400000  0.000000E+000  0.0000000 

   2    29.113019  2.900029000E-004  2.1400000  2.0100000   0.7400000  0.000000E+000  0.0000000 

   3    45.530759  9.700097001E-004  2.1400000  2.0100000   0.7400000  0.000000E+000  0.0000000 

   4    61.948499  1.870018700E-003  2.1400000  2.0100000   0.7400000  0.000000E+000  0.0000000 

   5    78.366239  3.220032200E-003  2.1400000  2.0100000   0.7400000  0.000000E+000  0.0000000 

   .      .         .                 .          .           .          .              . 

   .      .         .                 .          .           .          .              . 

 

 

5.5. Equation of state by Qin (2008) 

 

The n-th order Birch-Murnaghan and n-th order Vinet EoS may result in problems with 

convergence of the energy at very large or very small volumes for n larger than 3. Relative to a n-th 

order Birch-Murnaghan EoS, a n-th order Vinet EoS is characterized by the feature that the 

Helmholtz energy cannot be written as an analytical function. 

To overcome these problems, Qin et al. (2008) developed a new equation of state which they tested 

on transition metals using DFT. The equation of state contains apart from st
V

0
 and st

K
0

, four other 

parameters p, q, m, n. The average static potential between the atoms in the crystal shows the 

correct asymptotical behavior at large volumes. 

Expressions for Helmholtz energy, pressure and bulk modulus are given below. 
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The Helmholtz energy is written such that it is zero at x=1. At infinite volume the Helmholtz 

energy has the asymptotic value: 
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Pressure 
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Bulk modulus 

[ ] ×
++−−+−+

=
qmpnnqmpnqmp

K
VK

st
st

)()())((
)(

0  

         [ ]{ +++++− −−−−−− 212)1(1 )1(2)3()( pxmpxmmexnq xpm  

         [ ]}212)1(1 )1(2)3()( qxnqxnnexmp xqn −−+−−++ −−−−−                           (5.25) 

 

 

The equation of state by Qin et al (2008) is a good alternative for a 4
th

 order Vinet equation of state. 

In Jacobs et al (2010, 2013) a multiple-Einstein model is given that accurately represents the 

thermodynamic properties of aluminium. In these works it was shown that the equation of state by 

Keane (1954) performs better than a 3
rd

 order Vinet and 4
th

 order Birch-Murnaghan equation of 

state. It turns out that models employing the equation of state by Qin et al (2008) and a 5
th

 order 

Birch-murnaghan perform equally well as a Keane equation of state. These models are included in 

file demo.mef. In Figure 5.1 some results are given compared to experimental data and with 

synthetic data calculated with the model employing Keane's (1954) equation of state. 

A part of the input file is given below. 

 
# 
 <Al-30E-Qin>                (* Name of the substance *) 

   40.304000                (* Mass of the substance in gr/mol *) 

  1.00000000000000E+000     (* Number of atoms in 1 molecular formula unit *) 

 -8.33195291982642E+003     (* Static lattice energy in J/mol *) 

  9.87507532890812E-006     (* Volume/m3/mol at zero K and zero Pa *) 

  9.77821726967774E-006     (* Volume/m3/mol of the static lattice at zero Pa *) 

  4                         (* 1=Vinet, 2=Birch-Murnaghan, 3=Keane, 4=Qin EoS of the static latti*) 

  4                         (* Order of Qin et al (2008) EoS of the static lattice *) 

  8.17693400000000E+010     (* Static lattice bulk modulus/Pa at zero Pa *) 

  5.25480300000000E+000     (* Coefficient "p" in the EoS of Qin et al 2008 *) 

  5.36980900000000E+000     (* Coefficient "q" in the EoS of Qin et al 2008 *) 

  0                         (* 0=No Landau contribution, 1=2nd order, 2=Tricritical, 3=1st order *) 

  0                         (* 0=No magnetic contribution, 1=magnetic contribution *) 

  1                         (* Free electron gas model *) 

# Cv=a*T*(V/V0)^gamma_el 

  6.66666700000000E-001     (* Electronic Gruneisen parameter, gamma_el *) 

  1.35000000000000E-003     (* Electronic coefficient, a, in J/mol/K/K *) 

  0                         (* 0=No cation disorder, 1=cation disorder: model of O'Neill and 

Navrotsky (1983,1984) *) 

  0                         (* 0=No monovacancy defects, 1=monovacancy defects: Dorogokupets & 

Oganov 2007 Phys Rev B 75:024115 *) 

# Anharmonicity is described with perturbation theory of Oganov & Dorogokupets (2004): a=a0(V/V0)^z 

  30                        (* Number of Einstein modes *) 

  1                         (* 1=Gruneisen expression by Al'tshuler et al, 1987 and 2=that by 

Stixrude & Lithgow-Bertelloni, 2005 *) 

#  j   Theta/K     Fraction          Gamma      Mode_m(q)   Gamma_inf  a0             z 

# --------------------------------------------------------------------------------------------- 

   1    12.696713  0.000000000E+000  2.0860910  4.2699600   1.1924480  0.000000E+000  0.0000000 

   2    29.113019  2.900029000E-004  2.0860910  4.2699600   1.1924480  0.000000E+000  0.0000000 

   3    45.530759  9.700097001E-004  2.0860910  4.2699600   1.1924480  0.000000E+000  0.0000000 

   4    61.948499  1.870018700E-003  2.0860910  4.2699600   1.1924480  0.000000E+000  0.0000000 

   5    78.366239  3.220032200E-003  2.0860910  4.2699600   1.1924480  0.000000E+000  0.0000000 

 

If parameters m and n are needed, the order of the EoS is 6, and the file should be extended as: 

 
  9.77821726967774E-006     (* Volume/m3/mol of the static lattice at zero Pa *) 

  4                         (* 1=Vinet, 2=Birch-Murnaghan, 3=Keane, 4=Qin EoS of the static latti*) 

  6                         (* Order of Qin et al (2008) EoS of the static lattice *) 

  8.17693400000000E+010     (* Static lattice bulk modulus/Pa at zero Pa *) 

  5.25480300000000E+000     (* Coefficient "p" in the EoS of Qin et al 2008 *) 

  5.36980900000000E+000     (* Coefficient "q" in the EoS of Qin et al 2008 *) 

  1.00000000000000E-009     (* Coefficient "m" in the EoS of Qin et al 2008 *) 

  1.00000000000000E-009     (* Coefficient "n" in the EoS of Qin et al 2008 *) 
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Fig. 5.1. Calculations for Aluminium given as solid curves were performed employing Qin et al's (2008) 

equation of state for the static lattice (see file demo.mef). Top-left: Hugoniot with an isentrope with entropy 

28.3 J/K/mol as inset. Melting on the Hugoniot takes place at about 135 GPa. Experimental data above that 

pressure are valid for liquid aluminium. These data were not taken into account in the optimization process 

of all experimental data. Examples of how to calculate Hugoniots and isentropes are given in chapter 17. 

Top-right: Volume-Pressure curve at 298 K and 1-bar adiabatic bulk modulus as inset. Bottom-left: 

Thermal expansivity at 1 bar (black), 50 GPa (blue), 100 GPa (green), 150 GPa (red). Open circles are 

synthetic data calculated with a model employing Keane's (1954) EoS. Bottom-right: heat capacity at 1 bar 

(black), 50 GPa (blue), 100 GPa (green), 150 GPa (red). Open circles are synthetic data calculated with a 

model employing Keane's (1954) EoS. Experimental data are given in Jacobs et al (2010, 2013) and in 

Jacobs & Oonk (2012) 
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6. Vibrational contributions 
 

The vibrational formalism is based on that described by Jacobs et al. (2013). Here we summarize 

the equations used in program ‘me’. In the method the VDoS is described with NE Einstein 

frequencies. To make the equations shorter we make use of the expressions: 
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==                                                                   (6.1) 

 

In eqn. (6.1) the j
th

 Einstein frequency is represented by νj, the j
th

 Einstein temperature by θj, 
temperature by T, h is Planck's constant and k Boltzmann's constant. This section gives expressions 

for the Helmholtz energy, A, entropy, S, isochoric heat capacity, CV, pressure, P, its isochoric 

temperature derivative, (∂P/∂T)V and isothermal bulk modulus, K. The vibrational contribution to 

Helmholtz energy is composed of a quasi-harmonic and anharmonic part. For the anharmonic part 

we use the perturbation formalism of Oganov and Dorogokupets (2003). The Helmholtz energy 

contribution of the j
th

 frequency for a 1 mole of substance with n atoms in the molecular formula 

unit is given by: 
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When the complete VDoS is considered, the total vibrational contribution to Helmholtz energy is 

written in terms of the weight or fraction in which the j
th

 frequency appears in the VDoS. 
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The total contributions are given by Jacobs et al. (2013). Program ‘me’ mostly uses Einstein 

expressions for a single frequency, which are than summed in procedures thermal_pressure() and 

single_vibration_property() of unit vibrations.pas. Therefore, we give expressions for a single 

Einstein frequency below. We retain the index j in the expressions, indicating that they appear in a 

summation. 

 

 

6.1. Grüneisen parameters, vibrational contribution to shear modulus 

Einstein frequencies used in eqn. (6.3) are volume dependent, and not temperature dependent. In 

‘me’ two expressions can be defined for the volume dependence of frequencies.  

 

A. The expressions by Alt’shuler et al. (1987) are in terms of xj. The Grüneisen parameter is given 

by: 
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With the definition for Grüneisen parameter, the frequencies are obtained. 
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The subscript ‘0’ in eqn. (6.4-6.8) and refers to the zero temperature and zero pressure condition. 

The Grüneisen parameter at infinite pressure is defined by γ∞. 

 

 

B. The expressions used by Stixrude and Lithgow-Bertelloni (2005) are: 
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In eqn. (6.9) the isotropic strain, ϕ, is given by: 
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From the definition of the Grüneisen parameter we find: 
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Grüneisen parameters appear in the expressions of vibrational contribution to pressure, its 

temperature derivative at constant volume and bulk modulus. The property given by eqn. (6.12) 

appears only in bulk modulus. 

The coefficients )1(
, jiia  and )2(

, jiikk
a  are related to the Grüneisen parameters and mode-q parameters as: 
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This formalism enables treatment of the elastic constants and shear modulus. Shear modulus is: 
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The shear strain derivatives ns,j appear in the shear modulus contribution are given by: 
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6.2. Intrinsic anharmonicity 

Expressing thermal pressure, its isochoric temperature derivative and bulk modulus, requires 

volume derivatives of intrinsic anharmonicity, aj, defined as: 
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We follow Oganov and Dorogokupets (2003) by writing for the anharmonicity parameter: 
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In (6.18) volume V0 refers to the real physical volume at zero temperature and zero pressure (not 

the static lattice volume). The property a0,j is the anharmonicity parameter at zero temperature and 

zero pressure. The first derivative of the anharmonicity aj(V) with respect to volume is present in 

the thermal pressure, its isochoric temperature derivative, and the isothermal bulk modulus. The 

second derivative with respect to volume is only present in the isothermal bulk modulus. The first 

and second derivatives are given by: 
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6.3. Thermodynamic contributions 

Thermodynamic properties below are expressed for the j
th

 Einstein frequency in the VDoS. 
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Isochoric heat capacity 
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Temperature derivative of thermal pressure 
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Isothermal bulk modulus 
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Landau contributions 
M.H.G. Jacobs, Institute of Metallurgy, TU-Clausthal, Germany, June 20th, 2016, last update June 5th, 2020 

 

 

 

This part of the manual contains physical effects which can be represented by the Landau 

formalism. 

The books of Putnis (1992) and Carpenter (1992) form the basis for programming a simple form of 

the Landau theory in program ‘me’. The thermodynamic properties calculated from the Landau 

theory are considered as contributions, added to other physical contributions of the Gibbs or 

Helmholtz energy, such as static, vibrational, electronic, magnetic and defect contributions. We 

derive the Landau contribution to the Gibbs energy. Three cases are considered; the 2
nd

 order phase 

transition, the tricritical case and the case of the 1
st
 order phase transition. 
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7. General equations including all physical effects 
 

The Gibbs energy including all physical effects is written as: 

 

  ),(),(),( TPGTPGTPG L
total +=                                                      (7.1) 

 

In eqn. (7.1) the term G(P,T) is calculated in ‘me’ from the Helmholtz energy, for all contributions 

except for the Landau contribution. The term GL(P,T) denotes the Gibbs energy due to the Landau 

contribution, which is considered as an ordering contribution. From eqn. (7.1) the volume is 

calculated as: 
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Thermal expansivity is calculated as: 
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In eqn. (7.4), α is the thermal expansivity which is calculated in ’me’ as if the Landau contribution 

were not present. 

The bulk modulus is calculated as: 
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In eqn. (7.6), K is the isothermal bulk modulus calculated in ’me’ as if the Landau contribution 

were not present. 

The other thermodynamic properties such as entropy, enthalpy, heat capacity follow trivially from 

eqn. (7.1). Once these are known, the isochoric heat capacity is calculated. 

The Gibbs energy contribution is written as an expansion of the order parameter Q, which has 

values between zero and one. Q is defined such that it is zero in the high-temperature phase (HT) 

and it has values between zero and one in the low-temperature phase (LT). At zero Kelvin the LT 

phase is stable and the order parameter Q=1. At 1 bar the Gibbs energy is given by: 
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1 604020 +++−= QcQbQTTaG cL                                              (7.7) 

 

We make use of expression (21), p183 of Carpenter (1992) and introduce pressure in eqn. (7.7): 
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Eqn. (7.8) is rewritten to: 
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We recast eqn. (7.9) to: 
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  PbbB v+= 0  

  Pccc v+= 0  

  P
a

a
TT v
cc −= 0  

 

Eqn. (7.10) illustrates that coefficients B and c are linear functions of pressure and a is a constant. 

The critical temperature Tc is taken as a linear function of pressure and represents the phase 

boundary between the HT and LT states. Expressing the critical temperature in the inverse 

Clapeyron slope, h, we arrive at: 

 

  PhTT cc ⋅+= 0                                                                   (7.11) 

 

The phase boundary is therefore approximated as a straight line. 
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8. The 2
nd
 order phase transition (B>0 and c=0) 

 

For a second order phase transition the contribution to Gibbs energy is given by eqn. (7.10): 
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From the equilibrium condition: 
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By definition Q=1 at T=0 and therefore: 
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As has been shown in eqn. (7.10), a is a constant and B and Tc are linear expressions in pressure. 

From eqn. (8.4), (7.10) and (7.11) we find that B is composed of the coefficients b0=aTc
0
, and 

bv=ah. 

Substituting eqn. (8.4) into eqn. (8.3) and (8.1) gives: 
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We rewrite eqn. (8.5) as: 
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Inserting eqn. (8.7) into (8.6) gives: 
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We will make use of the following derivatives by using eqn. (7.11): 
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Thermodynamic properties are derived from eqn. (8.8). 
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a. Entropy 
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b. Enthalpy 
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c. Heat capacity 
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d. Volume 

  







−−=








∂

∂
= 22

2

1
1

2

1
QahQ

P

G
V

T

L
L                                                  (8.13) 

 

e. Isothermal bulk modulus 

From eqn. (8.13) we have: 
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Note that KL is infinity at T=0, but that VL/KL=0 at T=0 and therefore the last term does not give 

problems in eqn. (7.6). 

 

f. Thermal expansivity 

From eqn. (8.13) we have: 
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8.1. Correction for 3
rd
 law 

Figure 8.1. shows that a 2
nd

 order phase transition takes place in SiO2 when it transforms from the 

stishovite phase to the SiO2(I) phase having the CaCl2 structure. Stishovite is the high-temperature 

phase and does not incorporate a Landau contribution (Q=0). Because it is the stable phase at zero 

temperature and zero pressure, it is unnecessary to correct the entropy for the 3
rd

 law. The situation 

is different for quartz in which the ordered form is α-quartz, stable at zero temperature and zero 

pressure. In α-quartz a Landau contribution must be incorporated because it is the low-temperature 

phase. Quartz is better modelled by the tricritical case discussed in the next section 9. However for 

the 2
nd

 order case and the tricritical case the corrections in entropy and Gibbs energy are the same. 

The Landau contribution to entropy at zero Kelvin and zero pressure would be -0.5a at all pressures, 

violating the 3
rd

 law of entropy. The entropy can be corrected for by adding +0.5a to it. Therefore 

the Landau contribution at zero Kelvin will be zero at all pressures, just as for the vibrational 

contribution. The 3
rd

 law correction only affects entropy and Gibbs energy and the correction terms 

must be added to the expressions for the total Gibbs energy and total entropy: 
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  aTG
rdlaw

2

13 −=                                                                 (8.17) 

 

Eqn. (8.17) should be added to eqn. (7.1) to arrive at the complete expression for the Gibbs energy. 

In program ‘me’ a switch can be set in the input file to let the 3
rd

 law correction take effect or not. 

 

 

 
 

Fig. 8.1. Phase diagrams of SiO2 determined by Jacobs et al (2019). The left frame illustrates that stishovite 

(st) is the high-temperature phase stable at 0 K and 0 Pa, and it does not require a correction for the 3
rd

 law. 

The right frame illustrates that α-quartz (qtz-a) is the low-temperature phase in which ordering takes place. 

In that phase a correction for the 3
rd

 law is necessary. 

 

 

8.2. Input file for ‘me’ 

The relevant part of the input file describing the thermodynamic properties of SiO2 (stishovite) and 

SiO2(I) together is given below. The part dealing with the Landau contribution is indicated in blue. 

 
<Stishovite>            (* Name of the substance *) 

   60.084000            (* Mass of the substance in gr/mol *) 

  3.00000000000000E+000 (* Number of atoms in 1 molecular formula unit *) 

 -9.09076951448543E+005 (* Static lattice energy in J/mol *) 

  1.39990948889939E-005 (* Volume/m3/mol at zero K and zero Pa *) 

  1.38727052441935E-005 (* Volume/m3/mol of the static lattice at zero Pa *) 

  2                     (* 1=Vinet, 2=Birch-Murnaghan, 3=Keane, 4=Qin EoS of the static lattice *) 

  3                     (* Order of Birch-Murnaghan EoS of the static lattice *) 

  3.19322800000000E+011 (* Static lattice bulk modulus/Pa at zero Pa *) 

  4.07984700000000E+000 (* Pressure derivative of the static lattice bulk modulus at zero Pa * 

  2.31249600000000E+011 (* Static lattice shear modulus/Pa at zero Pa *) 

  1.80590800000000E+000 (* Pressure derivative of the static lattice shear modulus at zero Pa 

  3.39836400000000E+000 (* Vibrational parameter of the shear modulus *) 

  1                     (* 0=No Landau contribution, 1=2nd order, 2=Tricritical, 3=1st order*) 

  1.25564640000000E-002 (* Landau parameter: a *) 

  6.27823200000000E+006 (* Landau Clapeyron slope Pa/K of the critical phase boundary *) 

 -7.07134740000000E+003 (* Landau critical temperature at zero pressure Tc
0
 *) 

  0.00000000000000E+000 (* Landau 3rd law entropy correction: 0=unnecessary, 1=necessary *) 

  0                     (* 0=No magnetic contribution, 1=magnetic contribution *) 

  0                     (* No electronic contribution *) 

0                     (* 0=No cation disorder, 1=model of O’Neill and Navrotsky (1983,1984) *) 

0                     (* 0=No monovacancy defects, 1=monovacancy defects: Dorogokupets &…*) 

…. 
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9. The tricritical phase transition (B=0 and c>0) 
 

The tricritical phase transition is an intermediate case between 1
st
 order and 2

nd
 order phase 

transitions. This is the case for example for calcite, CaCO3. It gives a symmetry reduction from 

mR3  to cR3  with doubling of the c-axis length, which introduces extra reflections into the 

diffraction pattern. As calcite is heated the intensity of these extra super lattice reflections decreases 

as the CO3 groups disorder and that is a measure for the order parameter Q. Holland and Powell 

(1998) used the tricritical case also for quartz. The Gibbs energy is given by eqn. (7.10): 
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The equilibrium condition gives 
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By definition Q=1 at T=0 and therefore: 
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As has been shown in eqn. (7.10), a is a constant and c and Tc are linear expressions in pressure. 

From eqn. (9.4), (7.10) and (7.11) we find that c is composed of the coefficients c0=aTc
0
, and cv=ah. 

Substituting eqn. (9.4) into eqn. (9.3) gives: 
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From eqn. (9.1) and (9.4) we have: 
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Using eqn (9.5) again we have: 
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In the derivation we make use of temperature and pressure derivatives of the order parameter. By 

using eqn. (9.5) and (7.11), these derivatives are: 
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Thermodynamic properties are derived from the Gibbs energy in the same way as for the 2
nd

 order 

case. 

 

a. Entropy 
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b. Enthalpy 
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c. Heat capacity 
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d. Volume 

Starting from eqn. (9.7) we have: 
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With eqn. (9.9) we have: 

 

  







+−=−−=−−=

ccc

c
L

T

T
QhaQ

T

T
haQahQh

T

TQaT
ahQV

4226

2

2
6

3

2

2

1

2

1

3

1

4

2

3

1
 

 

With eqn. (9.5) we have: 
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e. Isothermal bulk modulus 

From eqn. (9.13) we have: 
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f. Thermal expansivity 

From eqn. (9.13) we have: 
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9.1. Correction for 3
rd
 law 

Apart from the definition of the order parameter Q, the expression for the Landau contribution to 

entropy in the tricritical case, eqn. (9.10) is the same as that for the 2
nd

 order case. Therefore the 

entropy at zero temperature equals -0.5a for all pressures just as for the 2
nd

 order case. The same 

discussion as in section 8 applies of how the entropy must be corrected for to make the 3
rd

 law of 

entropy applicable. The corrections that should be added to Gibbs energy and entropy are: 
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Eqn. (9.17) should be added to eqn. (7.1) to arrive at the complete expression for the Gibbs energy. 

In program ‘me’ a switch can be set in the input file to let the 3
rd

 law correction take effect or not. 

 

 

9.2. Input file for ‘me’ 

The relevant part of the input file describing the thermodynamic properties of SiO2 (α-quartz) and 

SiO2 (β-quartz) together is given below. The part dealing with the Landau contribution is indicated 

in blue. 

 
<Quartz-a/b>             (* Name of the substance *) 

   60.084000             (* Mass of the substance in gr/mol *) 

  3.00000000000000E+000  (* Number of atoms in 1 molecular formula unit *) 

 -9.45155560567632E+005  (* Static lattice energy in J/mol *) 

  2.34651170246816E-005  (* Volume/m3/mol at zero K and zero Pa *) 

  2.30353458166755E-005  (* Volume/m3/mol of the static lattice at zero Pa *) 

  2                      (* 1=Vinet, 2=Birch-Murnaghan, 3=Keane, 4=Qin EoS of the static lattice *) 

  3                      (* Order of Birch-Murnaghan EoS of the static lattice *) 

  4.26232200000000E+010  (* Static lattice bulk modulus/Pa at zero Pa *) 

  5.36922300000000E+000  (* Pressure derivative of the static lattice bulk modulus at zero Pa  

  4.97346500000000E+000  (* Static lattice shear modulus/Pa at zero Pa *) 

  1.10000000000000E+000  (* Pressure derivative of the static lattice shear modulus at zero Pa 

  2.40000000000000E+000  (* Vibrational parameter of the shear modulus *) 

  2                      (* 0=No Landau contribution, 1=2nd order, 2=Tricritical, 3=1st order  

  1.14613752800000E+001  (* Landau parameter: a *) 

  4.22585925000000E+006  (* Landau Clapeyron slope Pa/K of the critical phase boundary *) 

  8.47000000000000E+002  (* Landau critical temperature at zero pressure Tc
0
 *) 
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  1.00000000000000E+000  (* Landau 3rd law entropy correction: 0=unnecessary, 1=necessary *) 

  0                      (* 0=No magnetic contribution, 1=magnetic contribution *) 

0                      (* No electronic contribution *) 

0                      (* 0=No cation disorder, 1=model of O’Neill and Navrotsky (1983,1984) *) 

0                      (* 0=No monovacancy defects, 1=monovacancy defects: Dorogokupets &…*) 

. 

. 
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10. First order transition (B<0, a>0, c>0) 
 

The Gibbs energy expression is given by eqn. (7.10): 
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Applying the equilibrium condition gives: 
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In Figure 8.23 of Putnis’ (1992) book, Gibbs energies are plotted as function of the order parameter. 

The transition temperature, TR, is characterized by the minimum in the Gibbs energy curve and its 

zero point where Q=Q0. The Gibbs energy starts at Q=0 having the value zero, goes through a 

maximum when Q increases, and subsequently passes a minimum which is located at GL=0. The 

transition temperature is given by two equations as: 
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Eqn (10.4) and (10.5) give: 
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Eliminating the first term by subtraction gives: 
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Substituting eqn. (10.6) into the first equation gives: 
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Eqn. (10.7) indicates that the transition temperature is larger than the critical temperature. We 

express thermodynamic properties in terms of the transition temperature TR. From eqn. (10.6) and 

(10.7) it follows that: 
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Parameter Q0 is the order parameter when the temperature equals TR. Substituting eqn. (10.7) into 

the expression for the Gibbs energy, eqn. (10.1) becomes:  
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The Gibbs energy may be expressed in Q0 by substituting B with eqn. (10.6): 
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Using eqn. (10.3) the order parameter is expressed in TR: 
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The order parameter is expressed in the order parameter Q0 by combining eqn (10.11) and (10.6) 

and the fact that Q=Q0 at T=TR: 
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The phase boundary between the two phases is expressed in the inverse Clapeyron slope, h, and it 

is assumed to be a straight line: 
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a. Entropy 

Entropy is derived from eqn. (10.10) as: 
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The second term on the right-hand side of this equation equals zero, which can be found by 

substituting eqn. (10.11): 
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The entropy becomes:    2

2

1
aQSL −=                                               (10.15) 

 

b. Volume 

Volume contribution is derived from eqn. (10.10) by differentiation to pressure. In that case also 

the order parameter given by (10.12) must be differentiated to pressure. From the condition that 

Q=1 at zero Kelvin, it appears that one of the parameters in (10.12) is a function of pressure by 

virtue of eqn. (10.13). The condition gives: 
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We select ‘c’ to be pressure dependent, and treat ‘a’ and Q0 as constants. In that case: 
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Differentiating the Gibbs energy contribution, eqn. (10.10) to pressure gives: 
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The first term on the right-hand side equals zero, by virtue of eqn. (10.14), and the volume 

contributions becomes: 
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By substitution Q0=0, we obtain the expression for the tricritical case, eqn. (9.13). 

 

c. Heat capacity 

Heat capacity is expressed as: 
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In this case we must differentiate the order parameter, eqn. (10.12) to temperature. We use the 

expression for c in eqn. (10.17) to find that ( ) 0=∂
∂

PT
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Heat capacity becomes: 
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When Q0=0, we obtain the expression for the tricritical case, eqn. (9.12). That is found by 

substituting Q0=0 in the expression for the order parameter, eqn. (10.12) and in the expression for c 

in eqn. (10.17). 

 

d. Thermal expansivity 

To obtain αLVL in expression (7.4) we use the Maxwell relation: 
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In that case we need the pressure derivative of the order parameter, eqn. (10.12): 
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Using expression (10.17): 
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In tricritical case, Q0=0, we have:  
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With (10.17), c=aTR, and Q
4
=(a/c)(TR-T) we have: 
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e. Bulk modulus 

To obtain VL/KL in expression (7.4) we use eqn. (10.19) for volume: 
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Because the pressure derivative (∂c/∂P)T does not depend on pressure: 
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The pressure derivative of Q is given by eqn. (10.24). The pressure derivative of c is given by 

(10.25). 

In the tricritical case Q0=0. Using eqn. (10.17) for c=aTR, eqn. (10.12) for Q
4
=(a/c)(TR-T), and eqn. 

(10.25) for (∂c/∂P)T=ah, it follows eqn. (9.14). 

 

 

10.1. Entropy and volume differences along the phase boundary; determine a, B and c 

We fix the Clapeyron slope for the phase transition. The phase transition is prescribed by a straight 

line, given by eqn. (10.13). 
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In eqn. (10.29), ∆V, and ∆S are volume and entropy difference between the high and low 

temperature phase at the phase boundary with temperature TR. 
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Using eqn. (10.15) and (10.19) and setting T=TR: 
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The transition enthalpy is: 
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The coefficients are determined as follows. We select the inverse Clapeyron slope, h, and 

temperature TR
0
 on the phase boundary at 1 bar, by using experimental values. We take the 

experimental value for ∆H at 1 bar at the transition. Because the phase boundary is assumed to be a 

straight line, it does not depend on temperature and pressure. Next we select a value for Q0, e.g, 0.7. 



 39 

Eqn. (10.33) gives than the value for a. The value for ‘c’ is than calculated by eqn. (10.17). The 

value of B is calculated by eqn. (10.6).  

 

 

10.2. Example: Quartz (αααα,ββββ) 

Hemingway (1994) established a transition enthalpy of 627.63 J/mol at 1 bar and 847 K. The 

transition entropy is than 0.741 J/K/mol. The phase boundary between α and β quartz is given by: 

 
  GPaPTR /63826.236847 +=  

 

Because h=∆V/∆S=2.3663826×10
-7

 Pa
-1

, the volume difference is:   ∆V=1.7535×10
-7

 m
3
/mol 

 

We estimate the value of Q0=0.7. Q0 is taken constant. At P=0 we have: 
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10.3. Entropy at 0 K and the 3
rd
 law of thermodynamics 

At zero Kelvin, the entropy is obtained from eqn. (10.25) as: 
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The entropy is therefore negative, just as found in section (10.2), violating the 3
rd

 law of 

thermodynamics. 

Here we correct the entropy for the 3
rd

 law correction. The total entropy of the HT or LT form is 

described with a single equation derived from eqn. (7.1). 
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For the entropy correction we subtract the Landau contribution at 0 K: 
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Equation (7.1) for the Gibbs energy is than corrected as: 
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10.4. Input file for ‘me’ 

The relevant part of the input file describing the thermodynamic properties of SiO2 (α-quartz) and 

SiO2 (β-quartz) together is given below. The part dealing with the Landau contribution is indicated 

in blue. 

 

 
<Quartz-a/b>             (* Name of the substance *) 

   60.084000             (* Mass of the substance in gr/mol *) 

  3.00000000000000E+000  (* Number of atoms in 1 molecular formula unit *) 

 -9.45129758567632E+005  (* Static lattice energy in J/mol *) 

  2.34675261797908E-005  (* Volume/m3/mol at zero K and zero Pa *) 

  2.30557293464477E-005  (* Volume/m3/mol of the static lattice at zero Pa *) 

  2                      (* 1=Vinet, 2=Birch-Murnaghan, 3=Keane, 4=Qin EoS of the static lattice *) 

  3                      (* Order of Birch-Murnaghan EoS of the static lattice *) 

  4.28737200000000E+010  (* Static lattice bulk modulus/Pa at zero Pa *) 

  5.28565700000000E+000  (* Pressure derivative of the static lattice bulk modulus at zero Pa  

  0.00000000000000E+000  (* Static lattice shear modulus/Pa at zero Pa *) 

  0.00000000000000E+000  (* Pressure derivative of the static lattice shear modulus at zero Pa 

  0.00000000000000E+000  (* Vibrational parameter of the shear modulus *) 

  3                      (* 0=No Landau contribution, 1=2nd order, 2=Tricritical, 3=1st order  

  6.27270000000000E+002  (* Landau parameter: transition enthalpy/J/mol at 1 bar *) 

  4.22585925000000E+006  (* Landau Clapeyron slope Pa/K of the critical phase boundary *) 

8.47000000000000E+002  (* Landau critical temperature at zero pressure Tc
0
 *) 

  7.00000000000000E-001  (* Order parameter at the transition Q0 *) 

  1.00000000000000E+000  (* Landau 3rd law entropy correction: 0=unnecessary, 1=necessary *) 

  0                      (* 0=No magnetic contribution, 1=magnetic contribution *) 

0                      (* No electronic contribution *) 

0                      (* 0=No cation disorder, 1=model of O’Neill and Navrotsky (1983,1984) *) 

0                      (* 0=No monovacancy defects, 1=monovacancy defects: Dorogokupets &…*) 

. 

. 

. 

. 
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Magnetic contributions 
M.H.G. Jacobs, Institute of Metallurgy, TU-Clausthal, Germany, June 24th, 2016, last update June 5th, 2020 

 

 

 

This part of the manual contains a description for the magnetic contribution derived from Inden’s 

(1981) formalism. 

Some basic approximate formulations of Inden’s (1981) formalism are given by Hillert and Jarl 

(1981). 

The thermodynamic properties calculated from Inden’s (1981) formalism are considered as 

contributions, added to other physical contributions of the Gibbs or Helmholtz energy, such as 

static, vibrational, and electronic contributions.  
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11 Inden’s (1981) method for magnetic lambda transitions 
 

Inden’s (1981) method is an empirical theory for the description of magnetic lambda transitions, 

originally developed for metals. The theory formulates expressions for the isobaric heat capacity 

from which the Gibbs energy is derived. Because Inden’s model results in complicated expressions 

for the Gibbs energy, Hillert and Jarl (1979) have simplified them by developing the heat capacity 

in MacLaurin series in which only three terms are taken into account. These approximate 

expressions for thermodynamic properties are widely used in the Calphad community. The 

disadvantage of using only three terms in the series expansion is that the results deviate from 

Inden’s original model, especially near the critical point. The series in the formalism are constants 

which can be calculated beforehand. In XiPT these constants are calculated for each end member in 

each phase at reading-in the input data file. We follow that approach in ‘me’ too. Therefore treating 

many terms in the series expansion is computationally just as cheap as using only 3 terms; there is 

no reason to truncate the series expansion after just three terms. The full series expansion is not 

given in the literature. It is given below. 

 

We have modified Inden’s original formalism by writing the same expressions not for the isobaric 

heat capacity, but for the isochoric heat capacity. The advantage is that an expression for the 

Helmholtz energy can be derived, which serves as a contribution to the total expression for the 

Helmholtz energy composed of static, vibrational, and electronic contributions, such as 

demonstrated by Jacobs and de Jong (2009). Additionally the formalism is reconstructed in such 

way that the magnetic contribution to entropy is zero at zero temperature, see Jacobs and de Jong 

(2009). Contrasted to Calphad the 3
rd

 law of thermodynamics is obeyed in the formalism presented 

here. 

 

 

11.1. Derivation of thermodynamic properties 

The heat capacity is written as: 
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In Eqn’s (11.1) and (11.2) τ represents T/Tc with Tc the critical temperature and β the average 

magnetic moment expressed in Bohr-magneton. In Inden’s formalism the magnetic moment is 

assumed temperature independent. Values for m and n are larger than 1. For the benefit of 

integration to temperature, these expressions are developed in MacLaurin series by Hillert and Jarl 

(1979), which we recast as: 
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Convergence of the series to with 0.1% in heat capacity is achieved after about 20 terms for Nickel. 

After integration to temperature at constant volume one finds the Helmholtz energy and entropy 

below: 
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The entropy is zero at zero Kelvin, commensurate with the 3
rd

 law of thermodynamics. At infinite 

temperatures it is +naRln(1+β) in accordance with quantum mechanics, see e.g. Wu et al. (2009). 

Constant na represents the number of atoms giving rise to magnetic contribution in a molecular 

formula unit, for instance, in Fe2SiO4 (fayalite) this number would be 2. The simplified expression 

for entropy used in the Calphad community, has the negative value of -naRln(1+β) at zero 

temperature, and zero at infinite temperature. The energy in our formalism is defined zero at 

infinite temperature leading to a magnetic contribution to energy at zero temperature and zero 

pressure relative to the lattice without magnetic interactions.  

The coefficients a1 and a2 are written as (see section 11.4): 
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The magnetic contribution to thermodynamic properties is therefore described in terms of m, n and 

p. The coefficient p denotes the ratio of the magnetic energy above the Curie temperature and the 

total magnetic energy. In formula: 
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Some useful derivatives are: 
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Because in this formalism the magnetic properties are only temperature dependent, the Gibbs 

energy contribution equals that of the Helmholtz energy contribution. The enthalpy contribution 

equals the energy contribution. The magnetic contribution to isobaric heat capacity and 

isochoric heat capacity are equal. The formalism does not change the total volume, thermal 

expansivity and bulk modulus. 
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11.2. Limiting values for magnetic contributions to thermodynamic properties  

 

Helmholtz energy at T=0 

The Helmholtz energy at T = 0 is derived from eqn. (11.5) and (11.6): 

 

  )1ln()( βτλ +⋅⋅= RTgnA a                                                          (11.5) 
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Rewrite (11.5) to: 
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Entropy at T=0 

Combining eqn. (11.8) and (11.21) gives: 
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Energy at T=0 

Combining eqn. (11.23) and (11.24): 
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Isochoric heat capacity at T=0 

Combining eqn. (11.9) and (11.19): 
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Eqn. (11.26) holds when m>1, which is normally the case. 

 

Helmholtz energy expression at T→→→→∞∞∞∞ 
The Helmholtz energy at T = 0 is derived from eqn. (11.5) and (11.7): 

 

  )1ln()( βτλ +⋅⋅= RTgnA a                                                          (11.5) 
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Entropy expression at T→→→→∞∞∞∞ 

Combining eqn. (11.8) and (11.22): 
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Isochoric heat capacity expression at T→→→→∞∞∞∞ 

Combining eqn. (11.9) and (11.20): 
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11.3. Three terms in the MacLaurin series: Calphad formalism and repairing it for 3
rd
 law 

We derive the Helmholtz energy starting from eqn. (11.5). In the Calphad formalism, m=3 and n=5 

and just 3 terms in the series expansion are taken into account. 

 

A. For temperatures below the critical temperature we have with eqn. (11.6): 

 

Taking 3 terms in (11.6) gives: 
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Inserting values m=3 and n=5 gives: 
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From eqn. (11.12) and (11.13) we have: 
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From eqn. (11.10) we have: 
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From eqn. (11.11) we have: 
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We use the expression by Dinsdale (1991): 
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We insert eqn. (11.34) into (11.32) and (11.33) to arrive at: 
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We evaluate the last term in eqn. (11.30) by inserting (11.35) and (11.36): 
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Next insert eqn. (11.34) for D in the parenthesis term: 
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Insert eqn. (11.37) and (11.32) into (11.30): 
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The Helmholtz energy is than: 
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Comparing with Dinsdale (1991) we have: 
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  1)1,()1( −≤=≤ ττ Calphadgg                                                       (11.39) 

 

The reason for the difference is that in the Calphad expressions the magnetic entropy at zero Kelvin 

is negative, violating the 3
rd

 law. That is more clearly seen in the Calphad expression above the 

critical temperature: 

 

B. For temperatures above the critical temperature we have with eqn. (11.7): 

 

Taking 3 terms in (11.7): 
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We insert n=5: 
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Next insert eqn. (11.36): 
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The Helmholtz energy becomes: 
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At infinite temperature we have: 
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Eqn. (11.41) is the same result as the general result, eqn. (11.27). 

 

Note that by comparing Dinsdale (1991): 
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  1)1,()1( −>=> ττ Calphadgg                                                       (11.44) 

 

Eqn. (11.44) is consistently the same result as (11.39). When the Calphad expression by Dinsdale 

(1991), eqn. (11.43) is used we see that the magnetic contribution to Helmholtz energy is zero at 

infinite temperature contrasted to the quantum mechanical result, see e.g. Wu et al. (2009). 

 

Note: 

The Calphad formalism cannot be combined with the vibrational formalism programmed in ‘me’ 

because the magnetic contribution to entropy is negative at T=0, resulting in a negative total 
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entropy at T=0 when all physical contributions are summed. To repair the Calphad formalism 

such that the 3
rd
 law of thermodynamics is obeyed requires:  

 

  )1ln()(, βλλ ++= RnCalphadSS a
corrected  

  )1ln(]1),([, βτλ +⋅−⋅= RTCalphadgnA a
corrected  

 

 

The corrected model has been applied to Fe2SiO4 (fayalite) by Jacobs and de Jong (2009), see also 

section 14 of this manual. 
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11.4. Derivation of the constants a1 and a2, eqn. (11.10) and (11.11) 

We start from eqn. (11.3) and (11.4) for the isochoric heat capacity. Next we derive the entropy by 

integration. The constants a1 and a2 are determined by demanding that the entropy at infinite 

temperature equals +naRln(1+β) in accordance with quantum mechanics, see e.g. Wu et al (2009). 

 

We use the thermodynamic definition:  
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Integrating (11.3) to temperature gives: 
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For temperatures above the critical temperature we find by integration of eqn. (11.4) between 1 and 

τ and adding eqn. (11.47): 
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At infinite temperature eqn. (11.48) with the constraint gives: 
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Eqn. (11.49) gives: 
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With eqn. (11.50) we can express a2 in a1: 
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From the definition of ‘p’, eqn. (11.14), and integration of (11.3), (11.4) we find: 
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We insert the abbreviations (11.12) and (11.13) defined in section 11.1 into eqn. (11.56): 
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Next we combine eqn. (11.57) with eqn. (11.51) to express a1 and a2 in p, n, and m: 
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Expressions (11.58) is identical with eqn. (11.10) and expression (11.59) is identical with eqn. 

(11.11) as we wanted to proof. 
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11.5. Example of input in ‘me’ 

An example of a part of an input file for FeO is given below. Lines dealing with magnetic 

contributions to thermodynamic properties are marked in blue. 

For iron silicates magnetism often appears in combination with crystal field. An example of input 

for Fe2SiO4 (fayalite) requiring more terms in the McLaurin expression is given in section 14. 

Some notes are given in section 14.5 for obtaining physical contributions to thermodynamic 

properties. 

 

 
# 

 FeO                      (* Name of the substance *) 

   71.846000              (* Mass of the substance in gr/mol *) 

  2.00000000000000E+000   (* Number of atoms in 1 molecular formula unit *) 

 -2.88285665810131E+005   (* Static lattice energy in J/mol *) 

  1.21895288889273E-005   (* Volume/m3/mol at zero K and zero Pa *) 

  1.20885034259776E-005   (* Volume/m3/mol of the static lattice at zero Pa *) 

  2                       (* 1=Vinet, 2=Birch-Murnaghan, 3=Keane, 4=Qin EoS of the static lattice *) 

  4                       (* Order of Birch-Murnaghan EoS of the static lattice *) 

  1.83263700000000E+011   (* Static lattice bulk modulus/Pa at zero Pa *) 

 -2.93770100000000E+000   (* --- 1st pressure derivative coefficient of the static lattice …*) 

  3.02744100000000E+000   (* --- 2nd pressure derivative coefficient of the static lattice …*) 

  6.21146800000000E+010   (* Static lattice shear modulus/Pa at zero Pa *) 

 -4.64352400000000E+000   (* --- 1st pressure derivative coefficient of the static lattice …*) 

 -2.25237700000000E+001   (* --- 2nd pressure derivative coefficient of the static lattice …*) 

 -2.09060900000000E+000   (* Vibrational parameter of the shear modulus *) 

  0                       (* 0=No Landau contribution, 1=2nd order, 2=Tricritical, 3=1st order… 

  1                       (* 0=No magnetic contribution, 1=magnetic contribution *) 

  51                      (* Magnetic: number of terms in the MacLaurin series expansion >2 *) 

  2.80000000000000E-001   (* Magnetic: Ratio Energy(tau>1)/total Energy for magnetic transition 

  1.91015600000000E+002   (* Magnetic: Critical temperature Tc *) 

  4.00000000000000E+000   (* Magnetic: magnetic moment in Bohr magneton *) 

  3.00000000000000E+000   (* Magnetic: exponent (m) in Inden's (1981) expression for Cv below Tc 

  5.00000000000000E+000   (* Magnetic: exponent (n) in Inden's (1981) expression for Cv above Tc 

  1.00000000000000E+000   (* Magnetic: number of magnetic atoms per formula unit *) 

  1                       (* Free electron gas model *) 

# Cv=a*T*(V/V0)^gamma_el 

  0.00000000000000E+000   (* Electronic Gruneisen parameter, gamma_el *) 

3.86900000000000E-003   (* Electronic coefficient, a, in J/mol/K/K *) 

0                       (* 0=No cation disorder, 1=model of O’Neill and Navrotsky (1983,1984) *) 

0                       (* 0=No monovacancy defects, 1=monovacancy defects: Dorogokupets &…*) 

. 

. 

...etc 
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Electronic contributions 
M.H.G. Jacobs, Institute of Metallurgy, TU-Clausthal, Germany, July 15th, 2016, last update June 5th, 2020 

 

 

 

This part of the manual contains model descriptions for the electronic contribution. Three models 

are programmed in ‘me’. The first one is the free electron gas model. The second one is an 

extended free electron gas model, including the free electron gas model, and which is used for 

parameterizing the heat capacity resulting from electron-phonon coupling, such as is the case for 

platinum and nickel. The last case is the crystal-field model, required for representing low-

temperature heat capacity of fayalite Fe2SiO4. 

The thermodynamic properties calculated from these methods are considered as contributions, 

added to other physical contributions of the Gibbs or Helmholtz energy, such as static, vibrational, 

and electronic contributions.  
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12 Free electron gas model 
 

The free electron gas model is discussed in many textbooks, eg in Gopal (1966) or Kittel (1996). 

For elements such as aluminium and copper this model is quite well applicable. For other elements 

such as gold, platinum and nickel it is less accurate. The effect of the electronic contribution to heat 

capacity is that isochoric heat capacity of an element breaks through the duLong-Petit limit of 3 

times the gas constant at high temperature, such as depicted in Figure 12.1. 

 

 

 
 

Figure 12.1. Isobaric heat capacity of aluminium calculated by ‘me’ is plotted as the black curve. The 

isochoric heat capacity including lattice vibrations and electronic contribution is plotted in blue. The 

electronic contribution to isochoric heat capacity is plotted in red. The duLong-Petit limit to which the 

vibrational contribution to isochoric heat capacity converges is represented by the dashed line. References 

are given in Jacobs et al. (2013) and Jacobs and Schmid-Fetzer (2010) 
 

 

Expressions for electronic contribution to thermodynamic properties are given below. The value for 

elγ  is usually taken to be 2/3. 
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Isothermal bulk modulus:  2
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Isochoric temperature derivative of electronic pressure: 
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In file demo.mef aluminium is present and a part of the input file is given in Table 12.1. Figure 

12.1 shows for a 30-Einstein model the heat capacity calculated with ‘me’. 
 

 

Table 12.1. Part of the input file for aluminium in demo.mef. Lines describing the free electron gas 

model are coloured in blue. 
# 

 <Al-30E>                   (* Name of the substance *) 

   26.981540                (* Mass of the substance in gr/mol *) 

  1.00000000000000E+000     (* Number of atoms in 1 molecular formula unit *) 

 -8.32458684417284E+003     (* Static lattice energy in J/mol *) 

  9.87304836203274E-006     (* Volume/m3/mol at zero K and zero Pa *) 

  9.77516605718424E-006     (* Volume/m3/mol of the static lattice at zero Pa *) 

  2                         (* 1=Vinet, 2=Birch-Murnaghan, 3=Keane, 4=Qin EoS of the static lattice 

  5                         (* Order of Birch-Murnaghan EoS of the static lattice *) 

  8.18065900000000E+010     (* Static lattice bulk modulus/Pa at zero Pa *) 

  8.13238000000000E-001     (* --- 1st pressure derivative coefficient of the static lattice bulk 

 -3.92982500000000E+000     (* --- 2nd pressure derivative coefficient of the static lattice bulk 

  5.78428700000000E+000     (* --- 3rd pressure derivative coefficient of the static lattice bulk 

  3.09133200000000E+010     (* Static lattice shear modulus/Pa at zero Pa *) 

 -8.51412600000000E-001     (* --- 1st pressure derivative coefficient of the static lattice shea 

  0.00000000000000E+000     (* --- 2nd pressure derivative coefficient of the static lattice shea 

  0.00000000000000E+000     (* --- 3rd pressure derivative coefficient of the static lattice shea 

  1.78452400000000E+000     (* Vibrational parameter of the shear modulus *) 

  0                         (* 0=No Landau contribution, 1=2nd order, 2=Tricritical, 3=1st order  

  0                         (* 0=No magnetic contribution, 1=magnetic contribution *) 

  1                         (* Free electron gas model *) 

# Cv=a*T*(V/V0)^gamma_el 

  6.66666700000000E-001     (* Electronic Gruneisen parameter, gamma_el *) 

  1.35000000000000E-003     (* Electronic coefficient, a, in J/mol/K/K *) 

0                         (* 0=No cation disorder, 1=model of O’Neill and Navrotsky (1983,1984)*) 

0                         (* 0=No monovacancy defects, 1=monovacancy defects: Dorogokupets &…*) 

# Anharmonicity is described with perturbation theory of Oganov & Dorogokupets (2004): a=a0(V/V0)^z 

  30                        (* Number of Einstein modes *) 

. 

. 

...etc 
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13 Extended free electron gas model 
 

Tsuchiya and Kawamura (2002) showed by ab initio calculations that the electronic isochoric heat 

capacity of gold and platinum behaves non-linearly with temperature. Therefore the simple free 

electron gas model of section 12 is not applicable. In Jacobs et al. (2013) a simple empirical 

parameterization of the electronic heat capacity is given, which appears to be applicable to gold and 

nickel too. 

 

A function enabling a proper description of the isochoric heat capacity behavior is given by Jacobs 

et al. (2013) as: 

 

  
el

i

V

V

Tc
cTceTaC

i

Tbi
i

el
V

γ































+
−++= ∑

=

−

03
21

3

1
1

1
1                                       (13.1) 

  ( )
el

i

V

V

Tc

cc
ceTTbia

dT

dC Tbi

i

ii

V

el
V

γ






















+
++−=













 −−

=
∑

0
2

3

32
1

1
3

1 )1(
                              (13.2) 

 

The first term in eqn. (13.1) describes the curvature in the low temperature regime. The other terms 

describe the high temperature heat capacity behavior. The last term is needed because the high 

temperature heat capacity data extrapolated to 0 K indicate a positive intercept for Pt and Ni as can 

be deduced from eqn. (13.2). V0 denotes the volume at zero Kelvin, zero pressure, V the volume at 

(P,T), and γel the electronic Grüneisen parameter, which equals 2/3 in the free electron gas theory. 

Some useful relations to constrain the coefficients in eqn (13.1) are: 
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13.1. Thermodynamic properties 

From the isochoric heat capacity (13.1) one derives by integration the entropy and Helmholtz 

energy and subsequently the contributions to pressure, bulk modulus and thermal expansivity. In 

the derivation we use: 
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Integrating heat capacity to temperature gives entropy. The entropy is obtained from isochoric heat 

capacity: 
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Or: 
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Electronic entropy 

Integration of eqn. (13.6) gives: 
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Electronic Helmholtz energy 

Integration of eqn. (13.7) gives: 
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Electronic pressure 

From eqn. (13.7): 
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Electronic bulk modulus 

From eqn. (13.9): 
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Temperature derivative of electronic pressure 

From eqn. (13.10): 
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13.2. ‘me’ input file for Platinum 

A part of the input file for ‘me’ is given in Table 13.1 and also present in file demo.mef. Lines 

containing coefficients describing the electronic contribution are coloured in blue. The coefficients, 

describing the combined effect of electronic and electron-phonon coupling on thermodynamic 

properties, were obtained by Jacobs et al. (2013). That was achieved by subtracting from the 

isobaric heat capacity the contributions of the dilation and lattice vibrations. To obtain the 
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electronic heat capacity including the electron-phonon coupling use was made of the electronic heat 

capacity predicted by Tsuchiya and Kawamura (2002) in which no electron-phonon coupling was 

taken into account, shown as the blue curve in Figure 13.1. Grimvall’s (1968) method was 

employed to derive the electron-phonon coupling for 30 Einstein frequencies in the VDoS, which 

added to the blue curve results in the black curve. 

 

 

 
 

Figure 13.1. Left: Curves at 1 bar for platinum were obtained by adding electronic (el), electron-phonon 

(el-ph) and intrinsic anharmonic (anh) effects in the isochoric heat capacity. To obtain the electronic 

contribution to isochoric heat capacity, the dilation contribution and vibrational isochoric heat capacity 

calculated in the quasi-harmonic approximation were subtracted from the experimental isobaric heat 

capacity. Data are from Jaeger & Rosenbohm (1939), solid diamond, Clusius et al. (1957), open circle, 

Kendall et al. (1962), open square, Berg (1969), solid triangle, Yokokawa & Takahashi (1979), open triangle, 

Barin (1989), solid circle. Right: isobaric heat capacity. For references see Jacobs et al. (2013).  

 

 

Intrinsic anharmonicity was established by using high-temperature heat capacity and Hugoniot data, 

and by adding this effect to the black curve the red curve in Figure 13.1 is obtained. This way an 

accurate description for low-temperature heat capacity and room temperature entropy for platinum 

was achieved. The coefficients in the input file of Table 13.1 describe the isochoric heat capacity of 

the black curve. Intrinsic anharmonicity is described by coefficient a0 in Table 13.1. 

 

 

Table 13.1. Part of the input file constructed from demo.mef for use in ‘me’ for platinum. 

Coefficients describing the electronic contribution to the Helmholtz energy are given on the blue 

coloured lines. 

 
# 

 <Platinum>                 (* Name of the substance *) 

  195.080000                (* Mass of the substance in gr/mol *) 

  1.00000000000000E+000     (* Number of atoms in 1 molecular formula unit *) 

 -8.13459742018308E+003     (* Static lattice energy in J/mol *) 

  9.03740542850234E-006     (* Volume/m3/mol at zero K and zero Pa *) 

  9.01696059323866E-006     (* Volume/m3/mol of the static lattice at zero Pa *) 

  1                         (* 1=Vinet, 2=Birch-Murnaghan, 3=Keane, 4=Qin EoS of the static lattice 

  3                         (* Order of Vinet EoS of the static lattice *) 
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  2.89992700000000E+011     (* Static lattice bulk modulus/Pa at zero Pa *) 

  5.14961300000000E+000     (* Pressure derivative of the static lattice bulk modulus at zero Pa 

  0                         (* 0=No Landau contribution, 1=2nd order, 2=Tricritical, 3=1st order  

  0                         (* 0=No magnetic contribution, 1=magnetic contribution *) 

  2                         (* Extended free electron gas model: electron-phonon coupling *) 

# Cv=(a1*T*exp(-b1*T)+a2*T^2*exp(-b2*T)+a3*T^3*exp(-b3*T)+c1*T+c2*(1-1/(c3*T+1)))*(V/V0)^gamma_el 

  6.66666700000000E-001     (* Electronic Gruneisen parameter, gamma_el *) 

#   a               b              c 

# ---------------------------------------------- 

  1 -2.629956E-002  9.626541E-003  1.000000E-003 

  2  3.224574E-004  4.260242E-002  2.259624E+000 

  3 -1.667092E-007  7.075324E-003  1.411277E-002 

0                         (* 0=No cation disorder, 1=model of O’Neill and Navrotsky (1983,1984)*) 

0                         (* 0=No monovacancy defects, 1=monovacancy defects: Dorogokupets &…*) 

# Anharmonicity is described with perturbation theory of Oganov & Dorogokupets (2004): 

  30                        (* Number of Einstein modes *) 

1                         (* 1=Gruneisen expression by Al'tshuler et al, 1987 and 2=that by 

Stixrude & Lithgow-Bertelloni, 2005 *) 

#  j   Theta/K   Fraction          Gamma      Mode_m(q)   Gamma_inf  a0             z 

# ------------------------------------------------------------------------------------------- 

   1     7.2972  1.600000000E-004  2.6822100  2.7720800   0.6666600  2.580000E-005  0.0000000 

   2    16.8142  3.500000000E-004  2.6822100  2.7720800   0.6666600  2.580000E-005  0.0000000 

   3    26.3312  9.100000000E-004  2.6822100  2.7720800   0.6666600  2.580000E-005  0.0000000 

   4    35.8482  2.080000000E-003  2.6822100  2.7720800   0.6666600  2.580000E-005  0.0000000 

. 

. 

. etc... 
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14 Crystal-Field model 
 

In this section Fe2SiO4 (fayalite) is used as example to demonstrate the crystal field effect on 

thermodynamic properties. Fayalite is a substance in which oxygen atoms octahedrally surround 

the Fe atoms. The Fe atom has 6 electrons in its 3d orbitals. To minimize the energy the lobes of 

the dxy, dxz, dyz Fe orbitals point in between the O-atoms and the 22 yx
d −  and 2z

d  point towards the 

O-atoms. Because there is more electron repulsion in the last two levels, these are higher in energy 

than the first three levels. The first three levels are called the t2g and the other two the eg levels. The 

configuration of the electrons is high-spin because it takes less energy to promote an electron from 

t2g to eg than it takes to pair the sixth electron with another one. Because spin-orbit coupling is 

present each level is split further into 5 levels and we get 25 levels in total (15 in the lower t2g and 

10 in the higher eg levels).  

 

The thermodynamic properties for an m-level system (electrons may occupy m quantized energy 

levels) are derived using statistical mechanics. The partition function Z is written: 
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                                                             (14.1) 

 

In eqn. (14.1) gi denotes the degeneracy of a level i with energy εi, k the Boltzmann constant, and T 

the temperature. The ground state is taken as level 1 and its energy is taken to be zero. In sections 

14.2 and 14.3 it is shown that the problem arises with eqn. (14.1) that the entropy is not zero when 

the degeneracy of the ground state is not equal to one. This is the case when the data of Aronson et 

al. (2007) for fayalite are used. This deficiency is repaired in section 14.3. The partition function is 

written as: 
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                                                           (14.2) 

 

To make equations shorter, we take eqn. (14.1) as a starting point for developing the expressions 

for the thermodynamic properties. Correcting the entropy such that the 3
rd

 law is obeyed, is simply 

achieved by substituting gi/g1 for gi in eqn. (14.1) resulting in the partition function of eqn. (14.2) 

and next taking ε1=0. 

Using statistical mechanics the electronic contribution to Helmholtz energy, A
el
 is given by: 

 

  ZkTAel ln−=                                                                   (14.3) 

 

Using eqn. (14.1) for the partition function, the Helmholtz energy for m energy levels per one atom 

Fe in fayalite becomes: 
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In the case that we have n atoms per formula unit that may have crystal field splitting, we write for 

one mole of formula unit: 
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For Fe2SiO4 (fayalite) the value of n equals two. We use a shorter notation in eqn. (14.5) by setting: 
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To derive thermodynamic properties from the Helmholtz energy contribution, we make use of the 

expressions: 
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In eqn. (14.9), γj denotes the Grüneisen parameter of the j
th

 energy level. By differentiation of the 

Helmholtz energy to volume and temperature we obtain from eqn. (14.6a): 
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Eqn. (14.15) is needed for calculating thermal expansivity by summing all isochoric temperature 

derivatives of the different thermophysical pressure contributions. 

 

For evaluating eqn. (14.6a), (14.10-14.15) in program ‘me’ we use: 
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With the definitions in (14.16), we obtain for thermodynamic properties: 
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14.1. Limiting values of thermodynamic properties: T→→→→∝∝∝∝ 

When temperature goes to infinity, eqn. (14.6b) shows that xj goes to zero. Inserting that into eqn. 

(14.6a) and (14.10-15) gives: 
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14.2. Limiting values of thermodynamic properties: T→→→→0 

We make use of ε1=0 for the ground state energy and that xj is infinity at T=0, eqn. (14.6b). 

Thermodynamic properties derived from (14.6a) and (14.10-15) are: 
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14.3. Correction for 3
rd
 law of entropy 

From eqn. (14.32) follows that the entropy at zero temperature is only zero when the degeneracy of 

the ground state equals one. However, in the case of fayalite a description has been found by 

Aronson et al. (2007) in which the degeneracy of the ground state deviates from zero. When the 

third law is applicable, the partition function given by eqn. (14.2) must be used. This comes down 

to taking gj/g1 rather than gi in all expressions for thermodynamic properties. Only entropy and 

Helmholtz energy are affected by that operation. In all other properties the substitution of gj by gj/g1 

results in cancelling-out the factor g1. By the substitution the expression for Helmholtz energy, 

corrected for the 3
rd

 law, becomes: 
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Using eqn. (14.6a), (14.31) and (14.38):    0
0

=
↓

el

T
ALim                                 (14.39) 

 

For entropy eqn. (14.10) is corrected to: 
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Using eqn. (14.10), (14.32) and (14.40):   0
0

=
↓

el

T
SLim                                 (14.41) 

Expressions for other properties, eqn.’s (14.19)-(14.23) remain unchanged. 

 

 

14.4. Different octahedral sites 

The expressions above were defined for one particular site. If more than one octahedral site is 

present such as for the fayalite and wadsleyite polymorphs of Fe2SiO4, the Helmholtz energy is 

changed as follows. Assuming that equal amounts of octahedral sites are present in the crystal: 
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Expression (14.42) describes the electronic contribution of a substance in which Ns sites are present, 

such as for the fayalite (Ns=2), wadsleyite (Ns=3) and ringwoodite (Ns=1) forms of Fe2SiO4. The 

last term of eqn. (14.42) is a free electron gas contribution. It gives the possibility to represent heat 

capacity at high temperatures, such as possible for fayalite, or the Drude-like contribution to heat 

capacity for FeO as observed by Schrettle et al. (2012). Using eqn. (12.1) and (14.38), the 

Helmholtz energy is written as: 
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In eqn. (14.43), V0 represents the volume at zero temperature and zero pressure, and n is the 

number of atoms per formula unit (n=2 for fayalite) that may have crystal field splitting appearing 

in both terms on the right-hand side of eqn. (14.43). 

 

 

 



 67 

14.5. Application to fayalite, Fe2SiO4  

The Fe-atoms in Fe2SiO4 (fayalite) reside in two sites M1 and M2 of the crystal. When applying the 

formalism given in this section, the thermodynamic properties are calculated as follows. The 

properties calculated from the formalism are given per mole of formula unit Fe2SiO4 (n=2). Next 

we make the assumption that the number of M1 sites equals that of the M2 sites. Neglecting the 

free electron gas contribution, the electronic Helmholtz energy contribution is derived from eqn. 

(14.43) as: 
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Burns (1978, 1985), Wood (1981) measured electronic transition energies for the t2g and eg levels in 

Fe2SiO4. Aronson et al. (2007) showed by using neutron diffraction that spin-orbit coupling is 

present and that each level is split in five new levels with different energies. Combining their work 

with that of Burns (1985) the transitions are summarized in Table 14.1. 

Aronson et al. (2007) showed that the shoulder in the heat capacity at 20 K results from the thermal 

population of the lower energy states in the crystal-field split manifold of the M1 site, located at 27 

and 47 cm
-1

 above the ground state. These states explain the Schottky anomaly in the heat capacity 

curve below 20 K. 

 

 
Table 14.1 Electronic transitions in fayalite Fe2SiO4. 

Nr Energy/cm
-1

 assignment degeneracy site reference 

1 0 Ground state 1 M1 Aronson et al. (2007) 

2 27 Spin-orbit 1 M1 Aronson et al. (2007) 

3 47 Spin-orbit 1 M1 Aronson et al. (2007) 

4 92 Spin-orbit 2 M1 Aronson et al. (2007) 

5 730 δ1 5 M1 Burns (1985) 

6 1500 δ2 5 M1 Burns (1985) 

7 8060 eg 5 M1 Burns (1985) 

8 11060 eg 5 M1 Burns (1985) 

9 0 Ground state 1 M2 Aronson et al (2007) 

10 8 Spin-orbit 3 M2 Aronson et al. (2007) 

11 44 Spin-orbit 1 M2 Aronson et al. (2007) 

12 1670 δ1 5 M2 Burns (1985) 

13 1670 δ2 5 M2 Burns (1985) 

14 8830 eg 5 M2 Burns (1985) 

15 9270 eg 5 M2 Burns (1985) 

 

 

The M2 site is responsible for the lambda transition at 65.8 K, the Neel temperature, associated 

with antiferromagnetic-ferromagnetic transition. The thermal population of the M2 manifold is 

governed by an exchange interaction and therefore the lambda transition is not represented by the 

formalism in section 14 alone. To describe the lambda transition due to the M2 site we used Inden’s 

empirical formalism for magnetism presented in section 10 of this manual.  
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Additionally, to represent high temperature heat capacity data up to 400 K, Aronson et al. (2007) 

showed that it is necessary to assume that the ground state is 5-fold degenerate. That was achieved 

by merging the energy levels of the ground state and spin orbit of the M2 site (numbered 9, 10, and 

11 in Table 14.1) into a new ground state for M2. To maintain the 3
rd

 law for entropy, it is therefore 

necessary to start from eqn. (14.2) rather than from eqn. (14.1). 

   Aronson et al. (2007) determined the lambda shape in the heat capacity by determining the 

crystal field and vibrational contributions to heat capacity and their experimental data. This 

contribution is depicted in Figure 14.1 and we modelled it with Inden’s (1981) formalism using 50 

terms in the MacLaurin expression for isochoric heat capacity to achieve good convergence. 

However, assuming a magnetic moment β=4 bohr magneton (net spin S=2), Inden’s formalism 

grossly overestimates the magnetic contribution to heat capacity. To arrive at an accurate 

description for the lambda contribution to heat capacity, a correction of their formalism must be 

applied, leading to a modification of eqn. (11.5) for the Helmholtz contribution: 

 

  )1ln()( βτλ +⋅⋅⋅= RTmgnA fa                                                     (14.45) 

 

For fayalite mf appears to be 0.3789. 

 

 
 

Fig. 14.1. Heat capacity and entropy calculated with ‘me’ and input data of Table 14.2. Left: Experimental 

data are from: total Cp: Aronson et al. (2007, open black circle), Robie et al. (1982, solid red triangle); 

Crystal-Field contribution: Aronson et al. (2007, open green square); Magnetic contribution: Aronson et 

al. (2007, solid blue circle); Vibrational contribution: derived from the VDoS of Yu et al. (2013) 

 

 

Table 14.2 below shows an input file for ‘me’. For the crystal-field electronic contribution we used 

the data in Table 14.1. These appear as coefficients in Table 14.2 on the blue lines. The lambda 

contribution appears as the green lines in Table 14.2.  

 

 

14.6. Contributions to properties: programming 

Vibrational, electronic and magnetic contributions to thermodynamic properties are not available in 

the output file of ‘me’; only the total properties are available. Contributions, such as depicted in 
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Figure 14.1, are calculated in procedure “get_thermo_properties()” of unit “maketable.pas”. To 

obtain values for the individual contributions, one could set one or more file(s) open in unit 

"maketable.pas" just before the call to procedure “get_thermo_properties”. Procedure 

"get_thermo_properties" is present in unit “makevolume.pas”. In that procedure, write temperature, 

pressure and thermodynamic properties values there and close the file(s) at the end of procedure 

“maketable” after the normal output table has been finished. 

 

 

Table 14.2. Example of an input file for a 15-Einstein description 

The following input data can be extracted from file mgsifeo-15e-anh.mef, present on website 

http://www.geo.uu.nl/~jacobs/Downloads). The thermodynamic analysis is found in Jacobs et al 

(2019). The lines concerning magnetic and electronic contributions needed in the crystal field 

model are given in green and blue respectively. The contribution due to defects caused by 

vacancies is discussed in chapter 16.2. 

 
<Fe2SiO4-oli>               (* Name of the substance *) 

  203.776000                (* Mass of the substance in gr/mol *) 

  7.00000000000000E+000     (* Number of atoms in 1 molecular formula unit *) 

 -1.55165070019255E+006     (* Static lattice energy in J/mol *) 

  4.59885769248535E-005     (* Volume/m3/mol at zero K and zero Pa *) 

  4.57327543493432E-005     (* Volume/m3/mol of the static lattice at zero Pa *) 

  2                         (* 1=Vinet, 2=Birch-Murnaghan, 3=Keane, 4=Qin EoS of the static lattice 

  3                         (* Order of Birch-Murnaghan EoS of the static lattice *) 

  1.43085800000000E+011     (* Static lattice bulk modulus/Pa at zero Pa *) 

  5.00000000000000E+000     (* Pressure derivative of the static lattice bulk modulus at zero Pa *) 

  5.46583700000000E+010     (* Static lattice shear modulus/Pa at zero Pa *) 

  1.42650000000000E+000     (* Pressure derivative of the static lattice shear modulus at zero Pa *) 

  1.00000000000000E+000     (* Vibrational parameter of the shear modulus *) 

  0                         (* 0=No Landau contribution, 1=2nd order, 2=Tricritical, 3=1st order *) 

  1                         (* 0=No magnetic contribution, 1=magnetic contribution *) 

 51                         (* Magnetic: number of terms in the MacLaurin series expansion >2 *) 

  2.80000000000000E-001     (* Magnetic: Ratio Energy(tau>1)/total Energy for magnetic transition  

  6.48800000000000E+001     (* Magnetic: Critical temperature Tc *) 

  4.00000000000000E+000     (* Magnetic: magnetic moment in Bohr magneton *) 

  3.00000000000000E+000     (* Magnetic: exponent (m) in Inden's (1981) expression for Cv below Tc  

  5.00000000000000E+000     (* Magnetic: exponent (n) in Inden's (1981) expression for Cv above Tc * 

  2.00000000000000E+000     (* Magnetic: number of magnetic atoms per formula unit *) 

  3                         (* Crystal field electronic contribution *) 

  2                         (* Number of sites M1, M2, M3: maximum 3 sites *) 

  8                         (* Number of Crystal field energy levels of the M1 site *) 

  5                         (* Number of Crystal field energy levels of the M2 site *) 

  2.00000000000000E+000     (* Number of atoms per formula unit having crystal-field splitting *) 

  3.78868651539773E-001     (* Magnetic correction factor (mf): Helmholtz A=na.RT.g(t).mf.ln(1+b) *) 

# Energy/cm^-1    Degeneracy Gruneisen parameter 

# ---------------------------------------------- 

  0.000000E+000   1          0.000000E+000 

  2.700000E+001   1          0.000000E+000 

  4.700000E+001   1          0.000000E+000 

  9.200000E+001   2          0.000000E+000 

  7.300000E+002   5          0.000000E+000 

  1.500000E+003   5          0.000000E+000 

  8.060000E+003   5          0.000000E+000 

  1.106000E+004   5          0.000000E+000 

  0.000000E+000   5          0.000000E+000 

  1.670000E+003   5          0.000000E+000 

  1.670000E+003   5          0.000000E+000 

  8.830000E+003   5          0.000000E+000 

  9.270000E+003   5          0.000000E+000 

# Extra Free electron gas contribution 

# Cv(electronic)=Cv(crystal-Field)+a*T*(V/V0)^gamma_el 

  0.00000000000000E+000     (* Electronic Gruneisen parameter, gamma_el *) 

  0.00000000000000E+000     (* Electronic coefficient, a, in J/K/K/mol atoms that give crystal-field  

  0                         (* 0=No cation disorder, 1=cation disorder: model of O'Neill and Navrot 

  1                         (* 0= No monovacancy defects, 1=monovacancy defects *) 

#                           (* Model: Dorogokupets & Oganov 2007 Phys Rev B 75:024115 *) 

#                           (* Helmholtz energy = -(3/2)nRT*exp(s*eta^f-h*eta^g/T) *) 

#                           (* with n=# atoms/formula unit, eta=V/V0 *) 

  8.16724130000000E+003     (* h: enthalpy of formation, K *) 

  0.00000000000000E+000     (* s: entropy, no unit *) 

 -1.00000000000000E+000     (* f *) 
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 -5.00000000000000E-001     (* g *) 

# Anharmonicity is described with perturbation theory of Oganov & Dorogokupets (2004): a=a0(V/V0)^z 

  15                        (* Number of Einstein modes *) 

  2                         (* 1=Gruneisen expression by Al'tshuler et al, 1987 and 2=that by Stixru 

#  j   Theta/K     Fraction          Gamma      Mode_m(q)   Gamma_inf  a0             z 

# --------------------------------------------------------------------------------------------- 

   1    49.113946  7.514304284E-003  1.6967220  1.8464070   0.0000000 -2.930085E-005  0.0000000 

   2   147.341408  1.059256204E-001  1.6967220  1.8464070   0.0000000 -2.930085E-005  0.0000000 

   3   245.569013  1.419665680E-001  1.6967220  1.8464070   0.0000000 -2.930085E-005  0.0000000 

   4   343.796618  1.287064419E-001  1.6967220  1.8464070   0.0000000 -2.930085E-005  0.0000000 

   5   442.024223  1.418760128E-001  1.6967220  1.8464070   0.0000000 -2.930085E-005  0.0000000 

   6   540.251828  5.330142605E-002  0.9942005  1.8179560   0.0000000 -2.930085E-005  0.0000000 

   7   638.479433  1.112511380E-001  0.2916790  1.7895050   0.0000000 -2.930085E-005  0.0000000 

   8   736.707038  5.582992651E-002  0.2916790  1.7895050   0.0000000 -2.930085E-005  0.0000000 

   9   834.934643  3.999175335E-002  0.2916790  1.7895050   0.0000000 -2.930085E-005  0.0000000 

  10   933.162105  2.606744933E-005  0.2916790  1.7895050   0.0000000 -2.930085E-005  0.0000000 

  11  1031.389710  2.606744933E-005  0.2916790  1.7895050   0.0000000 -2.930085E-005  0.0000000 

  12  1129.617315  7.495166410E-002  0.2916790  1.7895050   0.0000000 -2.930085E-005  0.0000000 

  13  1227.844920  7.507431413E-002  0.2916790  1.7895050   0.0000000 -2.930085E-005  0.0000000 

  14  1326.072525  3.689459159E-002  0.2916790  1.7895050   0.0000000 -2.930085E-005  0.0000000 

  15  1424.300130  2.666410395E-002  0.2916790  1.7895050   0.0000000 -2.930085E-005  0.0000000 

# 

# sum of all fractions:  1.0000000000E+000 

############################################################################################## 

# Isobaric calculation 

 1                          (* 1=Isobaric calculation, 2=Isothermal calculation *) 

 0     400    2             (* Temperature range and step: T_start/K, T_end/K, T_step/K *) 

 1e+05 1e+05  0.0           (* Pressure range and step   : P_start/Pa, P_end/Pa, P_step/Pa *) 

 1                          (* Output: 1=Output to screen and file, 0=Output to file only *) 

# Output file name 

 /home/michel/geodata/fayalite/fayalite.out 

################################################################################################# 
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Representing vibrational density of states with ‘me’ 
M.H.G. Jacobs, Institute of Metallurgy, TU-Clausthal, Germany, August 4th, 2016, last update April 5th, 2018 

 

 

 

This part of the manual describes how to construct a plot of the vibrational density of states for a 

substance with ‘me’. Because thermodynamic analyses of substances are constrained by the VDoS 

derived from experiments or predicted from ab initio, an example is given how to construct a ‘me’ 

input file from a VDoS. 
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15. Plotting a VDoS with ‘me’ 
 

The input file, demo.mef, contains data that can be used in the multiple-Einstein program, 'me'. 

Program 'me' enables calculating a VDoS, which is plotted with open-software program 

‘GnuPloT’.  

 

Example: 

Calculate the VDoS of MgO at zero pressure and zero temperature. Use a 5-Einstein model. 

 

To construct a table with thermodynamic properties we follow the 5 steps described below: 

 

1.  Select the description of MgO given in section 3, Table 3.1. 

2.  Copy the data from demo.mef and store them on a new file 'mgo.mef'. File 'mgo.mef' will look 

like: 

 
# Comment: File mgo.mef with data copied from file demo.mef 

# 

 <MgO-pc>                   (* Name of the substance *) 

   40.304000                (* Mass of the substance in gr/mol *) 

  2.00000000000000E+000     (* Number of atoms in 1 molecular formula unit *) 

 -6.21124727753588E+005     (* Static lattice energy in J/mol *) 

  1.12027710146365E-005     (* Volume/m3/mol at zero K and zero Pa *) 

  1.10725544416607E-005     (* Volume/m3/mol of the static lattice at zero Pa *) 

  2                         (* 1=Vinet, 2=Birch-Murnaghan, 3=Keane, 4=Qin EoS of the static lattice 

  3                         (* Order of Birch-Murnaghan EoS of the static lattice *) 

  1.71365000000000E+011     (* Static lattice bulk modulus/Pa at zero Pa *) 

  4.18588900000000E+000     (* Pressure derivative of the static lattice bulk modulus at zero  

  1.39801200000000E+011     (* Static lattice shear modulus/Pa at zero Pa *) 

  2.27420100000000E+000     (* Pressure derivative of the static lattice shear modulus at zero  

  2.06860800000000E+000     (* Vibrational parameter of the shear modulus *) 

0                         (* 0=No Landau contribution, 1=2nd order, 2=Tricritical, 3=1st ord 

0                         (* 0=No magnetic contribution, 1=magnetic contribution *) 

0                         (* No electronic contribution *) 

0                         (* 0=No cation disorder, 1=model of O’Neill and Navrotsky (1983,1984)*) 

0                         (* 0=No monovacancy defects, 1=monovacancy defects: Dorogokupets &…*) 

# Anharmonicity is described with perturbation theory of Oganov & Dorogokupets (2004): a=a0(V/V0)^z 

  5                         (* Number of Einstein modes *) 

  2                         (* 1=Gruneisen expression by Al'tshuler et al, 1987 and 2=that by 

Stixrude & Lithgow-Bertelloni, 2005 *) 

#  j   Theta/K   Fraction          Gamma      Mode_m(q)   Gamma_inf  a0             z 

# ------------------------------------------------------------------------------------------- 

   1   103.6373  8.906551151E-003  1.5153760  1.3987510   0.0000000  9.108297E-006  7.2990600 

   2   310.9115  1.518128083E-001  1.5153760  1.3987510   0.0000000  9.108297E-006  7.2990600 

   3   518.1859  4.489913319E-001  1.5153760  1.3987510   0.0000000  9.108297E-006  7.2990600 

   4   725.4603  3.115346305E-001  1.5153760  1.3987510   0.0000000  9.108297E-006  7.2990600 

   5   932.7346  7.875467817E-002  1.5153760  1.3987510   0.0000000  9.108297E-006  7.2990600 

# 

# sum of all fractions:  1.000000000E+000 

############################################################################################## 

 

 

3. Next information must be attached to file ‘mgo.mef’ specifying that a VDoS is calculated. 

Go to the last part of file 'demo.mef' and copy the lines of ‘example 2’: 
 

# VDoS calculation; this part must be attached 

 3                         (* 1=Isobaric calculation, 2=Isothermal calculation, 3=VDoS *) 

 1                         (* Desired unit: 1=cm^-1, 2=THz, 3=meV *) 

 0    0                    (* Pressure/Pa, Temperature/K at which VDoS is calculated *) 

# Script file for GnuPlot: 

 /home/michel/geodata/mgo/mgo.grf 

 1                         (* 0=No experimental/abinitio VDoS, 1=experimental/abinitio VDoS *) 

# When the preceding line defines an experimental/abinitio VDoS add the following 3 lines: 

# File with experimental/abinitio VDoS (X,Y) points: 

 /home/michel/geodata/mgo/vdosmgo.exp 

 1                           (* Unit experimental/abinitio VDoS: 1=cm^-1, 2=THz, 3=meV *) 

# ------------------------------------------------------------------------------------------- 
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We wish to calculate the VDoS expressing the frequencies in wave numbers with unit cm
-1

. That is 

called the ‘desired unit’ (3
rd

 line). On the 4
th

 line we specify the pressure and temperature at which 

the VDoS should be calculated. The frequencies in the VDoS are volume dependent; therefore the 

VDoS changes with pressure and temperature. On the 6
th

 line a script file for ‘GnuPlot’ is specified. 

If a VDoS is available from e.g. ab initio or from inelastic neutron scattering experiments, the flag 

on the 7
th

 line can be set to ‘1’ and the name of the file containing (X,Y) points specifying the VDoS 

should be entered on the 10
th

 line. Take care that the correct path and file name is set. Also take 

care that the correct unit of the experimental or ab initio VDoS is entered on the 11
th

 line. If no 

VDoS from experiments or ab initio is available, set the flag on the 7
th

 line to ‘0’ and comment-out 

or delete lines 10 and 11. 

 

4. Insert these lines into file 'mgo.mef'. The final resulting file 'mgo.mef' will look like: 

 
# Comment: File mgo.mef with data copied from file demo.mef: final result 

# 

 <MgO-pc>                   (* Name of the substance *) 

   40.304000                (* Mass of the substance in gr/mol *) 

  2.00000000000000E+000     (* Number of atoms in 1 molecular formula unit *) 

 -6.21124727753588E+005     (* Static lattice energy in J/mol *) 

  1.12027710146365E-005     (* Volume/m3/mol at zero K and zero Pa *) 

  1.10725544416607E-005     (* Volume/m3/mol of the static lattice at zero Pa *) 

  2                         (* 1=Vinet, 2=Birch-Murnaghan, 3=Keane, 4=Qin EoS of the static lattice 

  3                         (* Order of Birch-Murnaghan EoS of the static lattice *) 

  1.71365000000000E+011     (* Static lattice bulk modulus/Pa at zero Pa *) 

  4.18588900000000E+000     (* Pressure derivative of the static lattice bulk modulus at zero  

  1.39801200000000E+011     (* Static lattice shear modulus/Pa at zero Pa *) 

  2.27420100000000E+000     (* Pressure derivative of the static lattice shear modulus at zero  

  2.06860800000000E+000     (* Vibrational parameter of the shear modulus *) 

0                         (* 0=No Landau contribution, 1=2nd order, 2=Tricritical, 3=1st ord 

  0                         (* 0=No magnetic contribution, 1=magnetic contribution *) 

  0                         (* No electronic contribution *) 

0                         (* 0=No cation disorder, 1=model of O’Neill and Navrotsky (1983,1984)*) 

0                         (* 0=No monovacancy defects, 1=monovacancy defects: Dorogokupets &…*) 

# Anharmonicity is described with perturbation theory of Oganov & Dorogokupets (2004): a=a0(V/V0)^z 

  5                         (* Number of Einstein modes *) 

  2                         (* 1=Gruneisen expression by Al'tshuler et al, 1987 and 2=that by 

Stixrude & Lithgow-Bertelloni, 2005 *) 

#  j   Theta/K   Fraction          Gamma      Mode_m(q)   Gamma_inf  a0             z 

# ------------------------------------------------------------------------------------------- 

   1   103.6373  8.906551151E-003  1.5153760  1.3987510   0.0000000  9.108297E-006  7.2990600 

   2   310.9115  1.518128083E-001  1.5153760  1.3987510   0.0000000  9.108297E-006  7.2990600 

   3   518.1859  4.489913319E-001  1.5153760  1.3987510   0.0000000  9.108297E-006  7.2990600 

   4   725.4603  3.115346305E-001  1.5153760  1.3987510   0.0000000  9.108297E-006  7.2990600 

   5   932.7346  7.875467817E-002  1.5153760  1.3987510   0.0000000  9.108297E-006  7.2990600 

# 

# sum of all fractions:  1.000000000E+000 

############################################################################################## 

# VDoS calculation; this part is now attached 

 3                         (* 1=Isobaric calculation, 2=Isothermal calculation, 3=VDoS *) 

 1                         (* Desired unit: 1=cm^-1, 2=THz, 3=meV *) 

 0    0                    (* Pressure/Pa, Temperature/K at which VDoS is calculated *) 

# Script file for GnuPlot: 

 /home/michel/geodata/mgo/mgo.grf 

 1                         (* 0=No experimental/abinitio VDoS, 1=experimental/abinitio VDoS *) 

# When the preceding line defines an experimental/abinitio VDoS add the following 3 lines: 

# File with experimental/abinitio VDoS (X,Y) points: 

 /home/michel/geodata/mgo/vdosmgo.exp 

 1                           (* Unit experimental/abinitio VDoS: 1=cm^-1, 2=THz, 3=meV *) 

# ------------------------------------------------------------------------------------------- 

 

 

5. The VDoS is constructed by calling the multiple-Einstein program 'me' with the input file as 

argument.  

-  Open a terminal in Ubuntu by pressing simultaneously: cntrl-alt-t 

  (Alternatively in Windows open powershell or command prompt) 

-  Go to the directory where program 'me' is present 

-  When file 'mgo.mef' is present in the same directory as program 'me' type: 
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./me mgo.mef 

(alternatively in powershell, command prompt of windows: .\me mgo.mef) 

-  The output file mgo.grf is created in the desired directory. 

  -  A plot is made by typing in the directory where mgo.grf is present:  gnuplot mgo.grf - 

 

The top-left frame of Figure 15.1 shows the result. Jacobs et al. (2017) performed a thermodynamic 

analysis of the system MgO-SiO2. The right-hand frame of Figure 15.1 shows that when the same 

operations are carried out for a 60-Einstein model for MgO, present in file mgosio2-60e.mef, the 

resulting VDoS resembles better that predicted by Wu et al. (2009). 

 

 

 
Fig. 15.1. VDoS of MgO calculated by ‘me’. Left frames using 5 Einstein frequencies in the VDoS. Right 

frames using 60 Einstein frequencies in the VDoS. The solid blue curve has been predicted by Wu et al. 

(2009). Bottom two frames: the ‘desired unit’ for frequency has been taken as THz instead of cm
-1

. Na 

represents Avogadro’s number 
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Note that an experimentally established or ab initio predicted VDoS, read-off from plots published 

in the literature, often has arbitrary units on the Y-axis. ‘me’ corrects automatically for that because 

the surface underneath the g(w) curve is always a constant, 3nNA, and the surface underneath 

g(w)/NA is 3n, with n the number of atoms in one mole of molecular formula unit. 

 

In the thermodynamic analysis of MgO, Jacobs et al. (2017) started with the VDoS of Wu et al. 

(2009) and partitioned it in 60 Einstein continua as depicted on the right-hand frames of Figure 

15.1. The frequency width of each continuum was determined by the largest frequency of the 

VDoS, about 700 cm
-1

 and the number of Einstein frequencies. Their next step was to set one 

Einstein frequency in the middle of each continuum, resulting in the frequency (Einstein 

temperature) part of the input data file for ‘me’. In the construction of the VDoS above, the reverse 

route is followed from Einstein monochromatic frequencies to Einstein continua. 

 

 

15.1. Constructing a ‘me’ input file for MgO from an ab initio VDoS 

Jacobs et al. (2017) showed that the VDoS predicted by ab initio puts tight constraints on the 

thermodynamic analysis of substances in the system MgO-SiO2. The first step in such an analysis is 

the construction of an input file that represents the VDoS in terms of frequencies and their fractions. 

To achieve that we use a separate program, ‘medos’, that constructs a file which serves as input for 

program ‘me’. Program ‘medos’ uses of a script file in the same way as ‘me’. An example is given 

below and is obtained by copying example 3 from the last part of file demo.mef. 

 

 
# ---------------------------------------------------------------------------------------------- 

# Example 3: making a VDoS from experimental/abinitio VDoS (program ‘medos’) 

# ---------------------------------------------------------------------------------------------- 

60                             (* Desired number of Einstein temperatures *) 

# Output file serving as input file for 'me' 

/home/michel/geodata/mgo/mgo60.mef 

1                              (* VDoS unit: 1=cm^-1, 2=THz, 3=meV *) 

# File containing experimental/abinitio VDoS (X,Y) points 

/home/michel/geodata/mgo/vdosmgo.exp 

# ---------------------------------------------------------------------------------------------- 

 

 

The script file starts with specifying the desired number of Einstein temperatures in the VDoS on 

the 4
th

 line and an output file on the 6
th

 line. The output file serves as input file for ‘me’. The 7
th

 

line specifies the frequency unit that is used in the VDoS that is available from experiments or ab 

initio predictions. That is important because these frequencies must be converted to Einstein 

temperatures. Conversion takes place in ‘medos’ according to eqn. 15.1. 
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In eqn. (15.1), h denotes Planck’s constant, k Boltzmann’s constant, c the velocity of light in 

vacuum and qe the elementary charge. 

 

The name of the file containing frequencies and the VDoS value is given on the 9
th

 line of the script 

file above. In many cases, especially when a VDoS is read from a plot in a journal paper, the VDoS 

value is expressed in an arbitrary unit. The surface underneath the VDoS represents the degrees of 

vibrational freedom, 3nNA. Program ‘medos’ uses the VDoS values to establish the fractions in the 

expressions for vibrational contributions to thermodynamic properties, such as in eqn. (6.3) of 

section 6. That is achieved by calculating the surface underneath the experimental or ab initio 

VDoS, requiring a sufficient number of points to achieve sufficient accuracy. In the case of 
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‘vdosmgo.exp’ in the script file above we used about 160 points. In cases that a VDoS is read-off 

from a plot this is an important step. 

The algorithm used by ‘medos’ is kept very simple by connecting the (X,Y) points with lines. By 

setting the desired number of frequencies to 60, the VDoS is sliced in 60 continua (boxes), resulting 

in an Einstein continuum model similar to Kieffer’s (1979) model. Because the highest frequency 

in vdosmgo.exp is 710 cm
-1

, each continuum has a width of about 12 cm
-1

. The height of each 

continuum is determined via an interpolation process. Therefore a sufficient number of points is 

important. ‘medos’ uses a simple smoothing technique by averaging 20 VDoS values in each of the 

60 continua. 

 

Program ‘medos’ is a FreePascal program, which is compiled by: 

 

  fpc medos.pas 

 

The input file mgo60.mef for ‘me’ is constructed by using the name of the script file as argument. 

For example by typing at the command prompt: 

 

  ./medos makevdos.mgo  (in Linux) or .\medos makevdos.mgo (in Windows powershell) 

 

Because model parameters, such as equation of state properties, or Grüneisen and anharmonicity 

parameters are unknown to ‘medos’ it uses preset values for static properties in the construction of 

the output file, namely those for MgO determined by Jacobs et al. (2017). Note that Einstein 

temperatures appearing in the resulting output file, mgo60.mef, are valid at zero temperature and 

zero pressure. Because static and vibrational model parameters are unknown a priori, ‘medos’ 

assumes that the frequencies in vdosmgo.exp are valid at this condition. That is the case for many 

ab initio predictions, but exceptions are possible, such as for instance for post-perovskite and the 

high pressure form of clinoenstatite, both not stable at 1 bar pressure. In these cases the resulting 

Einstein temperatures must be considered approximations, which must be fine-tuned later in a 

thermodynamic analysis using an optimizer. 

 

The resulting file mgo60.mef can be used as input for ‘me’ by proceeding in the same way as in the 

preceding section by attaching ‘example 2’ in last part of file demo.mef, see below. 

 

 

3. Next information must be attached to file ‘mgo60.mef’ specifying that a VDoS is calculated. 

Go to the last part of file 'demo.mef' and copy the lines of ‘example 2’. Change pressure and 

temperature, and select the name of the GnuPlot file and location of the VDoS file: 
 

# VDoS calculation; this part must be attached 

 3                         (* 1=Isobaric calculation, 2=Isothermal calculation, 3=VDoS *) 

 1                         (* Desired unit: 1=cm^-1, 2=THz, 3=meV *) 

 0    0                    (* Pressure/Pa, Temperature/K at which VDoS is calculated *) 

# Script file for GnuPlot: 

 /home/michel/geodata/mgo/mgo60.grf 

 1                         (* 0=No experimental/abinitio VDoS, 1=experimental/abinitio VDoS *) 

# When the preceding line defines an experimental/abinitio VDoS add the following 3 lines: 

# File with experimental/abinitio VDoS (X,Y) points: 

 /home/michel/geodata/mgo/vdosmgo.exp 

 1                           (* Unit experimental/abinitio VDoS: 1=cm^-1, 2=THz, 3=meV *) 

# ------------------------------------------------------------------------------------------- 

 

When using the new mgo60.mef in ‘me’ by typing at the command prompt: 

 

  ./me demo60.mef  (in Linux)   or    .\me demo60.mef  (in Windows powershell) 

 

, plots are obtained as shown on the right-hand side frames of Figure 15.1. 
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It is of course not surprising that the resulting VDoS quite accurately represents that obtained from 

ab initio because the preset values taken in ‘medos’ resemble those from a thermodynamic analysis 

for MgO. Therefore we repeat the procedure for Mg2SiO4, ringwoodite, in section 15.2 to show that 

at least reasonable heat capacities can be established when we do not have correct preset values. 

 

 

15.2 Constructing a ‘me’ input file for Mg2SiO4 (ringwoodite) from an abinitio VDoS 

Ringwoodite is a high pressure form of forsterite, and it can be quenched to 1 bar pressure. We start 

with the VDoS predicted by Yu and Wentzcovitch (2006). The VDoS is given in file vdos-ri.exp. 

We apply program ‘medos’ with the script file below. 

 
# Script file for ‘medos’ to make an input file for ‘me’ 

60                             (* Desired number of Einstein temperatures *) 

# Output file serving as input file for 'me' 

/home/michel/geodata/ringwoodite/mg-ri.mef 

1                              (* VDoS unit: 1=cm^-1, 2=THz, 3=meV *) 

# File containing VDoS (X,Y) points 

/home/michel/geodata/ringwoodite/vdos-ri.exp 

 

First select the path of the output file and the file containing the VDoS points. Next give the script 

file a name, e.g. makevdos.ri, and type at the command prompt: 

 

./medos makevdos.ri   (Linux)    or    .\medos makevdos.ri   (Windows powershell) 

 

‘medos’ produces the output file mg-ri.mef and a part of it is given below. 

 
# =================================================================== 

# Note that values have been preset to those for MgO !! 

# Only Theta and Fractions were determined with program 'mevdos'... 

# =================================================================== 

# 

MgO (Preset...)            (* Name of the substance *) 

40.304                     (* Mass of the substance in gr/mol *) 

 7.00                      (* Number of atoms in 1 molecular formula unit *) 

-6.21093534291483E+005     (* Static lattice energy in J/mol *) 

 1.12027710146365E-005     (* Volume/m3/mol at zero K and zero Pa *) 

 1.10736889124136E-005     (* Volume/m3/mol of the static lattice at zero Pa *) 

 2                         (* 1=Vinet, 2=Birch-Murnaghan, 3=Keane, 4=Qin EoS of the static lattice 

 3                         (* Order of Birch-Murnaghan EoS of the static lattice *) 

 1.71365000000000E+011     (* Static lattice bulk modulus/Pa at zero Pa *) 

 4.18588900000000E+000     (* Pressure derivative of the static lattice bulk modulus at zero Pa *) 

 1.39801200000000E+011     (* Static lattice shear modulus/Pa at zero Pa *) 

 2.27420200000000E+000     (* Pressure derivative of the static lattice shear modulus at zero Pa *) 

 2.06860800000000E+000     (* Vibrational parameter of the shear modulus *) 

 0                         (* 0=No Landau contribution, 1=2nd order, 2=Tricritical, 3=1st order *) 

 0                         (* 0=No magnetic contribution, 1=magnetic contribution *) 

 0                         (* No electronic contribution *) 

 0                         (* 0=No cation disorder, 1=model of O’Neill and Navrotsky (1983,1984) *) 

 0                         (* 0=No monovacancy defects, 1=monovacancy defects: Dorogokupets &…*) 

60                         (* Number of Einstein modes *) 

 2                         (* 1=Gruneisen expression by Al'tshuler et al, 1987 and 2=that by 

Stixrude & Lithgow-Bertelloni, 2005 *) 

#  j   Theta/K     Fraction          Gamma      Mode_m(q)   Gamma_inf  a0             z 

# --------------------------------------------------------------------------------------------- 

   1    11.736120  5.40560570E-0005  1.0000000  0.1000000   0.0000000  1.00000E-0011  0.0000000 

   2    35.207929  1.67858282E-0004  1.0000000  0.1000000   0.0000000  1.00000E-0011  0.0000000 

   . 

   . 

   . etc 

 

Now we deliberately make a mistake, namely that we do not change the model parameters. Static 

model parameters are than the same as for MgO. Because the molar volume of ringwoodite is about 

39.4 cm
3
/mol, our volume 11.2 cm

3
/mol would than be about 3-4 times too small. According to 

Jacobs et al. (2017) the static bulk modulus of ringwoodite is about 192 GPa, which is considerably 

larger than in mg-ri.mef. We have only changed the number of atoms in one molecular formula 
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unit because we know that there are 7 atoms in Mg2SiO4 instead of 2 in MgO. We also keep the 

preset values for Grüneisen and mode-q parameters unchanged. 

 

Now we calculate the VDoS and additionally the heat capacity with ‘me’, by attaching 

subsequently the parts of example 1 and example 2, present at the end of file demo.mef, to mg-

ri.mef. Figure 15.2 shows that the results are surprisingly good up to room temperature. Why does 

this work so well? 

 

 
 

Fig 15.2. Top-left: VDoS of ringwoodite calculated by ‘medos’ as the coloured boxes compared with the ab 

initio prediction of Yu & Wentzcovitch (2006). Top-right: isobaric heat capacity calculated by ‘me’ as the 

red curve and that calculated by Jacobs et al (2017) as the black curve. Bottom-left: isochoric heat capacity 

and dilation term; red curves calculated with ‘me’ using mg-ri.mef, black curves by Jacobs et al (2017). 

Bottom-right: thermal expansivity calculated by ‘me’ (red) and Jacobs et al (2017, black), data points 

predicted by Wu & Wentzcovitch (2006) 
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When we start making the VDoS, ‘medos’ assumes that the frequencies in the VDoS of Yu and 

Wentzcovitch (2006) were given at zero temperature and zero pressure, which is indeed the case. 

Subsequently, ‘me’ calculates the VDoS as zero temperature and zero pressure. That requires the 

calculation of the volume at zero temperature and zero pressure. That results in the volume, V0. 

Inserting V0 in eqn. (6.10) and (6.9) of section 6 results in the frequencies at zero temperature and 

zero pressure, i.e. the input frequencies of mg-ri.mef. Although the calculated volume V0, is about 

3-4 times to small, the correct frequencies are found back at zero temperature and zero pressure and 

therefore the VDoS as well.  

 

The isobaric heat capacity, Cp, is calculated from the isochoric heat capacity, Cv, and the dilation 

term according to: 

 

  KVTCC vp
2α+=                                                                (15.2) 

 

The bottom-left frame of Figure 15.2 shows that the difference between Cv calculated by ‘me’ and 

that of Jacobs et al. (2017) is quite small. Because the ratio V/V0 does not change significantly at 

low temperature, vibrational frequencies, which depend on the ratio V/V0, are not significantly 

different for both methods. The xj in the expression for Cv, eqn. (6.24a), are than mainly dependent 

on temperature via eqn. (6.1), and much less on the change in frequencies with the volume ratio.  

 

The bottom-right frame shows that thermal expansivity calculated with mg-ri.mef is about 3-4 

times larger than that calculated by Jacobs et al. (2017). That this is the case becomes clear by 

rewriting eqn. (6.26a) as: 
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To arrive at (15.3) we made use of eqn. (6.24a) and by neglecting anharmonicity, as is the case here, 

and by setting all Grüneisen parameters to the same value, γ. The value of γ in mg-ri.mef is 0.8 

times that used in Jacobs et al. (2017). Because volume calculated with mg-ri.mef is about 3-4 

times smaller, the isochoric temperature derivative of thermal pressure is about 3-4 times larger. 

Because thermal expansivity is related to this property, via eqn. (15.4), that also holds for thermal 

expansivity. 
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Although thermal expansivity resulting from our ‘me’ calculation is much larger than that of Jacobs 

et al. (2017), the dilation term, α2
KVT, depicted in the bottom-left frame of Figure 15.2 is small at 

low temperatures. Because of that characteristic the difference between isochoric and isobaric heat 

capacity is quite small at low temperature, being zero at zero temperature. Because the VDoS is the 

same for both methods, also Cv and Cp, are insignificantly different at low temperature. The 

difference in isobaric heat capacity of the two methods becomes significant when the difference in 

the dilation terms becomes larger, in this case above room temperature.  

 

 

Conclusion 

Although volume and bulk modulus in the input file differ considerably from experimental values, 

quite accurate values for low-temperature heat capacity can be obtained. Low-temperature heat 
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capacity mainly depends on the form of the VDoS. If static parameters in file mg-ri.mef would be 

replaced by eg experimental values at ambient conditions, deviations would be much smaller and 

quite accurate heat capacity up to high temperatures can be obtained, even without using an 

optimizer. 

 

 

15.3 Changing model parameters manually 

When model parameters in the input file of ‘me’ are changed manually, some messages may appear 

in the output file. This also occurs when an input file prepared by ‘medos’ is used by ‘me’. An 

example is given below when an input file for ‘me’ is constructed from an abinitio VDoS for MgO 

with ‘medos’. When the input file is used in ‘me’ the following message is displayed in the 

‘GnuPlot’ file: 

 
# --------------------------------------------------------------------------- 

# This file calculated by: me (Version 6: April 5th, 2018) 

# Input file    : /home/michel/geodata/mgo/mgo60.mef 

# Constructed on: May 6th, 2018 / 14hr:50min:45sec 

# 

# Script file for Gnuplot: Vibrational Density of States 

# The resulting VDoS values are g(w)/Na in 1/cm-1, where g(w) is the 

# wavenumber VDoS, and w in cm-1. Na is Avogadros number. 

# Experiments: /home/michel/programs/short/vdosmgo.exp 

# See end of this file for conversion to *.eps file for use in GIMP 

# 

# Pressure    =  0.000000E+0000 Pa 

# Temperature =  0.000000E+0000 K 

# Volume      =  1.120277E+0001 cm3/mol 

# 

################################################################################ 

# Model parameters were changed or preset in the input file. Therefore the total 

# equation of state pressure, P_total(T=0,V0), does not match the external 

# pressure at (0 K, 0 Pa). 

# 'me' repaired this by changing the static volume. The model parameters now give 

# P_total(T=0,V0) = 0 when the external pressure is zero. 

 

# Old static volume:  11.073689 cm3/mol 

# New static volume:  11.118020 cm3/mol 

# Difference       :   0.044331 cm3/mol   [  0.400328%] 

################################################################################ 

# --------------------------------------------------------------------------- 

# 

# Set terminal to wxt: comment this line when plotting to file with extension .eps 

set terminal wxt 

 

 

Blue lines indicate that static volume required a correction. Such message is also displayed when 

the input file for ‘me’ is used to make a table such as indicated below. 

 

 
This file calculated by: me (Version 6: April 5th, 2018) 

Input file: /home/michel/geodata/mgo/mgo60-1.mef 

Constructed on   : May 6th, 2018 / 14hr:50min:53sec 

Isobaric calculation 

Substance name: MgO 

Pressure starts at:   100.0000 KPa 

################################################################################ 

Model parameters were changed or preset in the input file. Therefore the total 

equation of state pressure, P_total(T=0,V0), does not match the external  

pressure at (0 K, 0 Pa). 

'me' repaired this by changing the static volume. The input parameters now give 

P_total(T=0,V0) = 0 when the external pressure is zero. 

 

Old static volume:  11.073689 cm3/mol 

New static volume:  11.118020 cm3/mol 

Difference       :   0.044331 cm3/mol   [  0.400328%] 

################################################################################ 

    T/K        P/KPa    V/cm3/mol  d/gr/cm3      a*1E+4/K     K/GPa     Cp/J/K/mol Cv/J/K/mol   Ks 

-------------------------------------------------------------------------------------------------- 
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    0.0000   100.0000  11.202764   3.597683455   0.000000   168.417514   0.000000   0.000000   168 

 

 

When ‘me’ calculates thermodynamic properties at a specific condition of pressure and temperature, 

it starts with calculating the volume from the pressure equation. We illustrate this for a simple case, 

using a Vinet equation of state for the static lattice and by assuming that the substance is described 

by a single Einstein frequency in the quasi-harmonic approximation. By using eqn. (6.25a) we 

have: 
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The frequency, ν, and Grüneisen parameter γ depend on volume. At zero pressure and zero 

temperature, eqn. (15.5) is written to: 
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Eqn. (15.6) shows that model parameters cannot be changed independently, but that one parameter 

can be expressed in the others. For the substances in file demo.mef the parameters were optimized 

such way that eqn. (15.6) holds.  

When a model parameter is changed, or in the case that an input file for ‘me’ is prepared using 

‘medos’ and preset values are written in it, eqn. (15.6) does not hold anymore. For that reason ‘me’ 

checks if eqn. (15.6) holds true before any calculations are carried out. Although any parameter can 

be selected to repair the condition of eqn. (15.6), ‘me’ prefers to change the static volume V0
st
. That 

occurs in an iterative process. After that ‘me’ continues making an output file. 

 

Electronic, magnetic and crystal field parameters have no effect on eqn. (15.6) as long as these 

effects are volume independent. In that case their pressure contribution to the pressure is zero. 

Intrinsic anharmonicity affects eqn. (15.6). When anharmonicity is included in the pressure 

equation, eqn. (15.6) is extended using eqn. (6.25d), (6.18) and (6.19): 
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Generally, when arbitrary numbers of Einstein temperatures are used in the VDoS, corrections of 

static volume are carried out when one or more parameters in the set 0V , stK
0

, stK '
0

, 0,jθ , 0,jγ , 0,ja , 

0,jz  are changed. 
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Defect contributions 
M.H.G. Jacobs, Institute of Metallurgy, TU-Clausthal, Germany, April 5th, 2018 

 

 

 

This part of the manual describes defect contributions to the Helmholtz energy: cation disorder and 

mono vacancies.  
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16.1 Cation disorder 
 

Cation distribution in a large number of minerals, mostly spinels, has been extensively studied by 

Navrotsky and Kleppa (1967), Navrotsky (1977), and O’Neill and Navrotsky (1983,1984). The 

thermodynamic model describing the disorder of the cations in a crystal is described in these papers 

and in the book of Navrotsky (1994). It is based on an ion exchange reaction indicating that ions 

may interchange tetrahedral and octahedral sites. Applying the model to silicate spinels with the 

molecular formula M2SiO4 one may write: 

 

  ++++ +=+ 2424
tetoctocttet MSiMSi                                                          (16.1) 

 

The metal ions, M, normally occupy the octahedral sites and the silicon atoms the tetrahedral sites. 

The general thermodynamic model is based on a two-sub lattice model in which the crystal lattice 

is partitioned in N
tet

 moles of tetrahedral and N
oct

 moles of octahedral sites per one mole of 

molecular formula unit. The site fractions, y, on these sub lattices are derived from the three 

relations: 

 

  1=+ tet
Si
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M yy                                                                    (16.2) 

  1=+ oct
Si
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M yy                                                                    (16.3) 

  tet
M

oct
Si nn =                                                                       (16.4) 

 

Relation (16.4) is due to the characteristic that the movement of one Si atom from a tetrahedral site 

to an octahedral site, is accompanied by the movement of M atom from an octahedral site to a 

tetrahedral site; oct
Si

n  and tet
Mn  denote the number of moles of Si atoms on octahedral sites and M 

atoms on tetrahedral sites per molecular formula unit. These numbers are related to site fractions by 
octoct

Si
oct
Si

Nyn =  and tettet
M

tet
M Nyn = . The thermodynamic model is written in terms of one independent 

site fraction, tet
My , by using relations (16.2)-(16.4) as: 
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The enthalpy of disorder is written as: 

 

  disdisdisdis UVPUH ∆≈∆+∆=∆                                                     (16.6) 

 

O’Neill and Navrotsky (1983) demonstrated that ∆Vdis
 is small enough to be neglected at low and 

moderate pressures. Using the formalism it has been shown that the enthalpy of disorder can be 

derived and rearranged as: 

 

  ( ) tet
M

tet
MHH

tet
M

tet
M

dis yyyHyHH βα +==−=∆ )0()(                                       (16.7) 

 

In eqn. (16.7), the interchange enthalpy is defined as the change of enthalpy when reaction (16.1) is 

complete ( 1=tet
My ): 

 

  tet
MHH yH ⋅+=∆ βαint                                                             (16.8) 

 

The configurational entropy is derived from: 
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After rearrangement: 
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Inserting eqn. (16.5) gives: 
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In eqn. (16.12) a non-configurational entropy has been added to the configurational entropy in the 

same way as for enthalpy. 

The Gibbs energy of disorder is than expressed as: 
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The equilibrium value for site fraction tet
My  is numerically evaluated from: 
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The change in isobaric heat capacity due to disorder is derived from the enthalpy change as: 
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The change of site fraction with temperature is derived from (16.15) as: 
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Example 

An example for the format of the input file for the ringwoodite form of Fe2SiO4 is given in Table 

16.1, and was determined in Jacobs et al (2019). Lines in blue denote the part dealing with cation 

disorder. 
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Table 16.1. Part of an input file for the ringwoodite form of Fe2SiO4. The thermodynamic analysis 

can be found in Jacobs et al (2019) and the description below is extracted from mgsifeo-60e-

anh.sag on website http://www.geo.uu.nl/~jacobs/Downloads). 

 
<Fe2SiO4-rin>               (* Name of the substance *) 

  203.776000                (* Mass of the substance in gr/mol *) 

  7.00000000000000E+000     (* Number of atoms in 1 molecular formula unit *) 

 -1.54384774401370E+006     (* Static lattice energy in J/mol *) 

  4.19350240100317E-005     (* Volume/m3/mol at zero K and zero Pa *) 

  4.16559247148284E-005     (* Volume/m3/mol of the static lattice at zero Pa *) 

  2                         (* 1=Vinet, 2=Birch-Murnaghan, 3=Keane, 4=Qin EoS of the static lattice 

  3                         (* Order of Birch-Murnaghan EoS of the static lattice *) 

  2.13151300000000E+011     (* Static lattice bulk modulus/Pa at zero Pa *) 

  4.32692000000000E+000     (* Pressure derivative of the static lattice bulk modulus at zero Pa *) 

  1.02779900000000E+011     (* Static lattice shear modulus/Pa at zero Pa *) 

  1.38833400000000E+000     (* Pressure derivative of the static lattice shear modulus at zero Pa *) 

  2.52192500000000E+000     (* Vibrational parameter of the shear modulus *) 

  0                         (* 0=No Landau contribution, 1=2nd order, 2=Tricritical, 3=1st order *) 

  1                         (* 0=No magnetic contribution, 1=magnetic contribution *) 

 51                         (* Magnetic: number of terms in the MacLaurin series expansion >2 *) 

  2.80000000000000E-001     (* Magnetic: Ratio Energy(tau>1)/total Energy for magnetic transition  

  1.18300000000000E+001     (* Magnetic: Critical temperature Tc *) 

  4.00000000000000E+000     (* Magnetic: magnetic moment in Bohr magneton *) 

  3.00000000000000E+000     (* Magnetic: exponent (m) in Inden's (1981) expression for Cv below Tc  

  5.00000000000000E+000     (* Magnetic: exponent (n) in Inden's (1981) expression for Cv above Tc  

  2.00000000000000E+000     (* Magnetic: number of magnetic atoms per formula unit *) 

  3                         (* Crystal field electronic contribution *) 

  1                         (* Number of sites M1, M2, M3: maximum 3 sites *) 

  7                         (* Number of Crystal field energy levels of the M1 site *) 

  2.00000000000000E+000     (* Number of atoms per formula unit having crystal-field splitting *) 

  1.63016083093689E-001     (* Magnetic correction factor (mf): Helmholtz A=na.RT.g(t).mf.ln(1+b) *) 

# Energy/cm^-1    Degeneracy Gruneisen parameter 

# ---------------------------------------------- 

  0.000000E+000   3          0.000000E+000 

  2.407543E+001   3          0.000000E+000 

  5.057389E+001   3          0.000000E+000 

  1.058610E+003   3          0.000000E+000 

  1.058610E+003   3          0.000000E+000 

  1.000000E+004   5          0.000000E+000 

  1.000000E+004   5          0.000000E+000 

# Extra Free electron gas contribution 

# Cv(electronic)=Cv(crystal-Field)+a*T*(V/V0)^gamma_el 

  0.00000000000000E+000     (* Electronic Gruneisen parameter, gamma_el *) 

  0.00000000000000E+000     (* Electronic coefficient, a, in J/K/K/mol atoms that give crystal-field 

  1                         (* 0=No cation disorder, 1=cation disorder: model of O'Neill and 

Navrotsky*) 

#                           (* Hint=(h1+h2y)y, Sint=(s1+s2y)y: y=sitefraction metallic ion *) 

  1.20499320499321E+005     (* 1st Coefficient interchange enthalpy in J/mol *) 

  0.00000000000000E+000     (* 2st Coefficient interchange enthalpy in J/mol *) 

  0.00000000000000E+000     (* 1st Coefficient interchange entropy in J/K/mol *) 

  0.00000000000000E+000     (* 2st Coefficient interchange entropy in J/K/mol *) 

  1.00000000000000E+000     (* # moles of tetrahedral sites per molecular formula unit *) 

  2.00000000000000E+000     (* # moles of octahedral sites per molecular formula unit *) 

  0                         (* 0=No monovacancy defects, 1=monovacancy defects: Dorogokupets & 

Oganov 2007 Phys Rev B 75:024115 *) 

# Anharmonicity is described with perturbation theory of Oganov & Dorogokupets (2004): a=a0(V/V0)^z 

  60                        (* Number of Einstein modes *) 

  2                         (* 1=Gruneisen expression by Al'tshuler et al, 1987 and 2=that by 

Stixrude & Lithgow-Bertelloni, 2005 *) 

#  j   Theta/K     Fraction          Gamma      Mode_m(q)   Gamma_inf  a0             z 

# --------------------------------------------------------------------------------------------- 

   1     0.001439  0.000000000E+000  1.1604490  2.5068370   0.0000000 -2.670714E-005  0.0000000 

   2    18.401713  0.000000000E+000  1.1604490  2.5068370   0.0000000 -2.670714E-005  0.0000000 

   3    38.321393  9.499378026E-005  1.1604490  2.5068370   0.0000000 -2.670714E-005  0.0000000 

   .      .         .                 .          .           .          .              . 

  60  1173.742446  3.437814992E-002  1.1604490  2.5068370   0.0000000 -2.670714E-005  0.0000000 

# 

# sum of all fractions:  1.000000000E+000 

############################################################################################## 

# Isobaric calculation 

 1                          (* 1=Isobaric calculation, 2=Isothermal calculation, 3=VDoS *) 

 0     2000   30            (* Temperature range and step: T_start/K, T_end/K, T_step/K *) 

 1e+05 1e+05  0.0           (* Pressure range and step   : P_start/Pa, P_end/Pa, P_step/Pa *) 

 1                          (* Output: 1=Output to screen and file, 0=Output to file only *) 

# Output file name 

 /home/michel/geodata/ringwoodite/fe-ringwoodite.out 
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16.2 Mono vacancies 
 

We use a model outlined by Oganov and Dorogokupets (2007) to model mono vacancy defects in 

crystals. The expressions are: 

 

Helmholtz energy 
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Values for f, g are f=-1 and g=-2 for the elements, C, Al, Au, Cu, Pt, Ta, W and for MgO. Variables 

h and s denote the enthalpy and entropy of formation of a mono vacancy. Parameter n, denotes the 

number of atoms in a molecular formula. Because the argument of the exponential is dimensionless, 

the unit of h is K and the parameter s is dimensionless. The compression, η, is V/V0, where V0 is the 

volume at zero pressure and zero temperature and R is the gas constant. 
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Isochoric heat capacity 
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Pressure contribution 
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Temperature derivative  of pressure 
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Isothermal bulk modulus 
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Note that in eqn. (17.6) we have divided by V0 and not by V as we did in the pressure contribution. 

 

 

The input file below, for Fe2SiO4 (fayalite) to be used in ‘me’, exemplifies the calculation of 

thermodynamic properties at 1 bar pressure between 0 and 1500 K in steps of 50 K. It can be 

extracted from file mgsifeo-60-anh.mef, present on website http://www.geo.uu.nl/~jacobs/Downloads). 

The lines dealing with contributions to defects are given in blue. 
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<Fe2SiO4-oli>               (* Name of the substance *) 

  203.776000                (* Mass of the substance in gr/mol *) 

  7.00000000000000E+000     (* Number of atoms in 1 molecular formula unit *) 

 -1.55169950972682E+006     (* Static lattice energy in J/mol *) 

  4.59885769248535E-005     (* Volume/m3/mol at zero K and zero Pa *) 

  4.57306725053928E-005     (* Volume/m3/mol of the static lattice at zero Pa *) 

  2                         (* 1=Vinet, 2=Birch-Murnaghan, 3=Keane, 4=Qin EoS of the static lattice 

  3                         (* Order of Birch-Murnaghan EoS of the static lattice *) 

  1.43085800000000E+011     (* Static lattice bulk modulus/Pa at zero Pa *) 

  5.00000000000000E+000     (* Pressure derivative of the static lattice bulk modulus at zero Pa *) 

  5.46583700000000E+010     (* Static lattice shear modulus/Pa at zero Pa *) 

  1.42650000000000E+000     (* Pressure derivative of the static lattice shear modulus at zero Pa *) 

  1.00000000000000E+000     (* Vibrational parameter of the shear modulus *) 

  0                         (* 0=No Landau contribution, 1=2nd order, 2=Tricritical, 3=1st order *) 

  1                         (* 0=No magnetic contribution, 1=magnetic contribution *) 

 51                         (* Magnetic: number of terms in the MacLaurin series expansion >2 *) 

  2.80000000000000E-001     (* Magnetic: Ratio Energy(tau>1)/total Energy for magnetic transition w 

  6.48800000000000E+001     (* Magnetic: Critical temperature Tc *) 

  4.00000000000000E+000     (* Magnetic: magnetic moment in Bohr magneton *) 

  3.00000000000000E+000     (* Magnetic: exponent (m) in Inden's (1981) expression for Cv below Tc  

  5.00000000000000E+000     (* Magnetic: exponent (n) in Inden's (1981) expression for Cv above Tc  

  2.00000000000000E+000     (* Magnetic: number of magnetic atoms per formula unit *) 

  3                         (* Crystal field electronic contribution *) 

  2                         (* Number of sites M1, M2, M3: maximum 3 sites *) 

  8                         (* Number of Crystal field energy levels of the M1 site *) 

  5                         (* Number of Crystal field energy levels of the M2 site *) 

  2.00000000000000E+000     (* Number of atoms per formula unit having crystal-field splitting *) 

  3.78868651539773E-001     (* Magnetic correction factor (mf): Helmholtz A=na.RT.g(t).mf.ln(1+b) *) 

# Energy/cm^-1    Degeneracy Gruneisen parameter 

# ---------------------------------------------- 

  0.000000E+000   1          0.000000E+000 

  2.700000E+001   1          0.000000E+000 

  4.700000E+001   1          0.000000E+000 

  9.200000E+001   2          0.000000E+000 

  7.300000E+002   5          0.000000E+000 

  1.500000E+003   5          0.000000E+000 

  8.060000E+003   5          0.000000E+000 

  1.106000E+004   5          0.000000E+000 

  0.000000E+000   5          0.000000E+000 

  1.670000E+003   5          0.000000E+000 

  1.670000E+003   5          0.000000E+000 

  8.830000E+003   5          0.000000E+000 

  9.270000E+003   5          0.000000E+000 

# Extra Free electron gas contribution 

# Cv(electronic)=Cv(crystal-Field)+a*T*(V/V0)^gamma_el 

  0.00000000000000E+000     (* Electronic Gruneisen parameter, gamma_el *) 

  0.00000000000000E+000     (* Electronic coefficient, a, in J/K/K/mol atoms that give crystal-field 

  0                         (* 0=No cation disorder, 1=cation disorder: model of O'Neill and Navrots 

  1                         (* 0= No monovacancy defects, 1=monovacancy defects *) 

#                           (* Model: Dorogokupets & Oganov 2007 Phys Rev B 75:024115 *) 

#                           (* Helmholtz energy = -(3/2)nRT*exp(s*eta^f-h*eta^g/T) *) 

#                           (* with n=# atoms/formula unit, eta=V/V0 *) 

  8.16724130000000E+003     (* h: enthalpy of formation, K *) 

  0.00000000000000E+000     (* s: entropy, no unit *) 

 -1.00000000000000E+000     (* f *) 

 -5.00000000000000E-001     (* g *) 

# Anharmonicity is described with perturbation theory of Oganov & Dorogokupets (2004): a=a0(V/V0)^z 

  60                        (* Number of Einstein modes *) 

  2                         (* 1=Gruneisen expression by Al'tshuler et al, 1987 and 2=that by 

Stixrude & Lithgow-Bertelloni, 2005 *) 

#  j   Theta/K     Fraction          Gamma      Mode_m(q)   Gamma_inf  a0             z 

# --------------------------------------------------------------------------------------------- 

   1    12.236857  0.000000000E+000  1.6967220  1.8464070   0.0000000 -2.930085E-005  0.0000000 

   2    36.710135  0.000000000E+000  1.6967220  1.8464070   0.0000000 -2.930085E-005  0.0000000 

   3    61.183573  7.925697191E-004  1.6967220  1.8464070   0.0000000 -2.930085E-005  0.0000000 

   .      .         .                 .          .           .          .              . 

  59  1431.695444  5.442308366E-003  0.2916790  1.7895050   0.0000000 -2.930085E-005  0.0000000 

  60  1456.168896  1.651056381E-003  0.2916790  1.7895050   0.0000000 -2.930085E-005  0.0000000 

# 

# sum of all fractions:  1.0000000000E+000 

############################################################################################## 

# Isobaric calculation 

 1                          (* 1=Isobaric calculation, 2=Isothermal calculation, 3=VDoS *) 

 0     1500   50            (* Temperature range and step: T_start/K, T_end/K, T_step/K *) 

 1e+05 1e+05  0.0           (* Pressure range and step   : P_start/Pa, P_end/Pa, P_step/Pa *) 

 1                          (* Output: 1=Output to screen and file, 0=Output to file only *) 

# Output file name 
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 /home/michel/geodata/fayalite/fayalite.out 
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17  Hugoniot, isentropy 
M.H.G. Jacobs, Institute of Metallurgy, TU-Clausthal, Germany, June 20th, 2020 

 

Hugoniot data are obtained by subjecting a sample to planar shock waves. Because a large range of 

pressures and temperatures are covered by using shock wave techniques, the obtained data are 

extremely important for constraining the equation of state of substances. When the results of the 

measurements are on a Hugoniot, the Rankine-Hugoniot equations apply, which are based on 

conservation of mass, energy and momentum. Because of this characteristic the technique enables 

obtaining absolute compressibility data, and therefore it is possible to construct primary pressure 

scales. An overview of deriving equations of state of materials using shock-wave measurements is 

detailed by e.g. Ahrens (1993). The calculation of a Hugoniot path in P-V-T space with 'me' is 

based on the Rankin-Hugoniot expression: 

 

  )()(
2

1
000 VVPPUU −++=                                                         (17.1) 

 

Energy U0, pressure P0, and volume V0 refer to initial conditions of the material. A characteristic of 

Hugoniots is that very large temperatures are achieved at large pressures, such as depicted for MgO 

in Figure 7.1. The figure also shows that different values for the initial temperature state of MgO 

were used by different investigators.  

 

 
 

Fig. 17.1. V-P and T-P curves calculated along an isotherm at 300 K (black), isentrope with foot 300 K 

(blue) and Hugoniot (initial temperature 300 K in red and initial temperature 1850 K in dark-red). The MgO 

description has been obtained by Jacobs et al (2017) and is present in file mgsifeo-60e-anh.mef. (see 

website http://www.geo.uu.nl/~jacobs/Downloads), 

 

 

Temperatures on an isentrope are much smaller than on a Hugoniot and can be obtained by a 

shock-wave technique, such as described by Davis (2006). To calculate isentropes with 'me' , an 

entropy must be selected. In Figure 7.1, the entropy of MgO at 300 K and 1 bar has been selected. 
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From the tables listed by 'me' it can be shown that thermodynamic properties on an isotherm, 

isentrope and Hugoniot, which all start at the same pressure and temperature, may differ greatly. 

An example for entropy and heat capacity is shown in Figure 17.2. 

 

 
 

Fig. 17.2. Entropy (left) and isochoric heat capacity (right) along an isotherm at 300 K (black), isentrope 

with foot 300 K (blue) and Hugoniot (initial temperature 300 K in red and initial temperature 1850 K in 

dark-red). Entropy and heat capacity generally decrease with pressure along an isotherm. At pressures above 

50 GPa, MgO behaves quasi-harmonically. Due to the high temperatures on the Hugoniot, vibrational modes 

become saturated, and Cv approaches the Dulong-Petit limit of 3nR. The model description of MgO is the 

same as in Figure 17.1. 

 

 

The input file used for the construction of Figures 17.1 and 17.2 is given in file mgsifeo-60e-

anh.mef. Making calculations on a Hugoniot or isentrope is indicated after the line containing "sum 

of all fractions". The lines controlling the calculations are given in blue. 

 

 
<MgO-pc>                    (* Name of the substance *) 

   40.304000                (* Mass of the substance in gr/mol *) 

  2.00000000000000E+000     (* Number of atoms in 1 molecular formula unit *) 

 -6.21093534291483E+005     (* Static lattice energy in J/mol *) 

  1.12027710146365E-005     (* Volume/m3/mol at zero K and zero Pa *) 

  1.10736889124136E-005     (* Volume/m3/mol of the static lattice at zero Pa *) 

  2                         (* 1=Vinet, 2=Birch-Murnaghan, 3=Keane, 4=Qin EoS of the static lattice 

  3                         (* Order of Birch-Murnaghan EoS of the static lattice *) 

  1.71365000000000E+011     (* Static lattice bulk modulus/Pa at zero Pa *) 

  4.18588900000000E+000     (* Pressure derivative of the static lattice bulk modulus at zero Pa *) 

  1.39801200000000E+011     (* Static lattice shear modulus/Pa at zero Pa *) 

  2.27420100000000E+000     (* Pressure derivative of the static lattice shear modulus at zero Pa *) 

  2.06860800000000E+000     (* Vibrational parameter of the shear modulus *) 

  0                         (* 0=No Landau contribution, 1=2nd order, 2=Tricritical, 3=1st order *) 

  0                         (* 0=No magnetic contribution, 1=magnetic contribution *) 

  0                         (* No electronic contribution *) 

  0                         (* 0=No cation disorder, 1=cation disorder: model of O'Neill & Navrotsky 

  0                         (* 0=No monovacancy defects, 1=monovacancy defects: Dorogokupets &  

# Anharmonicity is described with perturbation theory of Oganov & Dorogokupets (2004): a=a0(V/V0)^z 

  60                        (* Number of Einstein modes *) 

  2                         (* 1=Gruneisen expression by Al'tshuler et al, 1987 and 2=that by Stix 

#  j   Theta/K     Fraction          Gamma      Mode_m(q)   Gamma_inf  a0             z 

# --------------------------------------------------------------------------------------------- 

   1     8.511620  0.000000000E+000  1.5153760  1.3987510   0.0000000  9.108297E-006  7.2990600 
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   2    25.534435  0.000000000E+000  1.5153760  1.3987510   0.0000000  9.108297E-006  7.2990600 

   .      .         .                 .          .           .          .              . 

   .      .         .                 .          .           .          .              . 

  59   995.842711  2.378020971E-003  1.5153760  1.3987510   0.0000000  9.108297E-006  7.2990600 

  60  1012.865744  6.061398740E-004  1.5153760  1.3987510   0.0000000  9.108297E-006  7.2990600 

# 

# sum of all fractions:  1.0000000000E+000 

############################################################################################### 

## Hugoniot calculation 

 5                          (* 1=Isobaric, 2=Isothermal, 3=VDoS, 4=Isentropic, 5=Hugoniot, 6=Clone 

 300                        (* Temperature in Kelvin of the sample at 1 bar *) 

 1e+05 2.1e+11  1e+09       (* Pressure range and step   : P_start/Pa, P_end/Pa, P_step/Pa *) 

 1                          (* Output: 1=Output to screen and file, 0=Output to file only *) 

# Output file name 

 /home/michel/geodata/mgo/mgo-hugoniot-300.out 

# ------------------------------------------------------------------------------------------- 

 

 

For the calculation of the isentrope given in Figure 17.1, substitute the lines behind "sum of all 

fractions..." by: 

 

 
# Isentropic calculation 

 4                          (* 1=Isobaric, 2=Isothermal, 3=VDoS, 4=Isentropic, 5=Hugoniot, 6=Clone 

 27.1259                    (* Constant entropy, J/K/mol *) 

 1e+05 2.1e+11  1e+09       (* Pressure range and step   : P_start/Pa, P_end/Pa, P_step/Pa *) 

 1                          (* Output: 1=Output to screen and file, 0=Output to file only *) 

# Output file name 

 /home/michel/geodata/mgo/mgo-isentrope-300.out 

# ------------------------------------------------------------------------------------------- 
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18  Database clones 
M.H.G. Jacobs, Institute of Metallurgy, TU-Clausthal, Germany, June 20th, 2020 

 

In some cases, such as for the benefit of increasing computational speed, one may wish to reduce 

the number of Einstein frequencies in the VDoS. Reducing the number of Einstein frequencies 

from 60 to 8 such as depicted in Figure 18.1, will result in a gain of a factor of about 5 in 

computational speed. 

 

 
Fig. 18.1. Constructing a clone. Top-left: original VDoS with 60 Einstein frequencies representing ab initio 

results of Li et al (2007). The model description obtained by Jacobs et al (2017) is present in file mgsifeo-

60e-anh.mef. (see website http://www.geo.uu.nl/~jacobs/Downloads). Top-right: the mid points in the top 

of each Einstein box in the top-left frame are taken as 'new experimental points' for constructing a new 

VDoS. Bottom-left: these points are used to construct a VDoS with only 8 Einstein boxes. Bottom-right: 

the resulting VDoS in the bottom-left frame is stretched to match the entropy at the target condition. 
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In such a case 'me' enables reducing the number of Einstein frequencies in the VDoS. In other 

words, the original model description is cloned to a new one. The construction of a cloned 

description is characterized by selecting the number of Einstein frequencies in the new VDoS and 

by selecting a target condition. The target condition specifies a point in P-T space at which the 

enthalpy and entropy must have equal values as those calculated with the original description. 

Figure 18.1 shows how the clone process works.  

A multiple-Einstein description of the VDoS consists of equidistantly spaced Einstein frequencies. 

Because one Einstein frequency is a line in the VDoS it difficult to compare the spectrum with a 

VDoS derived from ab initio predictions or inelastic neutron scattering experiments. Therefore it is 

depicted as a box (Einstein continuum in Kieffer's 1979 model) for which the surface is defined 

with a width equal to the distance between two subsequent Einstein frequencies and the fraction. 

Each Einstein frequency is located in the middle of each continuum. The surface under all the 

continua, thus obtained, is normalized to 3nNA, the degree of vibrational freedom. The top-left 

frame of Figure 18.1 shows the original VDoS of forsterite containing 60 Einstein frequencies. In 

the clone process, this VDoS is converted to a set to 60 points characterized by the frequency in the 

middle of each box and the top of the box, such as depicted in the top-right frame. In the bottom-

left frame of Figure 18.1, eight frequencies were selected to construct a new VDoS. The width of 

each Einstein continuum is determined by the largest frequency occurring in the original VDoS, 

~1100 cm
-1

. The height of each continuum (box) is determined by averaging the heights of points 

located within the frequency range of each continuum. To enhance accuracy, extra points may be 

inserted between two subsequent points in an automated process. At this stage entropy deviates 

significantly from that calculated with the original VDoS description at all temperatures and 

pressures. To keep entropy at the same value as determined with the original description at the 

target condition, the new VDoS is stretched or contracted in the frequency direction, using a 

minimization process. Finally, the enthalpy value is adjusted by changing the reference energy. 

Jacobs et al (2017) demonstrated that making calculations with a cloned description does not 

significantly affect phase diagrams and volume properties in many cases.  

 

 
Fig. 18.2. Left: entropy o

15.298S  calculated with different number of Einstein frequencies in the VDoS and 

target condition 7.9 GPa, 1173 K. The horizontal lines indicate the experimental value of 94±0.1 J/K/mol 

obtained by Dachs et al (2007). Right: low temperature heat capacity data are represented with the original 

description and that with 8 frequencies in the VDoS, but not with 2 or 4 frequencies in the VDoS. 
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A target condition of 7.9 GPa and 1173 K has been taken for constructing the VDoS in Figure 18.1. 

The right-hand frame of Figure 18.2 shows that matching the entropy at such high temperature goes 

at the expense of accuracy in heat capacity and therefore entropy at lower temperatures. 

Figure 18.2 shows that clones having 14 or more Einstein frequencies in the VDoS have an ambient 

entropy that matches the experimental value determined by Dachs et al (2007). These descriptions 

do not show significant deviations of all thermodynamic properties relative to those obtained with 

the original description. These clones are therefore safe to use in the P-T stability range of forsterite. 

From investigations of substances and solid solution phases in the system MgO-SiO2-FeO, it 

appears that for most substances a minimum of about 14 Einstein frequencies is needed to produce 

results insignificantly different from the original description. That also holds for MgO when very 

high temperatures and pressures are investigated located on the Hugoniot, depicted in Figure 17.1. 

For metals having a VDoS, which extends in a much smaller frequency range compared to silicates, 

a smaller number of Einstein frequencies is sufficient, typically between 2 and 5. 

The right-frame of Figure 18.2 shows for forsterite that clones having 12, 8, 7 and 2 Einstein 

frequencies in the VDoS also produce an acceptable value for the ambient entropy. The right-frame 

of Figure 18.2 shows that heat capacity calculated with a clone having 8 Einstein frequencies in the 

VDoS produce results that are insignificantly different from the original description. That also 

holds for other thermodynamic properties. However this is not the case for 4 or 2 Einstein 

frequencies in the VDoS. 

 

 

An example for constructing a clone with 'me', copied from mgsifeo-60e-anh.sag downloadable 

from website http://www.geo.uu.nl/~jacobs/Downloads). is given below. The lines controlling the 

calculations are given in blue. 

 
<Mg2SiO4-oli>               (* Name of the substance *) 

  140.692000                (* Mass of the substance in gr/mol *) 

  7.00000000000000E+000     (* Number of atoms in 1 molecular formula unit *) 

 -2.25175662911328E+006     (* Static lattice energy in J/mol *) 

  4.34970344652468E-005     (* Volume/m3/mol at zero K and zero Pa *) 

  4.30816682094395E-005     (* Volume/m3/mol of the static lattice at zero Pa *) 

  2                         (* 1=Vinet, 2=Birch-Murnaghan, 3=Keane, 4=Qin EoS of the static lattice 

  3                         (* Order of Birch-Murnaghan EoS of the static lattice *) 

  1.35042300000000E+011     (* Static lattice bulk modulus/Pa at zero Pa *) 

  4.18000000000000E+000     (* Pressure derivative of the static lattice bulk modulus at zero Pa *) 

  8.71842600000000E+010     (* Static lattice shear modulus/Pa at zero Pa *) 

  1.49844500000000E+000     (* Pressure derivative of the static lattice shear modulus at zero Pa *) 

  1.91533300000000E+000     (* Vibrational parameter of the shear modulus *) 

  0                         (* 0=No Landau contribution, 1=2nd order, 2=Tricritical, 3=1st order *) 

  0                         (* 0=No magnetic contribution, 1=magnetic contribution *) 

  0                         (* No electronic contribution *) 

  0                         (* 0=No cation disorder, 1=cation disorder: model of O'Neill and Navro 

  0                         (* 0=No monovacancy defects, 1=monovacancy defects: Dorogokupets & Ogan 

# Anharmonicity is described with perturbation theory of Oganov & Dorogokupets (2004): a=a0(V/V0)^z 

  60                        (* Number of Einstein modes *) 

  2                         (* 1=Gruneisen expression by Al'tshuler et al, 1987 and 2=that by Stixr 

#  j   Theta/K     Fraction          Gamma      Mode_m(q)   Gamma_inf  a0             z 

# --------------------------------------------------------------------------------------------- 

   1    12.997527  1.009823583E-004  1.2901120  1.7857310   0.0000000 -8.650911E-006  0.0000000 

   2    38.404252  4.938673280E-004  1.2901120  1.7857310   0.0000000 -8.650911E-006  0.0000000 

   .      .         .                 .          .           .          .              . 

  60  1512.002075  2.139388114E-003  0.4500000  0.0000000   0.0000000 -8.650911E-006  0.0000000 

# 

# sum of all fractions:  1.000000000E+000 

############################################################################################## 

## Cloning a VDoS to a VDoS with a smaller number of Einstein frequencies 

6                          (* 1=Isobaric, 2=Isothermal, 3=VDoS, 4=Isentropic, 5=Hugoniot, 6=Clone *) 

8                          (* Desired number of Einstein frequencies in the VDoS *) 

7.9e+09 1173               (* Clone condition P/Pa, T/K at which enthalpy and entropy must remain 

                              unchanged *) 

# Output file name 

 /home/michel/geodata/mgo/mgo-8-clone.mef 

# ------------------------------------------------------------------------------------------- 
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Version, features and units 
M.H.G. Jacobs, Institute of Metallurgy, TU-Clausthal, Germany, July 1st, 2021 

 

 

 
Version Features Unit(s) 

All Controlling all units Me.pas 

All Declaring types and variables, initializing 

variables, frequently used functions 

Variables.pas 

All Reading input files, frequently used procedures Readinput.pas 

1 Frequency/Grüneisen expressions according to 

1. Al'tshuler LV, Brusnikin SE, Kuz'menkov EA 

(1987) J Appl Mech Tech Phys 28:129-141 

2. Stixrude L, Lithgow-Bertelloni (2005) Geophys 

J Int 162:610-632 

Static Equations of State 

1. Up to 8
th
 order Birch-Murnaghan 

2. 3
rd

 order Vinet 

3. Keane's (1954) Equation of State (version ≥ 9) 

4. Qin et al (2008) Equation of State (version ≥ 9) 

Electronic contribution 

1. Free electron gas electronic contribution 

Vibrations.pas 

Static.pas 

Electronic.pas 

Maketable 

Makevolume.pas 

 

2 Landau formalisme: 1
st
 order, 2

nd
 order, tricritical  

Magnetic contribution 

Landaucalc.pas 

Magnetic.pas 

3 Crystal-Field electronic contribution Electronic.pas 

4 Making GnuPlot files for plotting VDoS 

Making 'me' input file from an abinitio VDoS 

Plotvdos.pas 

Medos.pas 

5 Cation disorder Cationdisorder.pas 

6 Mono vacancy defects Defects.pas 

7 OS: Linux, Windows  

8 Hugoniot, Isentrope, cloning Isenhugo.pas 

Savemef.pas 
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