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Appendix A 
 
Magnetic contributions to entropy and heat capacity 
Developing the heat capacity expressed by eqn. (4) and (5) in McLaurin series results in: 
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The coefficients a1 and a2 are found by making use of (1) that the magnetic entropy converges 
to naRln(1+) at infinite temperature and (2) by defining p as the fraction of the total energy 
above the critical temperature to transform the substance from one magnetic state to the other. 
That results in:  
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In eqn. (17) and (18), s1 and s2 result from the integrations in (16) and are given: 
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The entropy resulting from the integration of the heat capacity is: 
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In the Hillert-Jarl (1979) formalism, the magnetic contributions to thermodynamic properties 
are found by taking the first three terms in the series expansion. Their formalism is widely 
used in the Calphad community, such that entropy contribution of -naRln(1+) is negative at 
zero temperature and zero at infinite temperature. Because we prefer the third law to be valid, 
we have used the equations such that the entropy is zero at zero temperature and +naRln(1+) 
at infinite temperature commensurate with quantum mechanics. 
The six ‘d’ electrons of Fe atoms in Fe2SiO4 and FeSiO3 end members give rise to a net spin 
S=2 and it is expected that the magnetic moment equals 4. However, we noticed for fayalite 
ringwoodite and orthoferrosilite that the empirical formalism grossly overestimates the 
magnetic contribution to heat capacity when this value for the magnetic moment, , is used, 
independent of the values that are used for p, m and n. Therefore we introduced a correction 
factor, mf, in the magnetic Helmholtz energy contribution for these substances which is about 
1/3 for fayalite and orthoferrosilite and 1/6 for ringwoodite and  is taken to be 4. Eqn. (6) 
becomes: 
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Expressions for heat capacity and entropy are corrected, accordingly, with the same factor, mf. 
 
 
Coupling the Landau formalism to the Helmholtz free energy formalism 
The Landau contribution to Gibbs free energy of -quartz is given by eqn. (10) by adding the 
Landau contribution to the Gibbs free energy of -quartz. The Landau contributions to other 
thermodynamic properties are given below. 
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Volume 
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In eqn. (26), the volume V is calculated from the Helmholtz free energy expression, eqn. (1) 
as if no Landau contribution would be present. 
 
Thermal expansivity 
This property is derived from the expression of volume as: 
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In eqn. (28), the volume V and thermal expansivity  are calculated from the Helmholtz free 
energy expression, eqn. (1) as if no Landau contribution would be present. 
 
Bulk modulus 
This property is derived from compressibility as: 
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Volume V and bulk modulus K are calculated from the Helmholtz free energy, eqn. (1), as if 
no Landau contribution would be present. 



Entropy correction in the Landau formalism 
Because the Landau contribution to the entropy of -quartz is not zero at zero temperature, it 
violates the 3rd law of thermodynamics. To remedy this we added a value of +0.5aL to the 
entropy of both the low-temperature (-quartz) and the high-temperature form (-quartz). 
This has as effect that the transition entropy at the critical temperature remains zero, as is 
required in tricritical Landau theory. An additional effect is that the unstable disordered form 
(-quartz) has a positive remnant entropy at zero temperature. The Gibbs energy of the low- 
and high-temperature form is consequently changed by -0.5aLT. This treatment is not identical 
with implementing a Q4 term in the Landau expression for the Gibbs energy, eqn. (12), by 
replacing this term by -0.5aLTc(P)-Tc(P)Q4, by virtue of eqn. (13). The reason for that is 
that the order parameter, Q, has zero value for temperatures larger that the critical temperature. 
Therefore, construction of such a model would result in Gibbs energy values of -0.5aLTc(P) 
instead of -0.5aLT above the critical temperature. The consequence is that the entropy at the 
critical temperature is +0.5aL, whereas above the critical point it is zero, leading to a negative 
transition entropy when -quartz transforms to -quartz, which in turn is physically 
unrealistic. In this case it makes more sense to use the Landau expression for the Gibbs 
energy describing a first order transition in which the Q4 term is present, such as we used in 
section ‘Thermochemical data’. This, however, results in the same problem with the entropy, 
for which the treatment above can be applied. 
  The problem with entropy also occurs with the second order Landau expression for the 
Gibbs energy that we used in our previous description (Jacobs et al, 2017) for the phase 
boundary between SiO2(Stishovite) and SiO2(I, CaCl2 structure). This boundary has a positive 
Clapeyron slope and both forms are stable at zero temperature. The situation differs from that 
described above in the sense that we did not apply an entropy correction. The reason for that 
is that the value of 0.013 J/K/mol for aL is much smaller than the value 11.5 J/K/mol that we 
found for quartz. Neglecting the entropy correction results in a small negative entropy of 
SiO2(I) of -0.0065 J/K/mol at zero Kelvin, which we found acceptable. Additionally, the 
small value for aL has negligible effect on the phase boundary between SiO2(I) and SiO2(II, 
columbite), located parallel and at higher pressures relative to the Stishovite-SiO2(I) boundary. 
This boundary was calculated by the intersection of the Gibbs energies of the two forms, and 
due to the small value of the entropy of SiO2(I), a nearly horizontal departure of the boundary 
at zero temperature occurs, which is physically realistic. 
  Although the Landau formalism works well in the cases mentioned above, it might be 
anticipated that cases exist for which problems arise. These are most likely to occur for cases 
in which the two forms are both stable to very low temperatures combined with larger values 
for aL, comparable with that of quartz. 
 
 



Appendix B 
Details of thermodynamic analyses of Fe2SiO4, FeSiO3 polymorphs, coesite and quartz. 
 
 
Polymorphs of Fe2SiO4 (fayalite, ringwoodite) 
Fayalite is a crucial substance in the thermodynamic analysis of the system FeO-SiO2 because 
its properties strongly constrain anharmonic and electronic effects of other substances, most 
directly those of ringwoodite and orthoferrosilite. For this substance the largest amount of 
datasets are available. A VDoS has been predicted by Yu et al. (2013) using ab initio. 
Although our method, using this VDoS, represents their predicted heat capacity well, 
experimental heat capacities are not represented to within reported uncertainty. Representing 
experimental low-temperature heat capacity data requires a shift in all frequencies in the 
VDoS of about -34 cm-1, considerably larger than about 5 cm-1 that we needed for the 
magnesium end members including stishovite in our previous work of Jacobs et al (2017). 
The description for the crystal field electronic contribution has been kept the same as 
established by Aronson et al. (2007) and used by Jacobs and de Jong (2009). Figure 1 and 
Table 7 show that using the corrected VDoS, experimental low-temperature heat capacity and 
ambient entropy are represented to within experimental uncertainty. To represent thermal 
expansivity to within experimental uncertainty requires dispersion in Grüneisen parameters. It 
appears that dispersion in these parameters, partitioned in two frequency ranges, is sufficient 
to represent thermal expansivity data of Suzuki et al. (1981). Our values for Grüneisen 
parameters are based on those established by Jacobs et al. (2009), which in turn are based on 
IR spectroscopic data of Hofmeister (1987, 1989). Table 5 shows that, using data for heat 
capacity and thermal expansivity in the temperature range between 0 and 800 K, our analysis 
prefers the experimental adiabatic bulk modulus data of Isaak et al. (1993), measured between 
300-500 K. These data are close to those of Sumino (1979), but deviate significantly from 
those of Graham et al. (1988). Jacobs and de Jong (2009) described fayalite with a vibrational 
model employing the quasi-harmonic approximation. Figure 2 shows that this model 
represents the data of Watanabe (1982), but it is insufficiently accurate to represent the drop 
calorimetric data of Orr (1953) and the more recent DSC and drop calorimetric data of 
Benisek et al. (2012). Benisek et al. (2012) measured larger heat capacity values than 
Watanabe (1982) in the range between 300 K and 800 K. We preferred their data, because in 
Jacobs et al. (2017) we found that Watanabe’s (1982) measurements were also too small for 
wadsleyite and ringwoodite Mg2SiO4. From Figure 2 it is evident that finding a description 
consistent with the data of Benisek et al. (2012) requires an additional physical effect, for 
which we suggest intrinsic anharmonicity or an electronic contribution. A value of -2.9310-5 
K-1 for anharmonicity is required to describe the DSC data of Benisek et al (2012) in the range 
between 290 K and 800 K, a value about 2.5 times larger than for magnesium end members 
determined by Jacobs et al. (2017). In the alternative analysis, without including 
anharmonicity, a value of 2.41810-3 J/K2/mol FeSi0.5O2 for the electronic coefficient, el in 
eqn. (3), must be used. In both cases, however, a significant deviation from the drop 
calorimetric data of Orr (1953) and Benisek et al (2012) above 800 K is still present. Benisek 
et al. (2012) discussed in their paper that data measured by Orr (1953) for forsterite and 
fayalite may be flawed by systematic errors in the temperature range between 500 K and 1400 
K. Details concerning the causes for these systematic errors were not resolved in their paper. 
From our analyses it became clear that the data of Orr (1953) cannot be represented for 
temperatures between 300 K and 800 K, whereas the DSC data of Benisek et al. (2012) can be 
represented to within experimental uncertainty. To include the drop calorimetric heat content 
value H1181-H302 measured by Benisek et al. (2012) requires an additional modification in our 
model description, not possible to achieve by using anharmonicity or an electronic coefficient. 



Nakamura and Schmalzried (1983) showed by thermo-gravimetric experiments that 
complicated point defects in fayalite occur above 1200 K. Instead of incorporating all 
different kind of point defects that they mention, which makes a calculation for the heat 
capacity quite tedious, we have opted for a more practical approach. We noticed that the 
remaining contribution to heat capacity above 800 K can be conveniently described by a 
mono-vacancy model suggested by Dorogokupets and Oganov (2007), and which they 
successfully employed to construct pressure scales of metallic elements, MgO and Ruby. The 
contribution to the Helmholtz energy due to these defects is written as: 
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In eqn. (32), h and s denote the enthalpy and entropy of the formation of a mono-vacancy, f 
and g are constants, na is the number of atoms in a molecular formula, and  denotes the 
compression V/V0. Although this approach lacks some physical rigor, Figure 2 shows that it 
serves well to describe the heat capacity data of Orr (1953) above 1000 K. Moreover the 
calculated value 155.66 kJ/mol for the enthalpy difference H1181-H302 represents the value 
156.10.5 kJ/mol measured by Benisek et al. (2012) to within uncertainty. 
    The high-temperature heat capacity of fayalite has a large impact on the anharmonicity, 
or in our alternative description, on the electronic description of the iron end member of 
ringwoodite. Figure 3 shows that in the temperature range between 300 K and 800 K only 
heat capacity data measured by Watanabe (1982) are available to constrain anharmonicity or 
the electronic contribution. We anticipate that these data might be too low, just as we found 
for the wadsleyite and ringwoodite polymorphs of Mg2SiO4 and for fayalite. Therefore we 
used as constraint the Clapeyron slope of the phase boundary between fayalite and 
ringwoodite, depicted in Figure 2, and as we show below, we preferred that measured by Ono 
et al. (2013). Additionally, we established the description for heat capacity by using the VDoS 
predicted by Derzsi et al. (2011). They showed that their predicted isochoric heat capacity 
curve at 10 GPa represents the isobaric heat capacity curve established experimentally at 1 bar. 
Because heat capacity decreases with pressure, their predicted heat capacity curve at 1 bar is 
significantly larger than the experimental one. Applying this VDoS in our method, results in 
insignificantly different heat capacity as predicted by Derzsi et al. (2011). However, to 
represent low-temperature heat capacity data of Yong et al. (2007) requires a shift of the 
frequencies in the VDoS by about +14 cm-1. In an aside analysis, we used the VDoS predicted 
by Yu et al. (2013), for which we found that a correction of about -35 cm-1 in the frequencies 
is required to represent heat capacity data, a value similar as we found for fayalite. 
The behavior of heat capacity at temperatures below 50 K indicates that crystal field effects 
are present. Because no experimental data are available for electronic energy levels, required 
for the crystal field description, we optimized them using low temperature heat capacity data. 
The resulting parameters are given in Table 3. The first four energy levels effectively describe 
the heat capacity in the temperature range between 0 and 50 K. In that range the contribution 
due to lattice vibrations and the dilation term are negligible, and therefore these energy levels 
are robust. The eg energy levels were arbitrarily set to 104 cm-1 and do not contribute 
significantly to thermodynamic properties. The intermediate energy levels at 1058 cm-1 were 
used to keep the anharmonicity parameter (or electronic coefficient in the alternative 
description) at about the same value as for fayalite. This value is not unambiguous because it 
is correlated with anharmonicity and the VDoS. This is seen, for example, when a simpler 
description is used in which the energy levels at 1058 cm-1 are omitted and all degeneracies 
are set equal to one. In that case the optimization leads to a value for anharmonicity of -



5.6510-5 K-1, a value considerably larger than the value of -2.9310-5 K-1 for fayalite. 
Additionally the frequencies in the VDoS are displaced by about +2 cm-1 relative to the 
description employing the crystal field parameters in Table 3. However, this description may 
substitute that for the presently employed one without significant effect on the phase diagrams 
of Fe2SiO4 and FeSiO3 and thermodynamic properties of ringwoodite. 
In the present description for ringwoodite we employed Navrotsky’s (1977,1994) model for 
taking cation disorder into account. This model is based on a cation exchange reaction in 
which Si4+ ions can move from tetrahedral sites to octahedral sites and Fe2+ ions from 
octahedral to tetrahedral sites. The model is characterized by one adjustable parameter, the 
interchange enthalpy. Based on structure refinements of Yagi et al. (1974), Navrotsky (1977) 
determined the value +120.499 kJ/mol for this property, which we kept fixed in our analysis. 
Just as our description for crystal field, cation disorder has the effect that anharmonicity has a 
similar value as that of fayalite. In an aside analysis, neglecting cation disorder, the analysis 
results in a value for anharmonicity of -3.510-5 K-1. Also in this case the description may 
substitute the present description without affecting thermodynamic properties and phase 
diagrams. 
We have directed our analyses to the phase boundary of Ono et al. (2013), depicted in Figure 
2. The reason for that is that in this case enthalpy differences between ringwoodite and 
fayalite at 1 bar pressure represent the data in Table 6 to within experimental uncertainty. 
Figure 3 shows that, as a consequence, our calculated heat capacity systematically deviates 
from that measured by Watanabe (1982). Directing our optimization to phase boundaries 
determined by the other investigators given in Figure 2, results in even larger deviations from 
Watanabe’s heat capacity. To constrain our analysis better requires new measurements of heat 
capacity above room temperature, determination of crystal field energies and Raman/IR 
spectroscopic measurements to establish values for intrinsic anharmonicity. Although it is 
possible to closely match the phase boundary of Ono et al. (2013), our analyses indicate that 
in that case the phase field coesite+ringwoodite in the phase diagram of FeSiO3 extends far 
below 1473 K, which is not in accordance with findings of Akimoto (1970). This problem is 
detailed further in section 7 “phase diagrams”. 
    The iron end member of wadsleyite is not stable and treated as a virtual end member. We 
employed the VDoS of Yu et al. (2013), and shifted its frequencies by -34 cm-1, just as was 
necessary for fayalite and ringwoodite. We used thermal expansivity predicted by Yu et al. 
(2013) to determine Grüneisen and mode-q parameters. To establish values for the static 
volume, bulk modulus and its pressure derivative, we used experimental data of the 
wadsleyite solid solution phase. To avoid that this end member becomes stable at and below 
room temperature we employed the same expression for the crystal field contribution as for 
the ringwoodite form. To represent the phase diagram in Figure 1, we employed the regular 
solution model for olivine, wadsleyite and ringwoodite. It appeared to be sufficient to describe 
the excess Gibbs energies temperature independent. For olivine we adopted the excess 
enthalpy from Jacobs et al. (2009) and for ringwoodite we used the excess enthalpy 
determined experimentally by Akaogi et al. (1989). The excess enthalpy of wadsleyite and the 
reference energy of its iron end member were obtained by fitting the phase diagram data of 
Figure 1. Table 8 shows that excess Gibbs energy coefficients for the three solution phases are 
quite similar. 
 
 
Polymorphs of FeSiO3 (orthoferrosilite, low- and high-pressure clinoferrosilite) 
For ortho-, HP- and LPclinoferrosilite no VDoS has been predicted by ab initio methods. 
Therefore we made use of the characteristic found by Yu et al. (2013) the VDoS of Fe2SiO4 
end members resemble those of the Mg2SiO4 counter end members. Because iron atoms have 



a larger mass than magnesium atoms, lattice vibrations in which iron atoms involved are 
located at lower frequencies than those involving magnesium atoms. Therefore we used the 
VDoS of the magnesium end members in our analyses, and displaced frequencies in it to 
lower values to represent the properties of the iron end members. To arrive at the simplest 
description we translated all frequencies in the VDoS of each end member. Although this 
operation also affects Si-O lattice vibrations located at high frequencies, we noticed that this 
does not significantly affects the representation of thermodynamic properties. Translations of 
typically -35 cm-1 were required for each of the three polymorphs.  
Victor et al (2001) determined crystal field energies and degeneracies for two magnesium rich 
samples of orthopyroxene by combining results of their Mössbauer experiments and ligand 
field theory. For the iron end members of LP- and HPclinopyroxene, including that of 
orthopyroxene, these properties have not been measured. For orthoferrosilite we used their 
results for the (Mg0.8,Fe0.2)SiO3 sample. Although we expected that crystal field energies of 
orthoferrosilite are quite different, only small changes in the first four energy levels above the 
ground state of the M1 and M2 site were necessary to represent heat capacity measurements 
of Cemič and Dachs (2006), depicted in Figure 3. We treated the Grüneisen parameters of 
orthoferrosilite monodisperse, and determined them from the V-T measurements of Sueno et 
al. (1976), which are consistent with those of Yang and Ghose (1994) for orthopyroxene solid 
solutions, shown in Figure 4. Table 5 shows that static properties are determined accurately 
by bulk modulus measurements of Bass and Weidner (1984) and V-P measurements of Hugh-
Jones (1997a). 
Although model parameters for orthoferrosilite can be constrained reasonably well by 
experimental data, this is not the case for LP- and HPclinoferrosilite. Because no heat 
capacity measurements are available, we refrained from applying an arbitrary crystal field 
expression in the Helmholtz energy, although this contribution will certainly be present. For 
the two polymorphs, only single-crystal V-P measurements are available at room temperature, 
measured by Hugh-Jones et al. (1994). For LPclinoferrosilite V-T data were measured by 
Hugh-Jones (1997b). The only extra available data, constraining model parameters of the two 
polymorphs, are phase diagram data, shown in Figure 2. The large value for anharmonicity 
parameter (or electronic coefficient in the alternative description) of orthoferrosilite 
propagates into the parameters for LP- and HPclinoferrosilite, resulting in similar values as 
for orthoferrosilite. By using the phase boundary data between LPclino- and orthoferrosilite, 
our resulting 1 bar V-T behavior of LPclinoferrosilite necessarily deviates from that 
established experimentally by Hugh-Jones et al. (1997b), and it appears to be similar to that of 
orthoferrosilite. The reason for that is that we preferred the V-T data of orthoferrosilite 
measured by Sueno et al. (1976), which also deviate from those of Hugh-Jones (1997b), see 
Figure 4. 
The Gibbs energies of FeSiO3 end members are coupled to that of fayalite by magnesium-iron 
partitioning between olivine and orthopyroxene, shown in Figure 5. Using the thermophysical 
description for fayalite and orthoferrosilite, these data indicate that the excess Gibbs energy of 
orthopyroxene is almost zero at the conditions of the measurements of Seckendorff and 
O’Neill (1993), about 1273 K and 1.6 GPa. Although element partitioning over the M1 and 
M2 sites is present in orthopyroxene, we preferred a description based on a substitutional 
solution model rather than a sub lattice model. We constrained the value for excess entropy in 
Table 8 with data on excess enthalpy measured by Chatillon-Colinet et al. (1983).  
 
 
Polymorphs of SiO2 (quartz and coesite) 
For quartz we used the VDoS predicted by Bosak et al. (2012). Representing low-temperature 
heat capacity of Westrum (1954), depicted in Figure 3 required a translation of the VDoS by 



+15 cm-1. We followed Holland and Powell (1998) to describe the ordering effect in -quartz 
on thermodynamic properties by tricritical Landau theory. Optimizations using the quasi-
harmonic approximation invariably led to a steep volume increase with temperature for -
quartz. To include the V-T behavior indicated by the data of Carpenter (1998), Bourova et al. 
(1998) and Ackerman et al. (1974), illustrated in Figure 4, required incorporation of volume 
dependent intrinsic anharmonicity in our model description. Representing all available data, 
results in a positive anharmonicity parameter that strongly depends on volume. That, in turn, 
results in negative Grüneisen parameters for temperatures above 1000 K where -quartz is 
stable. Our results are in accordance with a conclusion of Welche et al. (1998), arrived at by a 
lattice dynamical method, that about one third of the vibrational modes in -quartz have 
negative Grüneisen parameters, resulting in a decrease of volume when temperature increases. 
Although their work indicates dispersion in Grüneisen parameters, we kept our description 
monodisperse in Grüneisen and anharmonicity parameters, because dispersion in these 
parameters did not significantly affect the accuracy of representing thermodynamic properties. 
Static parameters were accurately constrained by ab initio calculations of the room-
temperature isotherm by Kimizuka et al. (2007), which are in good agreement with the 
experimental data in Table 5 and Figure 4. 
   Wehringer et al. (2013) predicted a VDoS for coesite by combining results for diffuse and 
inelastic X-ray scattering experiments with ab initio lattice dynamics. Employing this VDoS 
results in heat capacities too low compared to experimental data. That also holds when the 
VDoS predicted by Keskar and Chelikowsky (1995) is employed. It appeared to be 
impossible to represent low-temperature heat capacity data of Atake et al (2000), Hemingway 
et al (1998) and Holm et al (1967) by shifting or stretching the VDoS, or by using dispersion 
in Grüneisen parameters. To represent the heat capacity data depicted in Figure 3 and the 
entropy at 298 K and 1 bar, we changed fractions in the VDoS. Model parameters were tightly 
constrained by V-T data at 1 bar and by V-P data at room temperature, given in Table 5 and 
shown in Figure 4. Because Skinner’s (1962) ambient volume is 0.32% larger than that 
obtained by all other more recent measurements, we used their V/V297 data for constraining 
Grüneisen parameters. As shown in section 3 “thermochemical data” the phase boundary 
between quartz and coesite is extremely sensitive to the low-temperature heat capacity of 
coesite. Directing our description to the heat capacity data of Hemingway et al (1998) and 
Holm et al (1967) results in the phase boundary, labelled [H] in Figure 2, having a negative 
Clapeyron slope below 1000 K, incommensurate with all experimental datasets. In section 
“Thermochemical data” we detail that a positive Clapeyron slope of the phase boundary, 
commensurate with all datasets is obtained by directing our optimization towards the heat 
capacity of Atake et al (2000).  
 
 
FeO 
We treat the end member of ferropericlase as a stoichiometric compound FeO. Because our 
analysis is hampered by the fact that no direct data are available for it, we estimated most 
thermophysical properties from data of the solid solution phase (Mg,Fe)O. We estimated the 
VDoS for FeO by using an ab initio prediction of Wu et al. (2009) for (Mg0.8125Fe0.1875)O. 
Because adiabatic calorimetric heat capacity measurements of Stølen et al. (1996) for Fe0.99O 
and heat capacity estimated by Grønvold et al. (1993) for FeO respectively are consistent with 
each other, we fine-tuned the VDoS to represent these data. Additionally we incorporated a 
crystal field contribution in our model description, which is based on energy levels measured 
by Schrettle et al (2012) obtained by FIR spectra, to arrive at the ambient entropy of 611 
J/K/mol, commensurate with the calorimetric measurements. Ambient volume for FeO has 
been taken from Hentschel (1970) who claimed to have synthesized stoichiometric FeO. 



Volumes of (Mg1-xFex)O at 1 bar pressure show a linear behavior with composition between 
x=0 and about x=0.5, that extrapolates quite well to the ambient volume of Hentschel (1970) 
for FeO. Jacobsen et al. (2002) showed that volumes between x=0.5 and x=1 deviate from 
linear behavior, which is likely to be caused by a larger amount of Fe3+ in these mixtures, as 
shown in Table 1 of their work. Because we do not include Fe3+ in our model description, we 
assumed a linear behavior of volume in the entire composition range. Static properties were 
obtained from V-P-T and elasticity (Ks-P) measurements of (Mg1-x,Fex)O mixtures, 
summarized in Table 5. Ferropericlase shows a spin transition between about 50 and 60 GPa, 
which we do not treat in the present work. Therefore we compare in Table 5 our results with 
experimental data for the high-spin configuration of ferropericlase for pressures up to 40 GPa. 
The representation of V-P data is generally comparable with the experimental uncertainty, 
which is typically between 0.2 and 0.5%. The exception is the representation of the data of 
Jacobsen et al. (2002), because their ambient volumes deviate slightly from the line 
connecting the volumes of the two end members. Their V/V300 data are, however, represented 
to within about 0.05%. Figure 5 shows that our description prefers adiabatic bulk modulus 
data of Jacobsen et al. (2002) for (Mg1-x,Fex)O mixtures in which x varies between 0 and 0.8. 
It also illustrates that bulk modulus data of Jackson et al. (1978) show a marked increase with 
composition. However, in a later work, Jackson et al. (1990) showed that this trend may be an 
artefact of an improper procedure followed in the interpretation of their ultrasonic 
interferometric measurements. Our analysis of V-P-T data prefers the decreasing trend of bulk 
modulus with composition, in accordance with the majority of the investigations given in 
Figure 5. For that reason, our calculated V-P behavior of FeO at room temperature deviates 
from that obtained by databases of Fabrichnaya et al. (2004) and Stixrude et al. (2011), as 
shown in the inset of upper-right frame of Figure 5. However, Tables 1 and 2 include 
alternative analyses, in which the bulk modulus increases with composition, which is 
discussed in more detail in section 7 “phase diagrams”. Following our previous work we have 
converted V-P-T measurements to a common pressure scale, that of Dorogokupets and 
Oganov (2007). This gives us the possibility to change our database in a transparent way 
when more accurate pressure scales become available. Our analysis reveals Grüneisen 
parameters for FeO that are insignificantly different from that of MgO, resulting in similar 
behavior of thermal expansivity of these two end members. 
The determination of the phase boundary between the ringwoodite form of Fe2SiO4 and FeO 
+ stishovite is not trivial procedure. In a first analysis we preferred the high-temperature heat 
capacity of Grønvold et al. (1993) depicted in Figure 5 to constrain the electronic coefficient 
of FeO. This choice produces in combination with our results for Fe2SiO4 ringwoodite the 
Clapeyron slope of the phase boundary determined by Matsuzaka et al (2000), depicted in 
Figure 2 for the phase diagrams of Fe2SiO4 and FeSiO3. The Mg-Fe partitioning between the 
solid solution phases ringwoodite and ferropericlase, determined by Matsuzaka et al (2000) 
and Frost et al. (2001) in rhenium capsules, results in the reference energy of FeO, which 
completes the description of all model parameters for determining its Gibbs energy. By using 
the model parameters for stishovite determined by Jacobs et al (2017) and the ringwoodite 
form of Fe2SiO4, we arrived at the location of the phase boundary, representing the data of 
Matsuzaka to within 0.2 GPa between 1000 K and 1800 K. However, in section 7 “phase 
diagrams” we show in detail that consistency between heat capacity of FeO, Mg-Fe 
partitioning between the solid solutions ringwoodite and ferropericlase and phase diagram 
data depend on crucible material that has been used in the experiments.  
 
 
 
 



Shear modulus 
As shown by Jacobs et al (2017), for substances in the system MgO-SiO2, our formalism does 
not allow putting tighter constraints to thermodynamic properties and phase diagrams by 
incorporating shear modulus data into the analyses. Therefore, these data were treated 
independently from the thermodynamic analyses. For all iron end members except for fayalite, 
insufficient data for shear modulus are available to achieve an unambiguous description for it. 
Therefore use has been made of shear modulus measurements of the solid solutions, such as 
for wadsleyite, ringwoodite and ferropericlase, described in section “constraints by solid 
solutions”. For the iron end members of the solid solutions orthopyroxene, and LP- and 
HPclinopyroxene this was not possible. Therefore we were not able to achieve robust shear 
modulus descriptions for the iron end members of these phases. We consider them as 
estimates. We estimated shear modulus as follows. As shown in Table 5, shear modulus data 
for orthoferrosilite are only available at room temperature between 1 bar and 7 GPa to 
constrain its pressure derivatives. Because of the lack of data above room temperature we 
assumed the same temperature behavior at 1 bar pressure as orthoenstatite. For LP- and 
HPclinoferrosilite no data for shear modulus are available and therefore our description is 
based on properties of the magnesium counter end members. We made use of the Poisson 
value, v, which is related to adiabatic bulk modulus KS and shear modulus Gsh by: 
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For LPclinoferrosilite we followed the same method that Jacobs et al (2017) used for LP 
clinoenstatite. We assumed that its Poisson value at ambient conditions is equal to that of 
orthoferrosilite. Because adiabatic bulk modulus is robust for LPclinoferrosilite, a value for its 
shear modulus at ambient conditions is thus achieved. Additionally, the 1-bar temperature 
behavior and the pressure behavior at room temperature is taken to be identical to that of LP 
clinoenstatite to determine temperature and pressure derivatives of shear modulus. To 
estimate the shear modulus of HPclinoferrosilite at ambient conditions, we assumed that the 
ratio of Poisson values at ambient conditions, v(HPcfs)/v(Ofs) has the same value as that for 
the magnesium counter end members. To determine shear modulus in P-T space, we assumed 
that the 1-bar temperature behavior and the pressure behavior at room temperature is identical 
to that of HPclinoenstatite. Because the solid solution HPclinopyroxene forms a stable 
assemblage at upper mantle conditions it is highly desirable to measure elastic parameters for 
this phase in the future. 
Table 5 shows that the shear modulus of coesite was recently established by Chen et al (2015) 
between 1 bar and 13 GPa at room temperature. Because data above room temperature are 
absent we arbitrarily assumed a temperature derivative of about -0.01 GPa/K at 1 bar pressure. 
Coesite does not form a stable assemblage for overall compositions close to a pyrolytic 
mantle composition in the system MgO-SiO2-FeO. That also holds for quartz. Because we are 
presently mainly interested in stable phase assemblages occurring in the upper mantle and 
transition zone, we have kept the shear modulus description for quartz simple. A more 
elaborate and more complicated description for its elasticity based on Landau theory is given 
by Carpenter et al (1998). 



Table 4. Fractions in the VDoS of each substance, multiplied by 100. A 30-Einstein model 
has been used for all substances. 
Fe2SiO4 (Fayalite) 
1 0.0061 6 6.7919 11 3.1756 16 2.8090 21 0.0013 26 2.4900
2 0.9830 7 6.0721 12 2.0006 17 3.5725 22 0.0013 27 1.7461
3 4.0399 8 6.7826 13 5.0290 18 0.3554 23 0.4724 28 1.8976
4 6.5415 9 6.2934 14 6.0403 19 0.0013 24 7.0246 29 2.2289
5 7.4154 10 7.8991 15 2.7541 20 0.0013 25 4.9882 30 0.5855
Fe2SiO4 (ringwoodite) 
1 0.0059 6 7.8002 11 5.3356 16 3.0167 21 0.1440 26 0.0191
2 0.1029 7 8.0122 12 7.2679 17 5.4696 22 0.0000 27 0.0353
3 0.3381 8 5.0004 13 7.8480 18 5.8324 23 0.0000 28 0.4216
4 1.7118 9 1.0591 14 6.5662 19 3.7901 24 0.0000 29 8.5346
5 5.4787 10 0.7878 15 2.2540 20 5.2515 25 0.0045 30 7.9116
Fe2SiO4 (wadsleyite) 
1 0.0821 6 6.6582 11 5.2157 16 4.1668 21 0.8588 26 4.3378
2 0.6839 7 6.5961 12 5.7786 17 2.8171 22 0.0576 27 4.0713
3 2.1168 8 5.4788 13 4.8649 18 2.4458 23 0.6836 28 1.5239
4 5.5446 9 7.8295 14 3.8357 19 0.1105 24 1.6154 29 0.9564
5 6.2341 10 6.6994 15 5.8848 20 0.7504 25 1.5239 30 0.5775
FeSiO3 (orthoferrosilite) 
1 0.2613 6 5.8445 11 5.6087 16 1.9726 21 2.0721 26 2.7910
2 1.7100 7 6.7885 12 4.5946 17 2.4843 22 1.5970 27 1.7286
3 3.7007 8 6.5678 13 4.1223 18 3.1452 23 1.9343 28 0.6199
4 4.9757 9 5.9668 14 4.1790 19 3.0322 24 2.9241 29 0.5428
5 5.6571 10 6.0922 15 3.2223 20 2.9238 25 2.6747 30 0.2660
FeSiO3 (HPclinoferrosilite) 
1 0.8369 6 6.5078 11 4.9202 16 1.9449 21 1.9044 26 2.7034
2 3.4492 7 6.5554 12 4.0577 17 2.8700 22 1.4265 27 1.5123
3 4.7659 8 5.8913 13 4.1240 18 2.9918 23 2.3146 28 0.5926
4 5.4887 9 5.9538 14 3.6974 19 3.0375 24 2.7501 29 0.5495
5 5.5551 10 5.6654 15 2.4297 20 2.5700 25 2.6705 30 0.2633
FeSiO3 (LPclinoferrosilite) 
1 0.3856 6 5.4432 11 7.4646 16 0.4269 21 0.0933 26 1.6969
2 1.6945 7 5.4311 12 3.8479 17 1.6373 22 0.9894 27 4.1593
3 3.1067 8 7.4607 13 3.1007 18 2.4370 23 1.1652 28 4.3923
4 4.6090 9 7.6079 14 7.2986 19 2.5999 24 3.1474 29 1.0619
5 5.2883 10 6.8353 15 3.1190 20 0.3393 25 2.7402 30 0.4206
FeO 
1 0.0015 6 0.5611 11 3.9411 16 5.7401 21 3.7914 26 1.7969
2 0.0357 7 0.8444 12 7.1428 17 9.9775 22 1.8482 27 1.4377
3 0.0959 8 1.2187 13 7.5748 18 13.4622 23 3.9643 28 1.1139
4 0.1994 9 1.7557 14 4.5511 19 9.9606 24 3.7641 29 0.7838
5 0.3561 10 2.5579 15 3.5300 20 5.3283 25 2.4257 30 0.2391
SiO2 (quartz) 
1 0.0423 6 4.7697 11 7.3460 16 1.3207 21 1.3416 26 2.3558
2 3.4804 7 5.1557 12 3.0129 17 0.7623 22 0.0024 27 8.6960
3 5.3813 8 5.3161 13 2.5072 18 2.2858 23 0.0000 28 1.7651
4 5.1216 9 3.6865 14 1.5716 19 2.7201 24 0.0000 29 7.1812
5 4.5989 10 6.6878 15 2.2858 20 8.1246 25 0.0005 30 2.4802
 
 



Table 4. (continued) 
SiO2 (coesite) 
1 0.0285 6 6.2514 11 4.3271 16 2.0052 21 0.2150 26 2.8680
2 1.5343 7 6.6515 12 2.9371 17 2.1395 22 0.1697 27 3.2025
3 4.9443 8 6.6606 13 1.9713 18 5.8375 23 0.5468 28 2.4075
4 5.7610 9 6.8828 14 2.3211 19 5.6056 24 3.3269 29 1.5923
5 5.6867 10 5.7474 15 2.3378 20 1.0592 25 4.7708 30 0.2106
Mg2SiO4 (forsterite) 
1 0.0380 6 5.6176 11 7.1524 16 3.8450 21 0.0427 26 2.5749
2 0.2729 7 5.0497 12 5.2327 17 3.6288 22 0.0100 27 2.0372
3 0.7307 8 6.0690 13 5.5834 18 3.1842 23 0.2940 28 2.0727
4 1.7042 9 7.6719 14 5.9776 19 0.1425 24 4.6687 29 2.9655
5 4.3832 10 7.5445 15 6.2537 20 0.0249 25 4.5304 30 0.6970
 
 
 
 
 



Table 5. Representation of experimental thermodynamic properties for polymorphs in the 
system FeO-SiO2 and for compositions of solid solution phases in MgO-SiO2-FeO. ‘DO’ 
indicates data are based on the pressure scale of Dorogokupets & Oganov (2007). Italicized 
references are ab initio results. 
Property Max. 

relative 
deviation 
in % 

Average 
relative 
deviation 
in % 

T-range in 
K 

P-range 
in GPa 

Reference 

Fe2SiO4 (Fayalite) 
Volume 1.40 0.46 298 0.0-31.3 Zhang et al (2016) 
 0.06 0.03 298 0.0-9.7 Zhang et al. (1998) 
 2.01 0.15 298 0.0-10.6 Andrault et al (1995) 
 0.52 0.25 673 4.6-6.2 Plymate & Stout (1990) 
 2.57 0.86 300 9.5-37.3 Williams et al (1990) 
 0.15 0.11 1273 3.9-6.2 Yagi et al (1987) 
 0.89 0.29 298 0.0-14.0 Kudoh & Takeda (1986) 
 0.46 0.43 296 0.0-4.2 Hazen (1977) 
 0.29 0.15 2963 0.0-7.3 Yagi et al (1975) 
 0.02 0.02 323-1123 0.0 Suzuki et al (1981) 
 0.22 0.11 293-1173 0.0 Smyth et al (1975) 
 2.90 1.05 323-1123 0.0 Suzuki et al (1981) 
KS 0.31 0.22 298 0.0-10.0 Speziale et al. (2004) 
 0.14 0.32 300-500 0.0 Isaak et al (1993) 
 3.10 3.10 298 0.0 Wang et al. (1989) 
 13.90 9.32 273-1000 0.0 Graham et al. (1988) 
 1.23 1.03 298-673 0.0 Sumino (1979) 
Vp 0.39 0.20 300-500 0.0 Isaak et al (1993) 
 4.78 2.79 273-1000 0.0 Graham et al (1988) 
 0.91 0.41 298-673 0.0 Sumino et al (1979) 
Vs 0.32 0.19 300-500 0.0 Isaak et al (1993) 
 2.97 1.09 273-1000 0.0 Graham et al (1988) 
 1.50 0.62 298-673 0.0 Sumino et al (1977) 
Fe2SiO4 (Ringwoodite) 
Volume 0.09 0.05 298 0.0-10.2 Nestola et al (2010) 
 1.22 0.49 673 4.5-24.2 Plymate & Stout (1994) 
 0.09 0.07 298 0.0-4.8 Hazen (1993) 
 0.47 0.19 773-1473 4.3-6.3 Yagi et al (1987) 
 0.08 0.05 298 0.0-4.0 Finger et al (1979) 
 0.99 0.22 298 0.0-25.5 Mao et al (1969) 
 0.25 0.10 294-670 0.0 Mao et al. (1969) 
 20.0 11.9 273-2273 0.0 Suzuki (1979) 
KS 1.44 1.44 298 0.0 Rigden et al (1991) 
 5.70 5.70 298 0.0 Liebermann et al (1975) 
 0.53 0.53 298 0.0 Akimoto (1972) 
 3.82 3.82 298 0.0 Mizutani et al (1970) 
GShear 21.2 21.2 298 0.0 Rigden et al (1991) 
 27.7 27.7 298 0.0 Liebermann et al (1975) 
 17.6 17.6 298 0.0 Akimoto (1972) 
FeSiO3 (Orthoferrosilite) 
Volume 0.64 0.20 293-901 0.0 Hugh-Jones (1997b) 
 0.06 0.02 297-1253 0.0 Sueno et al (1976) 
 0.08 0.05 298 0.0-5.4 Hugh-Jones et al (1997a) 
KS 0.03 0.03 298 0.0 Bass & Weidner (1984) 
Gshear 1.63 0.56 298 0.0-7.1 Kung et al (2014) 



Table 5. (continued) 
Property Max 

absolute 
deviation 
in % 

Average 
absolute 
deviation 
in % 

T-range in 
K 

P-range in 
GPa 

Reference 

 0.00 0.00 298 0.0 Bass & Weidner (1984) 
FeSiO3 (HPclinoferrosilite) 
Volume 0.09 0.04 298 0.0-4.3 Hugh-Jones et al (1994) 
      
FeSiO3 (LPclinoferrosilite) 
Volume 0.05 0.02 298 0.0-1.4 Hugh-Jones et al (1994) 
SiO2 (quartz) 
Volume 0.09 0.05 298 0.0-20.0 Kimizuka et al (2007) 
 1.10 0.43 298 10.7-19.8 Kingma (1994) 
 0.79 0.46 298 0.0-6.1 Levien et al (1980) 
 0.21 0.09 298 0.0-2.82 Jorgensen et al (1978) 
 1.17 0.45 298 0.0-7.3 d’Amour et al (1979) 
 1.04 0.61 298 0.0-15.3 Hazen et al (1989) 
 1.35 0.78 298 0.0-12.07 Olinger et al (1976) 
KS 34.0 4.40 292-969 0.0 Ohno et al (2006) 
 34.0 4.30 850-1070 0.0 Kammer et al (1948) 
 9.70 6.82 298 0.0-10.2 Wang et al (2015) 
Gshear 4.86 1.57 292-970 0.0 Ohno et al (2006) 
 1.34 1.12 298 0.0-10.2 Wang et al (2015) 
SiO2 (coesite) 
Volume 0.14 0.05 298 0.0-8.7 Angel et al. (2003) 
 0.11 0.05 299-1200 0.0 Bourova et al (2002) 
 0.08 0.03 298 0.0-9.6 Angel et al (2001) 
 0.79 0.75 298 14.0-24.3 Hemley et al. (1988) 
 0.06 0.02 105-603 0.0 Galkin et al (1987) 
 0.26 0.09 298 0.0-5.2 Levien et al (1981) 
 0.16 0.09 297-1317 0.0 Skinner (1962) 
KS 3.00 3.00 298 0.0 Weidner & Carleton (1977) 
Gshear 0.0 0.0 298 0.0 Weidner & Carleton (1977) 
 0.67 0.29 300 0-12.6 Chen et al (2015) 
Ferropericlase (Mg1-x,Fex)O 
Volume      
x(Fe)=0.06 0.39 0.30 298 32.5-40 Crowhurst et al (2008) DO 
 0.13 0.067 298 0.0-40.0 Jackson et al (2006), DO 
x(Fe)=0.10 0.49 0.21 298 0.0-40.0 Marquardt et al (2009), DO 
x(Fe)=0.17 0.60 0.30 298 0.0-40.0 Lin et al (2005), DO 
 0.60 0.28 300-700 0.0-40.0 Ito et al (2010), DO 
x(Fe)=0.17 0.35 0.15 300-1100 0.0-40.0 Matsui et al (2012), DO 
x(Fe)=0.20 1.40 0.60 298 0.0-40.0 Fei et al (2007), DO 
x(Fe)=0.25 0.27 0.15 300-1100 0.0-40.0 Matsui et al (2012), DO 
x(Fe)=0.27 0.21 0.17 298 0.0-40.0 Jacobsen et al (2002), DO 
x(Fe)=0.35 0.65 0.25 298 0.0-40.0 Chen et al (2012), DO 
x(Fe)=0.39 0.30 0.19 298 0.0-40.0 Fei et al (2007), DO 
x(Fe)=0.40 0.55 0.28 298 0.0-40.0 Lin et al (2005), DO 
x(Fe)=0.402 0.42 0.14 298-1273 0.0-10.0 Zhang et al. (2002), DO 
x(Fe)=0.402 0.28 0.08 298-700 8.0-30.0 Fei et al. (1992), DO 
x(Fe)=0.56 1.07 0.60 298 0.0-40.0 Jacobsen et al (2002), DO 
x(Fe)=0.58 0.94 0.75 298 0.0-40.0 Fei et al (2007), DO 
KS(x=0.06) 2.23 1.83 298 0.0-40.0 Crowhurst et al (2008) DO 



Table 5. (continued) 
Property Max 

absolute 
deviation 
in % 

Average 
absolute 
deviation 
in % 

T-range 
in K 

P-range in 
GPa 

Reference 

KS(x=0.06) 4.22 2.31 298 0.0-40.0 Jackson et al (2006) DO 
KS(x=0.10) 3.68 2.79 298 0.0-40.0 Marquardt et al (2009) DO 
KS(x=0.35) 5.89 3.32 298 0.0-40.0 Chen et al (2012) DO 
GS(x=0.06) 4.59 3.36 298 0.0-40.0 Crowhurst et al (2008) DO 
GS(x=0.06) 2.09 0.83 298 0.0-40.0 Jackson et al (2006) DO 
GS(x=0.10) 5.42 2.10 298 0.0-40.0 Marquardt et al (2009) DO 
GS(x=0.17) 4.78 4.22 298 0.0-40.0 Kung et al (2002) DO 
Olivine (Mg1-xFex)2SiO4 
Volume      
0.08<x<0.38 0.20 0.20 298 0.0-8.2 Nestola et al (2011) 
If V/V(P=0) 0.09 0.03 298 0.0-8.2  
x(Fe)=0.10 0.52 0.17 298 0.0-32.4 Zha et al (1998) 
x(Fe)=0.10 0.09 0.04 298 0.0-15.0 Abramson et al (1997) 
KS(x=0.10) 5.07 1.81 298-900 0.0-19.0 Mao et al (2015) 
KS(x=0.125) 1.15 0.48 298-1700 0.0-20.0 Núñez et al (2012) 
KS(x=0.10) 4.00 1.37 298 0.0-7.1 Darling et al (2004) 
KS(x=0.10) 5.63 2.65 298 0.0-32.4 Zha et al (1998) 
KS(x=0.10) 0.71 0.40 298 0.0-15.0 Abramson et al (1997) 
KS(x=0.10) 2.19 0.77 298 0.0-13.0 Zaug et al (1993) 
KS(x=0.10) 0.94 0.58 300-1500 0.0 Isaak et al (1992) 
GS(x=0.10) 3.22 1.71 298-900 0.0-19.0 Mao et al (2015) 
GS(x=0.125) 7.89 2.16 298-1700 0.0-20.0 Núñez et al (2012) 
GS(x=0.10) 2.34 1.39 298 0.0-7.1 Darling et al (2004) 
GS(x=0.10) 6.61 2.83 298 0.0-32.4 Zha et al (1998) 
GS(x=0.10) 2.67 2.14 298 0.0-15.0 Abramson et al (1997) 
GS(x=0.10) 5.44 1.90 298 0.0-13.0 Zaug et al (1993) 
GS(x=0.10 2.00 1.53 300-1500 0.0 Isaak et al (1992) 
Hexcess 136 40 975 0.0 Wood & Kleppa (1981) 
 23 11 975 0.0 Kojitani et al (1994) 
Vexcess 217 47 293 0.0 Schwab & Küstner (1977) 
 60 37 293 0.0 Fisher & Medaris (1969) 
Wadsleyite (Mg1-xFex)2SiO4 
Volume      
x(Fe)=0.16 0.28 0.15 300-808 0.0-28.0 Fei et al (1992), DO 
KS(x=0.12)  0.41 0.29 300-1000 0.0-20.0 Sinogeikin et al (2003) 
KS(x=0.125) 0.55 0.27 300 0.0-30.0 Núñez et al (2012) 
KS(x=0.075) 2.26 1.42 300 0.0-17.7 Wang et al (2014) 
KS(x=0.12) 2.22 1.46 300 0.0-9.6 Li et al (2000) 
GS(x=0.075) 1.97 0.63 300 0.0-17.7 Wang et al (2014) 
GS(x=0.075) 0.56 0.20 300-1000 0.0-20.0 Sinogeikin et al (2003) 
GS(x=0.125) 9.02 6.90 300 0.0-20.0 Núñez et al (2012) 
GS(x=0.12) 0.27 0.19 300-1000 0.0-20.0 Sinogeikin et al (2003) 
GS(x=0.12) 0.77 0.43 300 0.0-9.6 Li et al (2000) 
Ringwoodite (Mg1-xFex)2SiO4 
Volume      
0x1 0.48 0.26 293 0.0-4.8 Hazen et al (1993) 
x=0.4, x=0.6 0.21 0.09 294-1041 0.0 Ming et al (1992) 
KS(x=0.09) 2.23 0.71 295-923 0.0-15.8 Sinogeikin et al (2003) 
KS(x=0.09) 1.22 0.88 300-470 0.0 Mayama et al (2005) 



Table 5. (continued) 
Property Max 

absolute 
deviation 
in % 

Average 
absolute 
deviation 
in % 

T-range in 
K 

P-range in 
GPa 

Reference 

KS(x=0.125) 2.05 0.80 300-2000 0.0-30.0 Núñez et al (2012) 
KS(x=0.25) 2.59 2.59 300 0.0 Sinogeikin et al (1997) 
GS(x=0.09) 1.66 1.02 295-923 0.0-15.8 Sinogeikin et al (2003) 
GS(x=0.09) 0.44 0.39 300-470 0.0 Mayama et al (2005) 
GS(x=0.125) 9.62 2.26 300-2000 0.0-30.0 Núñez et al (2012) 
GS(x=0.25) 0.03 0.03 300 0.0 Sinogeikin et al (1997) 
Hexcess 14.1 14.1 975 0.0 Akaogi et al (1989) 
 
 
 



 
 
Fig 6. solid (dashed) curves represent adiabatic (isothermal) bulk modulus, and solid (open) 
symbols represent adiabatic (isothermal) bulk modulus. Labels [F,S] represent results 
obtained with databases of Fabrichnaya et al. (2004) and Stixrude & Lithgow-Bertelloni 
(2011). Labels [O1] and [O2] denote our own results. Additional data are from x: Dimshits et 
al (2018), +: Solmatov et al (2016), *: Wicks et al (2015) 
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