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Introduction

The goal of our work is to establish a thermodynamic data-
base for planetary mantle materials. Such databases are a 
requirement for constructing self-consistent models of 
planetary interiors that can be applied in the interpreta-
tion of geophysical observations. In Jacobs et  al. (2013), 
we recently developed a semi-empirical method based 
on the vibrational density of states (VDoS) of a material 
that can be used advantageously to represent its thermo-
dynamic properties in a simple and accurate manner. The 
method is related to Kieffer’s (1979) lattice vibrational 
method and enables incorporation of a realistic represen-
tation of the VDoS. An advantage of our method is that it 
does not require details of the crystallographic structure to 
establish the number of vibrational normal modes in spe-
cific frequency ranges, thereby reducing the complexity of 
the method, and making it a useful tool for thermodynamic 
database development. Compared to methods that represent 
the properties in the Gibbs energy expression with function 
parameterizations or the Mie–Grüneisen–Debye (MGD) 
method, our method enables constraining a thermody-
namic analysis with results derived from modern ab initio 
methods, in particular the VDoS, static properties and Grü-
neisen parameters. That is extremely useful when adding 
substances to a database for which thermodynamic data are 
scant, or not even present, such as for materials in the deep 
mantle of heavy exoplanets as for instance predicted by 
Umemoto and Wentzcovitch (2011). Because our method 
is constrained by the VDoS, the thermodynamic descrip-
tion of a substance is better constrained by low-temperature 
heat capacity data, derived from PPMS or adiabatic calo-
rimetry, relative to function parameterization methods. As 
we shall demonstrate for wadsleyite, ringwoodite and aki-
motoite, low-temperature heat capacity data are important 
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for constraining high-temperature heat capacity. Relative 
to the MGD method, our method has the advantage that 
both low- and high-temperature heat capacity data are more 
accurately represented.

Although we applied our method in Jacobs et al. (2013) 
to a number of substances, we did not show its applicabil-
ity in a full thermodynamic analysis of a system involving 
multi-phase equilibria. To be successful, our method should 
represent not only thermodynamic properties of a specific 
substance to within experimental uncertainty, but also com-
plex phase equilibria and experimental enthalpy differences 
between that substance and other substances. In addition 
to our method presented in Jacobs et al. (2013), we imple-
mented a method developed by Stixrude and Lithgow-Ber-
telloni (2005) to calculate mechanical properties, such as 
the shear modulus. That enables us predicting longitudinal 
and transverse sound velocities at conditions difficult to 
access by experimentation and to compare our results with 
seismic experiments.

As vehicle to test our method in a full thermodynamic 
analysis of experimental data, we selected the system 
MgO–SiO2, which forms a cornerstone system of the larger 
system CaO–FeO–MgO–Al2O3–SiO2 (CFMAS), a canoni-
cal system for approximating material compositions of 
planetary mantles. Addressing the smaller binary system 
is a necessary first step in the development of a thermody-
namic database for ceramic and planetary mantle materials. 
We selected this system because of the wealth of experi-
mental data that are available for substances appearing in 
it, making it eligible for testing the accuracy of our method. 
Moreover, for all polymorphs, a VDoS is available pre-
dicted by ab initio techniques. The system MgO–SiO2 has 
been the subject of several thermodynamic analyses, such 
as by means of parameterization techniques by Saxena 
(1996), Holland and Powell (1998) and Fabrichnaya et al. 
(2004), and by semi-empirical methods such as the MGD 
method by Stixrude and Bertelloni (Stixrude and Lithgow-
Bertelloni 2005, 2011) and Kieffer’s (1979) method by 
Jacobs and de Jong (2007). Since the time these works 
were published, new experimental data have become avail-
able for heat capacity and volume for many polymorphic 
substances in the system MgO–SiO2, such as for forster-
ite, wadsleyite, ringwoodite, perovskite, akimotoite, and 
stishovite, which put tighter constraints on a thermody-
namic analysis. In our analysis, we pay special attention 
to representing data at 1  bar pressure as accurate as pos-
sible because these data do not suffer from pressure scale 
effects. In our analysis, we used a single pressure scale to 
represent thermodynamic data for all substances in pres-
sure–volume–temperature (P–V–T) space. That enabled us 
to point to inconsistencies in experimental data especially 
when more than one pressure scale has been used for the 
same substance, such as for stishovite. Moreover, this gives 

us the opportunity to extend our small database to multi-
component systems in a transparent manner when new 
insights into pressure scales become available. For this pur-
pose, we have chosen the pressure scale of Dorogokupets 
and Oganov (2007), which is consistent for a series of ele-
ments, MgO and ruby.

To represent accurately all features in the VDoS pre-
dicted by ab  initio methods, we generally used sixty Ein-
stein frequencies for all substances. However, for represent-
ing thermodynamic properties, this is a generously large 
number. Therefore, we investigated the effect of reducing 
the number of frequencies on thermodynamic properties, 
keeping all other model parameters, such as static lattice 
properties and Grüneisen parameters unchanged. We show 
a systematic process to optimize the number of frequen-
cies in the VDoS of each substance, requiring that ther-
modynamic properties and phase diagrams are changed 
insignificantly.

Theoretical background

Our models are based on a semi-empirical expression for 
the Helmholtz energy, which we separate into static lat-
tice, vibrational, electronic and magnetic effects. Because 
the substances in the system MgO–SiO2 are solid insulator 
materials, we omit the electronic and magnetic terms and 
write the Helmholtz free energy of a substance as an ana-
lytical function of temperature, T, and volume, V:

The first term in Eq. (1) represents the reference energy at 
zero Kelvin and zero pressure. For MgO, Mg2SiO4 (forst-
erite) and MgSiO3 (orthoenstatite), we adjusted values for 
this property such that their heats of formation from the 
elements at 298.15  K and 1  bar are represented. For the 
other polymorphs in the system MgO–SiO2, for which no 
such data are available, we used enthalpy difference meas-
urements and locations of phase boundaries.

Static lattice and vibrational properties

The static lattice contribution to the Helmholtz energy in 
the second term of Eq. (1) is based on an equation of state, 
for which Jacobs et al. (2013) selected that of Vinet et al. 
(1989). However, many works describing the construction 
of a thermodynamic database, such as Saxena (1996), Fab-
richnaya et al. (2004) and Stixrude and Lithgow-Bertelloni 
(2005, 2011) employ the Birch–Murnaghan (BM) equa-
tion of state. Jacobs et  al. (2007) showed that differences 
between results obtained with these two equations of state 
are insignificant in large ranges of temperature and pres-
sure for substances in MgO–SiO2. In additional, parallel 

(1)A(T ,V) = Uref + Ustatic(V)+ Avib(T ,V)
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analyses using Vinet’s equation of state, we find the same 
conclusions as we present here using the BM equation of 
state. In the analyses shown here, we have omitted liquid, 
for which Ghiorso (2004) showed that Vinet’s equation of 
state leads to better results than the BM equation of state. 
To facilitate comparing our derived static properties with 
parameters derived in previous works above, we adopt the 
BM equation of state. Moreover, Stixrude and Lithgow-
Bertelloni (2005, 2011) presented an elegant framework 
based on finite strain theory, which enables expressing the 
shear modulus of a substance, which justifies using the BM 
equation of state for pressure. Because shear modulus is 
related to the equation of state, we cast these expressions 
into more practicable ones using a formulation by Ander-
son (1998). The coefficients in these equations are related 
to bulk modulus, shear modulus and their pressure deriva-
tives. These relations are given in Table 1. For a Nth order 
equation of state:

(2)Helmholtz energy:Astatic(f ) = V st
0
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∑

v=2

(

av
f v

v !

)

(3)Pressure:Pstatic(f ) =
1

3
(1+ 2f )5/2

N
∑

v=2

(

av
f v−1

(v − 1) !

)

(4)

Bulk modulus:Kstatic(f ) =
1

9
(1+ 2f )5/2

×

{

5

N
∑

v=2

(

av
f v−1

(v − 1) !

)

+ (1+ 2f )

N
∑

v=2

(

av
f v−2

(v − 2) !

)}

(5)

Shear modulus:Gstatic

shear

= (1+ 2f )5/2
N
∑

v=2

{[

bv +

(

2bv +
av

3(v− 1)

)

f

]

f v−2

(v− 2) !

}

(6)
Strain: f =

1

2

[

(

V

Vst
0

)−2/3

− 1

]

For anisotropic substances, we treat the shear modulus 
as that of an isotropic polycrystalline aggregate and use 
Voigt–Reuss–Hill averages to obtain values for the shear 
modulus properties in Table 1. For all substances in the sys-
tem MgO–SiO2, we use a third-order equation of state, with 
the exception of orthoenstatite, for which we used a fourth-
order equation of state.

Equations  (2)–(6) illustrate that the static pressure and 
static Helmholtz free energy have zero values at volume 
Vst
0  and that bulk modulus is Kst

0  and shear modulus is 
Gst
0  . These are the equilibrium properties of a substance in 

which vibrational motions are absent and in that case, the 
external pressure equals the static pressure. However, for a 
real substance, vibrational contributions must be included 
in the Helmholtz free energy, even at zero Kelvin, repre-
sented by the third term in Eq.  (1). We use expressions 
given by Jacobs et al. (2013), in which intrinsic anharmo-
nicity is incorporated using the perturbation method pre-
sented by Oganov and Dorogokupets (2004). The vibra-
tional contribution to Helmholtz free energy is written in 

terms of NE Einstein temperatures, θEj = hνEj
/

k, associated 

with NE Einstein frequencies νEj , and their fractions related 
to the VDoS, fj. Because a misprint occurred in our previ-
ous work, we reformulate the expression for the Helmholtz 
energy below. Using symbol R for the gas constant and n 
for the number of atoms per molecular formula, the expres-
sion is:
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Table 1   Relation between coefficients in the expressions (2)–(6) and static properties to fourth order in strain in the expression for Helmholtz 
free energy

The coefficients apply at zero Kelvin and zero pressure
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The anharmonicity parameters aanhj  can be made volume 
dependent, which we use only for MgO. In our previous 
work, a scheme is given to determine the Einstein frequen-
cies or temperatures and their fractions from the VDoS. 
The vibrational contribution to shear modulus is related to 
the vibrational contribution to energy. We follow Stixrude 
and Lithgow-Bertelloni (2005) and formulate it as:

In Eq.  (9), ns,j represents the shear derivative of the 
Gruneisen parameter of the jth Einstein temperature. To 
keep the formalism transparent and consistent with that of 
Stixrude and Lithgow-Bertelloni (2011), we follow their 
expressions relating vibrational Einstein temperatures and 
Eulerian finite strain. By taking this step, we deviate from 
our own expressions in Jacobs et  al. (2013) relating fre-
quencies and Grüneisen parameters with volume. For iso-
tropic substances, Einstein temperatures are given by:

In Eq. (10), the isotropic strain, ϕ, is given by:

Values for the strain, ϕ, deviate slightly from the strain, f, 
given in Eq.  (6), because the volume V0 of the substance 
at zero Kelvin and zero pressure is slightly larger that the 
volume of the static lattice, Vst

0 .
From the definition of the Grüneisen parameter, we find:

Grüneisen parameters appear in the expressions of vibra-
tional contribution to pressure, its temperature derivative at 
constant volume and bulk modulus. The property given by 
Eq. (13) appears only in bulk modulus, Eq. (18) in Jacobs 
et al. (2013). The shear strain derivatives ns,j in Eq. (9) for 
the shear modulus contribution are given by:
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Finally, the coefficients a(1)ii,j and a(2)iikk,j
 are related to the 

Grüneisen parameters and mode-q parameters as:

The NE input model parameters for the vibrational part of 
each of the properties γj,0, qj,0, ns,j,0, and θEj,0 refer to zero 
Kelvin, zero pressure. It appears that most polymorphs in the 
system MgO–SiO2 can be treated as monodisperse in Grü-
neisen parameters without significant loss in accuracy for 
representing experimental thermodynamic properties. That 
reduces the number of these model parameters to γ0, q0, ns,0, 
θEj,0. With the expressions above for frequency and Grüneisen 
parameter, the same expressions for vibrational contributions 
to thermodynamic properties apply as given by Jacobs et al. 
(2013). The advantage of the formalism is that shear modu-
lus defined by Eqs. (5), (9) and (14) can be treated indepen-
dently from the thermodynamic analysis. Therefore, shear 
modulus descriptions can be post-processed after a thermo-
dynamic analysis has been carried out. Disadvantage is that 
shear modulus data do not put tighter constraints on a ther-
modynamic analysis of experimental data.

Landau contribution

We have applied Landau and Lifshitz (1980) formal-
ism for describing the transition from the tetragonal rutile 
form of SiO2, stishovite to the orthorhombic CaCl2 form 
of SiO2, which we denote, following Oganov et al. (2005), 
as SiO2(I). The formalism is a macroscopical one, and 
it is based on the Gibbs free energy instead of the Helm-
holtz energy. According to Carpenter (1992), Hemley et al. 
(2000), Andrault et al. (2003) and Oganov et al. (2005), the 
transition is second order in nature. The Gibbs energy is 
given by:

Equation  (17) applies to the Gibbs energy of both stisho-
vite and SiO2(I). The first term on the right-hand side of 
Eq. (17) denotes the Gibbs free energy calculated with the 
Helmholtz free energy, Eq.  (1), and applies to stishovite, 
whereas the second term on the right-hand side applies to 
SiO2(I). The Landau contribution to Gibbs energy for the 
second-order transition is expressed by the order parameter 
Q, which is zero for the stishovite phase and between zero 
and one for the SiO2(I) phase. Following Putnis (1992), we 
write it as:

(15)a
(1)
ii,j = 6 γj,0

(16)a
(2)
iikk,j = −12 γj,0 + 36 γ 2

j,0 − 18 γj,0 qj,0

(17)Gtotal(P, T) = G(P, T)+ GLandau(P, T)
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1

2
aL[T − Tc(P)]Q
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In Eq.  (18), Tc (P) represents the critical temperatures 
along the phase boundary between stishovite and SiO2(I), 
which we express in terms of the inverse of its Clapeyron 
slope, h, as:

From the equilibrium condition (∂GLandau/∂Q)P,T =  0 and 
by using the definition that Q = 1 at T = 0, we obtain the 
expression for Gibbs energy and order parameter as:

In the thermodynamic analysis of volume data for SiO2(I), 
we fix the location of the phase boundary and its inverse 
Clapeyron slope, h, and fitted the free parameter aL. Other 
thermodynamic properties derived from Eqs. (17) and (18) 
are given in the Appendix.

Results

The description of the system MgO–SiO2 requires determi-
nation of phase equilibria in the two sub systems Mg2SiO4 
and MgSiO3, which are linked together by the phases wad-
sleyite, ringwoodite, akimotoite, perovskite and stishovite. 
We used the same data set as Jacobs and de Jong (2007) 
extended with new data sets that have become available 
since 2007. Compared to their analysis, we extended the 
thermodynamic description with the phase low-clinoen-
statite, and two high-pressure polymorphs of SiO2. Fig-
ures  1 and 2 show the phase diagrams of Mg2SiO4 and 
MgSiO3 resulting from our analysis. Model parameters 
for all fourteen phases are given in Tables 2, 3 and “online 
resource Table  1” and were derived using experimental 
and ab  initio data given in “online resource Table  2” and 
Table  4. We used vibrational densities of states (VDoS) 
derived by ab  initio techniques for all polymorphs, such 
as illustrated in Fig.  3 for wadsleyite and ringwoodite. 
We employed the same method as in Jacobs et  al. (2013) 
to partition the VDoS for these polymorphs in 60 Einstein 
continua, illustrated as the coloured boxes underneath the 
VDoS curve, and subsequently we placed one Einstein 
monochromatic frequency in the middle of each box. That 
enabled us to use the same expressions for thermodynamic 
properties as given in our previous work.     

Our method is semi-empirical. The model parameters 
were obtained by fitting them to available data sets, such 
that the majority of data are represented as accurate as pos-
sible. In the analysis of these data, we shifted frequencies in 
the VDoS of a polymorph, all with the same amount by less 

(19)Tc(P) = Tc(P = 0)+ h× P

(20)GLandau =
1

2
aL

{

[T − Tc(P)]Q
2 +

1

2
Tc(P)Q

4

}

(21)Q2 =
Tc(P)− T

Tc(P)
, B = aLTc(P)

than 5 cm−1, to find the best representation of heat capacity 
data below room temperature. Fractions of the VDoS, asso-
ciated with the Einstein temperatures, were not optimized, 
but directly determined from the VDoS. In “online resource 
Table  2”, Tables  4 and 6, a comparison is given between 
experimental and our calculated thermodynamic properties.

Expressions for shear modulus were established by fit-
ting shear modulus data or longitudinal and shear sound 
velocities after the thermodynamic description of the sys-
tem was completed.

Details of the optimization

We used a least-squares nonlinear optimization technique 
to establish values for model parameters. Values for experi-
mental data are determined by random and systematic 
uncertainties. To reduce the effect of systematic uncer-
tainties at pressure, we used a single pressure scale for all 
substances. Systematic uncertainties due to the use of dif-
ferent experimental devices are also present in 1 bar experi-
mental data, such as in thermal expansivity and volume 
of forsterite, shown in, for example, Figure  10 of Jacobs 
et al. (2013). For that reason, we performed a multitude of 
thermodynamic analyses to elucidate which data sets are 

Fig. 1   Phase diagram of Mg2SiO4 calculated with a database in 
which the VDoS of each polymorph is represented by 60 Einstein fre-
quencies, indicated by solid black curves, is insignificantly different 
from that calculated by a database in which each VDoS is represented 
by a single Einstein frequency, indicated by the dashed red curves. 
Experimental data are from: post-spinel Ito and Takahashi (1989, tri-
angle), Shim et al. (2001, diamond), Chopelas et al. (1994, square), 
Fei et al. (2004, circle, including wa); wadsleyite–ringwoodite Inoue 
et al. (2006, plus), Gasparik (2003, cross), Suzuki et al. (2000, dashed 
line), Katsura and Ito (1989, circle); forsterite–wadsleyite Fei and 
Bertka (1999, triangle), Morishima et  al. (1994, diamond), Boehler 
and Chopelas (1991, inverse triangle), Katsura and Ito (1989, circle). 
The phase boundary between liquid and forsterite has been drawn 
tentatively using experimental data of Ohtani and Kumazawa (1981)
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consistent with each other. In the text of “online resource”, 
we detail results of analyses of each substance separately.

We performed analyses of data in two sequences. In 
the first one, we focussed on thermophysical properties 
of all substances separately. In this sequence, heat capac-
ity data below room temperature form key experimental 
information to constrain vibrational frequencies at zero 
temperature and zero pressure. At low temperatures, the 
difference between isobaric and isochoric heat capacity is 
insignificantly small, such that the analysis is not affected 
by parameters other than frequencies at zero temperature 
and zero pressure, such as depicted in Fig. 3 for wadsley-
ite and ringwoodite. Generally, we performed optimiza-
tions in which all data sets were assigned equal weight. We 
noticed that dispersion in Grüneisen parameters has no sig-
nificant effect on the representation of experimental data, 
with the exception of forsterite and majorite. Grüneisen 
and mode-q parameters were in all cases constrained well 
by experimental thermal expansivity and bulk modulus data 

at 1 bar pressure and by ab initio predictions in pressure–
temperature space, resulting in accurate representations of 
volume data, such as demonstrated in Fig. 4 for ringwood-
ite, perovskite and stishovite. In this sequence of optimi-
zations, we applied the quasi-harmonic approximation to 
all substances except for two substances. One exception is 
forsterite, for which mode anharmonicity parameters were 
measured by Gillet et  al. (1991). The other exception is 
MgO in which volume-dependent anharmonicity must be 
incorporated. Because values of model parameter for all 
substances are not very different, simple optimization tech-
niques, such as a combination of steepest descent and alter-
nate minimization of the sum of squares, produced rapid 
convergence and robust results, independent of starting val-
ues. This sequence results in a number of findings, the most 
important of which are given here. Generally, the VDoS 
of each substance is of such quality that low-temperature 
heat capacity is accurately represented. That in turn puts 
better constraints on high-temperature heat capacity, such 
as demonstrated for wadsleyite and ringwoodite for which 
the most recent high-temperature heat capacity data of Jahn 
et  al. (2013) and Kojitani et  al. (2012) are preferred over 
older DSC data. By constraining dispersion in Grüneisen 
parameters of forsterite with spectroscopic data, our anal-
ysis prefers the V–T data of Kajiyoshi (1986), consistent 
with thermal expansivity predicted by Li et al. (2007). By 
using data for MgO resulting from primary pressure scales, 
we arrived at a description consistent with ab initio predic-
tions of Wu et  al. (2008). By applying a single pressure 
scale to SiO2, we found that the effect of a second-order 
phase transition between the stishovite and CaCl2 forms on 
volume is smaller than expected by Andrault et al. (2003).

In the second sequence of optimizations, we included 
phase diagram data depicted in Figs. 1 and 2. We refrained 
from a global optimization because phase boundaries were 
not established with equal robustness experimentally. 
Instead, we focussed first on phase boundaries which are 
robust or which could be constrained more robustly by 
using enthalpy difference data. These boundaries were sub-
sequently used to constrain those which are less certain. 
For that reason, we started with phase boundaries between 
forsterite, wadsleyite and ringwoodite because they can be 
tightly constrained by using enthalpy differences, measured 
at two temperatures by Akaogi et  al. (1989, 2007). Heat 
capacity data of wadsleyite and ringwoodite measured by 
the PPMS technique alone are clearly not sufficiently accu-
rate enough to favour a specific phase boundary between 
these forms. Because the effect of changing parameters 
affecting volume properties on these phase boundaries is 
too small, we achieved a description to within experimen-
tal uncertainty of all properties by changing anharmonic-
ity parameters of wadsleyite and forsterite, staying within 
the uncertainties of heat capacities. In this part of the 

Fig. 2   Phase diagram of MgSiO3 calculated with a database in 
which the VDoS of each polymorph is represented by 60 Einstein 
frequencies, indicated by solid black curves, is insignificantly differ-
ent from that calculated by a database in which each VDoS is rep-
resented by a single Einstein frequency, indicated by the dashed red 
curves. Experimental data are from: aki =  pv combination of Ono 
et al. (2001) and Hirose et al. (2001), dark solid circles by using the 
MgO scale of Speziale et  al. (2001), red solid circles by using the 
MgO pressure scale of Dorogokupets and Oganov (2007), Chudi-
novskikh and Boehler (2004, open circle, pv solid circles with error 
bars); aki Kanzaki (1987, inverse solid triangles at 1273 K), Sawa-
moto (1987, inverse open triangle), Ito and Navrotsky (1985, solid 
inverse triangle); ri  +  st Kanzaki (1987, solid triangle, 1273  K), 
Sawamoto (1987, asterik), Ito and Navrotsky (1985, open triangle); 
mj Presnall and Gasparik (1990, solid circle), Sawamoto (1987, open 
diamond: mj + pv and mj + aki, solid diamond: mj); wa + st Kan-
zaki (1987, solid square at 1273 K), Sawamoto (1987, open square); 
hcen  =  wa  +  st Presnall and Gasparik (1990, solid diamond); 
oen = cen Pacalo and Gasparik (1990, solid square), Kanzaki (1991, 
inverse triangle); Lcen = oen Angel and Hugh-Jones (1994, solid cir-
cle); Lcen = Hcen Angel and Hugh-Jones (1994, solid circle)
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optimization, we made use of the characteristic that intrin-
sic anharmonicity insignificantly affects volume properties 
as long as it is volume independent, which applies to all 
substances except for MgO. Mainly due to the enthalpy dif-
ference data, our description prefers the boundaries meas-
ured by Katsura and Ito (1989). The resulting description 
for ringwoodite is used to constrain the post-spinel phase 
boundary.

We represented data for the post-spinel phase boundary 
and that between akimotoite and perovskite by optimiz-
ing anharmonicity parameters of perovskite and akimo-
toite. That was achieved by accepting that the anharmonic-
ity parameter of perovskite is—(0.25 ±  0.25 ×  10−5  K−1 
(GilletP et  al. 2000) and that of akimotoite is—
(0.9 ± 0.7) × 10−5 K−1 (Reynard and Rubie 1996b). Addi-
tionally, we used as constraint the location of the phase junc-
tion at which MgO, perovskite, akimotoite, and ringwoodite 
are at equilibrium in the Mg2SiO4 phase diagram, predicted 
by ab initio by Yu et al. (2011). Because the description for 
MgO is robust, we did not change its parameters resulting 
from the first sequence, except for its reference energy. At 
this stage, an accurate representation of experimental data in 
the Mg2SiO4 phase diagram was completed and the results 
were used to constrain the remaining less robust phase 
boundaries in the MgSiO3 phase diagram.

For stishovite, we found an accurate description for heat 
capacity and V–P–T data in the first sequence and by fit-
ting its reference energy, we found a reasonable bound-
ary between akimotoite and the two-phase field wadsley-
ite  +  stishovite, considering the small amount of points 
resulting from quench experiments. Two points belong-
ing to the akimotoite field measured by Kanzaki (1987) at 
1273  K are unavoidably inside our established ringwood-
ite  +  stishovite field. Representing these points better, 
invariably moves points belonging to field wadsleyite + sti-
shovite measured by Sawamoto (1987) into the akimotoite 
field. The phase boundary between the phase fields akimo-
toite and wadsleyite +  stishovite is almost horizontal due 
to anharmonicity of akimotoite. Negative anharmonicity 
increases heat capacity, and therefore entropy, relative to 
the quasi-harmonic approximation, its effect being larger 
at larger temperature and zero at zero temperature. That in 
turn results is a stronger decrease in the Gibbs energy of 
akimotoite relative to lower temperatures producing a flat 
behaviour of the phase boundary. The effect of anharmonic-
ity on the 1 bar heat capacity of akimotoite in the tempera-
ture range of the measured data is, however, insignificant.

Because no heat capacity data are available for non-
quenchable HPclinoenstatite, we used the descriptions of 
wadsleyite and stishovite to constrain the phase boundary 

Table 2   Model parameters for the static lattice of polymorphs for which the VDoS is described with 60 Einstein frequencies

Orthoenstatite and Low-pressure clinoenstatite are described with a fourth order-Birch–Murnaghan EoS. The fourth-order coefficients Kst
0  and 

Gst
0  are written on the line below the substance. Fo(*) denotes a description for forsterite in which dispersion in Grüneisen parameter is incorpo-

rated. St-I denotes the CaCl2 form of SiO2 and is described with the same VDoS as stishovite. Pv(*) and Ppv(*) are results from an alternative 
analysis in which our description for MgO (pc) is used as a pressure scale. Volumes are given in cm3/mol

Uref/kJ/mol V0 V st
0 Kst

0 /GPa K
′st
0

G0 /GPa G
′st
0

Fo −2251.75 (100) 43.513 (12) 43.018 (12) 136.26 (50) 4.43 (11) 87.41 (40) 1.50 (7)

Fo(*) −2251.75 (100) 43.492 (12) 43.069 (12) 135.04 (50) 4.43 (11) 87.41 (40) 1.50 (7)

Wa −2224.30 (155) 40.388 (12) 39.957 (12) 178.19 (70) 4.30 (16) 119.85 (80) 1.52 (12)

Ri −2213.50 (155) 39.404 (12) 39.005 (12) 191.77 (88) 4.21 (17) 128.37 (84) 1.41 (17)

Pc −621.09 (30) 11.203 (5) 11.074 (5) 171.37 (50) 4.19 (11) 139.80 (50) 2.27 (15)

St & −909.08 (100) 13.999 (6) 13.873 (6) 319.32 (80) 4.08 (6) 237 (4) 1.92 (10)

St-I aL = 0.0126 JK−1 mol−1, h = 1.593 × 10−7 K/Pa, Tc (P = 0) = −7071.35 K, Eqs. (19, 20)

Si-II −894.77 (100) 13.773 (6) 13.659 (6) 324.43 (80) 4.23 (6) 247 (4) 1.87 (10)

Pv −1504.05 (200) 24.386 (9) 24.145 (9) 256.28 (135) 4.00 (7) 182.5 (15) 1.71 (4)

Pv(*) −1505.44 (200) 24.449 (9) 24.209 (9) 256.21 (135) 3.98 (7) 182.5 (15) 1.71 (4)

Ppv −1476.35 (247) 24.205 (9) 23.930 (9) 243.85 (90) 4.16 (6) 148.2 (10) 2.10 (20)

Ppv(*) −1499.34 (247) 24.641 (9) 24.353 (9) 230.04 (90) 4.26 (6) 148.2 (10) 2.10 (20)

Aki −1553.96 (200) 26.292 (9) 26.024 (9) 224.11 (200) 5.57 (77) 142.1 (45) 1.58 (13)

Mj −1565.53 (200) 28.334 (38) 28.065 (38) 171.66 (100) 4.16 (30) 92.32 (32) 1.54 (14)

Hcen −1597.73 (150) 30.277 (8) 29.860 (8) 127.28 (70) 6.01 (18) 96.47 (42) 1.73 (6)

Lcen −1602.75 (130) 31.179 (10) 30.795 (10) 120.44 (150) 6.23 (100) 84.31 (60) 1.50 (10)

– −0.20 (2)

Oen −1601.92 (100) 31.223 (6) 30.836 (6) 118.83 (70) 7.46 (40) 83.20 (60) 1.50 (10)

−0.44 (17) −0.21 (2)
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between this phase and wadsleyite +  stishovite. This was 
achieved by fitting reference energy and anharmonic-
ity parameter of HPclinoenstatite. The resulting descrip-
tion was used to constrain the phase boundaries between 
HPclinoenstatite and LPclinoenstatite and between LPcli-
noenstatite and orthoenstatite, which are not accurately 
determined experimentally, resulting in anharmonicity 
parameters of orthoenstatite and LPclinoenstatite.

Majorite was incorporated in the phase diagram by a 
small translational shift of the VDoS to within the uncer-
tainty range of the DSC heat capacity measurements, and 
fitting its reference energy.

The phase boundary between perovskite and post-per-
ovskite is uncertain, and it is discussed in “online resource, 
section Akimotoite, majorite and post-perovskite” and sec-
tion “effect of pressure scales.”

Uncertainties in model parameters given in Tables 2 and 
3 are estimates. They are based on varying a single param-
eter outside the uncertainty range of the sum of squares due 
to experimental uncertainties in data sets we have found to 
be consistent with each other. These uncertainties are simi-
lar to reported experimental uncertainties. That also applies 
to shear modulus discussed in “online resource, section 
Shear modulus.” Uncertainties in reference energy and 
anharmonicity parameters result from the second sequence, 
whereas those of other parameters are determined by the 

first sequence and insignificantly affected by the second 
sequence.

Effect of pressure scales

To bring coherence in the V–P–T measurements, we used 
a single pressure scale developed by Dorogokupets and 
Oganov (2007). The exception is MgO, for which our analy-
sis is based on the primary pressure scale of Li et al. (2006), 
consistent with that developed by Kono et  al. (2010). Our 
model for MgO is also consistent with ab  initio predic-
tions by Wu et al. (2008). It should be noted that the MgO 
description of Dorogokupets and Oganov (2007) does not 
represent the shock-wave data of Svendsen and Ahrens 
(1987) and those of Vassiliou and Ahrens (1981); their cal-
culated Hugoniot is located between that calculated by the 
Debye model of Stixrude and Lithgow-Bertelloni (2011) 
and our own, plotted in “online resource Fig. 1.” Therefore, 
for establishing pressures in V–P–T data which are based 
on a particular MgO scale, we could alternatively have pro-
ceeded by taking our own description for MgO in Tables 2 
and 3. For pressures along the post-spinel and akimotoite–
perovskite phase boundary, the pressure difference between 
our own MgO description and that of Dorogokupets and 
Oganov (2007) is insignificantly small, less than 0.2 GPa. 

Table 3   Vibrational model 
parameters

Each polymorph is described with a 30-Einstein frequency model in which the Einstein temperatures at 
zero temperature and zero pressure are given by θk = θ1 +  (k−1) × Δθ, where k ranges from 1 to 30. 
For SiO2-II, we used the same value for q as for stishovite. St-I denotes the CaCl2 form of SiO2 and is 
described with the same VDoS as stishovite. Dispersion in the Grüneisen parameters of forsterite, Fo(*), 
has been incorporated by two frequency ranges denoted by k∈[1,17] and k∈[18,30]. For majorite, disper-
sion in Grüneisen parameters is incorporated in the two ranges k ∈ [1,15] and k ∈ [16,30]

θ1/K Δθ/K γ0 q0 a0 × 105 K−1 z0 ns.0

Fo 25.47 (37) 50.9405 1.114 (20) 1.53 (10) −0.865 (460) 0.000 1.92 (13)

Fo(*) 25.47 (37) 50.9405 1.318 (20) 1.49 (10) −0.865 (460) 0.000 1.92 (13)

0.450 (20) 0.00 −0.865 (460)

Wa 24.77 (67) 49.5416 1.260 (30) 1.00 (20) −0.687 (290) 0.000 2.40 (13)

Ri 23.52 (67) 47.0372 1.250 (20) 1.00 (14) 0 0.000 2.19 (30)

Pc 17.05 (60) 34.0931 1.515 (30) 1.40 (14) +0.911 (400) 7.30 (140) 2.07 (14)

St & St-I 24.86 (142) 49.7231 1.269 (70) 3.51 (40) 0 0.000 4.71 (100)

Si-II 24.84 49.6733 1.157 (70) 3.51 (40) 0 0 5.44 (100)

Pv 22.63 (179) 45.2499 1.403 (30) 0.19 (22) −0.350 (300) 0.000 1.97 (30)

Pv(*) 22.64 (179) 45.2969 1.403 (30) 0.19 (22) −0.350 (300) 0.000 1.97 (30)

Ppv 21.56 (200) 43.1232 1.535 (40) 1.36 (30) 0 0.000 2.20 (20)

Ppv(*) 21.35 (200) 42.7042 1.539 (40) 1.32 (30) 0 0.000 2.20 (20)

Aki 22.58 (267) 45.1531 1.290 (50) 0.42 (40) −1.224 (300) 0.000 2.70 (50)

Mj 25.62 (300) 51.2332 1.430 (30) 0.000 0 0.000 0.61 (10)

0.755

Hcen 27.49 (18) 54.9718 1.157 (22) 0.57 (18) −0.791 (300) 0.000 2.46 (7)

Lcen 27.67 (14) 55.0000 0.996 (50) 0.000 −1.223 (300) 0.000 1.69 (26)

Oen 28.81 (16) 57.6255 0.982 (30) 0.000 −1.059 (300) 0.000 1.69 (26)
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The difference between the two scales becomes significant 
above 40 GPa, affecting the analyses of perovskite and post-
perovskite. Reanalysing the V–P–T data of Katsura et  al. 
(2009a, b) for perovskite using our MgO description does 
not lead to significant differences in the model parameters 
as shown in Tables 2 and 3. However, for post-perovskite , 
our MgO description results in pressures about 6 GPa larger 
than reported by Guignot et  al. (2007). Reanalyzing these 

V–P–T data results in model parameters labelled as ppv(*) 
in Tables  2 and 3. That description produces values for 
ambient volume, bulk modulus and its pressure derivative 
of 24.71 cm3/mol, 217 GPa and 4.35, respectively, consist-
ent with predictions of Tsuchiya et al. (2005) using ab ini-
tio, 24.66 cm3/mol, 216 GPa and 4.41, respectively. These 
values deviate from our description based on the pressure 
scale of Dorogokupets and Oganov (2007), 24.28 cm3/mol, 

Table 4   Enthalpy differences in kJ/mol for reactions at 1 bar pressure in the system MgO–SiO2 

Label [Fab] denotes values resulting from the database of Fabrichnaya et al. (2004). Label ‘exp’ denotes values based on experimental work

Label ‘Debye’ in the enthalpy denotes the enthalpy difference calculated with the database of Stixrude and Lithgow-Bertelloni (2011)

Combination in the last column refers to combination of transitions in the first column

Nr Transition T/K ΔHthis work ΔHDebye,Fab ΔHexp References/combination

Oxides → fo 298.15 −2174.894 −2028.903 −2173 ± 2 Robie and Hemingway (1995)

Oxides → pc 298.15 −601.454 −560.968 −601.6 ± 0.3 Robie and Hemingway (1995)

Oxides → oen 298.15 −1544.916 −1437.956 −1545.4 ± 1.5 Robie and Hemingway (1995)

1a Fo → Wa 298 27.21 ± 1.0 25.45 27.2 ± 3.6 Akaogi et al. (2007)

b 975 27.13 ± 1.0 24.99 29.97 ± 2.84 Akaogi et al. (1989)

2a Fo → Ri 298 37.75 ± 1.0 35.04 40.1 ± 3.1 Akaogi et al. (2007)

b 975 36.98 ± 1.0 33.04 39.05 ± 2.62 Akaogi et al. (1989)

3a Wa → Ri 298 10.54 ± 0.54 9.59 12.9 ± 3.3 Akaogi et al. (2007)

b 975 9.84 ± 0.54 8.05 9.08 ± 2.12 Akaogi et al. (1989)

4a Ri → Pc + Pv 298 86.30 ± 1.4 80.67 86.1 ± 3.6 Akaogi and Ito (1993a, b)

b 298 96.8 ± 5.8 Ito et al. (1990)

c 298 88.1 ± 4.7 [2a]+[5a]+[9a]

5a Fo → Oen + Pc 298 28.52 ± 1.0 29.98 26.00 ± 2.52 Robie and Hemingway (1995)

b 970 28.62 ± 1.0 30.34 25.73 ± 1.19 Charlu et al. (1975)

6a Oen → Mj 1000 35.41 ± 1.4 33.43 35.7 ± 3.0 Navrotsky (1995)

b 983 35.44 ± 1.4 33.24 30.80 ± 3.11 Yusa et al. (1993)

7 2Oen → Wa + St 986 69.18 ± 1.0 56.80 76.91 ± 7.69 Navrotsky et al. (1979)

8 2Oen → Ri + St 986 79.01 ± 1.0 64.83 81.80 ± 8.16 Navrotsky et al. (1979)

9a Oen → Pv 298 95.52 ± 1.4 85.73 102.2 ± 2.5 Akaogi and Ito (1993a, b)

b 298 96.79[Fab] 110.1 ± 4.1 Ito et al. (1990)

10a Aki → Pv 298 48.47 ± 1.4 42.77 42.15 ± 2.05 Akaogi et al. (2002)

b 298 44.60[Fab] 43.2 ± 5.0 Akaogi and Ito (1993a, b)

c 298 51.1 ± 6.6 Ito et al. (1990)

11a Oen → Aki 298 47.06 ± 1.4 42.96 61.51 ± 1.99 Akaogi et al. (2002)

b 298 52.19[Fab] 59.03 ± 4.26 Ashida et al. (1988)

12a Mj → Aki 298 11.48 ± 1.4 9.54 26.3 ± 2.6 Akaogi et al. (2002)

b 983 12.04 ± 1.4 7.69 25.0 ± 5.3 Yusa et al. (1993)

c 298 18.90[Fab]

13a Wa + St → 2Aki 986 25.76 ± 2.8 25.05 46.11 ± 7.94 [7]+[11a]

b 986 27.53[Fab] 41.3 ± 10.9 [7]+[11b]

c 986 25.5 ± 10.9 [7]+[11c]

14a Ri + St → 2Aki 986 15.94 ± 2.8 17.02 41.4 ± 8.4 [8]+[11a]

b 986 20.49[Fab] 36.6 ± 11.3 [8]+[11b]

15a Mj → Pv 298 59.95 ± 1.4 52.30 68.5 ± 3.2 Akaogi and Ito (1999)

b 298 63.50[Fab] 66.5 ± 3.9 [6a]+[9a]
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231 GPa and 4.25, respectively. The representation of iso-
thermal bulk modulus predicted by Tsuchiya et al. (2005) in 
the temperature range between 0 and 4000 K and pressure 
range between 0 and 150 GPa improves by using our MgO 
description. The maximum deviation is 1  % and average 
deviation 0.3 %, smaller than our results based on the MgO 
scale of Dorogokupets and Oganov (2007), 7.5 and 3.2 %, 
respectively, see “online resource Table 2.” The Clapeyron 
slope of the boundary between perovskite and post-per-
ovskite resulting from this alternative description increases 
slightly to 10.1  ±  2.7  MPa/K. Because of the pressure 
scale-dependent description for post-perovskite, extrapola-
tion to P–T conditions in the MgO + post-perovskite phase 
field, necessary for modelling heavy exoplanets, should be 
carried out cautiously.

Thermochemical data

Table 4 shows that heats of formation of forsterite, orthoen-
statite and periclase resulting from our analysis represent 

experimental values to within uncertainty. That also holds 
for enthalpy differences between phases in the system 
Mg2SiO4. For phases participating in the post-spinel tran-
sition, our analysis represents best the enthalpy difference 
determined by Akaogi and Ito (1993b). They measured the 
enthalpy difference between perovskite and orthoenstatite 
and followed the procedure of thermochemical cycles 
as indicated by transition (4c) of Table  4. Because they 
used older data in their calculations, we recalculated their 
enthalpy difference, 86.1 ± 3.6 kJ/mol, for the post-spinel 
phases with the more recent enthalpy data of Robie and 
Hemingway (1995) and Akaogi et  al. (2007), resulting in 
a slightly larger but consistent value of 88.1 ± 4.7 kJ/mol.

Table  4 shows that enthalpy differences between 
orthoenstatite, wadsleyite, ringwoodite, majorite and sti-
shovite, given by transitions (5) to (8) represent experi-
mental data of difference sources to within experimental 
uncertainty. These data are therefore consistent with phase 
diagram data and thermophysical data. However, our cal-
culated enthalpy differences related to orthoenstatite, aki-
motoite and perovskite in transitions (9), (10) and (11) 

Fig. 3   VDoS predicted by 
ab initio for wadsleyite and 
ringwoodite is described with 
60 Einstein continua indicated 
by the coloured rectangles. 
The 60 Einstein monochro-
matic frequencies are placed in 
the middle of these continua. 
Curves labelled ‘Debye’ were 
calculated with the Debye 
model by Stixrude and Lithgow-
Bertelloni (2011). Experimental 
data by Watanabe (1982) and 
Ashida et al. (1987) are below 
our calculated isochoric heat 
capacity for both polymorphs 
indicated by label Cv-60E. 
Labels Cp-60E and Cv-60E 
indicate isobaric and isochoric 
heat capacity calculated with a 
60-Einstein frequency model
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deviate significantly from experimentally established 
values. Experimental data for the enthalpy difference 
between perovskite and akimotoite are based on measure-
ments of the enthalpy difference between perovskite and 
orthoenstatite, transition (9), and that between akimotoite 
and orthoenstatite, transition (11). For these two transi-
tions, our calculated values are just as resulting from the 
databases of Stixrude and Lithgow-Bertelloni (2011) 
and Fabrichnaya et  al. (2004) significantly smaller than 
the experimental values. Incorporating the experimen-
tal enthalpy differences in our database would require an 
enthalpy increase of perovskite by about 6 kJ/mol whereas 
that of akimotoite should increase with about 12  kJ/mol. 
However, incorporating these increments displaces our 
calculated akimotoite–perovskite phase boundary with 
about −3.4 GPa, resulting in a disappearance of the aki-
motoite phase field in the MgSiO3 phase diagram, whereas 
the post-spinel phase boundary in the system Mg2SiO4 
displaces by about 2.3 GPa to higher pressures. Alterna-
tively, the Clapeyron slope of the akimotoite–perovskite 

phase boundary could be increased from −3.8 MPa/K to 
about −3.2  MPa/K, by increasing the entropy of akimo-
toite, either by shifting the frequencies in the VDoS or by 
changing the anharmonicity parameter. That increases the 
enthalpy difference between akimotoite and orthoenstatite 
from 47.07 kJ/mol to about 50 kJ/mol, but simultaneously 
the akimotoite field is replaced by the ringwoodite +  sti-
shovite field forming a triple point with perovskite at tem-
peratures larger than 1400 K. That is in conflict with phase 
diagram points, reported by Kanzaki (1991) as akimotoite, 
plotted in Fig. 2 at 1273 K.

The deviations from the experimental values in transi-
tions (9) and (11) also propagate in other transitions related 
to akimotoite and perovskite, such as in transitions (12) to 
(15), for which the three thermodynamic databases, includ-
ing our own, recommend smaller values. The phase dia-
grams calculated from these databases apparently cannot 
be reconciled with the large experimental values for the 
enthalpy difference between orthoenstatite and akimotoite 
and between orthoenstatite and perovskite.

Fig. 4   Solid curves were 
calculated with a database in 
which the VDoS of each phase 
is represented with 60 Einstein 
frequencies. The dashed curves 
were calculated with a clone 
for which the VDoS of each 
endmember is represented by 
one single Einstein frequency. 
Upper-left Isotherms derived 
from a Debye model by 
Stixrude and Lithgow-Bertel-
loni (2011) are plotted as grey 
curves. Uncertainty in measure-
ments is given by the symbol 
size. Lower-left The isotherm at 
1073 K calculated with a Debye 
model by Stixrude and Lithgow-
Bertelloni (2011) is plotted as 
the grey curve. When two adja-
cent symbols are plotted in the 
legend, the left one denotes the 
original pressure scale, the right 
one refers to the pressure scale 
of Dorogokupets and Oganov 
(2007). Lower-right we directed 
our optimization for SiO2 (sti-
shovite and I) by converting the 
pressures of the data of Andrault 
et al. (2003) to the platinum 
pressure scale of Dorogokupets 
and Oganov (2007) indicated by 
Pt-DO-07. Columbite, denoted 
as II, is stable above 85 GPa 
and volumes are plotted as the 
dashed curve
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Changing the number of Einstein frequencies in a 
VDoS: database clones

In this section, we show a process to optimize the number 
of Einstein frequencies in a VDoS. In this process, we con-
struct a new database from the original one in which all 
substances are described with the same but smaller number 
of Einstein frequencies. We call this new database a clone 
of the original one. We refer to this process as cloning a 
database because a large number of new databases can be 
formed with properties resembling that of the original one. 
Two requirements are necessary in this process.

The first requirement in this process is that all model 
parameters except frequencies, fractions in the VDoS and 
values for static volume remain unchanged. Therefore, 
the majority of model parameters remain unchanged. This 
requirement implies that we keep unchanged the value for 
the physical volume, V0, at zero pressure and zero tempera-
ture. Because we change the VDoS, the value for thermal 
pressure at this condition will change, which must be coun-
terbalanced by a change in the static pressure to match the 
external pressure. That is achieved by a change in the value 
for static volume, V st

0 , as can be deduced from Eq. (22) in 
our previous paper, Jacobs et  al. (2013). In that equation, 
we replace the expression for the static pressure by Eq. (3) 
given in “Static lattice and vibrational properties” section 
of the present paper. Generally, only small changes of less 
than 0.1  % are required to counterbalance the change in 
thermal pressure in the procedure we describe below.

The second requirement is that we keep unchanged val-
ues for enthalpy and entropy resulting from the original 
database at a selected condition of pressure and tempera-
ture. By applying that constraint the entropy differences at 
the phase boundaries at that condition are exactly the same 
as resulting from the original database.

The first step in the procedure of making a clone of 
the original database starts by selecting the desired num-
ber of Einstein frequencies, NE, for each substance. Next, 
we repeat the procedure of constructing the VDoS of each 
substance as described in Jacobs et  al. (2013). For each 
substance, 60 Einstein frequencies with their correspond-
ing values of the VDoS are available. Each VDoS in the 
original database is partitioned in NE equidistant frequency 
ranges, for which the frequency interval is determined by 
the maximum frequency.

In the second step, a condition of pressure and tempera-
ture is selected for which the value of entropy of each sub-
stance is the same as resulting from the original database. 
We call that condition a target condition. To keep Clapey-
ron slopes of phase boundaries depicted in Figs. 1 and 2 at 
about the same values, one could use for instance the triple 
point between orthoenstatite, LPclinoenstatite and HPcli-
noenstatite to make sure that the small entropy and volume 

differences between these phases are retained. To keep the 
entropy of a specific substance at the same value as result-
ing from the original database at the target condition, all 
Einstein frequencies of that substance are multiplied with 
a common factor, resulting in an expansion or contraction 
of the VDoS. Values for this common factor are typically 
about 1±0.002 for the 30-Einstein clone we used in Table 3 
and are obtained by an optimization process. Generally, 
values larger than one result in smaller entropy at the target 
condition and vice versa.

In the last step, we change the value for the reference 
energy of each substance, Uref, in Eq.  (1) such that the 
enthalpy at the target condition is identical with that result-
ing from the original database. That ensures that the Gibbs 
energy at the target condition remains unchanged.

It is evident that employing a smaller number of Einstein 
frequencies results in a loss of details in the VDoS. There-
fore, representing thermodynamic data will be less accu-
rate. The most extreme case is representing the VDoS by 
only one Einstein frequency and the examples in “online 
resource Fig. 2” show that the resulting heat capacity mis-
matches the experimental data. However, the single Ein-
stein model is instructive to show that although calculated 
heat capacities mismatch experimental data, other thermo-
dynamic properties can be represented quite accurately. 
We shall demonstrate this with the help of Table 5 for ring-
woodite. Table 5 shows that changing the original descrip-
tion of ringwoodite to a single Einstein model results in a 
change in the vibrational contribution to pressure, Pvib, of 
about 0.2 GPa, which is counterbalanced at zero total pres-
sure by the same amount in static pressure, −0.2 GPa. That 
is achieved by a small change in static volume of about 
0.1 %, as shown in the header of Table 5. The reason that 
we keep V0 unchanged is that thermal expansivity is small 
at low temperature, resulting in about the same volumes 
as in the original description for ringwoodite at low tem-
peratures. Therefore, the volume difference relative to the 
original description at 300 K is small, about only 0.004 % 
as indicated in Table 5. At high temperature, e.g. 2000 K, 
when vibrational modes become saturated, isochoric heat 
capacity approaches the 3nR Dulong–Petit limit and vibra-
tional contribution to energy, Uvib, approaches the value 
3nRT. Therefore, these properties are much less sensitive to 
the VDoS than at low temperature. Because the vibrational 
contribution to pressure is related to Uvib, as Pvib = γUvib/V, 
also that property becomes less sensitive to the VDoS at 
high temperature. For that reason, the difference in Pvib at 
high temperature, between the two Einstein models is much 
smaller than at 300 K. Table 5 shows that this is only 0.3 % 
at 2000 K. The maximum volume difference at any temper-
ature between the two Einstein models is of the same mag-
nitude as the difference between the static volumes. That is 
illustrated as follows. At extremely high temperature, Pvib 
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is independent of the VDoS and therefore, the volume com-
pression in the expression for the static pressure calculated 
from the original description must be equal for both Ein-
stein models. Denoting the volume and static volume of the 
original description by Vm and V st

0,m, that of the 1-Einstein 
description by Vc and V st

0,c and the static volume difference 
between the two Einstein models by Δ, we have:

Generally, the ratio of volume and static volume is small, 
typically 1.07 at 2000 K and 1.12 at 3000 K, and Eq. (22) 
shows that at high temperature the volume difference cal-
culated from the two models is of the same magnitude as 
the static volume difference. When the number of Einstein 
frequencies increases, the difference between the static 
lattice volume of the original description and that of the 
clone, rapidly decreases in absolute value. For a 2-Einstein 
model, this difference is 0.05 %; for a 4-Einstein model, it 
is 0.03 %.

The single Einstein model contains an interesting fea-
ture, which was a point of discussion at the time Einstein 
launched his model, namely that predicted isochoric heat 
capacity is invariantly too small relative to experimen-
tal data at very low temperature. We shall use this feature 
to demonstrate that volume differences between phases 
participating in equilibria calculated by the clone do not 
change significantly from that of the original database. That 
appears to be the case for all substances in our database, 
as illustrated for some of them in “online resource Fig. 2.” 
Because of that feature, also predicted vibrational energy 
is too small relative to the original description. That in 
turn leads to smaller vibrational pressure, Pvib ≈ γ0U

vib/V0, 
relative to the original description. Because the vibra-
tional pressure is positive, as indicated in Table 5, the static 
pressure must be negative to match the external pressure. 

(22)
Vm

V st
0,m

=
Vc

V st
0,c

=
Vc

V st
0,m +�

or Vc = Vm +
Vm

V st
0,m

�

The 1-Einstein model therefore predicts static pressures 
which are less negative relative to the original descrip-
tion. Because the value of the physical volume V0 remains 
unchanged and the static pressure versus volume curve of 
the 1-Einstein description is displaced upward in pressure, 
the static volume must be larger than that of the original 
description. That feature is quite important, because it 
holds for all substances in the small database we present 
here. Using Eq.  (22), the volume of a substance at high 
temperature calculated with a 1-Einstein model is also 
larger than that of the original description. Additionally, we 
found that the volume change at high temperature appears 
to be of the same order of magnitude for all substances. 
For phase boundaries located at high pressures, this char-
acteristic is important because it indicates that volume dif-
ferences between different substances calculated with a 
1-Einstein model will not be very different relative to those 
calculated by the original description. The reason that this 
holds true is that bulk modulus is relatively insensitive in 
the cloning process. Table 5 shows that at low temperature, 
the effect of the VDoS is largest for the vibrational contri-
bution to bulk modulus, Kvib. However, this contribution is 
quite small compared to the static bulk modulus, Kst. The 
last property is affected by only about 0.4 %, and as a result 
the total bulk modulus changes only by 0.3 %. The vibra-
tional contribution to bulk modulus can be written in terms 
of Cv and Uvib. At high temperature, where the effect of 
the VDoS becomes smaller, the difference in Kvib between 
the two Einstein models will become smaller as tempera-
ture increases. At high temperature, the compression term 
in the static bulk modulus converges to the same value, 
resulting in about the same total bulk modulus for the two 
models. Also thermal expansivity difference between the 
two models becomes smaller at high temperature because 
this property can be written as α = γCv/(KV). Because at 
high temperature, the difference in isochoric heat capacity, 

Table 5   Thermodynamic properties for ringwoodite calculated with a 60-Einstein model and with a 1-Einstein model at zero pressure

For the 1-Einstein model we used (1173 K, 1 bar) as target condition. The static volume resulting from the 60-Einstein model is 39.005 cm3/mol 
and that of the 1-Einstein model is 39.045 cm3/mol. Units are: volume, cm3/mol, vibrational pressure, static and vibrational bulk modulus, GPa, 
thermal expansivity, 10−5 K−1, isochoric and isobaric heat capacity, and entropy, JK−1 mol−1. Deviations are given in per cent

T/K NE Pvib V Kst Kvib K α CV CP S

0 60 1.911 39.404 183.67 2.39 186.06 0 0 0 0

1 1.720 39.404 184.48 2.15 186.63 0 0 0 0

Dev % −9.99 0 0.44 −10 0.31 0 0 0 0

300 60 2.410 39.512 181.55 1.63 183.18 1.99 114.93 115.79 83.82

1 2.213 39.510 182.38 1.28 183.66 2.14 123.90 124.90 76.13

Dev % −8.158 −0.004 0.46 −21.5 0.27 7.54 7.80 7.87 −9.17

2000 60 11.237 41.730 142.76 −1.39 141.37 3.90 172.85 190.74 391.75

1 11.202 41.763 142.92 −1.51 141.41 3.91 173.40 191.43 392.47

Dev % −0.308 0.080 0.11 8.63 0.03 0.30 0.32 0.39 0.18
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volume, bulk modulus and thermal expansivity between 
the two models become smaller also the difference in iso-
baric heat capacity becomes smaller. In Table  5, we used 
as target condition 1173 K and 1 bar to construct the 1-Ein-
stein model. Selecting a high temperature is advantageous 
because in this case the entropy at 1173 K for ringwoodite 
is the same as for the original description, even when heat 
capacity below this temperature is significantly different. 
The calculation of entropy at temperatures above 1173 K is 
considered as the integral over the CP/T function, which is 
split into two temperature ranges. In the first range between 
0 and 1173 K, the result of that integration is the same as 
that for the original description and in the second range, 
the integration takes place over CP/T where CP is not sig-
nificantly different from the original description. For that 
reason, the entropy difference between the two Einstein 
models becomes smaller at high temperature as indicated 
in Table 5. Because this characteristic does not change at 
large pressure, volume difference and entropy difference in 
Clapeyron slopes calculated with a 1-Einstein database will 
not be very different from those calculated from the origi-
nal database.

We cloned the original database to one in which all sub-
stances are described with a 1-Einstein model and com-
pared results obtained with the two databases. Because 
entropy differences between orthoenstatite, LPclinoen-
statite and HPclinoenstatite are very small, we have set 
as target condition (1173  K, 7.9 GPa) to match the triple 
point between these phases as calculated from the original 
database. That has no effect on values in Tables  5 and 6. 
Figures  1 and 2 show that the difference between phase 
boundaries obtained with the two databases is remarkably 

small, typically less than about 0.2 GPa. That even holds 
for phase boundaries at temperatures far below 1173 K, as 
indicated by Fig. 2 and at extreme pressures above 100 GPa 
for the phase boundary between perovskite and post-per-
ovskite. Figures 4 and 5 show for ringwoodite, perovskite, 
stishovite and post-perovskite that volumes in wide ranges 
of pressure and temperature calculated with the two data-
bases are insignificantly different relative to experimen-
tal uncertainties. That also applies to bulk modulus and 
shear modulus as demonstrated in Fig. 5 for orthoenstatite. 
Figure  5 shows for HPclinoenstatite that accurate shear 
velocity measurements of Kung et al. (2005) are less well 
represented by a 1-Einstein model, especially at low tem-
perature. As demonstrated in Fig. 6, five or more Einstein 
frequencies are necessary to represent these data with an 
average deviation of 0.1 %.

Special care must be taken when dispersion in Grü-
neisen parameters is needed in the description, such as for 
majorite. Because the 1-Einstein model, just as the Debye 
model contains only one Grüneisen parameter, it is unable 
to incorporate this feature. In our cloning process, we have 
averaged the Grüneisen parameters of the original descrip-
tion of majorite, resulting in a value of 1.1, which appears 
to be too small for representing thermal expansivity and 
phase boundaries in which majorite is involved. There-
fore, we fine-tuned the Grüneisen parameter to a value 
of 1.16 and additionally the reference energy. Figures  2 
and   5 show that phase diagram and thermal expansivity 
are almost indistinguishable from that resulting from the 
original description. Because we modelled dispersion in 
Grüneisen parameters in only two frequency ranges, Ein-
stein models for majorite in which NE > 1 do not require a 

Table 6   Ambient entropy 
values, in JK−1mol−1, 
calculated with different 
database clones

The number of frequencies in the VDoS are indicated as superscripts in the entropy. Label ‘exp’ denotes 
the experimental value including its uncertainty. Label [F] denotes entropies are taken from Fabrichnaya 
et al. (2004)

S60298.15 S30298.15 S10298.15 S5298.15 S
[F]
298.15

S
exp
298.15

References

Fo 93.99 94.01 94.20 95.37 95.60 94.0 ± 0.1 Dachs et al. (2007)

Wa 86.72 86.72 86.78 87.49 95.00 86.4 ± 0.4 Akaogi et al. (2007)

Ri 83.11 83.06 83.20 83.83 90.60 82.7 ± 0.5 Akaogi et al. (2008)

Pc 26.90 26.90 26.92 27.05 26.94 26.924 ± 0.08 Chase et al. (1985)

St 24.75 24.77 24.76 24.92 24.64 24 ± 0.03 Akaogi et al. (2011)

24.94 ± 0.10 Yong et al. (2012)

SiO2-II 22.89 22.90 22.95 23.22 – – –

Pv 57.90 57.92 57.97 57.90 63.60 57.9 ± 0.3 Akaogi et al. (2008)

PPv 55.58 55.60 55.72 55.79 – – –

Aki 53.41 53.44 53.62 54.11 58.30 53.7 ± 0.4 Akaogi et al. (2008)

Mj 66.12 66.08 66.13 67.10 60.30 – –

HCen 63.70 63.73 63.80 64.92 65.30 – –

LCen 65.62 65.64 65.77 66.78 – 65.63 ± 0.023 Drebushchak et al. (2008)

Oen 66.49 66.52 66.53 67.61 66.27 66.27 ± 0.10 Krupka et al. (1985)
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fine-tuning in the model parameters. However, we antici-
pate that for substances requiring dispersion in Grüneisen 
parameters in more than two frequency ranges more com-
plicated adjustments are necessary.

The conclusion of our comparison of the two models 
is that a 1-Einstein model cloned from the original data-
base represents well experimental data of all substances 
except heat capacity and entropy at low temperatures and 
shear sound velocity for HPclinoenstatite. Generally, such 
a 1-Einstein model even represents better V–P–T data than 
a Debye model such as demonstrated for ringwoodite and 
stishovite in Fig. 4.

We now turn to the question how many Einstein frequen-
cies are necessary to represent experimental data including 
heat capacity. The answer to that question depends on the 
application. For low-temperature applications larger num-
bers are required than for high-temperature applications. In 
most thermodynamic databases, nowadays applied in mate-
rials science, heat capacity is described accurately only for 
temperatures above room temperature. To have an indica-
tion of how many Einstein frequencies are necessary in such 

a case, we used the same target condition (1173 K, 7.9 GPa) 
as before and compared the values of ambient entropy for 
all substances calculated with the original database and the 
clone. Figure 6 shows, for some examples, that the required 
number of Einstein frequencies is much smaller than 60 to 
represent experimental entropy values to within their uncer-
tainties. This number depends strongly on the experimental 
technique that has been applied to establish the entropy. For 
LPclinoenstatite, the entropy has been determined with adi-
abatic calorimetry, which is generally more accurate than 
the PPMS technique used for wadsleyite and perovskite, 
and therefore requires a larger number of Einstein frequen-
cies, 20 in this case. For forsterite, a minimum of 14 Ein-
stein frequencies are required in its VDoS. Table  6 shows 
that for most substances about 10 Einstein frequencies are 
required to represent room-temperature entropy data. That 
appears to be sufficient to represent all thermodynamic 
and shear modulus data above room temperature to within 
their experimental uncertainties. At temperatures below 
300  K, the representation of heat capacity data remains 
remarkably good for all substances. For instance at 100 K, 

Fig. 5   Solid curves were 
calculated with the database in 
which the VDoS of each phase 
is represented with 60 Einstein 
frequencies. The dashed curves 
were calculated with a clone 
for which the VDoS of each 
phase is represented by one 
Einstein frequency. Lower-right 
a single Einstein frequency is 
insufficient to describe the shear 
sound velocity data to within 
experimental uncertainty; at 
least five Einstein frequencies 
are required to represent these 
data to within 0.1 % uncertainty, 
see Fig. 6



58	 Phys Chem Minerals (2017) 44:43–62

1 3

entropies generally deviate less than 3 % for a 10-Einstein 
clone and less than 0.5 % for a 30-Einstein clone. Table 6 
shows that our method results in more accurate entropy 
values for most substances relative to those resulting from 
the database of Fabrichnaya et  al. (2004). This is mainly 
due to our method’s ability to discriminate between differ-
ent heat capacity data sets as discussed in “online resource, 
section Heat capacities.” The exception is orthoenstatite, for 
which the VDoS of Choudhury and Chaplot (2000) results 
in a small overestimation of heat capacity at temperatures 
below 100  K, which cannot be compensated by a sim-
ple shift in the frequencies of the VDoS. Obtaining a near 
perfect description of the heat capacity requires changing 
fractions of the VDoS, keeping all other model parameters 

unchanged. In that case, resulting phase equilibria between 
LPclinoenstatite, HPclinoenstatite and orthoenstatite are 
insignificantly different from our previous calculations, 
indicating that our calculated entropy for orthoenstatite, 
using the VDoS of Choudhury and Chaplot (2000), is rea-
sonable for temperatures above 800 K.

Conclusions

We showed that incorporating a VDoS predicted by ab ini-
tio into our method is a successful way to develop an accu-
rate database for calculating thermodynamic properties 
and the shear modulus of substances in large ranges of 

Fig. 6   Upper-left and upper-right clones with nine Einstein frequen-
cies or more produce values for ambient entropy of wadsleyite and 
perovskite insignificantly different from the original database. Lower-
left because the uncertainty of 0.035 % in the ambient entropy of low-
pressure clinoenstatite is much smaller than for wadsleyite, 0.46 %, 
20 Einstein frequencies are needed. Lower-right at least five Einstein 
frequencies are required to describe shear sound velocity with aver-

age deviation of 0.1 % compared to that of the original database (see 
lower-right frame of Fig.  5). The experimental value including its 
uncertainty in all plots is indicated by the solid blue curves whereas 
the value calculated with a 60-Einstein model including the same 
uncertainty is given by the solid and dashed red curves. The label 
Debye gives entropy and sound velocity values calculated with the 
database of Stixrude and Lithgow-Bertelloni (2011)
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pressures and temperatures. Moreover, we showed that our 
method can be used to discriminate heat capacities, which 
is useful for making decisions which data set should be 
used in a thermodynamic analysis. Because of this charac-
teristic, our method offers an extra tool to constrain loca-
tion and Clapeyron slope of phase boundaries relative to 
a Debye method or methods that depend on parameteriza-
tions of the Gibbs energy. Additionally, this characteristic 
results in more accurate room-temperature entropies for 
most substances relative to these methods. The exception 
is orthoenstatite for which the VDoS of Choudhury and 
Chaplot (2000) results in an overestimation of heat capac-
ity between 0 and 100 K and therefore an overestimation 
of entropy at ambient conditions. However, fine-tuning heat 
capacity by changing the VDoS does not have a significant 
effect on phase equilibria between orthoenstatite, HPcli-
noenstatite and LPclinoenstatite. We recommend re-estab-
lishing a VDoS for orthoenstatite.

Data for heat of formation and enthalpy difference for 
most transitions are represented to within experimental 
uncertainty. The exceptions are those between orthoenstatite 
and akimotoite and between orthoenstatite and perovskite at 
room temperature and 1 bar pressure, which cannot be rec-
onciled with the phase diagrams for Mg2SiO4 and MgSiO3.

To avoid inconsistencies and to enhance transpar-
ency in our analysis of V–P–T data, we used one pressure 
scale for all substances, that of Dorogokupets and Oganov 
(2007). By using this scale, we showed for the stishovite 
and the CaCl2 form of SiO2 that the second-order transition 
between them has a much smaller effect on volume than 
derived by Andrault et  al. (2003). An additional feature 
of using a single pressure scale is that performing future 
improvements of our database is much simpler when pres-
sure scales become more accurate.

For MgO, we arrived at the same conclusion as Wu et al. 
(2008) by ab initio that shock-wave data of Svendsen and 
Ahrens (Svendsen and Ahrens 1987) are represented well 
when the room-temperature isotherm is based on the pri-
mary pressure scale of Li et al. (2006). Because the MgO 
description of Dorogokupets and Oganov (2007) represents 
these shock-wave data less well, our model can be used 
as an alternative pressure scale, but it results in pressures 
about 6 GPa larger at pressures between 100–140  GPa. 
In that case for post-perovskite, better consistency is 
achieved between the experimental V–P–T data of Guignot 
et al. (2007) and bulk modulus in P–T space predicted by 
Tsuchiya et al. (2005) using ab initio.

Our small database can be cloned to databases in which 
the VDoS of substances are described with arbitrary smaller 
number of Einstein frequencies, using an automated pro-
cess. This is useful in cases when a simpler thermodynamic 
description is desired that enhances computational effi-
ciency or to make comparisons with methods employing 

a simplified VDoS. We showed that the VDoS has a large 
effect on heat capacity and entropy, but that its effect on 
volume properties is small. The process of cloning a data-
base is more efficient than performing new thermodynamic 
analyses with smaller number of Einstein frequencies. We 
showed that a database clone in which the VDoS of each 
substance is described with a single Einstein frequency 
achieves remarkable precise phase diagrams for which 
phase boundaries deviate less than 0.2 GPa relative to those 
calculated with the original database. Such database also 
achieves remarkable precision for volume, bulk modulus, 
thermal expansivity and shear modulus relative to experi-
mental uncertainties in wide ranges of pressure and temper-
atures. However, heat capacity and therefore entropy and 
enthalpy are not represented well, and in the case of HPcli-
noenstatite transverse sound velocity in P–T space is not 
represented well. Additionally, substances requiring disper-
sion in Grüneisen parameters in their description, such as 
forsterite and majorite, should be treated with care when 
a small number of Einstein frequencies are employed. In 
such cases, modifications of model parameters are required 
to achieve a desired accuracy for phase diagrams and ther-
modynamic properties. We found that for most substances 
in the system MgO–SiO2, a minimum of 10 Einstein fre-
quencies is necessary to represent heat capacity sufficiently 
accurate. However, larger numbers are required in cases 
when accurate calorimetric data are available such as for 
LPclinoenstatite and forsterite.

Calculations in this work were performed with pro-
gram XiPT written in Pascal, Jacobs and Oonk (2012). To 
make our multi-Einstein method more transparent and to 
enhance incorporating it in other software, we made avail-
able software codes written in Fortran and FreePascal. This 
software enables calculating thermodynamic properties of 
substances in P–T space, using input data files for the sub-
stances treated in the present work. The software and input 
data files can be downloaded from website http://www.geo.
uu.nl/~jacobs/Downloads.
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