2005 Joint Assembly Search Results

Cite abstracts as Author(s) (2005), Title, Eos Trans. AGU, 86(18), Jt. Assem. Suppl., Abstract xxxxx-xx

Your query was: govers

 HR: 09.45h AN: 621A-06 TI: Strain Accumulation Across the Central San Andreas Fault: Impact of Laterally Varying Crustal Properties AU: * Schmalzle, G EM: gschmalzle@srmas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Dixon, T EM: gschmalzle@srmas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Dixon, T EM: gschmalzle@srmas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Malservisi, R EM: malservisi@srmas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Govers, R EM: govers@geo.uu.nl AF: University of Utrecht Earth Sciences, P.O. Box 80.021, Utrecht, TA 3508 Netherlands AB: Major strike slip fault systems, such as the San Andreas Fault, have one common characteristic: lateral juxtaposition of geologically dissimilar terrains. Terrains on opposite sides of the fault may vary in both geometry of the elastic upper crustal layer and in their material properties. The Carrizo segment of the San Andreas Fault is a prime area to study the effects of asymmetry imposed by strike slip faulting because it is a straight segment and exhibits relatively simple seismic behavior. We present new GPS data on the Carrizo segment to quantify the asymmetry. As well as a series of numerical models designed to investigate various classes of asymmetry. Our models are implemented with the finite element technique, and investigate differences in elastic	
 TI: Strain Accumulation Across the Central San Andreas Fault: Impact of Laterally Varying Crustal Properties AU: * Schmalzle, G EM: gechmalzle @rsmas.miani.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Dixon, T EM: gechmalzle @rsmas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Malservisi, R EM: malservisi, R EM: malservisi @rsmas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Malservisi, R EM: malservisi @rsmas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Govers, R EM: govers@geo.uu.nl AF: University of Utrecht Earth Sciences, P.O. Box 80.021, Utrecht, TA 3508 Netherlands AB: Major strike slip fault systems, such as the San Andreas Fault, have one common characteristic: lateral juxtaposition of geologically dissimilar terrains. Terrains on opposite sides of the fault may vary in both geometry of the elastic upper crustal layer and in their material properties. The Carrizo segment to functify the asymmetry, as well as a series of numerical models designed to investigate various classes of asymmetry. Our models are implemented with the finite element technique, and investigate differences in elastic layer thickness and variable material properties of the upper crust. We find that available data are well fit by a simple model whereby a relatively weak zone (approximating the upper and middle crust) 10-20 km wide exists on the northeast si	
Laterally Varying Crustal Properties AU: * Schmalzle, G EM: gschmalzle@ismas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Dixon, T EM: gschmalzle@ismas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Malservisi, R EM: malservisi@ismas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Malservisi, R EM: malservisi@ismas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Govers, R EM: govers@geo.uu.nl AF: University of Utrecht Earth Sciences, P.O. Box 80.021, Utrecht, TA 3508 Netherlands AB: Major strike slip fault systems, such as the San Andreas Fault, have one common characteristic: lateral juxtaposition of geologically dissimilar terrains. Terrains on opposite sides of the fault may vary in both geometry of the elastic upper crustal layer and in their material properties. The Carrizo segment of the San Andreas Fault is a prime area to study the effects of asymmetry imposed by strike slip faulting because it is a straight segment and exhibits relatively simple seismic behavior. We present new GPS data on the Carrizo segment to quantify the asymmetry, as well as a series of numerical models designed to investigate various classes of asymmetry. Our models are implemented with the finite element technique, and investigate differences in elastic layer thickness and variable material properties of the upper crust. We find that available data are well fit by a simple model whereby a relatively weak zone (approximating the upper and middle crust) 10-20 km wide exists on	
 AU: * Schmalzle, G EM: gschmalzle@smas.miani.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Dixon, T EM: gschmalzle@rsmas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Malservisi, R EM: malservisi@rsmas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Malservisi@rsmas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Govers, R EM: govers@geo.uu.nl AF: University of Utrecht Earth Sciences, P.O. Box 80.021, Utrecht, TA 3508 Netherlands AB: Major strike slip fault systems, such as the San Andreas Fault, have one common characteristic: lateral juxtaposition of geologically dissimilar terrains. Terrains on opposite sides of the fault may vary in both geometry of the elastic upper crustal layer and in their material properties. The Carrizo segment of the San Andreas Fault is a prime area to study the effects of asymmetry imposed by strike slip faulting because it is a straight segment and exhibits relatively simple seismic behavior. We present new GPS data on the Carrizo segment to quantify the asymmetry, as well as a series of numerical models designed to investigate various classes of asymmetry. Our models are implemented with the finite element technique, and investigate differences in elastic layer thickness and variable material properties of the upper crust. We find that available data are well fit by a simple model whereby a relatively weak zone (approximating the upper	the second se
 EM: gschmalzle@rsmas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Dixon, T EM: gschmalzle@rsmas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Malservisi, R EM: malservisi@rsmas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Malservisi@rsmas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Govers, R EM: govers@geo.uu.nl AF: University of Utrecht Earth Sciences, P.O. Box 80.021, Utrecht, TA 3508 Netherlands AB: Major strike slip fault systems, such as the San Andreas Fault, have one common characteristic: lateral juxtaposition of geologically dissimilar terrains. Terrains on opposite sides of the fault may vary in both geometry of the elastic upper crustal layer and in their material properties. The Carrizo segment of the San Andreas Fault is a prime area to study the effects of asymmetry imposed by strike slip faulting because it is a straight segment and exhibits relatively simple seismic behavior. We present new GPS data on the Carrizo segment to quantify the asymmetry, as well as a series of numerical models designed to investigate various classes of asymmetry. Our models are implemented with the finite element technique, and investigate differences in elastic layer thickness and variable material properties of the upper crust. We find that available data are well fit by a simple model whereby a relatively weak zone (approximating the upper and middle crust) 10-20 km	
Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Dixon, T EM: gschmalzle@rsmas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Malservisi, R EM: malservisi@rsmas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Govers, R EM: govers@geo.uu.nl AF: University of Utrecht Earth Sciences, P.O. Box 80.021, Utrecht, TA 3508 Netherlands AB: Major strike slip fault systems, such as the San Andreas Fault, have one common characteristic: lateral juxtaposition of geologically dissimilar terrains. Terrains on opposite sides of the fault may vary in both geometry of the elastic upper crustal layer and in their material properties. The Carrizo segment of the San Andreas Fault is a prime area to study the effects of asymmetry imposed by strike slip faulting because it is a straight segment and exhibits relatively simple seismic behavior. We present new GPS data on the Carrizo segment to quantify the asymmetry, as well as a series of numerical models designed to investigate various classes of asymmetry. Our models are implemented with the finite element technique, and investigate differences in elastic layer thickness and variable material properties of the upper crust. We find that available data are well fit by a simple model whereby a relatively weak zone (approximating the upper and middle crust) 10-20 km wide exists on the northeast side of the fault. DE: 1243 Space geodetic surveys DE: 7260 Theory and modeling DE: 8159 Rheology-crust and lithosphere DE: 8164 Stresses-crust and lithosphere DE: 8164 Stresses-crust and lithosphere SC: Geodesy [G]	
 33149 United States AU: Dixon, T EM: gschmalzle@rsmas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Malservisi, R EM: malservisi@rsmas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Govers, R EM: govers@geo.uu.nl AF: University of Utrecht Earth Sciences, P.O. Box 80.021, Utrecht, TA 3508 Netherlands AB: Major strike slip fault systems, such as the San Andreas Fault, have one common characteristic: lateral juxtaposition of geologically dissimilar terrains. Terrains on opposite sides of the fault may vary in both geometry of the elastic upper crustal layer and in their material properties. The Carrizo segment of the San Andreas Fault is a prime area to study the effects of asymmetry imposed by strike slip faulting because it is a straight segment and exhibits relatively simple seismic behavior. We present new GPS data on the Carrizo segment to quantify the asymmetry, as well as a series of numerical models designed to investigate various classes of asymmetry. Our models are implemented with the finite element technique, and investigate differences in elastic layer thickness and variable material properties of the upper crust. We find that available data are well fit by a simple model whereby a relatively weak zone (approximating the upper and middle crust) 10-20 km wide exists on the northeast side of the fault. DE: 1243 Space geodetic surveys DE: 7260 Theory and modeling DE: 8159 Rheology-crust and lithosphere DE: 8164 Stressescrust and lithosphere DE: 8169 Rheology-crust and lithosphere SC: Geodesy [G] 	
 AU: Dixon, T EM: gschmalzle@rsmas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Malservisi, R EM: malservisi@rsmas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Govers, R EM: govers@geo.uu.nl AF: University of Utrecht Earth Sciences, P.O. Box 80.021, Utrecht, TA 3508 Netherlands AB: Major strike slip fault systems, such as the San Andreas Fault, have one common characteristic: lateral juxtaposition of geologically dissimilar terrains. Terrains on opposite sides of the fault may vary in both geometry of the elastic upper crustal layer and in their material properties. The Carrizo segment to quantify the asymmetry, as well as a series of numerical models designed to investigate various classes of asymmetry. Our models are implemented with the finite element technique, and investigate differences in elastic layer thickness and variable material properties of the upper crust. We find that available data are well fit by a simple model whereby a relatively weak zone (approximating the upper and middle crust) 10-20 km wide exists on the northeast side of the fault. DE: 1236 Rheology of the lithosphere and middle crust) 10-20 km wide exists on the northeast side of the fault. DE: 1236 Rheology of the lithosphere BE: 8169 Rheology-crust and lithosphere BE: 8164 Stresses-crust and lithosphere BE: 8164 Stresses-crust and lithosphere SC: Geodesy [G] 	
 EM: gschmalzle@rsmas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Malservisi, R EM: malservisi@rsmas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Govers, R EM: govers@geo.uu.nl AF: University of Utrecht Earth Sciences, P.O. Box 80.021, Utrecht, TA 3508 Netherlands AB: Major strike slip fault systems, such as the San Andreas Fault, have one common characteristic: lateral juxtaposition of geologically dissimilar terrains. Terrains on opposite sides of the fault may vary in both geometry of the elastic upper crustal layer and in their material properties. The Carrizo segment to the San Andreas Fault is a prime area to study the effects of asymmetry imposed by strike slip faulting because it is a straight segment and exhibits relatively simple seismic behavior. We present new GPS data on the Carrizo segment to quantify the asymmetry, as well as a series of numerical models designed to investigate various classes of asymmetry. Our models are implemented with the finite element technique, and investigate differences in elastic layer thickness and variable material properties of the upper crust. We find that available data are well fit by a simple model whereby a relatively weak zone (approximating the upper and middle crust) 10-20 km wide exists on the northeast side of the fault. DE: 1236 Rheology of the lithosphere and middle crust) 10-20 km wide pays on the northeast side of the fault. DE: 1243 Space geodetic surveys DE: 7260 Theory and modeling DE: 8159 Rheologycrust and lithosphere DE: 8164 Stressescrust and lithosphere DE: 8164 Stressescrust and lithosphere DE: 8164 Stressescrust and lithosphere<td></td>	
 AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Malservisi, R EM: malservisi @rsmas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Govers, R EM: govers@geo.uu.nl AF: University of Utrecht Earth Sciences, P.O. Box 80.021, Utrecht, TA 3508 Netherlands AB: Major strike slip fault systems, such as the San Andreas Fault, have one common characteristic: lateral juxtaposition of geologically dissimilar terrains. Terrains on opposite sides of the fault may vary in both geometry of the elastic upper crustal layer and in their material properties. The Carrizo segment of the San Andreas Fault is a prime area to study the effects of asymmetry imposed by strike slip faulting because it is a straight segment and exhibits relatively simple seismic behavior. We present new GPS data on the Carrizo segment to quantify the asymmetry, as well as a series of numerical models designed to investigate various classes of asymmetry. Our models are implemented with the finite element technique, and investigate differences in elastic layer thickness and variable material properties of the upper crust. We find that available data are well fit by a simple model whereby a relatively weak zone (approximating the upper and middle crust) 10-20 km wide exists on the northeast side of the fault. DE: 1243 Space geodetic surveys DE: 7260 Theory and modeling DE: 8159 Rheologycrust and lithosphere DE: 8164 Stresses-crust and lithosphere DE: 8164 Stresses-crust and lithosphere SC: Geodesy [G] 	•
 33149 United States AU: Malservisi, R EM: malservisi@ersmas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Govers, R EM: govers@geo.uu.nl AF: University of Utrecht Earth Sciences, P.O. Box 80.021, Utrecht, TA 3508 Netherlands AB: Major strike slip fault systems, such as the San Andreas Fault, have one common characteristic: lateral juxtaposition of geologically dissimilar terrains. Terrains on opposite sides of the fault may vary in both geometry of the elastic upper crustal layer and in their material properties. The Carrizo segment of the San Andreas Fault is a prime area to study the effects of asymmetry imposed by strike slip faulting because it is a straight segment and exhibits relatively simple seismic behavior. We present new GPS data on the Carrizo segment to quantify the asymmetry, as well as a series of numerical models designed to investigate various classes of asymmetry. Our models are implemented with the finite element technique, and investigate differences in elastic layer thickness and variable material properties of the upper crust. We find that available data are well fit by a simple model whereby a relatively weak zone (approximating the upper and middle crust) 10-20 km wide exists on the northeast side of the fault. DE: 1236 Rheology of the lithosphere and mantle (8160) DE: 1243 Space geodetic surveys DE: 7260 Theory and modeling DE: 8159 Rheologycrust and lithosphere DE: 8164 Stressescrust and lithosphere DE: 6000000000000000000000000000000000000	8
 AU: Malservisi, R EM: malservisi@rsmas.miami.edu AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Govers, R EM: govers@geo.uu.nl AF: University of Utrecht Earth Sciences, P.O. Box 80.021, Utrecht, TA 3508 Netherlands AB: Major strike slip fault systems, such as the San Andreas Fault, have one common characteristic: lateral juxtaposition of geologically dissimilar terrains. Terrains on opposite sides of the fault may vary in both geometry of the elastic upper crustal layer and in their material properties. The Carrizo segment of the San Andreas Fault is a prime area to study the effects of asymmetry imposed by strike slip faulting because it is a straight segment and exhibits relatively simple seismic behavior. We present new GPS data on the Carrizo segment to quantify the asymmetry, as well as a series of numerical models designed to investigate various classes of asymmetry. Our models are implemented with the finite element technique, and investigate differences in elastic layer thickness and variable material properties of the upper crust. We find that available data are well fit by a simple model whereby a relatively weak zone (approximating the upper and middle crust) 10-20 km wide exists on the northeast side of the fault. DE: 1236 Rheology of the lithosphere and mantle (8160) DE: 1243 Space geodetic surveys DE: 7260 Theory and modeling DE: 8164 Stressescrust and lithosphere DE: 8164 Stressescrust and lithosphere SC: Geodesy [G] 	
EM: <i>rmalservisi@rsmas.miami.edu</i> AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Govers, R EM: govers@geo.uu.nl AF: University of Utrecht Earth Sciences, P.O. Box 80.021, Utrecht, TA 3508 Netherlands AB: Major strike slip fault systems, such as the San Andreas Fault, have one common characteristic: lateral juxtaposition of geologically dissimilar terrains. Terrains on opposite sides of the fault may vary in both geometry of the elastic upper crustal layer and in their material properties. The Carrizo segment of the San Andreas Fault is a prime area to study the effects of asymmetry imposed by strike slip faulting because it is a straight segment and exhibits relatively simple seismic behavior. We present new GPS data on the Carrizo segment to quantify the asymmetry, as well as a series of numerical models designed to investigate various classes of asymmetry. Our models are implemented with the finite element technique, and investigate differences in elastic layer thickness and variable material properties of the upper crust. We find that available data are well fit by a simple model whereby a relatively weak zone (approximating the upper and middle crust) 10-20 km wide exists on the northeast side of the fault. DE: 1236 Rheology of the lithosphere and mantle (8160) DE: 1243 Space geodetic surveys DE: 7260 Theory and modeling DE: 8159 Rheologycrust and lithosphere DE: 8164 Stressescrust and lithosphere DE: 8164 Stressescrust and lithosphere	
 AF: University of Miami Rosenstiel School of Marine and Atmospheric Science Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Govers, R EM: govers@geo.uu.nl AF: University of Utrecht Earth Sciences, P.O. Box 80.021, Utrecht, TA 3508 Netherlands AB: Major strike slip fault systems, such as the San Andreas Fault, have one common characteristic: lateral juxtaposition of geologically dissimilar terrains. Terrains on opposite sides of the fault may vary in both geometry of the elastic upper crustal layer and in their material properties. The Carrizo segment of the San Andreas Fault is a prime area to study the effects of asymmetry imposed by strike slip faulting because it is a straight segment and exhibits relatively simple seismic behavior. We present new GPS data on the Carrizo segment to quantify the asymmetry, as well as a series of numerical models designed to investigate various classes of asymmetry. Our models are implemented with the finite element technique, and investigate differences in elastic layer thickness and variable material properties of the upper crust. We find that available data are well fit by a simple model whereby a relatively weak zone (approximating the upper and middle crust) 10-20 km wide exists on the northeast side of the fault. DE: 1236 Rheology of the lithosphere and mantle (8160) DE: 1243 Space geodetic surveys DE: 7260 Theory and modeling DE: 8159 Rheologycrust and lithosphere DE: 8164 Stressescrust and lithosphere SE: Geodesy [G] 	·
Marine Geology and Geophysics, 4600 Rickenbacker Causeway, Miami, FL 33149 United States AU: Govers, R EM: govers@geo.uu.nl AF: University of Utrecht Earth Sciences, P.O. Box 80.021, Utrecht, TA 3508 Netherlands AB: Major strike slip fault systems, such as the San Andreas Fault, have one common characteristic: lateral juxtaposition of geologically dissimilar terrains. Terrains on opposite sides of the fault may vary in both geometry of the elastic upper crustal layer and in their material properties. The Carrizo segment of the San Andreas Fault is a prime area to study the effects of asymmetry imposed by strike slip faulting because it is a straight segment and exhibits relatively simple seismic behavior. We present new GPS data on the Carrizo segment to quantify the asymmetry, as well as a series of numerical models designed to investigate various classes of asymmetry. Our models are implemented with the finite element technique, and investigate differences in elastic layer thickness and variable material properties of the upper crust. We find that available data are well fit by a simple model whereby a relatively weak zone (approximating the upper and middle crust) 10-20 km wide exists on the northeast side of the fault. DE: 1236 Rheology of the lithosphere and mantle (8160) DE: 1243 Space geodetic surveys DE: 7260 Theory and modeling DE: 8159 Rheologycrust and lithosphere DE: 8164 Stressescrust and lithosphere SC: Geodesy [G]	
 AU: Govers, R EM: govers@geo.uu.nl AF: University of Utrecht Earth Sciences, P.O. Box 80.021, Utrecht, TA 3508 Netherlands AB: Major strike slip fault systems, such as the San Andreas Fault, have one common characteristic: lateral juxtaposition of geologically dissimilar terrains. Terrains on opposite sides of the fault may vary in both geometry of the elastic upper crustal layer and in their material properties. The Carrizo segment of the San Andreas Fault is a prime area to study the effects of asymmetry imposed by strike slip faulting because it is a straight segment and exhibits relatively simple seismic behavior. We present new GPS data on the Carrizo segment to quantify the asymmetry, as well as a series of numerical models designed to investigate various classes of asymmetry. Our models are implemented with the finite element technique, and investigate differences in elastic layer thickness and variable material properties of the upper crust. We find that available data are well fit by a simple model whereby a relatively weak zone (approximating the upper and middle crust) 10-20 km wide exists on the northeast side of the fault. DE: 1236 Rheology of the lithosphere and mantle (8160) DE: 1243 Space geodetic surveys DE: 7260 Theory and modeling DE: 8159 Rheologycrust and lithosphere DE: 8164 Stressescrust and lithosphere SC: Geodesy [G] 	
 EM: govers @geo.uu.nl AF: University of Utrecht Earth Sciences, P.O. Box 80.021, Utrecht, TA 3508 Netherlands AB: Major strike slip fault systems, such as the San Andreas Fault, have one common characteristic: lateral juxtaposition of geologically dissimilar terrains. Terrains on opposite sides of the fault may vary in both geometry of the elastic upper crustal layer and in their material properties. The Carrizo segment of the San Andreas Fault is a prime area to study the effects of asymmetry imposed by strike slip faulting because it is a straight segment and exhibits relatively simple seismic behavior. We present new GPS data on the Carrizo segment to quantify the asymmetry, as well as a series of numerical models designed to investigate various classes of asymmetry. Our models are implemented with the finite element technique, and investigate differences in elastic layer thickness and variable material properties of the upper crust. We find that available data are well fit by a simple model whereby a relatively weak zone (approximating the upper and middle crust) 10-20 km wide exists on the northeast side of the fault. DE: 1236 Rheology of the lithosphere and mantle (8160) DE: 1243 Space geodetic surveys DE: 7260 Theory and modeling DE: 8159 Rheologycrust and lithosphere DE: 8164 Stressescrust and lithosphere SC: Geodesy [G] 	
 AF: University of Utrecht Earth Sciences, P.O. Box 80.021, Utrecht, TA 3508 Netherlands AB: Major strike slip fault systems, such as the San Andreas Fault, have one common characteristic: lateral juxtaposition of geologically dissimilar terrains. Terrains on opposite sides of the fault may vary in both geometry of the elastic upper crustal layer and in their material properties. The Carrizo segment of the San Andreas Fault is a prime area to study the effects of asymmetry imposed by strike slip faulting because it is a straight segment and exhibits relatively simple seismic behavior. We present new GPS data on the Carrizo segment to quantify the asymmetry, as well as a series of numerical models designed to investigate various classes of asymmetry. Our models are implemented with the finite element technique, and investigate differences in elastic layer thickness and variable material properties of the upper crust. We find that available data are well fit by a simple model whereby a relatively weak zone (approximating the upper and middle crust) 10-20 km wide exists on the northeast side of the fault. DE: 1236 Rheology of the lithosphere and mantle (8160) DE: 1243 Space geodetic surveys DE: 7260 Theory and modeling DE: 8159 Rheologycrust and lithosphere DE: 8164 Stressescrust and lithosphere SC: Geodesy [G] 	,
Netherlands AB: Major strike slip fault systems, such as the San Andreas Fault, have one common characteristic: lateral juxtaposition of geologically dissimilar terrains. Terrains on opposite sides of the fault may vary in both geometry of the elastic upper crustal layer and in their material properties. The Carrizo segment of the San Andreas Fault is a prime area to study the effects of asymmetry imposed by strike slip faulting because it is a straight segment and exhibits relatively simple seismic behavior. We present new GPS data on the Carrizo segment to quantify the asymmetry, as well as a series of numerical models designed to investigate various classes of asymmetry. Our models are implemented with the finite element technique, and investigate differences in elastic layer thickness and variable material properties of the upper crust. We find that available data are well fit by a simple model whereby a relatively weak zone (approximating the upper and middle crust) 10-20 km wide exists on the northeast side of the fault. DE: 1236 Rheology of the lithosphere and mantle (8160) DE: 1243 Space geodetic surveys DE: 7260 Theory and modeling DE: 8159 Rheologycrust and lithosphere DE: 8164 Stressescrust and lithosphere SC: Geodesy [G]	
common characteristic: lateral juxtaposition of geologically dissimilar terrains. Terrains on opposite sides of the fault may vary in both geometry of the elastic upper crustal layer and in their material properties. The Carrizo segment of the San Andreas Fault is a prime area to study the effects of asymmetry imposed by strike slip faulting because it is a straight segment and exhibits relatively simple seismic behavior. We present new GPS data on the Carrizo segment to quantify the asymmetry, as well as a series of numerical models designed to investigate various classes of asymmetry. Our models are implemented with the finite element technique, and investigate differences in elastic layer thickness and variable material properties of the upper crust. We find that available data are well fit by a simple model whereby a relatively weak zone (approximating the upper and middle crust) 10-20 km wide exists on the northeast side of the fault. DE: 1236 Rheology of the lithosphere and mantle (8160) DE: 1243 Space geodetic surveys DE: 7260 Theory and modeling DE: 8159 Rheologycrust and lithosphere DE: 8164 Stressescrust and lithosphere SC: Geodesy [G]	
Terrains on opposite sides of the fault may vary in both geometry of the elastic upper crustal layer and in their material properties. The Carrizo segment of the San Andreas Fault is a prime area to study the effects of asymmetry imposed by strike slip faulting because it is a straight segment and exhibits relatively simple seismic behavior. We present new GPS data on the Carrizo segment to quantify the asymmetry, as well as a series of numerical models designed to investigate various classes of asymmetry. Our models are implemented with the finite element technique, and investigate differences in elastic layer thickness and variable material properties of the upper crust. We find that available data are well fit by a simple model whereby a relatively weak zone (approximating the upper and middle crust) 10-20 km wide exists on the northeast side of the fault. DE: 1236 Rheology of the lithosphere and mantle (8160) DE: 1243 Space geodetic surveys DE: 7260 Theory and modeling DE: 8159 Rheologycrust and lithosphere DE: 8164 Stressescrust and lithosphere SC: Geodesy [G]	
upper crustal layer and in their material properties. The Carrizo segment of the San Andreas Fault is a prime area to study the effects of asymmetry imposed by strike slip faulting because it is a straight segment and exhibits relatively simple seismic behavior. We present new GPS data on the Carrizo segment to quantify the asymmetry, as well as a series of numerical models designed to investigate various classes of asymmetry. Our models are implemented with the finite element technique, and investigate differences in elastic layer thickness and variable material properties of the upper crust. We find that available data are well fit by a simple model whereby a relatively weak zone (approximating the upper and middle crust) 10-20 km wide exists on the northeast side of the fault. DE: 1236 Rheology of the lithosphere and mantle (8160) DE: 1243 Space geodetic surveys DE: 7260 Theory and modeling DE: 8159 Rheologycrust and lithosphere DE: 8164 Stressescrust and lithosphere SC: Geodesy [G]	
San Andreas Fault is a prime area to study the effects of asymmetry imposed by strike slip faulting because it is a straight segment and exhibits relatively simple seismic behavior. We present new GPS data on the Carrizo segment to quantify the asymmetry, as well as a series of numerical models designed to investigate various classes of asymmetry. Our models are implemented with the finite element technique, and investigate differences in elastic layer thickness and variable material properties of the upper crust. We find that available data are well fit by a simple model whereby a relatively weak zone (approximating the upper and middle crust) 10-20 km wide exists on the northeast side of the fault. DE: 1236 Rheology of the lithosphere and mantle (8160) DE: 1243 Space geodetic surveys DE: 7260 Theory and modeling DE: 8159 Rheologycrust and lithosphere DE: 8164 Stressescrust and lithosphere SC: Geodesy [G]	
strike slip faulting because it is a straight segment and exhibits relatively simple seismic behavior. We present new GPS data on the Carrizo segment to quantify the asymmetry, as well as a series of numerical models designed to investigate various classes of asymmetry. Our models are implemented with the finite element technique, and investigate differences in elastic layer thickness and variable material properties of the upper crust. We find that available data are well fit by a simple model whereby a relatively weak zone (approximating the upper and middle crust) 10-20 km wide exists on the northeast side of the fault. DE: 1236 Rheology of the lithosphere and mantle (8160) DE: 1243 Space geodetic surveys DE: 7260 Theory and modeling DE: 8159 Rheologycrust and lithosphere DE: 8164 Stressescrust and lithosphere SC: Geodesy [G]	
the asymmetry, as well as a series of numerical models designed to investigate various classes of asymmetry. Our models are implemented with the finite element technique, and investigate differences in elastic layer thickness and variable material properties of the upper crust. We find that available data are well fit by a simple model whereby a relatively weak zone (approximating the upper and middle crust) 10-20 km wide exists on the northeast side of the fault. DE: 1236 Rheology of the lithosphere and mantle (8160) DE: 1243 Space geodetic surveys DE: 7260 Theory and modeling DE: 8159 Rheologycrust and lithosphere DE: 8164 Stressescrust and lithosphere SC: Geodesy [G]	strike slip faulting because it is a straight segment and exhibits relatively simple
various classes of asymmetry. Our models are implemented with the finite element technique, and investigate differences in elastic layer thickness and variable material properties of the upper crust. We find that available data are well fit by a simple model whereby a relatively weak zone (approximating the upper and middle crust) 10-20 km wide exists on the northeast side of the fault. DE: 1236 Rheology of the lithosphere and mantle (8160) DE: 1243 Space geodetic surveys DE: 7260 Theory and modeling DE: 8159 Rheologycrust and lithosphere DE: 8164 Stressescrust and lithosphere SC: Geodesy [G]	
element technique, and investigate differences in elastic layer thickness and variable material properties of the upper crust. We find that available data are well fit by a simple model whereby a relatively weak zone (approximating the upper and middle crust) 10-20 km wide exists on the northeast side of the fault. DE: 1236 Rheology of the lithosphere and mantle (8160) DE: 1243 Space geodetic surveys DE: 7260 Theory and modeling DE: 8159 Rheologycrust and lithosphere DE: 8164 Stressescrust and lithosphere SC: Geodesy [G]	
variable material properties of the upper crust. We find that available data are well fit by a simple model whereby a relatively weak zone (approximating the upper and middle crust) 10-20 km wide exists on the northeast side of the fault. DE: 1236 Rheology of the lithosphere and mantle (8160) DE: 1243 Space geodetic surveys DE: 7260 Theory and modeling DE: 8159 Rheologycrust and lithosphere DE: 8164 Stressescrust and lithosphere SC: Geodesy [G]	
and middle crust) 10-20 km wide exists on the northeast side of the fault. DE: 1236 Rheology of the lithosphere and mantle (8160) DE: 1243 Space geodetic surveys DE: 7260 Theory and modeling DE: 8159 Rheologycrust and lithosphere DE: 8164 Stressescrust and lithosphere SC: Geodesy [G]	variable material properties of the upper crust. We find that available data are well
DE: 1236 Rheology of the lithosphere and mantle (8160) DE: 1243 Space geodetic surveys DE: 7260 Theory and modeling DE: 8159 Rheologycrust and lithosphere DE: 8164 Stressescrust and lithosphere SC: Geodesy [G]	
DE: 1243 Space geodetic surveys DE: 7260 Theory and modeling DE: 8159 Rheologycrust and lithosphere DE: 8164 Stressescrust and lithosphere SC: Geodesy [G]	
DE: 7260 Theory and modeling DE: 8159 Rheologycrust and lithosphere DE: 8164 Stressescrust and lithosphere SC: Geodesy [G]	
DE: 8164 Stressescrust and lithosphere SC: Geodesy [G]	
SC: Geodesy [G]	DE: 8159 Rheologycrust and lithosphere

New Search

