The shutdown of an anoxic giant: Magnetostratigraphic dating of the end of the Maikop Sea

D.V. Palcu a,⁎, S.V. Popov b, L.A. Golovina c, K.F. Kuiper d, S. Liu a,⁎, W. Krijgsman a

a Paleomagnetic Laboratory 'Fort Hoofddijk', Utrecht University, Budapestlaan 17, 3584 CD Utrecht, the Netherlands
b Borissiak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya ul., 123, Moscow 117997, Russia
c Geological Institute, Russian Academy of Sciences, Pyzhevskiy per. 7, Moscow 115917, Russia
d Department of Sciences, Vrije Universiteit, Amsterdam 1081-HV, the Netherlands

⁎ State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

A R T I C L E I N F O
Article history:
Received 19 March 2018
Received in revised form 29 September 2018
Accepted 30 September 2018
Available online 04 December 2018

Handling Editor: N. Rawlinson

Keywords:
Anoxia
Paratethys
Maikop
Middle Miocene
Biostratigraphy
Magnetostratigraphy
Marine flooding
Paleogeography
Tarkhanian
Chokrakian
Karaganian
Marine gateways
Tectonic-eustatic interplay

A B S T R A C T
Paratethys, the lost sea of central Eurasia, was an anoxic giant during Oligocene – early Miocene (Maikop Series) times. With a size matching the modern-day Mediterranean Sea and a history of anoxic conditions that lasted for over 20 Myrs, the eastern part of this realm (Black Sea-Caspian Sea domain) holds key records for understanding the build-up, maintenance and collapse of anoxia in marginal seas. Here, we show that the collapse of anoxic Maikop conditions was caused by middle Miocene paleogeographic changes in the Paratethys gateway configuration, when a mid-Langhian (Badenian-Tarkhanian) transgression flooded and oxygenated the Eastern Paratethys. We present an integrated magneto-biostratigraphic framework for the early Middle Miocene (Tarkhanian-Chokrakian-Karaganian regional stages) of the Eastern Paratethys and date the lithological transition from anoxic black shales of the Maikop Series to fossiliferous marine marls and limestones of the regional Tarkhanian stage. For this purpose, we selected two long and time-equivalent sedimentary successions, exposed along the Belaya and the Pshekha rivers, in the Maikop type area in Ciscaucasia (southern Russia). We show that a significant but short marine incursion took place during the Tarkhanian, ending the long-lasting Maikop anoxia of the basin. Our magnetostratigraphic results reveal coherent polarity patterns, which allow a straightforward correlation with the time interval 15–12 Ma of the Geomagnetic Polarity Time Scale. The Tarkhanian flooding occurred during a relatively short normal polarity interval that correlates with C5Bn, resulting in an age of 14.85 Ma. The regional Tarkhanian/Chokrakian stage boundary is located within C5Adn at an age of 14.75 Ma and the Chokrakian/Karaganian boundary is tentatively correlated with C5Anc and an age of 13.9–13.8 Ma. Our new Tarkhanian flooding age reveals a paleogeographic scenario that is different from many previous reconstructions. Instead of envisaging marine connections to the Indian Ocean, we show that major changes in connectivity between the Eastern and Central Paratethys seas have caused the influx of marine waters during the Tarkhanian. An increase in marine connectivity with the Mediterranean during a short episode of rapid sea-level rise triggered mixing and ended the widespread anoxia in the Eastern Paratethys. The mixing episode was short-lived (~100 kyr) as the sea-level rise slowed down and connectivity degraded because of tectonic uplift in the gateway area.

© 2018 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

1. Introduction

The Eocene Peri-Tethys sea gradually transformed into the Paratethys (Laskarev, 1924) during the latest Eocene-early Oligocene as a result of tectonic processes in the Eurasia-Afro/Arabia collision zone (e.g. Schultz et al., 2005; Van der Boon et al., 2018). The open marine Peri-Tethys mainly governed widespread deposition of whitish marls and limestones in central Eurasia, but the highly restricted Paratethys domain predominantly shows dark, organic-rich shales. The anatomy of the Paratethys realm is relatively simple: it consists of numerous (sub) basins, characterized by restricted connectivity and poorly oxygenated environments, that are surrounded by fresh to brackish water lake systems (Figs. 1, 2). Salinity stratification and the lack of vertical circulation led to the formation of anoxic waters, which especially remained tethered in the deep depressions of the Euxinic (Black Sea) and Caspian basins. Shallower basins, with limited anoxia, bordered the deeper basins and recorded mixed influences from seas and rivers that drained a large surface of central Eurasia. Shallow sea-ways and straits provided restricted exchange with the global ocean and probably encouraged stratification of the water column.

https://doi.org/10.1016/j.gr.2018.09.011
1342-937X/© 2018 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
During Oligo-Miocene times, organic-rich anoxic shales of the Maikop Sea (with TOC values up to 14%: Robinson et al., 1996; Katz et al., 2000) were deposited in the Eastern Paratethys domain. This domain was gigantic in size, with a surface of ~1.8 × 10^6 km² (75% the size of the present-day Mediterranean) and volume of ~16 × 10^6 km³, containing 80% of the total Paratethys waters (estimation based on the paleogeographic data of Popov et al., 2006). This anoxic giant provides the main hydrocarbon source rocks for the Black Sea and South Caspian basins, where the Maikop Series reaches a maximum thickness of ~1000 and ~2000 m, respectively. The total organic sedimentary carbon stored in the Maikop Series and its equivalents was estimated at 60 × 10^12 T, which may have significantly contributed to suppressed atmospheric CO₂ levels throughout the Oligocene (Allen and Armstrong, 2008).

In this paper we construct a new chronological framework for the sedimentary successions of the Eastern Paratethys by applying integrated magneto-biostratigraphic and radio-isotopic dating techniques to the uppermost Maikopian-Tarkhanian-Chokrakian successions exposed along the Belaya and Pshekha rivers (Fig. 4). Our new age model will allow to date the end of anoxic conditions in the Eastern Paratethys, to correlate the stratigraphy of the Eastern Paratethys with the Central Paratethys successions and to clarify the relationship between the two realms in various eustatic settings. The results will be discussed from the perspective of eustatic and tectonic forcing in the gateways and will provide a new scenario for the connectivity history between the two Paratethys domains and the open ocean.

2. Geological and stratigraphic background

Throughout the Oligocene, the tectonic built-up of the Alpine-Balkan-Pontides-Alborz-Kopet Dag orogenic belt has progressively isolated the intercontinental Paratethys Sea from the Mediterranean basin (e.g. Rögl, 1998; Popov et al., 2004). At its peak development (Fig. 1), Paratethys stretched on longitude from Switzerland to Turkmenistan and on latitude from the south Uralfs to Anatolia. Paratethys was generally connected to the global ocean via shallow and narrow gateways; the Rhone Strait, Rhine Graben, Polish-Danish Strait and potentially the Araks Strait through Iran (Fig. 2C). It encompassed deep anoxic basins like the Carpathian foredeep, Indol-Kuban basin, Terek-Mangyshlak, Fore-Kopet Dag, Black Sea and the South Caspian Basin, shallower seas with occasional anoxia on the Scthyian and Turan shelves, and seas that are relatively well connected to the global ocean as the Alpine Molasse basin, the Hungarian basin, Thracian basin, Magura Sea, Szolnok Trough and the Slovenian basin.

During the Early Miocene (Fig. 2A), Paratethys covered the area from the Vienna Basin in Austria to the western Kopet Dag in Turkmenistan (Popov et al., 2006). At this time, Paratethys was fragmented in smaller sub-basins that were grouped in two systems: The Central European (Central Paratethys) and the Euxinian-Caspian (Eastern Paratethys). The Central Paratethys consisted in a western branch, the Karpatian Sea, that was connected to the Mediterranean realm (Brzobohathy et al., 2003; Kováč et al., 2007; Sant et al., 2017) and an eastern branch, to which we refer as the Grey Sea (Palcu et al., 2017), characterized by low salinity and restricted connectivity both to the west and east (Fig. 2A). The Eastern Paratethys extended from Bulgaria and Romania to the Kopet Dag in Turkmenistan, Central Asia (Fig. 2A). As a result, regional stratigraphic stages have been defined for both the Central and the Eastern Paratethys (e.g. Nevesskaya et al., 2005b; Piller et al., 2007; Hilgen et al., 2012).

Barbot de Marny (1869) and Andrusov (1917) initiated the construction of a regional stratigraphic scale for the Eastern Paratethys, which has later been transformed into officially defined regional stages (6th Congress on Regional Neogene Stratigraphy - RCMNS, 4-7 September 1975). The proposed stratotypes were located in shallow basins, rich in mollusk assemblages (the main stratigraphic group in Andrusov’s time) but commonly dealt with incomplete successions. These stratotypes have been excellent for describing the faunas corresponding to each of the regional stages but they were not suitable for the integration of new dating methods that are required to better understand the paleoenvironmental and paleoecological changes in the region. Complete successions comprising Early-Middle Miocene stages of Eastern Paratethys are mainly found in deep water settings.
that are poor in macro-fossils but do contain richer assemblages of planktonic and benthic foraminifera and calcareous nannoplankton (Popov et al., 2015).

The onset of anoxia in the Eastern Paratethys is apparently diachronous, dated as late Eocene (~37.7 Ma) in the Talysh area of Azerbaijan (Van der Boon et al., 2017), at the Eocene-Oligocene boundary (~33.9 Ma) in the Maikop type area (Sachsenhofer et al., 2017) and as earliest Oligocene (~33.7 Ma) in the northeastern Caucasus (Gavrilov, 2017). The end of anoxia in the Eastern Paratethys is generally considered a synchronous event, triggered by a marine transgression that took place at the base of the Tarkhanian regional stage. Two different age models prevail for the Tarkhanian stage (Fig. 3): 1) its base is correlated to the Langhian/Badenian at ~16 Ma (Piller et al., 2007; Hilgen et al., 2012) and 2) it is correlated to the nannoplankton zone NNS at an age of ~15 Ma (Krasheninnikov et al., 2003; Golovina, 2012; Andreyeva-Grigorovich and Savvtskaya, 2000).

Fragmentation and isolation of Eastern Paratethys sections/sediments hampered straightforward correlations to the Geological Time Scale and led to the establishment of the regional Kozakhurian, Tarkhanian, Chokrakian and Karaganian stages (Fig. 3). A reliable time frame for the deep basinal Paratethyan successions is critical to understand the relationship between the geodynamic, eustatic and climatic forcing factors. It will also help to identify paleoenvironmental changes and clarify the water exchange mechanisms and gateway dynamics. During the last decade, significant progress has been made to date the Eastern Paratethys successions by radio-isotope dating and magneto-

Fig. 2. Paleogeographic setting during the early Miocene (Kozakhurian), before the Badenian/Tarkhanian flooding with focus on the main sea-straits zones.
bio-stratigraphy (e.g. Vangengeim et al., 2006; Vangengeim and Tesakov, 2008; Krijgsman et al., 2010; Vasiliev et al., 2011; Radionova and Golovina, 2012; Paleontology and stratigraphy of the Middle–Upper Miocene of Taman Peninsula. Part 1. Description of key-sections and benthic fossil groups, 2016; Palcu et al., 2017, 2018; Van der Boon et al., 2017) allowing correlations to the open ocean zonation, climate and sea level records. The current stratigraphic framework for the Early-Middle Miocene of the Eastern Paratethys is mostly relying on correlations with transgressive-regressive cycles and characteristic faunal assemblages reflecting changes in the hydrological regime of this semi-enclosed basin (Nevesskaya et al., 2005a; Popov et al., 2006). Radio-isotope and magnetostratigraphic age constraints for this time interval are progressively being developed (Palcu et al., 2017).

The uppermost stage of the Maikop Series is called Kozakhurian, also referred to as Kotsakhurian (Davitashvili, 1933). It is characterized by brackish-water fauna although very rare euryhaline marine species have also been described. The Kozakhurian strata do not contain any age diagnostic fauna elements. The low faunal diversity suggests a very restricted or even partly isolated position from the open ocean. Based on the presence of common endemic species and genera, faunal exchange between the Kozakhurian basin and the brackish-water upper Ottnangian (Burdigalian) domain of the Central Paratethys have been envisaged, probably through an intermittently open gateway (Popov and Voronina, 1983; Popov et al., 1993).

The Tarkhanian (Andrusov, 1918) contains deposits with marine mollusk associations in shallow facies and marine foraminiferal assemblages, including planktonic forms, in deeper facies. The precise age of the Tarkhanian is still problematic due to the lack of zonal species in the planktonic foraminiferal assemblages. The early Tarkhanian was marked by the onset of a prolonged faunal exchange between the Eastern Paratethys, Central Paratethys and the open ocean. Connections to the Indian Ocean (Fig. 2C) have been suggested via the Middle Araks and/or Aleppo–Urfin straits, and the Central Iranian basin – (Goncharova and Il’ina, 1997; Rögl, 1998; Goncharova et al., 2001). Alternatively, two gateways to the Central Paratethys (Fig. 2B) have been proposed: one via the Dniester strait and the other through the Carasu strait (Chiriac, 1970, Goncharova, 1989, Goncharova et al., 2001).

The Chokrakian, also referred to as Tschokrakian, (Andrusov, 1884) contains deposits with impoverished marine fauna that are more endemic than the Tarkhanian ones. Planktonic biota was dominated by pteropods (Limacina) and nektonic organisms, represented by diverse fishes. Salinity in the Chokrakian basin was estimated at ~18–25‰, based on bivalve and gastropod assemblages (Goncharova, 1989; Guzhov, 2017). The Chokrakian basin was most likely connected to...
the Carpathian foredeep region in the west through the small and shallow “Carasu Strait” in the southern Dobrogea region of Romania (Palcu et al., 2017). Sediment distribution patterns indicate a transgression during Chokrakian times (Nevesskaya et al., 2003) when the basin expanded especially northward and eastward (Goncharova et al., 2001). Significant parts of the Chokrakian basin comprised shallow shoal zones, favoring an increase in benthic organisms (mollusks, bryozoans, foraminifera, ostracods) and algal-bryozoan bioherms (Nevesskaya et al., 2003). The loss of connectivity is best expressed in the upper Chokrakian, where the diversity of mollusks has sharply decreased, gastropods are often represented by embryonic specimens only (Goncharova, 1989) and benthic foraminifera are generally represented by dwarfed or aberrant specimens (Nevesskaya et al., 2003).

The base of the Karaganian (Andrusov, 1917) corresponds to a significant change in Eastern Paratethyan mollusk, foraminifera, and nannoplankton faunas, all indicating a trend towards semi-marine conditions with unstable salinity (e.g. Palcu et al., 2017). Paleogeographically, the Chokrakian-Karaganian transition is interpreted as a change from a semi-closed Chokrakian sea towards an even more restricted (fresher water) sea-lake during the Karaganian (Peryt et al., 2004), indicating that Eastern Paratethys became progressively isolated again from the open ocean. The isolation event is suggested to be caused by the global sea level drop Mi-3b, which indicates that the Karaganian is roughly coeval with the Badenian Salinity Crisis of the Central Paratethys (Peryt et al., 2004; De Leeuw et al., 2010; Palcu et al., 2017).

3. Sections and sampling (litho- and biostratigraphy)

Recently, the Karaganian, Konkian and the Volhynian sub-stage (corresponding to the lower part of Sarmatian s.l.) were dated magneto-bio-stratigraphically in the deep basinal successions of the Taman Peninsula of the NE Black Sea coast (Palcu et al., 2017). In this...
Fig. 5. Bio-lithostratigraphic overview of the Belaya river section.

<table>
<thead>
<tr>
<th>Lithological units</th>
<th>Lithological columns</th>
<th>Specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clays and silts with Alnus</td>
<td>Volynian 500</td>
<td>77</td>
</tr>
<tr>
<td>Sands with Macro, Parnassus, Athyrium cordatum, A. andraeanum</td>
<td>76-79</td>
<td>By97, By96, By95</td>
</tr>
<tr>
<td>Sands with Macro, V. angustifolia, Chamaecyparis</td>
<td>74-79</td>
<td>By94, By93, By92</td>
</tr>
<tr>
<td>Silt with Limosina</td>
<td>72-73</td>
<td>By96</td>
</tr>
<tr>
<td>Sands with sandstone levels</td>
<td>Quaternary</td>
<td>72-73</td>
</tr>
<tr>
<td>Clays with Barnea utricularis and sandstone levels</td>
<td>Volynian</td>
<td>By96</td>
</tr>
<tr>
<td>Sands with Barnea utricularis and sandstone levels</td>
<td>By95-96</td>
<td>By94, By93</td>
</tr>
<tr>
<td>Sands with Barnea utricularis, Cuscutaefonopsis praecox, Barnea and sandstone levels</td>
<td>By90-92</td>
<td>By94, By93</td>
</tr>
<tr>
<td>Clayey sands</td>
<td>Karaganian</td>
<td>By90-92</td>
</tr>
<tr>
<td>Alternations of clays, silts, sands with D. (Ch.) pimeloloides, S. savana, M. aristata</td>
<td>By78-79</td>
<td>By94, By93</td>
</tr>
<tr>
<td>Laminated clays with silt, marl, limestone concretions and sublayers with D. (Ch.) pimeloloides, S. savana, M. aristata</td>
<td>By71-72</td>
<td>By94, By93</td>
</tr>
<tr>
<td>Gray silty mica clays with D. (Ch.) pimeloloides, S. savana</td>
<td>By71-72</td>
<td>By94, By93</td>
</tr>
<tr>
<td>Gray laminated clays with silt and stromatolite limestone sublayers with D. (Ch.) pimeloloides</td>
<td>By70-71</td>
<td>By94, By93</td>
</tr>
<tr>
<td>Green-gray laminated clays with silt and mica</td>
<td>By71-72</td>
<td>By94, By93</td>
</tr>
<tr>
<td>Sandstone with D. (Ch.) pimeloloides</td>
<td>Lower Cretaceous</td>
<td>By71-72</td>
</tr>
<tr>
<td>Laminated clays</td>
<td></td>
<td>By71-72</td>
</tr>
<tr>
<td>Gray silty mica clays with Lutetia intermedia</td>
<td>By71-72</td>
<td>By94, By93</td>
</tr>
<tr>
<td>XIII biocen. limestone</td>
<td>By61-62</td>
<td>By94, By93</td>
</tr>
<tr>
<td>Gray laminated clays with silt and X biocen. limestone</td>
<td>By56-57</td>
<td>By94, By93</td>
</tr>
<tr>
<td>X biocen. limestone - limestone</td>
<td>By55-56</td>
<td>By94, By93</td>
</tr>
<tr>
<td>X biocen. limestone</td>
<td>By54-55</td>
<td>By94, By93</td>
</tr>
<tr>
<td>Sandstone with mulliolites</td>
<td>By52-53</td>
<td>By94, By93</td>
</tr>
<tr>
<td>X biocen. limestone - limestone</td>
<td>By51-52</td>
<td>By94, By93</td>
</tr>
<tr>
<td>VIII biocen. limestone</td>
<td>By49-50</td>
<td>By94, By93</td>
</tr>
<tr>
<td>VII biocen. limestone</td>
<td>By48-49</td>
<td>By94, By93</td>
</tr>
<tr>
<td>Gray bioturbated clays</td>
<td>By47-48</td>
<td>By94, By93</td>
</tr>
<tr>
<td>VI biocen. limestone</td>
<td>By46-47</td>
<td>By94, By93</td>
</tr>
<tr>
<td>V biocen. limestone</td>
<td>By45-46</td>
<td>By94, By93</td>
</tr>
<tr>
<td>IV biocen. limestone - limestones</td>
<td>By44-45</td>
<td>By94, By93</td>
</tr>
<tr>
<td>I biocen. limestone, clays</td>
<td>By43-44</td>
<td>By94, By93</td>
</tr>
<tr>
<td>Calcareous clays, marl</td>
<td>By1-2</td>
<td>By94, By93</td>
</tr>
<tr>
<td>Non-calcareous laminated clays</td>
<td>By1-2</td>
<td>By94, By93</td>
</tr>
</tbody>
</table>
paper, we focus on determining the ages for the Kozakhurian, Tarkhanian, and Chokrakian stages based on sections in Ciscaucasia (northeastern Caucasus; southern Russia). The key-sections are located on the southern margin of the Indol-Kuban basin, in the present-day Krasnodar district (Fig. 4), outcropping along the Belaya and Pshekha rivers. The Belaya and Pshekha sections preserve rather complete successions of deep clayey facies with algal bioherms (Figs. 5, 6), and compose an almost continuous succession from the middle Eocene to

Figure 6. Bio-lithostratigraphic overview of the Pshekha river section. Slump anomalies corresponding to the upper Tarkhanian stage revealed in the bedding anomalies.
the late Miocene (Beluzhenko et al., 2007; Akhmetiev et al., 1995; Sachsenhofer et al., 2017). The sediments are slightly tilted to the north and are accessible in the valley cuts of the rivers (Belaya, Pshcheka, and many others). Here, we focus on the sections that display the transition from a monotonous sequence of anoxic clays of the Kozhakurian stage of the Maikop Series to the post-anoxic calcareous clays of the Tarkhanian and the algal bioherms of the Chokrakan.

The sections were logged in detail and sampled for biostratigraphic, paleomagnetic and geochemical purposes. Biostratigraphically we focus on mollusks, and calcareous nannoplankton assemblages that can be used to identify and locate the stage boundaries and to provide supplementary information on the environmental changes in the basin. Macropalaeos are fully absent in the upper Maikopian part of the sections, but they are common and well preserved from the beginning of the Tarkhanian onwards, especially in the relatively shallow Belaya section. Nannoplankton was studied in the Tarkhanian part of the Pshcheka section. We refer to the results of previous studies for the section along the Belaya river (Krasheninnikov et al., 2003; Golovina et al., 2009; Golovina, 2012). To identify nannofossils, smear slides were prepared using standard procedures (e.g. Golovina et al., 2004), which were examined under a JenaZeiss light microscope (cross and parallel nicols) at ×1200 magnification.

3.1. The Belaya section

The Kozhakurian-Volhynian succession is exposed along the Belaya river and its small tributaries (Fig. 4), roughly between Pogdornyy (44°26′39.36″N/40°12′42.92″E) and Semiikolenaya Ravine (44°32′58.95″N/40°08′24.91″E). The base of the studied section (Fig. 5) belongs to the top of the anoxic Maikopian facies sediments (only 7.5 m is exposed). The uppermost Maikopian (Ritsa Fm) consists here of finely laminated, dark-brown, non-calcareous clays, devoid of macrofossils (Fig. 5a). The transition to the Tarkhanian is gradual: first, carbonate/marl fragments appear in the sediments and then, in the uppermost two meters, the color slowly fades towards greyer tones, similar to the basal Tarkhanian clays.

The Tarkhanian sediments are very thin (3–4 m) and consist of light grey, calcareous and non-calcareous clays with a very characteristic, 0.15 m thick, limestone layer known in literature as the “Tarkhanian marlstone” (Goncharova, 1989) in the middle part (Fig. 5b). The Tarkhanian contains a rich marine fauna assemblage with Lenticpecten denudatus (Reuss), Nucula nucleus L., Nuculana fragilis (Chemn.), and Aporrhais pespelcani (L.). The Tarkhanian nannofossil record from Belaya is characterized by the appearance of abundant Braarudosphaera bigelowii, Coccolithus pelagicus, Cyclicargolithus floranus, Helicosphaera carteri, H. walii trans, H. mediterranea, Rhbodosphera sp., Reticolofenestra pseudoumbilica and Sphenolithus heteromorphus (Krasheninnikov et al., 2003; Golovina, 2012). Based on the joint presence of Sphenolithus heteromorphus and Helicosphaera waltrans, the assemblage can be correlated with Zone NNS (Krasheninnikov et al., 2003; Golovina, 2012). The boundary with the overlying Chokrakan is sharp and somewhat irregular, which may be related to a gap in sedimentation, a disruption of sedimentation, or to the weight of the overlying Chokrakan bioherms.

The Chokrakan sediments (0–190 m) are significantly thicker and consist of stromatolitic bioherms alternating with clays and sands (Fig. 5c). The lower part (0–60 m) comprises bryozone dominated bioherms and light-colored clays; the upper part contains serpulid-dominated bioherms alternating with darker clays. Sands are only present in the middle and upper part of the succession (Fig. 5d, e). The Chokrakan mollusks differ from the Tarkhanian assemblage by the presence of more euryhaline and endemic faunas. In the clay facies they reveal a poor association with Varicorcula gibba (Olivii), Nuculana fragilis, Mactra bajanensis Koles., Abra parabilis (Zhih.), and Limacina andrusovi tshokrakensis (Zhih.). The bioherm facies is richer in mollusks and contains species like Mytilaster volhynicus (Eichw.), Musculus conditus (M. Hoern.), Gregariella tarchanensis (Gatuev), Irus irus (L.), Ervilia praepodolina (Andr.), Comphomarica taurica (Bajar.), Chama toulai David., Nuculana fragilis (Chemn.), Arcopsis lactea (L.), Limaria (Limaria) sp., Parvicardium livovskijae (Merk.), The sandy facies contain the most diverse associations with Anadara bosphorana (David.), Perna tshokrakensis (Zhih.), Comphomarica taurica (Bajar.), Parvivenus marginata jasmaci (Schwetz), Macoma sokolovi (Bajar.), Pitar laskarevi (Schwetz), Europicardium pseudomulticostatum (Zhih.), Parvicardium kubanicum (Zhih.), Cerastoderma bogachevi (Koles.), Donax tarchanensis (Bajar.), Lutetia (Davidascvilia) intermedia (Bajar.), Ervilia praepodolina (Andr.) (according to Goncharova) and abundant gastropods. Most of the lower Chokrakan mollusks are not found in the upper Chokrakan (120–180 m), except for a couple of persisting endemics such as small Lutetia intermedia and Ervilia praepodolina. The tomost Chokrakan shows a shift to continental facies with plant and tree remains, coal beds and fragments of the terrestrial gastropods Helix, indicating a relative sea level fall/regression took place at the Chokrakan/Karaganian boundary.

The lithology of the relatively thick Karaganian deposits (190–375 m) is composed of clays and silts (Fig. 5f). The clays of the middle part (250–300 m) are containing levels with stromatolitic limestones (20–150 cm thick) while the upper part is sandy with limestone concretions. Fossils of Davidascvilia (Zhitgeniana) gentilis (Eichw.) dominate the lower Karaganian (190–310 m) mollusk associations, while Savannela andrusovi (Toula) rare Barnea and the gastropods Mohrensterma, are characteristic for the upper Karaganian (310–375 m). The Karaganian succession is conformably overlain by Konkian deposits.

The Konkian succession (375–525 m) consists of monotonous, poorly cemented, grey silts and grey-yellowish sands, occasionally interrupted by clay levels and sandstones (Fig. 5g). The uppermost part of the Konkian comprises well-cemented carbonate sandstones that are poorly along the Belaya River but are properly outcropping in the east side tributaries. From the faunal point of view, the lowermost Konkian is distinguished by the appearance of the genus Ervilia and Barnea sharp domination. Higher up in the succession also Ervilia trigonula, Davidascvilia (Zh.), gentilis (Eichw.), Savannela andrusovi, Barnea pseudojuxtapatama (Ossip.), and Cerastoderma praeplicatum (Hilb.) are present. The Konkian (Sartaganian and Veselyanian parts) contains more divers marine mollusk faunas: genus Limacina and Chlamys sp., Mactra basteroti konkensis (Sok.), Parvivenus konkensis (Sok.), Nassarius reticulatus, Acanthocardia andrusovi (Sok.), Varicorcula gibba, and Anomia ephippium. Previous studies concerning the Konkian/ Volhynian foraminifera and calcareous nannofossils from the Fars and Belaya rivers have been performed by Vernoihorova Yu. and Golovina L. (Golovina et al., 2009). The rich foraminifera assemblages contain a large number of normal-marine foraminifera species typical of Konkian sediments: Discorbis karvaticus, Angulogerina angulosa, Globulina gibba, Virgulina schreibersiana. The nannoplankton assemblages are represented by Coccolithus pelagicus, Cyclicargolithus floridanus, Braarudosphaera bigelowii, Rhbodosphera sicca, Rhbodosphera poculi, Reticolofenestra pseudoumbilica, Helicosphaera carteri, Holodiscoolithus macroporius, Pontosphera multipora, Thoracosphaera sp. According to the taxonomic composition, the nannoplankton assemblages of the Fars and Belaya sections, are almost identical to the assemblages of the Sartaganian beds in the Zelensky section (Taman Peninsula; Palcu et al., 2017).

The Volhynian deposits conformably overlie the Konkian sediments. The very base of the Volhynian is marked by silts and sands, but these are sharply followed by a thick monotonous series of grey clays that extend throughout the rest of the Volhynian succession (Fig. 5h). Faunistically, abundant Abra in and Mactra fossils are present in the Volhynian.

3.2. The Pshcheka section

A deeper water analogue of the Maikopian-Volhynian succession of Belaya is exposed in the valley cut of the Pshcheka river (Fig. 4), between Shirvanskaya Vodokachka (44°21′50.87″N/39°47′38.10″E).
and Tsurevskiy (44°24′49.27″N/39°47′27.08″E). The exposed Maikopian part of the Pshekha section is 40 m thick and comprises a more diverse succession of finely laminated, dark-brown, non-calcareous clays, with manganese-dolomitic concretions and secondary sulphate-rich levels (Fig. 6a, b). Like in Belaya these deposits are devoid of macrofossils.

The Tarkhanian deposits (0–47 m) that follow conformably in the sedimentary succession consist of light-grey to dark-grey carbonatic clays (Fig. 6.c). A large part of the succession (~35 m), however, is represented by a massive olistostrome (Fig. 6.d, e) and slumps. The olistoliths are composed of large fragments of Maikopian clay and deformed Tarkhanian clays. The uppermost levels of the Tarkhanian show limited to no deformation, indicating that the transition to the Chokrakian is conformable, and that the main slumping event took place in the middle-upper Tarkhanian. Macrofaunistically, the Tarkhanian is characterized by the presence of Lentipecten denudatus. New nannoplankton studies have been performed on 12 samples from the Tarkhanian and lower Chokrakian part of the section.

The first nannofossils appear in the lower Tarkhanian and consist of Reticulofenestra sp., Reticulofenestra pseudoumbilicus and Reticulofenestra cf. minuta. Overall, the nannofossil assemblage of the Tarkhanian is characterized by the absence of Helicosphaera ampliaperta and the presence of Sphenolithus heteromorphus and Helicosphaera waltrans - which gives grounds to correlate the nannofossil assemblage with the NNS Zone. In addition, Helicosphaera carteri is relatively abundant, H. euphratis (very rare), Radbodosphera pannonica, Cyclicargolithus floridanus and the genera Umbilicosphaera and Calculiscus are present, and the genera Discoraster is absent.

The Chokrakian (~270 m) is estimated to be ~220 m thick and consists of clays with sandy and dolomitic sub-layers, rhythmically interrupted by marly intercalations, and stromatolitic calcareous crusts. A notable feature in the lower part of succession is the presence of an incised channel, filled with sands (Fig. 6.f). Similar to Belaya, there is strong change in color from light grey-greenish clays in the lower Chokrakian to dark grey clays in the upper Chokrakian.

The lower Chokrakian is characterized by fewer than situ nannofossils and abundant redeposited species of Paleogene age, Helicosphaera waltrans and Sphenolithus heteromorphus are absent here. Higher in the section, the assemblage is characterized by the common presence of Sphenolithus heteromorphus, but Helicosphaera waltrans is absent.

The Chokrakian/Karaganian boundary is hard to determine in the Pshekha section due to the lack of faunal markers. We place it at ~270 m, after the dolomitic/limestone layers that are tentatively correlated with the Chokrakian bioherms and limestones in Belaya. The Karaganian (~270–360 m) is dominated by dark calcareous clays without macrofossils (Fig. 6g), except for a single finding of Davidaichvilia (Zh.) gentilis.

Further up in the section, the Konkian (~150 m thick) and Volhynian (of which only ~10 m have been investigated) are characterized by grey clayey facies with limited lithological and faunal markers (Fig. 6h–j). The base of the Konkian is placed at a change in lithology – from dark clays to rhythmic alternations of grey clays and dolomitic sub-layers. The top of the Konkian shows the sedimentation of the cooccolith laminated nannoplankton-rich marl representative of monospecific Reticulofenestra pseudoumbilicus almost identical to one from the top of Konkian in the Zelenisky section (Taman Peninsula – Golovina et al., 2004; Palcu et al., 2017). The Volhynian is recognizable by the presence abundant Abra reflexa level.

4. Magnetostratigraphy and radio-isotope dating

Magnetostatigraphy can provide ages to rock successions if the established polarity pattern of the studied sections can be correlated to reversal pattern of the Geomagnetic Polarity Time Scale (e.g., Langereis et al., 2010). Previous applications of this approach have been proven successful on Paratethyan sediments, if adequate demagnetization techniques are applied to deal with the generally high concentration of iron sulphides in anoxic sediments, and in particular with the magnetic mineral greigite (Vasilev et al., 2008, 2010; Paulissen et al., 2011; De Leeuw et al., 2013; ter Boogaart et al., 2013; Palcu et al., 2015, 2017; Van Baak et al., 2016; Liu et al., 2017; Kelder et al., 2018). The Belaya and Pshekha sections were sampled at a resolution that varies from centimeters to meters-scale with a hand-held electric drill using water as a coolant. Paleomagnetic cores were collected from a total of 264 levels (154 from Belaya and 110 from Pshekha).

The orientation of the paleomagnetic cores and the corresponding bedding planes were obtained using a magnetic compass, previously corrected for the local magnetic declination.

4.1. Rock magnetism

In the laboratory of Fort Hoofddijk, rock-magnetic tests were conducted to understand the nature of the magnetic carriers. These tests include measurements of hysteresis loops, first-order-reversal-curve (FORC) diagrams, and thermomagnetic runs in air. Hysteresis loops (sample mass 60–90 mg) were measured with a Princeton Measurements Corporation MicroMag 2900 alternating gradient magnetometer (AGM, noise level 2 × 10⁻⁸ T m²) between −1 T and 1 T with field increments of 10 mT. The saturation magnetization (Ms), the saturation remanent magnetization (Mr), coercivity (Bc) were acquired after correction for the paramagnetic slope (at 70% of the maximum field). Back field demagnetization of SIRM was performed after saturating the sample in a field of 1 T to determine the remanence coercivity (Bcr). For first-order reversal curves (FORCs), 150 reversal curves were obtained for each sample with a field increment of 1.5 mT. FORC diagrams were calculated using the FORCinel Program Version 1.19 (Harrison and Feinberg, 2008). All the measurements on the AGM were performed with an averaging time of 200 ms. High-temperature thermomagnetic measurements of the induced magnetization (J-T curves) were performed in air with a modified horizontal translation-type Curie balance with a sensitivity of ~5 × 10⁻⁹ A m² (Mullender et al., 1993). About 70 mg of powdered sediments were positioned in a quartz glass holder. The applied field was cycled between 100 mT and 300 mT. Multiple heating and cooling runs were performed between room temperature, 150, 250, 350, 450, 525, 700 °C. The heating rate was 6/min and the cooling rate was 10/min.

In terms of rock magnetic properties, the samples were divided into two types: type 1 samples have high magnetic coercivities (~30 mT, Fig. 7a) and high ratios of Mrs/Ms and Bcr/Bc. Their FORC diagrams (Fig. 7c) have classic SD-like contours centered on Bc ~50 mT, which is similar to those previously reported for SD diagenetic greigite (Roberts et al., 2011, 2006). The central peak is not symmetrical with respect to the Bu axis but shifted to negative values. For the J-T curves (Fig. 7e), all the magnetically strong samples show an irreversible decrease in magnetization between 200 °C and 350 °C, which is typical of greigite (e.g. Dekkers et al., 2000). Pyrite also exists in these samples, indicated by the magnetization increase above 400 °C (due to its oxidation via magnetite ultimately to hematite) (Passier et al., 2001).

Type 2 samples are dominated by paramagnetic minerals, as suggested by the essentially linear magnetization curve before paramagnetic correction. After correction, the samples show a low coercivity ~10 mT (Fig. 7b). Due to the low intensity (two orders of magnitude lower than the type 1 samples), only a weak FORC distribution is observable (Fig. 7d). The J-T curves of these magnetically weak samples are reversible during thermal runs below 400 °C. The increases above 400 °C indicate large amounts of pyrite in these samples, which oxidize to magnetite causing the peak at 450–500 °C in J-T curves (Fig. 7f).

Abundant pyrite in these samples is also consistent with the low intensity and subtle hysteresis since pyrite is paramagnetic. The distributions of the type 1 and type 2 carriers throughout the section do not match a lithological pattern or the polarity changes which suggests primary directions are preserved by both carriers.
Subsequently, thermal and alternating field demagnetization techniques were applied to isolate the characteristic remanent magnetization (ChRM). The Natural Remanent Magnetization (NRM) was thermally demagnetized and measured using a 2G Enterprises DC Squid cryogenic magnetometer (noise level of 3×10^{-12} Am2). The heating was performed in a magnetically shielded furnace, with a residual field less than 10 nT. The thermal steps were based on the behavior of samples during thermomagnetic runs, with relatively small temperature increments of 10–30 °C applied in the 100–360 °C range because of the rapid thermal decay and the occurrence of additional secondary magnetic carriers after 400 °C. In addition, alternating field demagnetization was performed, with small field increments, up to a maximum of 100 mT with an automated sample handler, attached to a horizontal 2G Enterprises DC SQUID cryogenic magnetometer (Mullender et al., 2016).

The NRM intensity ranges between 16×10^{-6} A/m and 20×10^{-1} A/m for the Belaya section and between 28×10^{-6} A/m and 29×10^{-1} A/m for the Pshekha section (Fig. 8). We identified the ChRM by analyzing the decay-curves and vector end-point diagrams (Zijderveld, 1967). During both the progressive thermal demagnetization and the progressive alternating fields demagnetization, two magnetic components can be recognized. A very weak, low-temperature, viscous overprint is generally removed at 120 °C and 15 mT (Fig. 8). A second, higher-temperature, component has been removed at temperatures between 120 °C and 300 °C, and alternating fields of 15–50 mT. This component is of dual polarity and is interpreted as the ChRM. The ChRM directions were defined by at least four consecutive temperature steps and calculated with the use of principal component analysis (Kirschvink, 1980).

We use the maximum angular deviation (MAD) of the calculated directions to separate the results into three quality groups. The 1st quality (MAD = 0–5) and 2nd quality groups (MAD = 5–10) have been used for determining the polarity patterns (Fig. 8). The 3rd quality results (with contradictory declinations and inclinations related to confirmed disturbed/slumped sediments and olistoliths) do not represent primary directions (Fig. 8). The ChRM directions and magnetic intensity have all been plotted against stratigraphic levels (Fig. 8). The polarity pattern of the Belaya section comprises fourteen different polarity intervals, seven of reverse (bR1–7) and seven of normal (N1–7) polarity. The polarity pattern of the Pshekha section comprises fourteen different polarity intervals, seven of reverse (pR1–7) and seven of normal (pN1–7) polarity. Some anomalies have been encountered in each section. Paleomagnetic anomalies, (bN2a, Fig. 8.b) are especially present in the base of the
Fig. 8. Schematic lithological column, magnetic intensity and polarity zones, stereo plots and Zijderveld diagrams for the Belaya and Pshekha sections. Seven reversed polarity intervals (R1–R7) and seven normal ones (N1–N7) have been identified in both in the Belaya (A, B) and Pshekha (G, H) section. The positions of the stage boundaries are marked with black lines. Representative examples of Zijderveld demagnetization diagrams after tilt correction (Belaya - D, E, F; Pshekha - J, K, L), please note the disturbed levels corresponding to slumps and mass transport (F, L). Sample codes are specified in the upper corner. Filled (unfilled) circles represent the projection on the horizontal (vertical) plane. The red-outlined temperature values represent interval used for calculating the ChRM component which is marked by the blue line. The stereographic plots (C, I) show the antipodal distribution of the ChRM directions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Belaya and Pshekha sections, related to slumps, olistoliths and other forms of mass transport (pX, Fig. 8.h).

4.3. Radio-isotope dating

In the Belaya section a volcanic ash level occurs at 120 m (BY55) in the Chokrakian stage (Fig. 5). We separated biotite (125–250 μm) from this level by washing and sieving, followed by standard heavy liquid (ρ > 3.0 g/cm³) and magnetic separation procedures. A final fraction of this sample was hand-picked under an optical microscope. The sample was wrapped in Al-foil and irradiated together with Fish Canyon Tuff and an Argus VI+ noble gas mass spectrometer. Multiple crystal aliquots (3–10 grains) were fused using a CO₂ laser and analyzed with the following collector settings: H2 Faraday cup with 10E12 Ohm amplifier for m/e 40, H1, H1, and L2 Faraday cups with 10E13 ohm amplifiers for m/e 39, 38 and 37 and a compact discrete dynode (L2) for m/e 36. Similar to Phillips and Matchan (2013) we did not apply bias corrections, but analyzed samples and standards alternating with air pipettes of different intensities in the same range as the samples and standards. Line blanks were measured every 2–3 unknowns and were subtracted from succeeding sample data. Data reduction is done in ArArCalc (Koppers, 2002). Ages are calculated with Min et al. (2000) decay constants and 28.201 ± 0.022 Ma for FCs (Kuiper et al., 2008). The atmospheric air value of 298.56 from Lee et al. (2006) is used. The correction factors for neutron interference reactions are (2.64 ± 0.02) × 10⁻⁴ for (39Ar/37Ar)Ca, (6.73 ± 0.04) × 10⁻⁴ for (38Ar/37Ar)Ca, (1.21 ± 0.003) × 10⁻⁵ for (36Ar/37Ar)Ca, and (8.6 ± 0.7) × 10⁻⁵ for (40Ar/39Ar). All errors are quoted at the 1σ level and include all analytical errors.

In the field we found evidence for potential reworking of the biotite and therefore we tried to analyze the lowest amounts of grains possible in a single fusion step. We performed 10 analyses of 3 grains per fusion. We added another 25 analyses with –10 grains per fusion. Fig. 9 shows the heterogeneous age distribution with a spread in ages between 4 and 36 Ma with median peak around ~14.8 Ma. The radiogenic amount of 40Ar ranges from almost 0 to 82% and only 10 analyses yield >50 40Ar* (Fig. 9). Low radiogenic argon contents might suggest alteration and open system behavior and argon loss. This will result in younger ages than its original eruption age. On the other hand, potential reworking during transport and/or xenocrystic contamination can yield heterogeneous age populations with a bias to ages older than eruption age. The age of this ash is ~14.3–14.4 Ma according to our magnetostratigraphic model, and although the 40Ar/39Ar data are complex as discussed above, they do not contradict our age model.

5. Magnetostratigraphic age model for the Tarkhanian-Chokrakian stages of Eastern Paratethys

We aim to obtain a time frame for the Kozakhurian-Tarkhanian-Chokrakian-Karaganian deposits of Eastern Paratethys by correlating the observed polarity pattern of the Belaya and Pshekha sections to the astronomically dated polarity time scale of the most recent GPTS (Hilgen et al., 2012) (Fig. 10). The polarity patterns of the Belaya and Pshekha sections are in good agreement. The Kozakhurian-Tarkhanian part in the Pshekha section (excluding the slumped interval) is marked by two small reversed intervals (pR1 and pR2) alternating with two small normal intervals (pN1 and pN2), with the entire Tarkhanian in pN2. In Belaya, the Tarkhanian also corresponds to a small normal interval (bN1) that is followed by one small reversed interval (bR2), indicating that bN1 corresponds to pN2. In both sections the Chokrakian is marked by a small reversed interval at the base (bR2/pR3) followed by two much larger normal intervals (bN2-3 and pN3-4) that are separated by a very short reversed interval (bR3/pR4). The Chokrakian-Karaganian boundary is in both sections located in the second large normal interval (bN3/pN4), with the notification that in Pshekha this boundary is not very well constrained.

The Karaganian-Konkian interval comprises in both sections three additional normal intervals (bN4-6 and pN5-7) after which the base of the Volhynian is located in a reversed interval (bR7/pR8).

Regarding previous age estimates and correlations to geological time scales, the studied succession most probably corresponds to the age interval between 17 and 12 Ma (e.g. Nevesskaya et al., 2005a; Pillier et al., 2007; Hilgen et al., 2012). A conspicuous feature of this interval is the presence of the very long reversed chron C5Br between 16 and 15.2 Ma (Fig. 10), which is missing in the magnetostratigraphic pattern of our two sections. The logical solution explaining the absence of C5Br is a correlation to the younger part of the time scale, e.g. between 15 and 12.5 Ma.

The polarity patterns of Belaya and Pshekha are both marked by the presence of four relatively large normal polarity intervals separated by smaller reversed polarity intervals (bN2-bN5/bR3-bR6 and pN3-pN6/pR4-pR6) that correlate very well with chron C5Aa-C5An. The two normal polarity zones of the Karaganian stage (bN3-4/pN4-5) then correlate with C5Acn and C5An respectively, in agreement with the previous magnetostratigraphic results of Taman (Palcu et al., 2017). Correlating downwards, bN2/pN3 correlates to C5Adn; bN1/pN2 to C5Bn.1n and finally pN1 correlates with C5Bn.2n. The Kozakhurian/Tarkhanian boundary (bN1/pN2) is located in the middle part of chron C5Bn.1n (14.775–14.87 Ma) and has a corresponding age of ~14.85 Ma.

The Tarkhanian/Karaganian boundary, located just above the polarity reversal bN1/bR2 and pN2/pR3, is determined just above the C5Bn.1n/C5Adn polarity reversal (14.775 Ma) and has an age of ~14.75 Ma. The Chokrakian/Karaganian boundary is best constrained in Belaya and corresponds to chron C5An and an age of 13.9–13.8 Ma. The changing lithology (clear coarsening up trend and the presence of bioherms) complicates a more precise age estimation. The Karaganian/Konkian
boundary in Belaya correlates to C5Ar and an age of 13.3 Ma, which is ~1 kyr younger than in Taman (13.4 Ma; Palcu et al., 2017). The Konkian/Volhynian boundary is located in a reversed interval that we correlate to C5An.2r, assuming it is synchronous with the Taman succession and the Badenian-Sarmatian extinction event (Palcu et al., 2015, 2017). This latter correlation implies that the very short polarity intervals C5Ar.1n and C5Ar.2n are not fully recovered in our magnetostratigraphic sampling.

We do not see a logical alternative correlation between the Tarkhanian-Karaganian magnetostratigraphic patterns of Belaya and Pshekha and the GPTS unless one assumes dramatic changes in the sedimentation rate and/or significant hiatuses. Regarding the alternative age estimate of ~16 Ma for the base of the Tarkhanian (Hilgen et al., 2012), this would only be possible if there is a ~1 Myr hiatus in both sections, for which we do not see any evidence.

Following our new age model, we can calculate the average sediment accumulation rates for both sections. These are 26 cm/kyr for Belaya and 28 cm/kyr for Pshekha. Maximum values are 44 cm/kyr in Belaya and 49 cm/kyr in Pshekha, both corresponding to the Karaganian. Minimum values (9–19 cm/kyr) correspond to the Kozakhurian in Pshekha and the top Kozakhurian-Tarkhanian in Belaya, respectively.

6. Discussion

6.1. The shutdown of an anoxic giant

We have provided new evidence that the termination of anoxic conditions in the Maikop Sea took place at 14.85 Ma, corresponding to the Tarkhanian flooding of the Eastern Paratethys. This is in good agreement

Fig. 10. The age model of the Belaya and Pshekha sections and the global sea-level fluctuations. Stratigraphic correlations between the Central Paratethys, Eastern Paratethys and Mediterranean stages.

Fig. 11. The race between tectonic uplift, sea-level change and erosion shapes paleoenvironments. The Paratethys example: a. The initial state during the Kozakhurian; b. The Tarkhanian regional stage (14.85–14.75 Ma) corresponds to the peak of the middle Langhian sea-level rise that flooded Central Paratethys that overcomes uplift; c. The Karaganian stage (13.9–13.4 Ma) represents a phase of loss of connectivity in the context of sea-level drop and uplift in the gateway area. d. Extrapolation of the size of the Carasu Strait, based on the global eustatic level curve (Kominz et al., 2008) and the degree of restriction observed in the EP environments.
List of acronyms: TD - Transdanubian basin, TB - Transylvanian basin, OF - Carpathian foredeep, EP - Eastern Paratethys, CP - Central Paratethys, Med - Mediterranean Sea; Ar - Armenia, Az - Azerbaijan, BIH - Bosnia and Herzegovina, NM - North Macedonia, Ge - Georgia; Ps - Pannonian strait, Cs - Carasu strait, TTs - Transalpian strait
with previous correlations that place the Tarkhanian flood within the NN5 zone (Konenkova and Bogdanovich, 1994) or at the base of the NN5 zone (Ivanova, 1999, Barg and Ivanova, 2001). Key element from the nannoplankton point of view is the presence of H. waltrans in Tarkhanian successions, which has its FO at 15.5 Ma in the Mediterranean Sea. According to Sant et al. (2017), Kováč et al. (2007) and Kovac et al. (2018), H. waltrans first appears in the Central Paratethys together with P. glomerosa at an age <15.2 Ma, during the Badenian flooding of the Carpathian foredeep. The large resemblance of Tarkhanian faunas with early Badenian faunas of the Central Paratethys (e.g. Popkhadze, 2016) suggests an eastward marine transgression that flooded Central Eurasia reaching as far as the Eastern Paratethys (Figs. 11.b, 12). This paleogeographic setting makes the Eastern Paratethys the most peripheral basin and the first to lose its marine character when productivity becomes restricted.

Various earlier attempts to correlate the Tarkhanian flooding of the Eastern Paratethys with global events have assumed a much older age for the base of the Tarkhanian. Many authors agree that a middle Miocene transgression occurred at the base of the Langhian reconnecting the Mediterranean with the Central and Eastern Paratethys (Nevesskaya et al., 1984; Neveskaya et al., 1986; Iljina, 1995; Jones and Simmons, 1996; Cicha et al., 1998). The Tarkhanian stage has also been also correlated with the upper part of the Lower Miocene because the underlying Maikopian (Kozakhurian) deposits have common endemic mollusks with the upper Otrangian stage of Central Paratethys (Popov and Voronina, 1983). The range of the age estimates for this event (16.8–16.0 Ma) reflects the changes in the definition of the base Langhian age. It is in this respect important to notice that although many authors suggest a transgression at the base of the Langhian in most sub-basins of the Central Paratethys, except for Austria and southwestern Hungary, the marine Badenian flooding occurred in the middle Langhian, estimated at ~14.7 Ma (Kováč et al., 2007) or between 15.1 and 14.9 Ma (Sant et al., 2017, 2018) instead of ~16.0 Ma. Consequently, a marine flooding of the Eastern Paratethys at ~16 Ma requires the presence of an alternative marine gateway, e.g. to the Indian Ocean, which has indeed been proposed for Tarkhanian times (e.g. Rögl, 1998).

The new magnetostratigraphic data from the Belaya and Pshekha sections indicates that the hypothesis of a ~16 Ma old Tarkhanian transgression requires a very large gap of ~1.4 Myr in both successions. Traditionally, seismo-stratigraphic data in Eastern Paratethys observe a regional scale unconformity at the Kozakhurian/Tarkhanian transition (Bobylev and Pishvanova, 1979). This unconformity, known as the “upper Maikopian disconformity”, can be observed on many seismic profiles both in deep-water facies and in shallow/peripheral zones of the Eastern Paratethys. However, continuous sedimentary transitions have also been reported from sections in Maliy Kamislaik and Crimea (Andreyeva-Grigovich and Savitskaya, 2000). Recently, Ruban et al. (2010) describe a short-lived unconformity in the Tarkhanian, but they note that it corresponds to a disturbance in sedimentation and not to an erosional boundary. In both Belaya and Pshekha sections we interpret the succession as relatively continuous, with no erosional features that could be interpreted as significant gaps in the record. Coarse sediments such as gravels or conglomerates are lacking. No elements of sub-aerial deposition, no erosional features such as canyons and no sharp angular unconformities are present. Both records have disturbed bedding, however, in the levels that correspond to the upper Tarkhanian. Slumps synchronous with sedimentation in the deeper depositional setting and relatively reduced thickness in the more marginal section suggest a short-lived disturbance in the sedimentation, due to an episode of instability in the basin for reasons that are yet to be explained.

The magnetostratigraphic records of Belaya and Pshekha provide a straightforward correlation of the Tarkhanian to chron CS8n.1n. The base of the Tarkhanian is consequently dated at 14.85 Ma. We conclude from our new magnetostratigraphic data that the previously envisaged scenario with an “old” Tarkhanian flooding, beginning at ~16.2–16.0 Ma and fueled by the Indian Ocean, is very unlikely, although not completely impossible.

6.2. Paleogeography of the Tarkhanian-Chokrakian gateway(s)

Several gateway configurations have been proposed for the faunal exchanges that occurred in the Tarkhanian and to a certain extent in the Chokrakian. These gateway configurations are difficult to test, for the Tarkhanian stage alone, as it is very short. Therefore, we consider the gateway systems that functioned throughout the Tarkhanian and Chokrakian.

A marine connection to the Indian Ocean, via Iran, has been proposed by various authors (Rög and Müller, 1976; Steininger et al., 1978) in the attempt to justify the presence of so-called Indo-Pacific faunal elements in the Tarkhanian. However, other studies question the direct relationship between the middle-late Miocene Paratethyan fauna and the Indo-Pacific fauna and consider the similarities as due to relict Tethyan characteristics preserved from Oligocene-Early Miocene (e.g. Kokay, 1985; Harzhauser et al., 2002). From the paleoenvironmental point of view, magnetostratigraphic and radiocarbon dating of the sediments of the Iranian Plateau, in NW Iran, (Ballato et al., 2017) show that already from 16 Ma onwards this basin had a continental character (playa lakes and braided rivers). Similarly, the Qom basin, in central Iran, retains continental characteristics (the upper red formation) from upper Burdigalian (~16 Ma) onwards (Reuter et al., 2009). A gateway via the Sivas Basin, in Eastern Turkey can also be discarded as recent studies show that middle Miocene deposits in the region only represent continental environments (Poisson et al., 2016). A northward extension of the Tethys Gateway in Easternmost Turkey is also excluded as the last marine deposits stretching from the Tethyan Gateway towards North (north of the Bitlis–Purุงe Massif) are of Oligocene age (Hüsing et al., 2009).

The presence of Central Paratethyan elements in Eastern Paratethys, however, is unequivocal (Popkhadze, 2016) and two possible gateways have been proposed: the Dniepr and Carasu Straits. We consider a connection via the Dniepr Strait as highly unlikely as the faunas of the age-equivalent (Early Badenian, Chokrakian) deposits from the two sides of the proposed gateway show no similarities in faunal elements (Concharova and Il’ina, 1997). The Carasu Strait, located in the SE of present-day Romania, shows a West-East gradient of Badenian to Chokrakian fauna (Chiriac et al., 1969) and is the most likely transit pathway between Central and Eastern Paratethys. The deposits are very limited in thickness (~2 m), which justify the fact that the Tarkhanian has not yet been properly described. We consider this gateway as the only viable candidate for the Tarkhanian flood and, though we cannot exclude the existence of other gateways, the Carasu Strait must certainly have played a pivotal role in the faunal transfer between from Central to Eastern Paratethys.

6.3. Mechanisms affecting gateway functioning at the end of anoxia

Tectonics and sea-level fluctuations have major influence on the functioning of gateways. The result of this tectono-eustatic interplay is best observed in the paleoenvironmental changes in marginal seas such as the Paratethys realm. Unraveling this complex interaction is challenging because only the eustatic sea level record has been accurately dated while time scales for tectonics in the gateway regions lack the adequate resolution for a straightforward correlation. Our new chronology for the connectivity episodes allows overcoming this issue and identify trends in the tectonic behavior of the sill region.

We assume that a Black Sea type of connectivity (Fig. 11.a) persisted throughout deposition of the Maikop Series creating the stratification of the water column, necessary for the maintenance of long lasting brackish anoxic environments (during the Kozakhurian stage) in the Eastern Paratethys. The next connectivity phase (Figs. 11.b, 12) is linked with
the Tarkhanian flooding (14.85–14.75 Ma), located in the middle of a period of continuous sea level rise (+40 m between 15.2 and 14.2 Ma). After a rise of ~25 m, the threshold of water mixing is breached and open marine environments are installed in Eastern Paratethys. In this episode of peak connectivity, a massive inflow of normal marine water increases salinity, forces mixing and leads to the oxygenation of the water column (Fig. 12). This is probably the key mechanism for shutting down the long lasting Maikop anoxia in Eastern Paratethys. The sea level continued to rise throughout the lower part of the Chokrakian (14.75–14.2), in agreement with the transgressive nature of this stage. In the Chokrakian, however, open marine environments are replaced by more restricted ones, characterized by stratification and low salinity, indicating a restriction in connectivity. In the upper part of Chokrakian - beginning of the Karaganian (14.2–13.8), the sea-level dropped and connectivity was reduced, and probably even stopped (Fig. 11.c).

The new chronological framework for the end of the Maikop anoxia and the Tarkhanian flooding provides an opportunity to correlate the middle Miocene changes in gateway configuration of the Carasu Strait with the global sea level curve from the North Atlantic (Kominz et al., 2008) (Fig. 11.d). The Carasu Strait is a tectonically active zone situated along the Tomquist–Teisserey Line (Hippolyte, 2002) thus it is expected that the tectonic component will play a role too. To isolate the tectonic component, we plot a hypothetical sill curve for the Carasu Strait (Fig. 11.d) in which tectonic uplift and subsidence, coupled to a lesser extent with erosion, are employed to explain the differences between the eustatic and connectivity trends.

During the Kozakhurian phase, the sea-level was low, resulting in reduced connectivity. During the following Tarkhanian phase, the Carasu Strain has been significantly enlarged by global sea level rise and/or tectonic subsidence (Fig. 11.d.1). The Tarkhanian strait geometry must have increased in size to allow a bi-directional water exchange between the basins (Fig. 11.d.2). During the early Chokrakian the connectivity decreases again, although the sea-level continues to rise. We assume that the previous bi-directional flow gets “suffocated” by tectonic uplift, which reduces connectivity (Fig. 11.d.3). As the average sea level rise slows down from the initial 10 m/kyr to 1 m/kyr (Kominz et al., 2008) tectonic uplift in the gateway regions due to the compression of the Carpathians (Tarapoanca et al., 2003, Matenco et al., 2010) probably takes over and severs the connection finally leading to isolation of the Eastern Paratethys (Fig. 11.d.4), during the Karaganian stage. We conclude that the Tarkhanian and Chokrakian stages are actually two distinct phases of a single flooding event, differentiated by changes in the functioning of the connecting gateway(s). Tectonic forcing generates transitional phases that are reflected in relatively slow connectivity changes. On the other hand, the eustatic forcing is expressed in the form of events: relatively large fluctuations that can overcome tectonics. The validity of this hypothetical sill curve for the Carasu strait, inferred by eustatic fluctuations and various degrees of connectivity, must be further evaluated with the help of structural and tectonic data from field measurements and seismic lines.

7. Conclusions

We provide integrated magneto-biostratigraphic results for two continuous, ~600 m long, sedimentary successions, situated on the southern slope of the Indol-Kuban Depression north of the Caucasus Mountains in a deep facies, with scarce fauna (Pshekha River) and a shallower facies, with more abundant fauna (Belaya River). The succession comprises the uppermost Maikopian (Kozakhurian) - Tarkhanian - Chokrakian - Karaganian - Konkian - Volhynian (lower Sarmatian s.l.) interval of the Eastern Paratethys. The magnetostratigraphic record from the Belaya section consists of fifteen different polarity intervals, seven of reverse and eight of normal polarity. The polarity pattern of the Pshekha section comprises sixteen different polarity intervals, eight of reverse and eight of normal polarity. The two sections have a common pattern that can be correlated to the GPTS. Our correlation shows that the entire succession covers the time interval from ~15 to ~12.3 Ma. We date and describe the major paleoenvironmental phases, which can all be related to changes in the configuration of the paleostrasts that connected the Eastern Paratethys with the Central Paratethys and the Mediterranean due to a tectonic-eustatic interplay.
We show that the shutdown of the Paratethyan anoxic giant was caused by an eastward continental scale transgression, that can be traced for ~3000 km from Central Europe to Central Asia. This Tarkanian flooding event can be correlated with chron C5Bn in at an age of 14.85 Ma. This marine episode was short-lived (100 kyr) in spite of the transgressive background continuing during the following Chokrakian stage. This was probably caused by tectonic uplift of the gateway area that had overcome the sea level rise.

Author contributions
Project initiated by D.P. and supervised by W.K. Sampling in the field was performed by S.P., D.P., W.K., LG and SL. Paleomagnetic measurements were performed by D.P. (demagnetisation and rock magnetism) and SL (rock magnetism). K.K. and DF performed the Radio-isotope dating. Biostatigraphic determinations were performed by S.P. (mollusks) and LG (nannoplankton). Stratigraphic background was put together by S.P., LG and D.P with assistance from W.K. Connectivity scenarios developed by D.P. and W.K. with the help of S.P. and LG. All authors contributed in the writing process.

Acknowledgements
Special thanks go to Roel van Elssas for his guidance. Irina Patina, Vitaly, Marina Sladkovskaya, Alexandra Rytova, Andrey Popkov, Alexander Guzov, Pavel Florov, Jenea Filipina, Jenea and Irina Nabokovsky and Kubik are thanked for their help during the fieldwork. Special thanks go also to Eleonora Radionova, Irina Goncharova and Valeria Trubikhin for their technical help and collegial support. The micropa- lentological research complies with the state theme AAAA-A17-117011705-116 of the Russian Foundation for Scientific Research (17-05-00047 and 16-05-01032) and by the Netherlands Geosciences Foundation (ALW) with support from the Netherlands Organization for Scientific Research (NWO) through the VICI grant of WK.

References

