People at Fort Hoofddijk

Wout Krijgsman
NWO VICI laureate
Prof.dr. W. Krijgsman
Paleomagnetic Laboratory
Fort Hoofddijk
Faculty of Earth Sciences, Utrecht UniversityNederlandse organisatie voor Wetenschappelijk Onderzoek
Department of Earth Sciences 
Utrecht University 
Budapestlaan 17, 3584 CD Utrecht 
The Netherlands 

Phone +31 30 253 1672


Research of Wout Krijgsman

Paleomagnetic reconstructions in time and space

Paleomagnetic reconstructions in time and space

Dating and time control are essential in all disciplines of the Earth Sciences, since they allow to correlate rock sequences from distant localities and different (marine and continental) realms. An accurate geological time scale (GTS) is crucial to understand rates of change of natural processes and thus to determine the underlying mechanisms that explain our observations. Biostratigraphy of different faunal and floral systems has been used to erect the relative geological age of sedimentary rocks and hence to perform correlations among them. Radioisotopic dating has become increasingly sophisticated and can now count on a wide variety of isotopic decay systems capable of providing numerical ages in sedimentary rocks formed under favourable environmental conditions.

Magnetostratigraphy in particular is a world class expertise of our research group at Fort Hoofddijk. It is a standard tool in various fields of Earth sciences and refers to the dating of a rock sequence by using the unique reversal pattern of the Earth’s magnetic field. Magnetostratigraphy can be applied to a wide variety of rock types (volcanic, sedimentary) and in different kinds of environment (continental, lacustrine, marine). Crucial is that rocks faithfully record the ancient magnetic field at the time of their formation, an assumption that must be verified by paleomagnetic and rock magnetic techniques.

The latest development in constructing magnetostratigraphic time scales comes from orbital tuning of the sediment record, the so called Astronomically calibrated Polarity Time Scale (APTS). This time scale has the inherent advantage of increasingly advancing our understanding of the climate system, because cyclostratigraphy and orbital tuning rely on deciphering environmental changes driven by climate change, which in turn is orbitally forced. The magnetostratigraphic dating tool also has a wide range of geodynamic applications, including quantification of accumulation rates and dating of tectonic structures. The directional data can also be used to determine vertical axis rotations and paleolatitudes, essential to understand large scale tectonic movements. It thus provides a solid framework for precise correlation of environmental records with tectonics and/or global climate variations in order to distinguish geodynamics from climate forcing.

Dating the geological record

A reliable chronologic framework is a ‘conditio sine qua non’ to unravel climatic from geodynamic forcing factors. During the last decades our research was focused on the Mediterranean domain where the sedimentary record is particularly sensitive to document astronomically induced changes in past climate. The sedimentary (Milankovitch) cyclicity of the Mediterranean successions underlies the construction of the astronomically calibrated time scale, that has now become the global standard for the Neogene. Recently, we also used this astrochronology to synchronize radiometric dating techniques (Fig. 1). Correlations to astronomically calibrated global climate records can now be established to determine the impact of climate variability on paleoenvironments, which will eventually discriminate the complementary tectonic component.

Fig. 1: Astronomical calibration of the Messinian Messadit section in the Melilla-Nador Basin of NE Morocco and 40Ar/39Ar ages of intercalated tephra (Kuiper et al., 2008).

Recently, our research focus was extended into the Paratethys (former Black sea/Caspian sea region) domain. Geological time scales for the Paratethys region encompass mainly regional stages, which are all defined on the basis of characteristic faunal assemblages (mainly mollusks and ostracods) endemic to the Paratethys Sea. Correlations to the standard GTS are highly debated because radiometric age determinations are scarce and magnetostratigraphic studies are generally controversial. As a consequence, the ages of the Paratethyan stage boundaries can differ more than a million years in the various geological time scales, even for the Miocene.

We already have provided high-resolution magnetostratigraphic studies on long and continuous sedimentary successions of the Carpathian foredeep of Romania that resulted in straightforward correlations to the APTS and a robust chronology for the Dacian Basin. We have furthermore shown that the magnetic signal of these sedimentary deposits was carried by two different populations of greigite; a biogenic component of primary origin generated by magnetotactic bacteria, and an authigenic component of secondary origin that formed by early diagenetic processes. In contrast to previous assumptions, we could prove that these greigite components provided reliable records of the ancient geomagnetic field variations. They can excellently be used for magnetostratigraphic dating if the proper demagnetization techniques we recently developed are applied.

Main collaborators: Cor Langereis, Frits Hilgen, Klaudia Kuiper & Jan Wijbrans (VU), Marius Stoica (Bucharest)

Research projects: Klaudia Kuiper, Iuliana Vasiliev, Silja Husing, Hemmo Abels, Liao Chang, Chris van Baak

Key publications: Kuiper et al. (2008); Deenen et al. (2010); Husing et al. (2009), Hilgen et al. (2007); Krijgsman et al. (2010)

The Messinian Salinity Crisis of the Mediterranean

About 6 million years ago the Mediterranean Sea was transformed into a giant saline basin, one of the largest in the Earth’s history and surely the youngest one. This event, referred to as the Messinian Salinity Crisis (MSC), changed the chemistry of the ocean and had a permanent impact on both the terrestrial and marine ecosystems of the Mediterranean area. Its actual magnitude was not predictable or even imaginable from the relatively small and scattered outcrops of Upper Miocene gypsum and halite deposits of peri-Mediterranean areas, and became fully appreciated only at the beginning of the ‘70s, when Deep Sea Drilling Project (DSDP) cores recovered evaporite rocks from the M reflector, a seismic feature recognized below the deep Mediterranean basin floors since the pioneering seismic surveys of the ‘50s. It soon became clear that a salt layer varying in thickness from 1,500 m to more than 3,000 m for a total estimated volume of 1 million km3 had been laid down throughout the whole Mediterranean basin at the end of the Miocene. The DSDP drilling Leg 13 recovered gypsiferous strata in the upper few meters of the basinal sequences, but the full Messinian succession could not be drilled at that time.

The first, fascinating and successful MSC scenario proposed in 1973 envisaged an almost desiccated deep Mediterranean basin (Fig. 2) with a dramatic 1,500 m evaporative drop of sea-level, the incision of deep canyons by rivers to adjust to the lowered base level and a final catastrophic flooding event when the connections with the Atlantic ocean were re-established at the base of the Pliocene, 5.33 Ma ago. In the 35 years since Leg 13 was completed, over 1,000 papers have been published on the Messinian Salinity Crisis. Outcrop studies based on the record of marginal basins clarified that this event occurred in a relatively short time window of ca. 600,000 years and that it was caused by the temporary reduction of the marine connections between the Mediterranean and the Atlantic Ocean.

Fig. 2: Present-day coast line of the Mediterranean Sea and extent of water-covered part after desiccation down to equilibrium level in western and eastern subbasin. Solid line denotes coast line at the time that mean salinity reaches the level at which gypsum precipitation starts (130g/l) (Meijer & Krijgsman, 2005).

In spite of all this research activity, one fact remains: we have no complete calibration of the stratigraphy of the MSC record, because no scientific drilling has yet ventured into deepwater to drill through the thickest succession of the deep basin. In fact, of all the major stratigraphically propelled discoveries of modern geoscience, the MSC stands alone as being underpinned by an outrageously undersampled stratigraphic record. It is estimated that 95% of the total volume of the Messinian evaporites is now preserved in the deep basins, and our lack of knowledge of the deep basinal stratigraphy and facies association strongly limits our understanding of this dramatic event.
For more than 30 years the Messinian Salinity Crisis has represented one of the most important and controversial topics of scientific debate, stimulating interdisciplinary research projects that aim to understand the multiple mechanisms involved in this event, from its timing, the inferred geographic upheavals, the relationships between external forcing and physical systems response, to the implications for the biological activity.

Main collaborators: Frits Hilgen, Paul Meijer, Gert de Lange, Rachel Flecker (Bristol), Paco Sierro (Salamanca)

Research projects: Iuliana Vasiliev, Chris van Baak, Walter Capella, EU-ITN MEDGATE

Key publications: Meijer and Krijgsman, 2005; Hilgen et al., 2007; Krijgsman and Meijer, 2008; Govers et al., 2009; De Lange and Krijgsman, 2010

The Evolution of Paratethys: the lost sea of Eurasia

Paratethys was a large epicontinental sea, stretching from Germany to China at the beginning of the Oligocene (~34 Myr ago), that progressively retreated by a complex combination of basin infill, glacio-eustatic sea-level lowering and tectonic uplift to its present-day remnants: Black Sea, Caspian Sea and Aral Lake. The influence of Paratethys on global change is still a great unknown, mainly through lack of relevant studies in this terra incognita, although model studies suggest a major effect of sea retreat on climate and environment. My aim here is to comprehend the causes of the extreme environmental changes that occurred in Central Eurasia. We will use high-resolution geochronology together with integrated stratigraphy and geochemical proxies (deuterium, strontium, neodymium) to unravel internal (geodynamics, tectonic uplift) from external (climate, glacio-eustatic sea-level change) forcing factors and to resolve the effects of Paratethys restriction (regional climate perturbations, biotic crises, aridification).

A complex combination of geodynamic and climatic processes caused Paratethys to evolve from initially open oceanic settings into restricted marine settings and, ultimately, even into lacustrine environments. Associated with this transformation, the open marine fauna became increasingly replaced by highly endemic, fresh to brackish water biota. Modelling has shown that Paratethys sea retreat intensified the Asian monsoon system, shifting the central Asian climate from temperate to continental conditions. Until its demise Paratethys played a critical role as ‘thermostat’ for Eurasia, co-regulating the regional temperature and precipitation, while co-recording the changes in the continental climate system. It furthermore exerted a prime control on mammal migration out of Africa and Asia into Europe and strongly affected the radiation and evolution of endemic marine invertebrates. Paratethys influenced regional climate, ecosystems, and depositional settings, but also generated large amounts of natural resources (oil, gas, salt) that are of economic importance for the region today.

Fig. 3: Chronology for the different local and regional stages of the Paratethys allows detailed correlations to the GTS, the Mediterranean event stratigraphy during the Messinian Salinity Crisis (M1-M3) and to the oxygen isotope curves of the Atlantic margin of Morocco (Krijgsman et al., 2010).

The evolution of Paratethys also had major consequences for neighbouring seas. Close to the final stages of its existence, Paratethys played a crucial role in the hydrology of the Mediterranean (Fig. 3). Timing and nature of water exchange between Paratethys and Mediterranean is a vital, but still poorly understood and highly controversial component of evaporite mechanisms in deep water systems. The land-locked configuration of the Paratethys makes it a unique natural laboratory to disentangle climatic and tectonic components of sedimentary successions during distinctive restriction events and to study the fundamental mechanisms of gateway evolution and basin restriction.

Main collaborators: Marius Stoica (Bucharest), Liviu Matenco, Oleg Mandic (Vienna), Klaudia Kuiper (Amsterdam), Bettina Reichenbacher (München), Madelaine Böhme (Tübingen)

Research projects: Iuliana Vasiliev, Marten ter Borgh, Liao Chang, Chris van Baak, Arjen Grothe, Maria Tulbure, Annique van der Boon, Yannick Lataster

Key publications: Vasiliev et al., 2004; Vasiliev et al., 2007; De Leeuw et al., 2010; Mandic et al., 2010; Krijgsman et al., 2010

Paleomagnetic and rock magnetic investigations

The ancient geomagnetic field can be reconstructed from its recording in rocks during the geological past. Almost every type of rock contains magnetic minerals, usually iron (hydr)oxydes or iron sulphides. During the formation of rocks, these magnetic minerals (or more accurately: their magnetic domains) statistically align with the then ambient field, and will subsequently be ‘locked in’, preserving the direction of the field as a natural remanent magnetization (NRM): the paleomagnetic signal. As a rule, the total NRM is composed of different components. Ideally, the primary NRM, i.e., originating from the time of rock formation, has been conserved, but often this original signal is contaminated with or even completely overprinted by remanence components acquired later in its geological history, e.g. through weathering, metamorphosis or tectonics. A parasitic component or partial overprint can be removed through ‘magnetic cleaning’ or demagnetization procedure. This implies that rock samples must be subjected to various methods to stepwise remove any unwanted or non-original magnetization component, either by increased temperatures or alternating magnetic fields. Such experiments are paleomagnetic routine lab procedure, aiming at retrieving the original acquired magnetization that has recorded the ancient geomagnetic field.

Paleomagnetic data can be very useful for geodynamic reconstructions because they allow a quantitative estimation of both rotations around vertical axes and latitudinal tectonic transport. The fundamental concept in the use of paleomagnetism for plate tectonic studies is that the Earth’s magnetic field is, on the average, a geocentric axial dipole (GAD). The GAD hypothesis implies that a paleomagnetic pole indicates the position of the rotational axis with respect to the continent from which the paleomagnetic data were acquired. It allows us to calculate the geographic (paleo)latitude of any site from the measured inclination according to the equation: tan I = 2 tan , where I is the magnetic field inclination and  is the geographic latitude at the point of measuring.
A variety of paleomagnetic data from the Mediterranean and Paratethys region show a strong bias toward shallow inclinations. We can use the observation that in addition to the well known variation of magnetic inclination with latitude, the N-S elongation of directrional dispersion also varies, being most elongate at the equator and nearly symmetric at the poles. Assuming that inclination shallowing follows the relationship long known from experiment, we can invert the inclinations using a range of “flattening factors” to find the elongation/inclination pair consistent with a statistical model for the paleosecular variation. Application of the so-called “elongation/inclination” method to the extensive paleomagnetic data sets allows correction for dewatering and compaction.

For any paleomagnetic signal to be reliable, the measured magnetic remanence must be a primary recording – created at the time when the rock itself was formed – of the ancient geomagnetic field, i.e. one that is stable over geological time, sometimes over billions of years. The Natural Remanent Magnetisation (NRM) carried by sediments is controlled by a suite of physical and chemical processes that act during and after deposition. Detrital iron oxides like magnetite and hematite can carry a reliable primary remanence, but early and late diagenetic processes can alter the primary magnetic mineral assemblage through dissolution, diffusion and (re)precipitation processes. This may lead to the formation of new magnetic minerals, and in oxygen-poor and/or organic-rich environments to magnetic iron sulphides, like pyrrhotite (Fe(1-x)S, x=0 to 0.2) or greigite (Fe3S4). Greigite can form authigenically any time after deposition – up to millions of years – if the necessary reactants are present. Therefore, greigite is often considered to be an unreliable magnetic carrier. In other cases, early greigite formation has been demonstrated, forming within within years or decades in a stagnant water column and as sedimentary greigite.

Fig. 4: Greigite-based magnetostratigraphy of the Bădislava valley. Three successive demagnetisation diagrams illustrate the transition from reversed to normal polarity via a sample recording the two antipodal directions. The directions of the LT components (blue arrows) are acquired later, opposite to the direction of the HT components (red arrows). The mean original inclination of the HT component is significantly lower than both the inclination (upon flattening) that fits the model (incEI = green line), and the most frequent inclination (red line) (Vasiliev et al., 2008).

Our greigite-based magnetostratigraphies from the brackish to fresh water environments of the Paratethys domain in Romania and from the marine pelagic marls of Monte dei Corvi in Italy, straightforwardly correlate to the geomagnetic polarity time scale and support the formation and preservation of magnetofossil greigite in ancient sedimentary rocks (Fig. 4). Positive reversal tests, a positive fold test and the occurrence of inclination shallowing provided further evidence for an early acquisition of the NRM. We now aim to 1) develop advanced techniques to distinguish biogenic and authigenic greigite, crucial to recognizing the primary recording of the geomagnetic field and 2) to establish the relation between different greigite populations and paleoenvironmental conditions. In many recent freshwater and shallow marine sediments, fossil bacterial magnetic minerals are considered the main carrier of the magnetisation. Proof for this type of carrier in older sediments is still lacking, although we have observed putative magnetofossil greigite in Pliocene rocks of the Paratethys.

Main collaborators: Mark Dekkers, Cor Langereis, Douwe van Hinsbergen, Miguel Garces (Barcelona), Lisa Tauxe (San Diego), Gillian Turner (Wellington)

Research projects: Iuliana Vasiliev, Liao Chang

Key publications: Krijgsman and Tauxe, 2004, Van Hinsbergen et al., 2008; Vasiliev et al., 2008; Hüsing et al., 2009, De Leeuw et al., 2012

The Middle Miocene climate change

The Middle Miocene Climate Transition between 15-13.5 Ma, which followed the last Climate Optimum, marks a critical step in the evolution of Earth’s climate system towards its present ice-house state. This climate transition remains, however, little understood. The closure of the Mediterranean-Paratethys-Indian Ocean gateway may have played a crucial role by interrupting the global equatorial current system. Unfortunately, dating of the closure - being based on land-mammal evidence - is still poorly constrained. As a consequence, a causal connection between Middle Miocene cooling and the closure of the Mediterranean-Indian Ocean gateway has not been (dis)proven to date. Untangling the effect of tectonic closure and opening of marine gateways on regional and global climate has a long-lasting history. Such changes in palaeogeography have profound influence on surface and deep ocean circulation and consequently on both regional as well as global climate.

Fig. 5: Miocene climate variability and geodynamic evolution of the  Mediterranean region

The present-day Mediterranean Sea resulted from a sequence of closing such marine connections. The middle Miocene (19-14 Ma) closure of the gateway to the Indian Ocean had presumably the most profound climate implications because it interrupts a direct marine connection between Africa and Eurasia forcing ocean currents to pass south of Africa. The northward migration of the African-Arabian plate and collision with the Eurasian plate progressively disconnected the Proto-Mediterranean from the Indian Ocean during the Miocene (Fig. 5). The resulting closure of the Mediterranean-Indian Ocean gateway has been put forward to explain the dramatic climatic change that took place from Earth’s last major warm episode 17-15 Ma (the Mid-Miocene Climate Optimum) to the much colder ice house state and the development of a permanent East Antarctic ice cap as a consequence of circulation changes. The major climatic cooling step at 13.8 Ma, the Mi3b oxygen isotope event, gave rise to a much enlarged ice volume, but the age of this dramatic cooling step is in serious contrast with the available age constraints on the initial gateway closure at ~19 Ma. The latter age is mostly based on African-Eurasian mammal migration via the “Gomphotherium (elephant) Landbridge”. Several distinct waves of mammal migration and marine biogeographic evolution in the Proto-Mediterranean and Indo-West-Pacific region suggest intermittently short-lived marine connections - possibly related to sea-level rise during the Mid-Miocene Climate Optimum - until it was permanently closed at ~14 Ma. However, precise dating of any of these events is seriously hampered by the lack of well-dated mammal- or invertebrate-bearing sections.

The Middle Miocene Badenian stage of the Paratethys marks the last period of significant connectivity between the Mediterranean and the Central Paratethys. The only postulated seaway was in the narrow area between the Alps and the Dinarids, which progressively closed during the lower Badenian by a combination of tectonic and glacio-eustatic processes. This resulted in the formation of massive salt deposits in the Central European  Paratethys basins. Radiometric dating recently indicated that the onset of the Badenian Salinity Crisis in the Paratethys was primarily controlled by climatic changes and in particular by the Mi3 global cooling event which terminates the Middle Miocene Climatic Optimum.

Main collaborators: Frits Hilgen, Elena Turco (Parma), Marius Stoica (Bucharest), Krzysztof Bukowski (Cracow), Klaudia Kuiper (Amsterdam); 

Research projects: Silja Hüsing, Maria Tulbure, Karin Sant

Key publications: Abels et al., 2005; Hilgen et al., 2008; Hüsing et al., 2009; Hüsing et al., 2010; De Leeuw et al., 2010

Asian paleoclimate and environment

The interplay between the Indo-Asia collision, uplift of the Tibetan Plateau, termination of the Indonesian Throughflow, and changes in Asian climate and environment belongs to the most significant and fascinating issues of tectonics and paleoclimate. According to prevailing hypothesis supported by some tectonic and climate models, the impact of the collision on climate is twofold: - (1) Globally, the orogenesis increases rock weathering and organic carbon burial which enhances consumption of atmospheric CO2 leading to Cenozoic global cooling. (2) Regionally, uplift of the Tibetan Plateau and the retreat of the Paratethys triggers dramatic aridification and cooling of continental Asia and the onset of the Asian monsoons. Recently, we provided evidence for regional aridification on the Tibetan Plateau, precisely dated at the Eocene-Oligocene Transition. This remarkable correlation demonstrated that global climate, and not only Tibetan uplift and Paratethys retreat, must be recognized as a major contributor to Asian palaeoenvironment. To find conclusive answers to questions such as the age of Indo-Asian collision, regional uplift, land-sea redistributions, and relations to global climatic change, the entire collision zone - from northernmost Tibet to the southern Himalayan margin - needs to be studied. A team lead by our former VIDI postdoc Guillaume Dupont-Nivet (now in Rennes) seeks specific answers within the sedimentary successions of northeastern (Xining basin) and northwestern (Tarim basin) Tibet (Fig. 6).

Fig. 6: Lithological column of the Shuiwan section showing lithology, bed colour, induration, sedimentary features, and arbitrarily labelled small-scale cycle numbers (Abels et al., 2001). 

The EU funded THROUGHFLOW project aims to obtain a greater understanding of key processes in the biotic response of coral reefs in SE Asia to long-term environmental changes resulting from closure of the Indonesian Throughflow during the Oligocene-Miocene transition (~25 Million years ago). This will establish important baseline data on which researchers can model the impact of predicted environmental change on present reef ecosystems. Our specific goal is to establish a detailed chronologic framework for the Oligocene-Miocene sedimentary successions on Kalimantan by the integration of a wide range of dating tools including biostratigraphy, magnetostratigraphy, and isotope (strontium) stratigraphy. A magnetostratigraphic time frame for the Oligocene-Miocene interval will be constructed by combining marginal shallow marine sequences to the basinal deep water successions that are exposed along several river incisions. Additionally, initial Sr-isotope dating in the region provides promising results for increasing the number of well-dated events, and can thus be used as controls on datum planes in magnetostratigraphy and biostratigraphy.

Main collaborators: Guillaume Dupont-Nivet (Rennes), Willem Renema & Frank Wesselingh (Naturalis) 

Research projects: Roderic Bosboom, Hemmo Abels, Nathan Marshall, EU-ITN THROUGHFLOW

Key publications: Dupont-Nivet et al., 2007, Bosboom et al., 2010; Abels et al., 2010

Mesozoic mass-extinction

Cataclysmic impacts of celestial bolides are often favoured to explain mass extinctions, but the internal (volcanism, continental break-up) and external (atmospheric acidification, ozone breakdown) dynamics of the Earth likely play a far more important role. As a result, environmental stress initiates inhibition of photosynthesis and a decline in primary production, which in turn is believed to lead to widespread and collateral extinction of species. The Late Triassic mass extinction(s) provide an eminent case history of global turnover in the biosphere that is still not fully understood. Rather than focusing on catastrophic impacts, we will concentrate here on the geodynamic and environmental changes that occurred during this time span. It is a period when major biotic crises occurred repeatedly but also the time of a major plate tectonic event: the opening of the Atlantic Ocean.

Despite the conflicting data for the late Triassic biotic crises there are several lines of evidence indicating mass extinctions in the marine and terrestrial realm throughout the Late Triassic with a series of major steps around the Carnian–Norian, Norian–Rhaetian boundaries, while the Rhaetian–Hettangian (Triassic/Jurassic) boundary event may have been the final strike. At present, stratigraphic resolution is inadequate to determine whether these extinctions occurred in a catastrophic or gradual fashion Catastrophism may be merely an artifact of inadequate sampling of accelerated but continuous biotic turnover. Therefore, the two major questions we will address are 1) are these extinctions best explained by a gradual process of deterioration or by (a series of) catastrophic events, 2) how do these turnovers in the biosphere of the terrestrial realm correlate, or couple, with those of the marine realm?

Fig. 7: Continental–marine T–J correlation. The two pulses of CAMP basalts (L.U. and I.U.) in the continental sections correlate to the initial isotope shift, spores spikes and the extinction events observed in the marine record of St. Audrie's Bay (UK) (Deenen et al., 2010).

High-resolution palaeobiological studies focusing on the environmental changes that led to mass extinction in both the continental and marine domain require an accurate geological time frame to allow a detailed comparison of timing and duration of events in time and space. Evidently, it is essential that all data (palaeobotany, paleontology, geochemistry, geophysics, etc.) will be integrated together in a high-resolution astronomical time frame. This time scale will allow us to correlate our results directly with data from volcanology, geodynamics and other climate proxies (Fig. 7). In addition, the palaeobiological data will then provide conclusive answers about the character of the extinction process, the survivors, recovery and new originations.

Main collaborators: Wolfram Kürschner (now Oslo), Michael Szurlies (Potsdam)

Research projects: Martijn Deenen, Micha Ruhl, Silja Hüsing

Key publications: Deenen et al., 2010; Ruhl et al., 2010; Hüsing et al., 2011; Deenen et al., 2011; Szurlies et al., 2012

publicationsPublications of Wout Krijgsman
  • Grothe, A., Sangiorgi. F., Brinkhuis, H.Stoica, M. and Krijgsman, W. (2018). Migration of the dinoflagellate Galeacysta etrusca and its implications for the Messinian Salinity Crisis, Newsletters on Stratigraphy, 51, 73-91.  
  • Jorissen, E.L. de Leeuw, A. van Baak, C.G.C., Mandic, O., Stoica, M., Abels, H.A. and Krijgsman, W. (2018). Sedimentary architecture and depositional controls of a Pliocene river-dominated delta in the semi-isolated Dacian Basin, Black Sea, Sedimentary Geology, in press  
  • Noorbergen L.J., Abels H.A., Hilgen F.J., Robson B.E., de Jong E., Dekkers M.J., Krijgsman W., Smit J., Collinson M.E.,  Kuiper K.F. (2018). Short-eccentricity climate control on fluvial peat formation in northeastern Montana (USA) during the earliest Paleocene: developing a conceptual model. Sedimentology, 65, 775-808. 
  • Pastor-Galán, D., Dias da Silva, I.F., Groenewegen, T., Krijgsman, W. (2018). Tangled up in folds: tectonic significance ofsuperimposed folding at the core of the Central Iberian curve (West Iberia). International Geology Review, doi: 10.1080/00206814.2017.1422443.
  • Sant, K., Mandic, O., Rundić, L., Kuiper, K.F. and Krijgsman, W. (2018). Age and evolution of the Serbian Lake System: integrated results from Middle Miocene Lake Popovac, Newsletters on Stratigraphy, 51, 117-143.    
  • Stoica, M., Krijgsman, W., Fortuin, A., Gliozzi, E. (2018). Reply to "Ceratolithus acutus Gartner and Bukry 1974 (= C. armatus Müller 1974), calcareous nannofossil marker of the marine flooding that terminated the Messinian salinity crisis" by Popescu et al., 2017. Palaeogeography, Palaeoclimatology, Palaeoecology, in press  
  • Van den Berg, B.C.J., Sierro, F.J., Hilgen, F.J., Flecker, R., Larrasoaña, J.C., Krijgsman, W., Flores, J.A., Mata M.P. (2018). Imprint of Messinian Salinity Crisis events on the Spanish Atlantic margin, Newslett. Strat., 51, 93-115. doi:10.1127/nos/2017/0337
  • Van der Boon,A., Beniest,A., Ciurej,A., Gaździcka,E., Grothe,A., Sachsenhofer,R.F., Langereis,C.G., Krijgsman,W. (2018). The Eocene-Oligocene transition in the North Alpine Foreland Basin and subsequent closure of a Paratethys gateway, Global and Planetary Change, 162, 101-119.  
  • Van der Boon, A., van Hinsbergen, D.J.J., Rezaeian, M., Gürer, D., Honarmand, M., Pastor-Galán, D., Krijgsman, W. and Langereis, C.G. (2018). Quantifying Arabia-Eurasia convergence accommodated in the Greater Caucasus, Earth and Planetary Science Letters, 482, 454-468. 
  • Wu, L., Wang, R., Xiao, W., Krijgsman, W., Li, Q., Ge, S., Ma, T. (2018). Late Quaternary deep stratification-climate coupling in the Southern Ocean: Implications for changes in abyssal carbon storage, Geochem. Geophys. Geosyst., 19, doi:10.1002/2017GC007250  
  • Capella, W., Matenco, L., Dmitrieva, E., Roest, W.M.J., Hessels, S., Hssain, M., Chakor-Alami, A., Sierro, F.J., Krijgsman, W. (2017). Thick-skinned tectonics closing the Rifian Corridor, Tectonophysics, in press  
  • Capella, W., Hernández-Molina, F.J., Flecker, R., Hilgen, F.J., Hssain, M., Kouwenhoven, T.J., van Oorschot, M., Sierro, F.J., Stow, D.A.V., Trabucho-Alexandre, J., Tulbure, M.A., de Weger, W., Yousfi, M.Z., Krijgsman, W. (2017). Sandy contourite drift in the late Miocene Rifian Corridor (Morocco): Reconstruction of depositional environments in a foreland-basin seaway,  Sedimentary Geology, 355, 31-57.   
  • Cotton, L.J., Zakrevskaya, E.Y., Van der Boon, A., Asatryan, G., Hayrapetyan, F., Israyelyan, A., Krijgsman, W., Less, .G., Monechi, S., Papazzoni, .A., Pearson, P.N., Razumovskiy, A., Renema, W., Shcherbinina, E. and Wade, B.S. (2017). Integrated stratigraphy of the Priabonian (upper Eocene) Urtsadzor section, Armenia, Newsletters on Stratigrapphy, DOI: 10.1127/nos/2016/0313  
  • Li, S., Yang Z., Deng C., He H., Qin H., Sun L., Yuan J., van Hinsbergen D.J.J., Krijgsman W., Dekkers M.J., Pan Y., Zhu R. (2017). Clockwise rotations recorded in redbeds from the Jinggu Basin of northwestern Indochina. Bull. Geol. Soc. Am., 129, 1100-1122. 
  • Liu S., Krijgsman W., Dekkers M.J., Palcu D. (2017). Early diagenetic greigite as an indicator of paleosalinity changes in the middle Miocene Paratethys Sea of Central Europe. Geochem. Geophys. Geosyst., 18, 2634-2645.  
  • Maron M., Muttoni G., Dekkers M.J., Mazza M., Roghi G., Breda A., Krijgsman W., Rigo M. (2017). Contribution to the magnetostratigraphy of the Carnian: new magneto-biostratigraphic constraints from Pignola-2 and Dibona marinesections, Italy, Newsletters on Stratigraphy, 50, 187-203. 
  • Marshall, N., Zeeden, C., Hilgen, F., Krijgsman, W. (2017). Milankovitch cycles in an equatorial delta from the Miocene of Borneo, Earth and Planetary Science Letters, 472, 229-240.
  • Palcu, D.V., Golovina, L.A., Vernyhorova, Y.V., Popov, S.V., Krijgsman, W. (2017). Middle Miocene paleoenvironmental crises in Central Eurasia caused by changes in marine gateway configuration, Global and Planetary Change, 158, 57-71
  • Sant, K., V. Palcu, D., Mandic, O., Krijgsman, W. (2017). Changing seas in the Early-Middle Miocene of Central Europe: A Mediterranean approach to Paratethyan stratigraphy, Terra Nova, 29, 273-281.
  • Sant, K., Kirscher, U., Reichenbacher, B., Pippèrr, M., Jung, D., Doppler, G. and Krijgsman, W. (2017). Late Burdigalian sea retreat from the North Alpine Foreland Basin: new magnetostratigraphic age constraints, Global and Planetary Change, 152, 38-50
  • Tulbure, M.A., Capella, W., Barhoun, N., Flores, J.A., Hilgen, F.J., Krijgsman, W., Kouwenhoven, T., Sierro, F.J., Yousfi, M.Z. (2017). Age refinement and basin evolution of the North Rifian Corridor (Morocco): No evidence for a marine connection during the Messinian Salinity Crisis, Palaeogeography, Palaeoclimatology, Palaeoecology, 485, 416-432.   
  • Van der Boon, A., Kuiper, K.K., Villa, G., Renema, W., Meijers, M.J.M., Langereis, C.G., Aliyeva, E. and Krijgsman W. (2017). Onset of Maikop sedimentation and cessation of Eocene arc-volcanism in the Talysh (Azerbaijan), In: Sosson, M., Stephenson, R.A., Adamia, Sh. (Eds), Tectonic Evolution of the Eastern Black Sea and Caucasus, Geological Society London, Special Publications, 428, 145-169.   
  • Wu, L., Wang, R., Xiao, W., Ge, S., Chen, Z., Krijgsman, W. (2017). Productivity-climate coupling recorded in Pleistocene sediments off Prydz Bay (East Antarctica),Palaeogeography, Palaeoclimatology, Palaeoecology, 485, 260-270.  
  • Chang L., Bolton C.T., Dekkers M.J., Hayashida A., Heslop D., Krijgsman W., Kodama K., Paterson C.A., Roberts A.P., Rohling E.J., Yamamoto Y., Zhao X. (in press). Asian monsoon modulation of non-steady state diagenesis in hemipelagic marine sediments offshore of Japan. Geochem. Geophys. Geosyst., accepted
  • Marzocchi, A., Flecker, R., Van Baak, C.G.C., Lunt, D.J. and Krijgsman, W. (2016). Mediterranean outflow pump: An alternative mechanism for the Lago-mare and the end of the Messinian Salinity Crisis, Geology, 44, 523-526.  
  • Palcu, D.V., Kouwenhoven, T.J., Krijgsman, W. (2016). Reply to “Comment on the Badenian–Sarmatian extinction event in the Carpathian foredeep basin of Romania: Paleogeographic changes in the Paratethys (Palcu et al., 2015)” by Silye and Filipescu (2016), Global and Planetary Change, 145, 141-142.  
  • Pastor-Galán, D., Dekkers, M.J., Gutiérrez-Alonso, G., Brouwer, D., Groenewegen, T.,  Krijgsman, W., Fernández-Lozano, J., Yenes, M., Álvarez-Lobato, F. (2016). Paleomagnetism of the Central Iberian curve's putative hinge: Too many oroclines in the Iberian Variscides, Gondwana Research, 39, 96-113.  
  • Quillévéré, F., Cornée, J.-J., Moissette, P., López-Otálvaro, G.E., van Baak, C.G.C., Münch, P., Melinte-Dobrinescu, M.C., Krijgsman, W. (2016). Chronostratigraphy of uplifted Quaternary hemipelagic deposits from the Dodecanese island of Rhodes (Greece), Quaternary Research, 86, 79-94.  
  • Stoica, M., Krijgsman, W., Fortuin, A.R., Gliozzi, E. (2015). Paratethyan ostracods in the Spanish Lago-Mare: more evidence for interbasinal exchange at high Mediterranean sea level, Palaeogeogr. Palaeoclimatol. Palaeoecol., 441, 854-870.   
  • Van Baak, C.G.C., Vasiliev,I., Palcu, D.V., Dekkers, M.J. and Krijgsman, W. (2016) A greigite-based magnetostratigraphic time frame for the Late Miocene to Recent DSDP Leg 42B cores from the Black Sea. Front. Earth Sci. 4:60. doi:10.3389/feart.2016.00060  
  • Popescu, S.-M., Melinte-Dobrinescu, M.C., Suc, J.-P. (2016). Objective utilization of data from DSDP Site 380 (Black Sea), Terra Nova, 28, 228-229.   
  • Van Baak, C.G.C., Radionova, E.P., Golovina, L.A., Raffi, I., Kuiper, K.F., Vasiliev, I., Krijgsman, W. (2016). Objective utilization of data from DSDP Site 380 (Black Sea), Terra Nova, 28, 230-231.   
  • van Baak, C.G.C., Stoica, M., Grothe, A., Aliyeva, E., Krijgsman, W. (2016). Mediterranean-Paratethys connectivity during the Messinian salinity crisis: The Pontian of Azerbaijan, Global and Planetary Change, 141, 63-81.    
  • Flecker, R., Krijgsman, W., Capella, W., de Castro Martíns, C., Dmitrieva, E., Mayser, J.P., Marzocchi, A., Modestu, S., Lozano, D.O., Simon, D., Tulbure, M., van den Berg, B., van der Schee, M., de Lange, G., Ellam, R., Govers, R., Gutjahr, M., Hilgen, F., Kouwenhoven, T., Lofi, J., Meijer, P., Sierro, F.J., Bachiri, N., Barhoun, N., Alami, A.C., Chacon, B., Flores, Jose A., Gregory, J., Howard, J., Lunt, D., Ochoa, M., Pancost, R., Vincent, S., Yousfi, M.Z. (2015). Evolution of the Late Miocene MediterraneanAtlantic gateways and their impact on regional and globalenvironmental change, Earth Science Reviews, 150, 365-392.  
  • Kaakinen, A., Abdul Aziz, H., Passey, B.H., Zhang, Z., Liu, L., Salminen, J., Wang, L., Krijgsman, W., Fortelius, M. (2015). Age and stratigraphic context of Pliopithecus and associated fauna from Miocene sedimentary strata at Damiao, Inner Mongolia, China. J. Asian Earth Sciences, 100,  78-90.  
  • Marshall, N., Novak, V., Cibaj, I., Krijgsman, W., Renema, W., Young, J., Fraser, N., Limbong, A., Morley, R. (2015). Dating Borneo’s deltaic deluge: Middle Miocene progradation of the Mahakam Delta, Palaios, 30, 7-25.  
  • Palcu, D.V., Tulbure, M., Bartol, M., Kouwenhoven, T.J., Krijgsman, W. (2105). The Badenian-Sarmatian Extinction Event in the Carpathian foredeep basin of Romania: paleogeographic changes in the Paratethys domain, Global and Planetary Change, 133, 346-358.  
  • Pastor-Galán, D., Groenewegen, T., Brouwer, D., Krijgsman, W., Dekkers, M.J. (2015). One or two Oroclines in the Variscan orogen of Iberia? Implications for Pangea amalgamation. Geology, 43, 527-530.  
  • Sant, K., de Leeuw, A., Chang, L., Czapowski, G., Gąsiewicz, A. and Krijgsman, W. (2015). Paleomagnetic analyses on Badenian–Sarmatian drill cores from the North Carpathian foredeep (Middle Miocene, Poland), Biuletyn Panstwowego Instytutu Geologiznego 461, 179–192.   
  • Van der Boon, A., Kuiper, K.K., Villa, G., Renema, W., Meijers, M.J.M., Langereis, C.G., Aliyeva, E. and Krijgsman W. (2015). Onset of Maikop sedimentation and cessation of Eocene arc-volcanism in the Talysh (Azerbaijan), Tectonic Evolution of the Eastern Black Sea and Caucasus, Geological Society London, Special Publications, 428, 
  • Van Baak, C.G.C., Mandic, O., Lazar, I., Stoica, M., Krijgsman, W. (2015). The Slanicul de Buzau section, a unit stratotype for the Romanian stage of the Dacian Basin (Plio-Pleistocene, Eastern Paratethys), Palaeogeography, Palaeoclimatology, Palaeoecology, 440, 594-613.   
  • Van Baak, C.G.C., Radionova, E.P., Golovina, L.A., Raffi, I., Kuiper, K.F., Vasiliev, I., Krijgsman, W. (2015). Messinian events in the Black Sea, Terra Nova, 27, 433-441. 
  • Van den Berg, B.C.J., Sierro, F.J., Hilgen, F.J., Flecker, R., Larrasoaña, J.C., Krijgsman, W., Flores, J.A., Mata M.P., Bellido Martín, E., Civis, J., González-Delgado, J.A. (2015). Astronomical tuning for the upper Messinian Spanish Atlantic margin. Disentangling basin evolution, climate cyclicity and MOW, Global and Planetary Change, 135, 89-103. 
  • Vasiliev, I., Reichart, G.-J., Grothe, A., Sinninghe Damsté, J.S., Krijgsman, W., Sangiorgi, F., Weijers, J.W.H., van Roij, L. (2015). Recurrent phases of drought in the upper Miocene of the Black Sea region, Palaeogeography, Palaeoclimatology, Palaeoecology, 423, 18-31. 

  • Bosboom, R.E., Dupont-Nivet, G., Grothe,A.,  Brinkhuis, H., Villa, G., Mandic, O., Stoica, M., Huang, W., Yang, W., Guo, Z.J. and Krijgsman, W. (2014). Linking Tarim Basin sea retreat (west China) and Asian aridification in the late Eocene, Basin Research, 26, 621-640.    
  • Chang, L., Vasiliev, I.,  Van Baak, C.G.C., Krijgsman, W., Dekkers, M.J., Roberts, A.P. (2014). Identification and environmental interpretation of diagenetic and biogenic greigitein sediments: A lesson from the Messinian Black Sea, Geochemistry, Geophysics, Geosystems, 15, 3612–3627.     
  • Chang,L., Roberts A.P., Winklhofer M., Heslop D., Dekkers M.J., Krijgsman W.,  Fitz Gerald J.D. and Smith P. (2014). Magnetic detection and characterization of biogenic magnetic minerals: A comparison of ferromagnetic resonance and first-order reversal curve diagrams, J. Geophys. Res., 119, 6136–6158, doi:10.1002/2014JB011213  
  • Grothe, A., Sangiorgi, F., Mulders, Y.R., Vasiliev, I., Reichart, G.-J., Brinkhuis, H., Stoica, M., Krijgsman, W. (2014). Black sea desiccation during the Messinian Salinity Crisis: Fact or fiction? Geology, 42, 563-586.   
  • Hüsing, S.K., Beniest, A., van der Boon, A., Abels, H.A., Deenen, M.H.L., Ruhl, M., Krijgsman, W. (2014). Astronomically-calibrated magnetostratigraphy of the Lower Jurassic marine successions at St. Audrie's Bay and East Quantoxhead (Hettangian-Sinemurian; Somerset, UK), Palaeogeography, Palaeoclimatology, Palaeoecology, 403, 43-56.  
  • Krijgsman, W. and Turner, G. (2014). Sediments, Terrestrial (Palaeomagnetism). In: Rink, W. J.  and Thompson, J. (Eds), Encyclopedia of Scientific Dating Methods, Springer-Verlag Berlin Heidelberg 2014, doi: 10.1007  
  • Roveri, M., Flecker, R., Krijgsman, W., Lofi, J., Lugli, S., Manzi, V., Sierro, F.J., Bertini, A., Camerlenghi, A., De Lange, G., Govers, R., Hilgen, F.J., Hübscher, C., Meijer, P.Th., Stoica, M. (2014). The Messinian Salinity Crisis: Past and future of a great challenge for marine sciences, Marine Geology, 352, 25-28.  
  • Ter Borgh, M., Stoica, M., Donselaar, M.E., Matenco, L., Krijgsman, W. (2014). Miocene connectivity between the Central and Eastern Paratethys: Constraints from the western Dacian Basin, Palaeogeography, Palaeoclimatology, Palaeoecology, 412,  45-67.   
  • Van Dam, J.A., Krijgsman, W., Abels, H.A., Álvarez-Sierra, M. Á., García-Paredes, I., López-Guerrero, P., Peláez-Campomanes, P., Ventra, D. (2014). Updated chronology for Middle to Late Miocene mammal sites of the Daroca area (Calatayud-Montalbán Basin, Spain), Geobios, 47, 325-334. doi: 10.1016/j.geobios.2014.07.002   
  • Chang L., Winklhofer M., Roberts A.P., Heslop D., Florindo F., Dekkers M.J., Krijgsman W.,Kazuto Kodama K., Yamamoto Y. (2013). Low temperature magnetic properties of pelagic carbonates: oxidation of biogenic magnetite and a new diagnostic indicator for identifying magnetosome chains. J. Geophys. Res. Solid Earth, 118, 1-17.   
  • De Leeuw, A., Filipescu, S., Maţenco, L., Krijgsman, W., Kuiper, K., Stoica, M. (2013). Paleomagnetic and chronostratigraphic constraints on the Middle to Late Miocene evolution of the Transylvanian Basin (Romania): Implications for Central Paratethys stratigraphy and emplacement of the Tisza-Dacia plate, Global and Planetary Change, 103, 82-98.   
  • Krijgsman, W. (2013). Dating en matching in de Aardwetenschappen. Inaugural Lecture, Chair in Magnetostratigraphy (July 1st, Utrecht University, Faculty of Geosciences).   
  • Manzi, V., Gennari, R., Hilgen, F.J., Krijgsman, W., Lugli, S., Roveri, M. and Sierro, F.J. (2013). Age refinement of the Messinian salinity crisis onset in the Mediterranean, Terra Nova, 25, 315-322.   
  • Matenco L., Andriessen P., Andriessen P.A.M., Avram C., Bada G., Beekman F., Bielik M., Ter Borgh M., Cifci G., Cvetkovic V., Dinu C., Dombradi E., Dondurur D., Ergun M., Francu J., Fugenschuh B., Garcia-Castellanos D., Gotz J., Horvath F., Houseman G., Knezevic S., Kovac M., Kralikova S., Krijgsman W., Kucuk M., Legosteva O., Lericolais G., Jipa D., Matenco L., Maximov G., Melinte M., Minar J., Munteanu I., Munt I.J., Olariu C., Otto J.C., Panin N., Plasienka D., Reiser M., Rundic L., Rupprechter M., Safanda J., Schmid S., Schrott L., Schuster R., Starostenko V., Steel R.J., Stephenson R., Stovba S., Sokoutis D., Stankoviansky M., Stoica M., Stojadinovic U., Toljic M., Tomljenovic B., Ter Voorde M., Wong H. (2013). Quantifying the mass transfer from mountain ranges to deposition in sedimentary basins: Source to sink studies in the danube basin-black sea system, Global and Planetary Change, 103, 1-18.   
  • Reichenbacher, B., Krijgsman, W., Lataster, Y., Pippèrr, M., van Baak, C.G.C., Chang, L., Kälin, D., Jost, J., Doppler, G., Jung, D., Prieto, J., Abdul Aziz, H., Böhme, M., Garnish, J., Kirscher, U., Bachtadse, V. (2013). A new magnetostratigraphic framework for the Lower Miocene (Burdigalian / Ottnangian, Karpatian) in the North Alpine Foreland Basin. Swiss Journal of Geosciences 106, 309–334.   
  • Ter Borgh. M., Vasiliev, I., Stoica, M., Knežević, S., Matenco, L., Krijgsman, W., Rundic, L. and Cloeting, S. (2013). The isolation of the Pannonian basin (Central Paratethys): new constraints from magnetostratigraphy and biostratigraphy, Global and Planetary Change, 103, 99-118.  
  • Van Baak, C.G.C., Vasiliev, I., Stoica, M ., Kuiper, K.F., Forte, A.M., Aliyeva, E., Krijgsman, W. (2013). A magnetostratigraphic time frame for Plio-Pleistocene transgressions in the South Caspian Basin, Azerbaijan, Global and Planetary Change, 103, 119-134.  
  • Vasiliev, I., Reichart, G.J. and Krijgsman, W. (2013). Impact of the Messinian Salinity Crisis on Black Sea hydrology—Insightsfrom hydrogen isotopes analysis on biomarkers.  Earth Planet. Sci. Lett., 362, 272-282.   
  • De Leeuw, A., Mandic, O., Krijgsman, W., Kuiper, K.F., Hrvatović, H. (2012). Paleomagnetic and geochronologic constraints on the geodynamic evolution of the Central Dinarides, Tectonophysics, 530-531, 286-298.  
  • Dupont-Nivet, G. and Krijgsman, W. (2012). Magnetostratigraphic methods and applications, In: Busby, C. and Azor, A. (eds.), Recent Advances in Tectonics of Sedimentary Basins, Blackwell Publishing Ltd., pp. 80-94.
  • Hüsing, S.K., Oms, O., Agustí, J., Garcés, M., Kouwenhoven, T.J., Krijgsman, W., Zachariasse, W.-J. (2012). On the Late Miocene continentalization of the Guadix Basin: More evidence for a major Messinian hiatusGeobios, 45(6), 617-620.  
  • Mandic, O., de Leeuw. A., Bulić J., Kuiper, K.F., Krijgsman, W. and Jurišić-Polšak, Z. (2012). Paleogeographic evolution of the Southern Pannonian Basin: 40Ar/39Ar age constraints on the Miocene continental series of northern Croatia, Int. J. Earth Sci. (Geol. Rundsch),  101, 1033-1046,  
  • Szurlies, M., Geluk, M.C., Krijgsman, W., and Kürschner, W.M. The continental Permian -Triassic boundary in the Netherlands: implications for the geomagnetic polarity time scale (2012). Earth Planet. Sci. Lett., 317-318, 165-176.   
  • Abels, H.A., Dupont-Nivet, G., Xiao, G., Bosboom, R.E. and Krijgsman, W. (2011). Step-wise change of Asian interior climate preceding the Eocene–Oligocene Transition (EOT). Palaeogeography, Palaeoclimatology, Palaeoecology, 299, 399-412. 
  • Bosboom, R.E., Dupont-Nivet, G., Houben, A.J.P., Brinkhuis, H., Villa, G., Mandic, O., Stoica, M., Zachariasse, W.J., Guo, Z., Li, C. and Krijgsman, W. (2011). Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change, Palaeogeography, Palaeoclimatology, Palaeoecology, 299, 385-398.  
  • Deenen, M.H.L., Krijgsman, W. and Ruhl, M. (2011). The quest for E23r at Partridge Island (Bay of Fundy): CAMP emplacement postdates the end-Triassic extinction event at the North American craton, Canadian J. Earth Sci., 48, 1282-1291. 
  • Deenen, M.H.L., Langereis, C.G., Krijgsman, W., El Hachimi, H. And El Hassane, C. (2011). Palaeomagnetic results from Upper Triassic red-beds and CAMP lavas of the Argana Basin, Morocco.  In: Van Hinsbergen, D.J.J., Buiter, S.J.H., Torsvik, T.H., Gaina, C. & Webb, S.J.(eds), The Formation and Evolution of Africa: A Synopsis of 3.8 Ga of Earth History. Geological Society, London, Special Publications, 357, 195–209. 
  • De Leeuw, A., Mandic, O., de Bruijn, H., Markoviç, Z., Reumer, J., Wessels, W., Šišiç, E. and Krijgsman, W. (2011). Magnetostratigraphy and small mammals of the Late Oligocene Banovici basin in NE Bosnia and Herzegovina, Palaeogeogr., Palaeoclimat., Palaeoecol., 292, 155-167. 
  • De Leeuw, A., Mandic, O., Krijgsman, W., Kuiper, K.F. and Hrvatoviç; H. (2011). A chronostratigraphy for the Dinaride Lake System deposits of the Livno-Tomislavgrad Basin: the rise and fall of a long-lived lacustrine environment, Stratigraphy, 8, 29-43. 
  • Floroiu, A., Stoica, M., Vasiliev, I. and Krijgsman, W. (2011). Maeotian/Pontian ostracods in the Badislava-Topolog area (South Carpathian foredeep, Romania), Geo-Eco-Marina, 17, 177-184.   
  • Hüsing, S.K., Deenen, M.H.L., Koopmans, J.G. and Krijgsman, W. (2011). Magnetostratigraphic dating of the proposed Rhaetian GSSP at Steinbergkogel (Upper Triassic, Austria): Implications for the Late Triassic time scale, Earth Planet. Sci. Lett., 302, 201-216. 
  • Karami, M.P., De Leeuw, A., Krijgsman, W., Meijer, P.Th., and Wortel, M.J.R. (2011). The role of gateways in the evolution of temperature and salinity of semi-enclosed basins: An oceanic box model for the Miocene Mediterranean Sea and Paratethys, Global and Planetary Change, 79, 73–88. 
  • Mandic, O., de Leeuw, A., Vukovic, B., Krijgsman, W., Harzhauser, M. and Kuiper, K.F. (2011). Palaeoenvironmental evolution of Lake Gacko (Southern Bosnia and Herzegovina): Impact of the Middle Miocene Climatic Optimum on the Dinaride Lake System, Palaeogeogr. Palaeoclimatol. Palaeoecol., 299, 475-492.   
  • Vasiliev I., Iosifidi A.G., Khramov A.N., Krijgsman W., Kuiper, K.F., Langereis C.G., Popov V.V., Stoica M., Tomsha V.A. and Yudin S.V. (2011). Magnetostratigraphy and radiometric dating of upper Miocene - lower Pliocene sedimentary successions of the Black Sea Basin (Taman Peninsula, Russia), Palaeogeogr. Palaeoclimatol. Palaeoecol., 310, 163-175.   
  • Abels, H.A., Abdul Aziz, H., Krijgsman, W., Smeets, S.J.B. and Hilgen, F.J. (2010). Long-period eccentricity control on sedimentary sequences in the continental Madrid Basin (middle Miocene, Spain), Earth Planet. Sci. Lett., 289, 220-231. 
  • Deenen, M.H.L., Ruhl, M., Bonis, N.R., Krijgsman, W., Kuerschner, W.M., Reitsma, M., van Bergen, M.J. (2010). A new chronology for the end-Triassic mass extinction, Earth Planet. Sci. Lett., 291, 113-125.... 
  • De Lange, G.J., and Krijgsman, W. (2010). Messinian Salinity Crisis: a novel unifying shallow gypsum/ deep dolomite formation mechanism, Mar. Geol., 275, 273-277
  • De Leeuw A., Bukowski, K., Krijgsman, W. and Kuiper, K.F. (2010). Age of the Badenian salinity crisis; impact of Miocene climate variability on the circum Mediterranean region, Geology, 38, 715-718. 
  • De Leeuw, A., Mandic, O., Vranjkovic, A., Pavelic, D., Harzhauser, M., Krijgsman, W. and Kuiper, K.F. (2010). Chronology and integrated stratigraphy of the Miocene Sinj Basin (Dinaride Lake System, Croatia),  PalaeogeographyPalaeogeogr., Palaeoclimat., Palaeoecol., 292, 155-167. 
  • Hüsing, S.K., Cascella, A., Hilgen, F.J., Krijgsman, W., Kuiper, K.F., Turco, E. and Wilson, D. (2010), Astrochronology of the Mediterranean Langhian between 15.29 and 14.17 Ma, Earth Planet. Sci. Lett., 290, 254-269 
  • Hüsing, S.K., Oms,O., Agustí, J., Garcés, M., Kouwenhoven, T.J., Krijgsman, W. and Zachariasse, W.J. (2010).  On the late Miocene closure of the Mediterranean - Atlantic gateway through  the Guadix basin (southern Spain), Palaeogeography Palaeoclimatology Palaeoecology, 291, 167-179. 
  • Joannin, S., Cornée, J.J., Münch, Ph., Fornari, M., Vasiliev, I., Krijgsman, W., Nahapetyan, S., Gabryelian, Y., Ollivier, V., Roiron, P., Chataîgnier, Ch. (2010). Early Pleistocene climatic cycles in continental deposits of the Lesser Caucasus of Armenia inferred from palynology, magnetostratigraphy, and 40Ar/39Ar dating, Earth Planet. Sci. Lett., 291, 149-158. 
  • Köhler, C.M., Heslop, D., Krijgsman, W. & Dekkers, M.J. (2010). Late Miocene paleoenvironmental changes in North Africa and the Mediterranean recorded by geochemical proxies (Monte Gibliscemi section, Sicily). Palaeogeography Palaeoclimatology Palaeoecology, 285, 66-73. 
  • Köhler, C.M.,  Krijgsman, W., Van Hinsbergen, D.J.J., Heslop, D. and Dupont-Nivet, G. (2010). Concurrent tectonic and climatic changes recorded in upper Tortonian sediments from the eastern Mediterranean, Terra Nova, 22, 52-63. 
  • Krijgsman, W., Stoica, M., Vasiliev, I. and Popov, V.V. (2010). Rise and fall of the Paratethys Sea during the Messinian Salinity Crisis, Earth Planet. Sci. Lett., 290, 183-191 
  • Langereis, C.G., Krijgsman, W., Muttoni, G., Menning, M.  (2010). Magnetostratigraphy – concepts, definitions, and applications, Newls. Strat.., 43, 207-233. 
  • Leever, K.A., Matenco, L., Rabagia, T., Cloetingh, S., Krijgsman, W. and Stoica, M. (2010). Messinian sea level fall in the Dacic Basin (Eastern Paratethys): palaeogeographical implications from seismic sequence stratigraphy, Terra Nova, 22, 12-17. 
  • Ollivier, V., Nahapetyan, S., Roiron, P., Gabrielyan, Y., Gasparyan, B., Chataignier, C., Joannin, S., Cornée, J.-J., Guillou, H., Scaillet, S., Munch, P., Krijgsman, W. (in press). Quaternary volcano-lacustrine patterns and palaeobotanical data in southern Armenia, Quaternary International, Quaternary International, 223-224, 312-326
  • Ruhl, M., Deenen, M.H.L., Abels, H.A., Bonis, N.R., Krijgsman, W. and Kürschner, W.M. (2010). Astronomical constraints on the duration of the early Jurassic Hettangian stage and recovery rates following the end-Triassic mass extinction (St. Audrie’s Bay/East Quantoxhead, UK) , Earth and Planetary Science Letters, 295, 262-276. 
  • Vasiliev, I., Reichart, G.J., Davies, G., Krijgsman, W., Stoica, M. (2010). Strontium isotope ratios of the Eastern Paratethys during the Mio-Pliocene transition; Implications for interbasinal connectivity, Earth Planet. Sci. Lett., 292, 123-131 
  • Vasiliev, I., de Leeuw, A., Filipescu, S., Krijgsman, W., Kuiper, K., Stoica, M., Briceag, A. (2010). The age of the Sarmatian-Pannonian transition in the Transylvanian Basin (Central Paratethys), Palaeogeogr. Palaeoclimatol. Palaeoecol., 297, 54-69. 


  • Govers, R., Meijer, P. Th. and Krijgsman, W. (2009). Regional isostatic response to Messinian Salinity Crisis events, Tectonophysics, 463, 109-129. (doi:10.1016/j.tecto.2008.09.026) 
  • Hilgen, F.J., Abels, H.A., Iaccarino, S., Krijgsman, W., Raffi, I., Sprovieri, R., Turco, E. and Zachariasse, W.J. (2009). The Global Stratotype Section and Point (GSSP) of the Serravallian Stage (Middle Miocene), Episodes, 32 (3), 152-166. 
  • Hüsing, S.K., Zachariasse, W.J., Van Hinsbergen, D.J.J., Krijgsman, W., Inceöz, M., Harzhauser, M., Mandic, O. and Kroh, A. (2009).  Oligo-Miocene foreland basin evolution in SE Anatolia: implications for the closure of the eastern Tethys gateway, In: Van Hinsbergen, D.J.J., Edwards, M.A. and Govers, R. (eds.), Geodynamics of Collision and Collapse at the Africa-Arabia-Eurasia subduction zone, Geological Society of London Special Publication, 311, 107-132. 
  • Hüsing, S.K., Dekkers, M.J., Franke, C., Krijgsman, W. (2009). The Tortonian reference section at Monte dei Corvi (Italy): evidence for early remanence acquisition in greigite-bearing sediments, Geophys. J. Int., 179, 125-143. doi:10.1111/j.1365-246X.2009.04301.x 
  • Hüsing, S.K., Kuiper, K.F., Link, W., Hilgen, F.J. and Krijgsman, W. (2009).  The upper Tortonian - lower Messinian at Monte dei Corvi (Northern Apennines, Italy): Completing a Mediterranean reference section for the Tortonian Stage, Earth Planet. Sci. Lett., 282, 140-57.  
  • Jimenez-Moreno, G., de Leeuw, A., Mandic, O., Harzhauser, M., Pavelic, D., Krijgsman, W. and Vranjkovic, A. (2009). Integrated stratigraphy of the early Miocene lacustrine deposits of Pag Island (SW Croatia): palaeovegetation and environmental changes in the Dinaride Lake System, Palaeogeogr., Palaeoclimat., Palaeoecol., 280, 193-206. doi:10.1016/j.palaeo.2009.05.018 
  • Vasiliev, I., Matenco, L. and Krijgsman, W. (2009). The syn- and post-collisional evolution of the Romanian Carpathian foredeep: New constraints from anisotropy of magnetic susceptibility and paleostress analysis, Tectonophysics, 407, 457-465.   
  • Dupont-Nivet, G., Dai, S., Fang, X., Krijgsman, W., Erens, V., Reitsma, M. and Langereis, C.G. (2008). Timing and distribution of tectonic rotations in the northeastern Tibetan plateau, In: Burchfiel, C. and Wang, E. (eds.), Investigations into the Tectonics of the Tibetan Plateau, The Geological Society of America Special Paper 444, 73–87, (doi: 10.1130/2008.2444). 
  • Govers, R., Meijer, P. Th, Krijgsman, W. (2009). Regional isostatic response to Messinian Salinity Crisis events, Tectonophysics, in press (doi:10.1016/j.tecto.2008.09.026) 
  • Köhler, C.M., Heslop, D., Dekkers, M.J., Krijgsman, W., van Hinsbergen, D.J.J. and von Dobeneck, T. (2008). Tracking provenance change during the late Miocene in the eastern Mediterranean using geochemical and environmental parameters, Geochemistry, Geophysics, Geosystems 9, Q12018, doi:10.1029/2008GC002127 
  • Krijgsman, W., Hilgen, F.J. and Meijer, P.Th. (2008). Chronological constraints and consequences for the Messinian Salinity Crisis, CIESM Workshop Monograph, 33, 39-44.
  • Krijgsman, W. and Meijer, P.Th. (2008). Depositional environments of the Mediterranean “Lower Evaporites” of the Messinian salinity crisis: Constraints from quantitative analyses, Mar. Geol., 253, 73-81. 
  • Krijgsman, W. and Langereis, C.G. (2008). Dating, magnetostratigraphy. In: V. Gornitz (ed.), Encyclopedia of Paleoclimatology and Ancient Environments, Springer, Dordrecht, 252-255. 
  • Kuiper, K.F., Deino, A., Hilgen, F.J., Krijgsman, W., Renne, P.R., Wijbrans, J.R. (2008). Synchronizing rock clocks of Earth history, Science, 320, 500-504. ...Science News of the Week: Kerr, R.E. (2008). Two Geologic Clocks Finally Keeping the Same Time, Science, 320, 434-435 
  • Vasiliev, I., Franke, C., Meeldijk, J.D.,Dekkers, M.J., Langereis, C.G. and Krijgsman, W. (2008). Putative greigite magnetofossils from the Pliocene epoch, Nature Geoscience, 1(11), 782-786. 
  • Dupont-Nivet, G., Krijgsman, W., Langereis, C.G., Abels, H. A., Dai, S. and Fang, X. (2007). Tibetan Plateau Aridification linked to global cooling at the Eocene-Oligocene transition,  Nature, 445, 635-638 
  • Nature News & Views: Bowen, G.J. (2007). When the world turned cold, Nature, 445, 607-608 
  • Hilgen, F.J., Kuiper, K.F., Krijgsman, W., Snel, E., Van der Laan, E. (2007). Astronomical tuning as the basis for high resolution chronostratigraphy: the intricate history of the Messinian Salinity Crisis, Stratigraphy, 4, 231-238. 
  • Hüsing, S.K., Hilgen, F.J., Abdul Aziz, H. and Krijgsman, W. (2007). Completing the Neogene geological time scale between 8.5 and 12.5 Ma, Earth Planet. Sci. Lett., 253, 340-358 
  • Krijgsman, W. and Fortuin, A.R. (2007). Zout en gips in het Middellandse-Zeebekken: De saliniteitscrisis van het Messinien (Mioceen), GEA, 40, 70-77.
  • Morigi, C., Negri, A., Giunta, S., Kouwenhoven, T.J., Krijgsman, W., Blanc-Valleron, M.M., Orszag-Sperber, F., Rouchy, J.M. (2007). Integrated quantitative biostratigraphy of the latest Tortonian-early Messinian Pissouri section (Cyprus): an evaluation of calcareous plankton bioevents, Geobios, 40, 267-279. 
  • Panaiotu, C.E., Vasiliev, I., Panaiotu, C.G., Krijgsman, W. and Langereis, C.G. (2007). Provenance analysis as a key to orogenic exhumation: a case study from the East Carpathians (Romania), Terra Nova, 19, 120-126 (doi: 10.1111/j.1365-3121.2006.00726.x) 
  • Stoica, M., Lazar, I., Vasiliev, I. and Krijgsman, W. (2007). Mollusc assemblages of the Pontian and Dacian deposits from the Topolog-Arges area (southern Carpathian foredeep - Romania), Geobios, 40, 391-405.  
  • Van Hinsbergen, D.J.J., Krijgsman, W., Langereis, C.G., Cornée, J.-J., Duermeijer, C.E. and van Vugt, N., 2007, Discrete Plio-Pleistocene phases of tilting and counterclockwise rotation in the southeastern Aegean arc (Rhodos; Greece): early Pliocene formation of the south Aegean left-lateral strike-slip system, Journal of the Geological Society of London 164,  1133-1144
  • Vasiliev, I., Bakrac, K., Kovacic, M., Abdul Aziz, H. and Krijgsman, W. (2008). Palaeomagnetic results from the Sarmatian/Pannonian Boundary in North-Eastern Croatia (Vranovic Section, Nasice Quarry), Geologica Croatica, 60(2), 151-163. 
  • Vasiliev, I., Dekkers, M.J., Krijgsman, W., Franke, C., Langereis, C.G. and Mullender, T.A.T. (2007). Early diagenetic greigite as a recorder of the palaeomagnetic signal in Miocene–Pliocene sedimentary rocks of the Carpathian foredeep (Romania),  Geophys. J. Int., 171, 613-629 
  • Agustí, J., Garcés, M. and Krijgsman, W. (2006). Evidence for African-Iberian exchanges during the Messinian in the Spanish mammalian record, Palaeogeogr. Palaeoclimatol. Palaeoecol., 238, 5-14. 
  • Çagatay, M.N., Görür, N., Flecker, R., Sakinç, M., Tünoglu, C., Ellam, R., Krijgsman, W., Vincent, S. and Dikbas, A. (2006). Paratethyan-Mediterranean connectivity in the Sea of Marmara region (NW Turkey) during the Messinian, Sediment. Geol., 188-189, 171-187. 
  • Cornée, J.J., Moissette, P., Joannin, S., Suc, J.-P., Quillévéré, F., Krijgsman, W., Hilgen, F., Koskeridou, E., Münch, Ph., Lécuyer, Ch. and Desvignes, P. (2006). Tectonic and climatic controls on coastal sedimentation: The Late Pliocene-Middle Pleistocene of northeastern Rhodes, Greece, Sediment. Geol., 187, 159-181. 
  • Cornée, J.J., Münch, P.,  Quillévéré, F., Moissette, P., Vasiliev, I., Krijgsman, W., Verati, C.  and Lécuyer, C. (2006). Timing of Late Pliocene to Middle Pleistocene tectonic events in Rhodes (Greece) inferred from magneto-biostratigraphy and 40Ar/39Ar dating of a volcaniclastic layer, Earth Planet. Sci. Lett., 250, 281-291. 
  • Dai, S., X. Fang, G. Dupont-Nivet, C. Song, J. Gao, W. Krijgsman, C. Langereis, and W. Zhang (2006) Magnetostratigraphy of Cenozoic sediments from the Xining Basin: Tectonic implications for the northeastern Tibetan Plateau, J. Geophys. Res., 111, B11102, doi:10.1029/2005JB004187.
  • Krijgsman, W. and Tauxe, L. (2006). E/I corrected paleolatitudes for the sedimentary rocks of the Baja British Columbia hypothesis, Earth Planet. Sci. Lett. 242,205– 216   
  • Krijgsman, W., Leewis, M.E., Garcés, M., Kouwenhoven, T.J., Kuiper, K.F., and Sierro, F.J. (2006). Tectonic control for evaporite formation in the Eastern Betics (Tortonian; Spain), Sediment. Geol., 188-189, 155-170. 
  • Kouwenhoven, T.J., Morigi, C., Negri, A., Giunta, S., Krijgsman, W. and Rouchy, J.-M. (2006). Paleoenvironmental evolution of the eastern Mediterranean during the Messinian: Constraints from integrated microfossil data of the Pissouri Basin (Cyprus), Mar. Micropal, 60, 17-44. 
  • Kuiper, K.F., Krijgsman, W., Garcés, M. and Wijbrans, J.R. (2006). Revised isotopic (40Ar/39Ar) age for the lamproite volcano of Cabezos Negros, Fortuna Basin (Eastern Betics, SE Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol, 238, 53-63. 
  • Popescu, S.M., Krijgsman, W., Suc, J.P., Clauzon, G., Marunteanu, M. and Nica, T. (2006). Pollen record and integrated high-resolution chronology of the early Pliocene Dacic Basin (southwestern Romania). Palaeogeogr. Palaeoclimatol. Palaeoecol., 238, 78-90. 
  • Steenbrink, J., Hilgen, F.J., Krijgsman, W., Wijbrans, J.R. and Meulenkamp, J.E. (2006). Late Miocene to early Pliocene depositional history of the intramontane Florina-Ptolemais-Servia Basin, NW Greece: interplay between orbital forcing and tectonics, Palaeogeogr. Palaeoclimatol. Palaeoecol., 238, 151-178. 
  • Van der Laan, E., Snel, E., de Kaenel E., Hilgen, F.J. and Krijgsman, W. (2006). No major deglaciation across the Miocene–Pliocene boundary: integrated stratigraphy and astronomical tuning of the Loulja section (Bou Regreg area, NW Morocco). Paleoceanography, 21 (3): Art. No. PA3011 
  • Van Assen, E., Kuiper, K.F., Krijgsman, W., Sierro, F.J. and Barhoun, N. (2006). Messinian astrochronology of the Melilla Basin: stepwise restriction of the Mediterranean-Atlantic connection through Morocco,  Palaeogeogr. Palaeoclimatol. Palaeoecol., 238, 15-31. 


  • Abels, H. A.; Hilgen, F. J.; Krijgsman, W.; Kruk, R. W.; Raffi, I.; Turco, E.; Zachariasse, W. J. (2005). Long-period orbital control on middle Miocene global cooling: Integrated stratigraphy and astronomical tuning of the Blue Clay Formation on Malta, Paleoceanography, 20 (4), PA4012 
  • Dupont-Nivet, G., Vasiliev, I., Langereis, C.G., Krijgsman, W. and Panaiotu, C. (2005). Neogene tectonic evolution of the southern and eastern Carpathians constrained by paleomagnetism, Earth Planet. Sci. Lett., 236, 374– 387  
  • Hilgen, F.J, Abdul Aziz,  H.A., Bice, D., Iaccarino, S., Krijgsman, W., Kuiper, K.F., Montanari, A., Raffi, I., Turco, E., Zachariasse, W.J., (2005). The Global boundary Stratotype Section and Point (GSSP) of the Tortonian Stage (Upper Miocene) at Monte Dei Corvi, Episodes, 28, 6-17.
  • Meijer, P.Th. and Krijgsman, W. (2005). A quantitative analysis of the desiccation and re-filling of the Mediterranean during the Messinian Salinity Crisis, Earth Planet. Sci. Lett.,  240, 510-520. 
  • Vasiliev, I., Krijgsman, W., Stoica, M. Cor G. Langereis (2005). Mio-Pliocene magnetostratigraphy in the southern Carpathian foredeep and Mediterranean – Paratethys correlations, Terra Nova, 17, 376–384 
  • Abdul Aziz, H. Van Dam, J. Hilgen, F.J. and Krijgsman, W. (2004). Astronomical forcing in Upper Miocene continental sequences: implications for the Geomagnetic Polarity Time Scale, Earth Planet. Sci. Lett., 222, 243-258 
  • Krijgsman, W., Gaboardi, S., Hilgen, F.J., Iaccarino, S., de Kaenel, E., Van der Laan, E. (2004). Revised astrochronology for the Ain el Beida section (Atlantic Morocco): No glacio-eustatic control for the onset of the Messinian Salinity Crisis, Stratigraphy, 1, 87-101. 
  • Krijgsman, W. and Garcés, M. (2004). Paleomagnetic constraints on the geodynamic evolution of the Gibraltar Arc, Terra Nova, 16, 281–287, 2004 
  • Krijgsman,W. and Kent, D.V. (2004). Non-uniform occurrence of small term fluctuations in the geomagnetic field ? New results from Middle to Late Miocene sediments from the North Atlantic (DSDP Site 608),  Geophysical Monograph Series, Volume 145 (AGU), 328 pp..  (proofs)
  • Krijgsman, W. and Tauxe, L. (2004). Shallow bias in Mediterranean paleomagnetic directions caused by inclination error, Earth Planet. Sci. Lett., 222, 685-695. 
  • Vasiliev, I., Krijgsman, W., Langereis, C.G., Panaiotu, C.E., Matenco, L. and Bertotti, G. (2004). Towards an astrochronological framework for the eastern Paratethys Mio-Pliocene sedimentary sequences of the Focsani basin (Romania), Earth Planet. Sci. Lett, 227, 231-247  
  • Abdul Aziz, H., Hilgen, F.J., Wilson, D.S., Krijgsman, W. and Calvo, J.P (2003). An astronomical polarity time scale for the middle Miocene based on continental sequences, J. Geophys. Res., 108 (B3), 2159, doi: 10.1029 / 2002JB001818. 
  • Abdul Aziz, H., Sanz-Rubio, E., Calvo, J.P., Hilgen, F.J. and Krijgsman, W. (2003). Paleoenvironmental reconstruction of a middle Miocene proximal alluvial fan to cyclic shallow lacustrine depositonal system in the Calatayud Basin (NE Spain),  Sedimentology, 50, 211–236. 
  • Cloetingh, S.,Horváth, F., Dinu, C., Stephenson, R.A., Bertotti, G., Bada, G., Garcia-Castellanos, D. and the TECTOP Working Group (2003). Probing Tectonic Topography in the Aftermath of Continental Convergence in Central Europe, EOS, Trans. AGU, 84(10), 89-96. 
  • Carrapa, B., Bertotti, G. and Krijgsman, W. (2003). Subsidence, stress regime and rotation(s) of a tectonically active sedimentary basin within the western Alpine Orogen: the Tertiary Piedmont Basin (Alpine domain, NW Italy), In: T. McCann and A. Saintot (eds.), Tracing Tectonic Deformation Using the Sedimentary Record, Geol. Soc. London, Spec. Publ., 208, 205-227.
  • Fortuin, A.R. and Krijgsman, W. (2003). The Messinian of the Nijar basin (SE Spain): sedimentation, depositional environments and paleogeographic evolution, Sediment. Geol., 160, 213-242. 
  • Garcés, M., Krijgsman, W., Peláez-Campomanes, P., Álvarez Sierra, M.A., and Daams, R. (2003). Hipparion dispersal in Europe: magnetostratigraphic constraints from the Daroca area (Spain), Coloquios de Paleontología, vol. ext. 1: 171-178. 
  • Hilgen, F.J., Abdul Aziz, H., Krijgsman, W., Raffi, I. and Turco, E. (2003). Integrated stratigraphy and astronomical tuning of the Serravallian and lower Tortonian at Monte dei Corvi (Middle-Upper Miocene, northern Italy), Palaeogeogr. Palaeoclimatol. Palaeoecol., 199, 229-264
  • Krijgsman, W. (2003). Magnetostratigraphic dating of the Çandir fossil locality (middle Miocene, Turkey), Cour. Forsch.-Inst. Senckenberg, 240, 41-49.
  • Kruiver, P.P., Langereis, C.G., Dekkers, M.J. and Krijgsman, W. (2003). Rock magnetic properties of multi-component natural remanent magnetisation in alluvial red beds (NE Spain), Geophys. J. Int.,153, 317-332. 
  • Pérez-Folgado, M., Sierro, F.J., Bárcena, M.A., Flores, J.A., Vázquez, A., Utrilla, R., Hilgen, F.J., Krijgsman, W. and Filipelli, G.M. (2003). Western versus eastern Mediterranean paleoceanographic response to astronomical forcing: a high-resolution microplankton study of precession-controlled sedimentary cycles during the Messinian, Palaeogeogr. Palaeoclimatol. Palaeoecol., 190, 317-334
  • Rodionov, V.P.,  Dekkers, M.J., Khramov, A.N., Gurevich, E.L., Krijgsman, W. , Duermeijer, C.E. and Heslop, D. (2003). Paleomagnetism and cyclostratigraphy of the Middle Ordovician Krivolutsky suite, Krivaya Luka section, southern Siberian platform: record of non-synchronous NRM-components or a non-axial geomagnetic  field ? Studia Geophysica Geodaetica, 47, 255-274. 
  • Krijgsman, W. (2002). The Mediterranean: Mare Nostrum of Earth Sciences, Earth Planet. Sci. Lett., 205, 1-12.   [PDF]
  • Krijgsman, W., Blanc-Valleron, M.-M., Flecker, R., Hilgen, F.J., Kouwenhoven, T.J., Merle, D., Orszag-Sperber, F. and Rouchy, J.-M. (2002). The onset of the Messinian salinity crisis in the Eastern Mediterranean (Pissouri Basin, Cyprus), Earth Planet. Sci. Lett., 194, 299-310.   [PDF]
  • Langereis, C.G., Dinarès-Turell, J. and Krijgsman, W. (2002). Milankovitch cyclicity in late Neogene marine succesions on Sicily: astrochronological tool and paleoclimate indicator. Excursion Guide, Symposium on Fundamental rock magnetism and environmental applications, Erice (Italy), 106 pp.
  • Kruiver, P.P., Krijgsman, W., Langereis, C.G. and Dekkers, M.J. (2002). Cyclostratigraphy and rock-magnetic investigation of the NRM signal in late Miocene palustrine-alluvial deposits of the Librilla section (SE Spain), J. Geophys. Res., 107, B12, 2334, doi:10.1029/2001JB000945   [PDF]
  • Merle, D.,  Lauriat-Rage, A., Gaudant, J., Pestrea, S., Courme-Rault, M.-D., Zorn, I.,  Blanc-Valleron, M.-M., Rouchy, J.-M., Orszag-Sperber, F. and Krijgsman, W. (2002). Les paléopeuplements marins du Messinien pré-évaporitique de Pissouri (Chypre, Méditerranée orientale): aspects paléoécologiques de la crise de salinité messinienne, Geodiversitas, 24 (3), 669-691.   [PDF]
  • Agustí, J., Cabrera, L., Garcés, M., Krijgsman, W., Oms, O. and Parés, J.M. (2001). A calibrated mammal scale for the Neogene of Western Europe. State of the art, Earth Sci. Rev. 52, 247-260.  [PDF]
  • Garcés, M., Krijgsman, W., Agustí, J. (2001). Chronostratigraphic framework and evolution of the Fortuna Basin (Eastern Betics) since the Late Miocene, Basin Res., 13 (2), 199-217.   [PDF]
  • Krijgsman, W., Fortuin, A.R., Hilgen, F.J. and Sierro, F.J. (2001). Astrochronology for the Messinian Sorbas Basin (SE Spain) and orbital (precessional) forcing  evaporite cyclicity, Sedim. Geol., 140, 43-60.  [PDF]
  • Langereis, C.G. and Krijgsman, W. (2001). Paleo-Oceanography: Geomagnetic Polarity Time Scale, In: J. Steele, S. Thorpe and K. Turekian (eds.), Encyclopedia of Ocean Sciences, 1134-1141, Academic Press, London.
  • Sanz-Rubio, E., Abdul Aziz, H., Calvo, J.P., Hilgen, F.J. and Krijgsman, W. (2001). Análisis sedimentológico y caracterización paleoclimática de la sucesión cíclica de Orera, Mioceno continental de la Cuenca de Calatayud. Geotemas, 3, 85-90.
  • Sierro, F.J., Hilgen, F.J., Krijgsman, W. and Flores, J.A. (2001). The Abad composite (SE Spain): A Mediterranean and global reference section for the Messinian,Palaeogeogr. Palaeoclimatol. Palaeoecol., 168, 141-169.  [PDF]
  • Van Dam, J.A., Alcalá, L., Alonso Zarza, A., Calvo, J.P., Garcés, M. and Krijgsman, W. (2001). The upper Miocene mammal record from the Teruel-Alfambra region (Spain). The MN system and continental stage/age concepts discussed, J. Vertebrate Paleontol., 21 (2), 367-385.


  • Abdul Aziz, H, Hilgen, F.J., Krijgsman, W., Sanz, E., and Calvo, J.P. (2000). Astronomical forcing of sedimentary cycles in the Middle to Late Miocene continental Calatayud Basin (NE Spain), Earth Planet. Sci. Lett., 177, 9-22   [PDF]
  • Alcalá, L., Alonso-Zarza, A.M., Alvarez-Sierra, M.A., Azanza, B., Calvo, J.P., Cañaveras, J.C., Dam, J.A. van, Garcés, M., Krijgsman, W., Van der Meulen, A.J., Morales, J., Peláez-Campomanes, P., Pérez González, A., Sánchez Moral, S., Sancho, R., and Sanz Rubio, E. (2000). El registro sedimentario y faunístico de las cuencas de  Calatayud-Daroca y Teruel: Evolución paleoambiental y paleoclimática durante el Neógeno. Rev. Soc. Geol. España, 13, 323-343.
  • Bernini, M., Boccaletti, M., Dahmani, M., El Mokhtari, J., Gelati, R., Iaccarino, S., Krijgsman, W., Langereis, C.G., Moratti, G., Papani, G., Sani, F. and Villa, G. (2000). The Neogene Taza-Guercif Basin. Excursion Guide, (XIth congress RCMNS), 47-117.
  • Fortuin, A.R., Krijgsman, W., Hilgen, F.J., Sierro, F.J. (2000). Late Miocene Mediterranean desiccation: topography and significance of the “Salinity Crisis” erosional surface on-land in southeast Spain: Comment. Sedim. Geol., 133, 175-184. [PDF]
    • Riding, R., Braga, J.C., Martín, J.M. (2000). Late Miocene Mediterranean desiccation: topography and significance of the ‘Salinity Crisis’ erosion surface on-land in southeast Spain: Reply. Sedim. Geol., 133, 175-184. [PDF]
  • Garcés, M., Krijgsman, W, Agustí, J. (2000). La cuenca neógena de Fortuna, Cordilleras Béticas: Magnetoestratigrafía y evolución tectonosedimentaria, Geotemas, 1, 81-85.
  • Garcés, M. and Krijgsman, W. (2000). Remagnetizaciones y migración de fluidos en la cuenca neógena de Fortuna, Cordilleras Béticas, Geotemas, 1, 105-109.
  • Hilgen, F.J., Bissoli, L., Iaccarino, S., Krijgsman, W., Meijer, R., Negri, A. and Villa, G. (2000). Integrated stratigraphy and astrochronology of the Messinian GSSP at Oued Akrech (Atlantic Morocco), Earth Planet. Sci. Lett., 182, 237-251 [PDF]
  • Hilgen, F.J., Iaccarino, S., Krijgsman, W., Langereis, C.G., Villa, G. and Zachariasse, W.J. (2000). The Global Standard Stratotype-section and Point (GSSP) of the Messinian Stage (uppermost Miocene), Episodes, 23/3, 1-6.
  • Hilgen, F.J., Krijgsman, W., Raffi, I., Turco, E. and Zachariasse, W.J. (2000). Integrated stratigraphy and astronomical calibration of the Serravallian/Tortonian boundary section at Monte Giblisciemi, Sicily, Marine Micropal., 38, 181-211   [PDF]
  • Hilgen, F.J., Krijgsman, W. and Lourens, L.J. (2000). Astronomische cycli: hun invloed op het klimaat op Aarde, Gea, 35, 1-8
  • Krijgsman, W., Garcés, M., Agustí, J., Raffi, I., Taberner, C. and Zachariasse, W.J. (2000). The “Tortonian Salinity Crisis” of the eastern Betics (Spain), Earth Planet. Sci. Lett., 181, 497-511.   [PDF]
  • Krijgsman, W. and Langereis, C.G. (2000). Magnetostratigraphy of the Zobzit and Koudiat Zarga sections (Taza-Guercif basin, Morocco): implications for the evolution of the Rifian Corridor. Marine and Petroleum Geology, 17, 359-371. [PDF]
  • Martín-Suarez, E., Freudenthal, M., Krijgsman, W. and Fortuin, A.R. (2000). On the age of the continental deposits of the Zorreras member (Sorbas Basin, SE Spain), Geobios, 33(4), 505-512.
  • Calvo, J.P., Abdul Aziz, H., Hilgen, F, Sanz-Rubio, E. and Krijgsman, W. (1999). The Orera section (Calatayud Basin, NE Spain): a remarkable cyclically bedded lacustrine succession from the Spanish Miocene. In: D. Barettino, M. Vallejo and E. Gallego (Eds.), Towards the Balanced Management and Conservation of the Geological Heritage in the New Millenium, 186-192.
  • Daams, R., van der Meulen, A.J., Alvarez Sierra, M.A., Peláez-Campomanes, P., Calvo, J.P., Alonso Zarza, M.A. and Krijgsman, W. (1999). Stratigraphy and sedimentology of the Aragonian (Early to Middle Miocene) in its type area (North-Central Spain), Newsl. Stratigr., 37(3), 103-139.
  • Daams, R., van der Meulen, A.J., Alvarez Sierra, M.A., Peláez-Campomanes, P. and Krijgsman, W. (1999). Aragonian stratigraphy reconsidered, and a re-evaluation of the middle Miocene mammal biochronology in Europe, Earth Planet. Sci. Lett., 165, 287-294. [PDF]
  • Duermeijer, C.E., Krijgsman, W., Langereis, C.G., Meulenkamp, J.E., Triantaphyllou, M.V. and Zachariasse, W.J. (1999). A late Pleistocene clockwise rotation phase of Zakynthos (Greece) and implications for the evolution of the western Aegean arc, Earth Planet. Sci. Lett., 173, 315-331.
  • Garcés, M., Krijgsman, W., van Dam, J., Calvo, J.P., Alcalá, L. and Alonso-Zarza, A.M. (1997, Pub. 1999). Late Miocene alluvial sediments from the Teruel area: magnetostratigraphy, magnetic susceptibility and facies organisation, Acta Geol. Hisp., 32, 171-184.
  • Hilgen, F.J. and Krijgsman, W. (1999). Cyclostratigraphy and astrochronology of the Tripoli diatomite formation (pre-evaporite Messinian, Sicily, Italy), Terra Nova, 11, 16-22. [PDF]
  • Hilgen, F.J., Abdul Aziz, H., Krijgsman, W., Langereis, C.G., Lourens, L.J., Meulenkamp, J.E., Raffi, I., Steenbrink, J., Turco, E., Van Vugt, N., Wijbrans, J.R. and Zachariasse, W.J. (1999). Present status of the astronomical (polarity) time-scale for the Mediterranean late Neogene, Phil. Trans. R. Soc. Lond. A, 357, 1-17.
  • Krijgsman, W., Delahaije, W., Langereis, C.G. and De Boer, P.L. (1997, Pub. 1999). Paleomagnetism and astronomically induced cyclicity of the Armantes section; a Miocene continental red bed sequence in the Daroca-Calatayud basin (Central Spain), Acta Geol. Hisp., 32, 201-220
  • Krijgsman, W., Hilgen, F.J., Raffi, I, Sierro, F.J. and Wilson, D.S. (1999). Chronology, causes and progression of the Messinian salinity crisis, Nature, 400, 652-655. [PDF]See also: Nature N&V [PDF]
  • Krijgsman, W., Hilgen, F.J., Marabini, S. and Vai, G.B. (1999). New paleomagnetic and cyclostratigraphic age constraints on the Messinian of the Northern Apennines (Vena del Gesso Basin, Italy), Special Issue Messinian, Mem. Soc. Geol. Ital., 54, 25-33.
  • Krijgsman, W., Langereis, C.G., Zachariasse, W.J., Boccaletti, M., Moratti, G., Gelati, R., Iaccarino, S., Papani, G. and Villa, G. (1999). Late Neogene evolution of the Taza-Guercif Basin (Rifian Corridor; Morocco) and implications for the Messinian salinity crisis, Marine Geol., 153, 147-160. [PDF]
  • Negri, A., Giunta, S., Hilgen, F, Krijgsman, W. and Vai, G.B. (1999). Calcareous nannofossil biostratigraphy of the M. del Casino section (northern Apennines, Italy) and paleoceanographic conditions at times of Late Miocene sapropel formation, Marine Micropal., 36, 13-30.
  • Sierro, F.J., Flores, J.A. Zamarreno, I., Vazquez, A., Utrilla, R., Frances, G., Hilgen, F.J. and Krijgsman, W. (1999). Messinian pre-evaporite and precession-induced oscillations in western Mediterranean climate, Marine Geol., 153, 137-146. [PDF]
  • Duermeijer, C.E., Krijgsman, W., C.G. Langereis and J.H. ten Veen, (1998). Post early Messinian counter-clockwise rotations on Crete: implications for the late Miocene to Recent kinematics of the southern Hellenic Arc. Tectonophysics, 298, 177-189.
  • Garcés, M., Krijgsman, W. and Agustí, J. (1998) Chronology of the late Turolian deposits of the Fortuna basin (SE Spain): Implications for the Messinian evolution of the eastern Betics, Earth Planet. Sci. Lett., 163, 69-81.
  • Hilgen, F.J., W. Krijgsman, C.G. Langereis, W.J. Zachariasse, S. Iaccarino, G. Villa, Benson R.H., and  M. Dahmani (1998). The Global Standard Stratotype-section and Point (GSSP) of the Messinian Stage (Uppermost Miocene) - A proposal. Neogene Newsletter, 5, 55-77.
  • Krijgsman, W., (1998). Book Review: Miocene stratigraphy: An Integrated approach, by A. Montanari, G.S. Odin, R.Coccioni, Sediment. Geol., 119, 337-338.
  • Peeters, F.J.C., Hoek, R.P., Brinkhuis, H., Wilpshaar, M., de Boer, P.L., Krijgsman, W. And Meulenkamp, J.E. (1998). Differentiating glacio-eustacy and tectonics; a case study involving dinoflagellate cysts from the Eocene-Oligocene transition of the Pindos foreland basin (NW Greece), Terra Nova, 10, 245-249.
  • Hilgen, F.J., Krijgsman, W., Langereis, C.G. and Lourens, L.J. (1997). Breakthrough Made in Dating of the Geological Record, EOS, Trans. AGU, 78, 285 & 288
  • Hilgen, F.J., Krijgsman, W. and Wijbrans, J.R. (1997). Astronomical ages and Ar/Ar dating of some Miocene ash beds: consequences for the age of mineral dating standards, Geophys. Res. Lett., 24 , 2043-2046.
  • Krijgsman, W., Delahaije, W, Langereis, C.G. and de Boer, P.L. (1997). Cyclicity and NRM acquisition in a continental red bed sequence (Miocene, Spain): potential for an Astronomical Polarity Time Scale, Geophys. Res. Lett., 24, 1027-1030.
  • Krijgsman, W., Hilgen, F.J., Negri, A., Wijbrans, J.R. and Zachariasse, W.J. (1997). The Monte del Casino section: A potential Tortonian-Messinian boundary stratotype ?, Palaeogeogr. Palaeoclimat. Palaeoecol., 133, 27-48.
  • Sierro, F.J., Flores, J.A. Zamarreno, I., Vazquez, A., Utrilla, R., Frances, G., Hilgen, F.J. and Krijgsman, W. (1997). Astronomical cyclicity and sapropels in the pre-evaporitic Messinian of the Sorbas basin (Western Mediterranean), Geogaceta,, 21, 199-202.
  • Krijgsman, W. (1996). Miocene magnetostratigraphy and cyclostratigraphy in the Mediterranean: extension of the astronomical time scale. (PhD Thesis Utrecht University), Geologica Ultraiectina, 141, pp. 207.
  • Krijgsman, W., Garcés, M., Langereis, C.G., Daams, R., van Dam, J., van der Meulen, A.J., Agustí, J. and Cabrera, L. (1996). A new chronology for the middle to late Miocene continental record in Spain. Earth Planet Sci. Lett., 142, 367-380. [PDF]
  • Krijgsman, W., Duermeijer, C.E., Langereis, C.G., de Bruijn, H., Saraç, G. and Andriessen, P.A.M. (1996). Magnetic polarity stratigraphy of late Oligocene to middle Miocene mammal-bearing localities in Central Anatolia (Turkey). Newsl. Strat.,34, 13-29.
  • Hilgen, F.J., Krijgsman, W., Langereis, C.G., Lourens, L.J., Santarelli, A. and Zachariasse, W.J. (1995). Extending the astronomical (polarity) time scale into the Miocene, Earth Planet. Sci. Lett., 136, 495-510.
  • Krijgsman, W., Hilgen, F.J., Langereis, C.G., Santarelli, A. and Zachariasse, W.J. (1995). Late Miocene magnetostratigraphy, biostratigraphy and cyclostratigraphy in the Mediterranean, Earth Planet. Sci. Lett., 136, 475-499.
  • Krijgsman, W., Hilgen, F.J., Langereis, C.G. and Zachariasse, W.J. (1994). The age of the Tortonian-Messinian boundary. Earth Planet. Sci. Lett., 121, 533-547.
  • Krijgsman, W., Langereis, C.G., Daams, R. and Van der Meulen, A. (1994). Magnetostratigraphic dating of the middle Miocene climate change in the continental deposits of the Aragonian type area in the Calatayud-Teruel basin (Central Spain). Earth Planet. Sci. Lett., 128, 513-526.