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Figure 6. Vertical slices through sensitivity kernels for the optimal observable in the κ , μ, ρ parametrization. While the sensitivity to κ is negligibly small,
sensitivity to μ remains large. The comparatively small reduction of sensitivity to μ results from the small variability in the geometry of the individual density
kernels for different period bands, shown in the right-hand panel of Fig. 7. The main effect of the optimization is to introduce additional sign changes with
depth in the sensitivity to μ.

Figure 7. Horizontally averaged sensitivity kernels with respect to κ (left panel), μ (centre panel) and ρ (right panel). Kernels for the individual period bands
are plotted in black. Red curves represent the kernels corresponding to the optimal observable. Sensitivity of the optimal observable to α is forced to almost
zero. The comparatively small variability in the geometry of the individual density kernels for different period bands limits the ability to find an optimal
observable with a density sensitivity that is significantly increased relative to the shear modulus sensitivity.

are shown in the right-hand panel of Fig. 7. The small geometric
variability reduces the ability to find linear combinations with fun-
damentally new properties, thereby illustrating a limitation of our
method that we further discuss in Section 4.1.

One of the main effects of the optimization algorithm is to in-
troduce additional sign changes with depth in the sensitivity to
μ. These sign changes reduce the impact of large-scale variations
in μ on the optimal observable. In the following section we will
further investigate this effect in a scenario with multiple sources
and receivers.

3.1.3 A synthetic tomography scenario

In this section, we apply the construction of optimal observables
to a configuration with multiple sources and receivers, as shown
in Fig. 8. This experiment is intended to serve several purposes:

(1) test the applicability of the optimization algorithm to multiple
source–receiver pairs, (2) check the reproducibility of the weight-
ing coefficients wi found for a single source–receiver pair in the
previous example and (3) test with actual measurements if density
truly becomes the dominant parameter.

Our scenario includes 10 shallow events in the Mediter-
ranean region, with epicentres taken from the Global CMT cat-
alogue (www.globalcmt.org). The positions of the 43 stations
in the experiment correspond to station locations in the seis-
mic networks IberArray (http://iberarray.ictja.csic.es) and ISIDe
(http://iside.rm.ingv.it/iside). This distribution of sources and re-
ceivers ensures a dense coverage of the Mediterranean region except
for the southeastern part.

For the construction of optimal observables, we again consider
cross-correlation time-shifts of vertical-component Rayleigh waves
for the frequency bands 30–40 s, 40–60 s and 90–130 s. We fur-
thermore impose that the optimal weights wi be the same for each
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Figure 8. Left-hand side: source/receiver geometry of the synthetic tomography scenario. 10 seismic events visualized by their corresponding source
mechanisms encircle the Mediterranean Sea. The 43 receiver locations are marked by yellow triangles. Great circle paths are represented by black lines between
each source/receiver pair. Right-hand side: density perturbation of +15 per cent centred in the Tyrrhenian Sea at 13◦E, 39◦N and 150 km depth.

Figure 9. Comparison of cumulative time delays resulting from the density
heterogeneity (χ (δln ρ)) and the shear modulus heterogeneity (χ (δln μ))
shown in Fig. 8. The effect of the density heterogeneity is clearly dominant
for the optimal observable.

receiver and event. For this scenario, the optimization algorithm re-
produces exactly the same weights as in the single source–receiver
case of Section 3.1.2. This result is plausible, at least for a radi-
ally symmetric background model where surface wave sensitivity
kernels have translational invariance and depth profiles that are
nearly independent of epicentral distance. Differences in the source
mechanisms play a minor role. To test if the optimal observable
indeed reacts primarily to density perturbations, we add hetero-
geneities to the 1-D model, centred at 13◦E, 39◦N and 150 km depth
(see right-hand panel of Fig. 8). In a first simulation we computed
vertical-component seismograms for the individual frequency bands
and a +15 per cent density perturbation. For realistic earth models,
this value may be exaggerated, but it ensures that the traveltime
differences between the 1-D model and its perturbed version are
large and free of discretization errors. In a second simulation we
replaced the density perturbation by a −15 per cent shear modulus
perturbation. Following these simulations, we compute the cumu-
lative rms time delays χ observed for all source–receiver pairs for
both types of perturbations; and for the fundamental, as well as for
the optimal observable.

The result is displayed in Fig. 9 in the form of relative time delays
for density and shear modulus perturbations, χ (δln ρ)/χ (δln μ).
Within the individual period bands, the time delays produced by
the shear modulus heterogeneity is generally larger than the time
delays produced by the density heterogeneity of comparable size.
For the optimal observable, however, time delays due to the density

heterogeneity are more than 40 per cent larger, supporting the results
of the sensitivity analysis of Section 3.1.2 that already suggested the
dominance of density structure. This result furthermore confirms
that the optimization algorithm produces the desired results, and
indeed provides observables that mostly react to changes in the
target parameter class.

3.2 Sensitivity optimization involving translational and
rotational ground motion measurements

So far, we were concerned with the optimization of sensitivities
with respect to a set of structural parameters. In the following appli-
cation we demonstrate that our algorithm remains applicable when
the parameter classes are not structural parameters themselves, but
structural parameters within certain target regions of the Earth. We
consider the apparent S-velocity βa, defined at the receiver location
xr as the ratio of rms translational velocity and rotation amplitudes
of a seismic recording (e.g. Fichtner & Igel 2009):

βa(xr ) := 1

2

‖v(xr )‖2

‖ω(xr )‖2
. (23)

Quantities on the right-hand side of eq. (23) denote the veloc-
ity amplitude ‖v(xr )‖2

2 = ∫
v2(xr , t) dt and the rotation amplitude

‖ω(xr )‖2
2 = ∫

( 1
2 ∇ × u)2(xr , t) dt. The quotient rule of differenti-

ation implies that the sensitivity of βa is equal to the difference
between the sensitivities of ‖v(xr )‖2 and ‖ω(xr )‖2 :

Kβ (βa) = Kβ (‖v(xr )‖2) − Kβ (‖ω(xr )‖2). (24)

The key property of Kβ (βa) is that sensitivity is concentrated in the
immediate vicinity of the receiver, and tends to zero towards the
source (Fichtner & Igel 2009; Bernauer et al. 2012). This property
suggests a variant of local tomography with teleseismic data that is
fully independent of both traveltime measurements and deep Earth
structure far from the local target region (Bernauer et al. 2009).

Our aim is to reproduce the localization of sensitivity near the
receiver by constructing an optimal observable, instead of using the
definition of the apparent S-velocity βa from eq. (23). For this, we
define dv = ‖v‖2 and dω = ‖ω‖2 as our fundamental observables.
As first parameter class, we choose the S-velocity β within a region
R1 that extends 500 km around the receiver. The second parameter
class is the S velocity in the remaining part of the model, denoted
by R2. With the optimization scheme developed in Section 2, we
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Figure 10. Vertical slices at 37.5◦N through the sensitivity kernels G Kβ (‖v‖) (top left-hand side), G Kβ (‖ω‖) (centre left-hand side), (1 − G) Kβ (‖v‖) (top
right-hand side) and (1 − G) Kβ (‖ω‖) (centre right-hand side). The function G is a Gaussian function that is centred at the receiver position and has a half-width
of 500 km. The source–receiver geometry and the source characteristics are the same as in Fig. 1. The third row displays the kernels for the optimal observable
d = 0.71 (dv − dω). Shear wave sensitivity is entirely concentrated in the receiver region, and zero at distances of more than a few hundred kilometres from
the receiver.

construct an optimal observable d = wvdv + wωdω with maximum
sensitivity in R1 and minimum sensitivity in R2.

In the practical implementation, we write the variation of dv as

δdv =
∫

V
G Kβ (‖v‖) δβ d3x +

∫
V

(1 − G) Kβ (‖v‖) δβ d3x , (25)

where G is a Gaussian function that is centred at the receiver position
and has a half-width of 500 km. Similarly, for the variation of dω,
we have

δdω =
∫

V
G Kβ (‖ω‖) δβ d3x +

∫
V

(1 − G) Kβ (‖ω‖) δβ d3x . (26)

Eqs (25) and (26) are special cases of eq. (11) in the theoretical
developments, and they imply that the four kernels entering the
optimization scheme are G Kβ (‖v‖), G Kβ (‖ω‖), (1 − G) Kβ (‖v‖)
and (1 − G) Kβ (‖ω‖). These kernels are displayed in the first two
rows of Fig. 10. All kernels were computed with the same setup as
in Section 3.1 but for a frequency band of 40–100 s.

Inserting the sensitivity kernels in the optimization algorithm pro-
vides the weighting coefficients wv = 0.71 and wω = −0.71, mean-
ing that the observable with maximum sensitivity in the receiver
region and minimum sensitivity elsewhere is just the difference of
dv and dω, that is,

d = 0.71 (dv − dω) . (27)

The factor 0.71 ≈ √
1/2 results from the constraint that the squared

sum of all weights be equal to 1 (see eq. 9). The sensitivity kernel
corresponding to d is given by

Kβ (d) = 0.71
[
Kβ (‖v(xr )‖2) − Kβ (‖ω(xr )‖2)

] = 0.71 Kβ (βa),

(28)

and is shown in the third column of Fig. 10. This result is remarkable
for various reasons: First, the optimization scheme indeed succeeds
to focus sensitivity in the receiver region while completely erasing
sensitivity in any other part of the earth model. It follows that any
shear velocity perturbation more than a few hundred kilometres
from the receiver has no first-order effect on the optimal observ-
able d. Second, we fully reproduce the sensitivity of the apparent
S-velocity βa, up to a constant that results from the construction
procedure of the optimal observable. Third, the result illustrates

that kernels cannot be linked uniquely to an observable. Both βa

= dv/dω and d = dv − dω have, as a consequence of the quotient
rule, identical sensitivity kernels. Finally, we note that separating
the complete kernels into low- and high-frequency components, in-
stead of concentrating on different areas as in eqs (25) and (26),
also leads to exactly the same linear combination as in eq. (27). The
variations in dv and dω are expressed as

δdv =
∫

V
F ∗ Kβ (‖v‖) δβ d3x +

∫
V

(1 − F) ∗ Kβ (‖v‖) δβ d3x,

(29)

and

δdω =
∫

V
F ∗ Kβ (‖ω‖) δβ d3x +

∫
V

(1 − F) ∗ Kβ (‖ω‖) δβ d3x,

(30)

where F is a spatial high-pass filter and (1 − F) the corresponding
low-pass filter. This result shows that the sensitivity close to the
receiver in fact corresponds to the low-wavenumber contributions
of the sensitivity kernels for dv and dω.

4 D I S C U S S I O N

The series of examples shown in Section 3 illustrates the applica-
bility of the proposed method, but also raises various questions that
deserve a more detailed discussion. These include the circumstances
under which useful optimal observables can be designed, the role
of quasi-subjective prior covariances, actual multiparameter inver-
sion schemes based on optimal observables and the relation of our
method to experimental design and the Backus–Gilbert method.

4.1 Successfully designing optimal observables

The extent to which sensitivity with respect to the target parameter
class can be maximized while minimizing sensitivity with respect
to the remaining parameter classes depends critically on the shape
of the sensitivity kernels for the fundamental observables. A large
variability in the shape of the kernels generally favours the success-
ful construction of an observable that is truly optimal in the sense
of being sensitive to one parameter class only.
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In the example of Section 3.1.1, where we considered the sensitiv-
ity of Rayleigh-wave traveltimes to the vertical density gradient ∂ rρ,
the shape of the individual kernels was strongly period-dependent.
This dependence allowed us to reduce the sensitivity to α and β

while keeping the sensitivity to ∂ rρ at a high level.
We encountered a less favourable situation when changing

the parametrization to κ , μ and ρ in Section 3.1.2. In this
parametrization, the geometry of the density kernels is nearly
period-independent, which limits the ability to find linear com-
binations with fundamentally different properties.

Along these lines, it is clear that the success of our methodology
relies on the choice of fundamental observables. For the purpose of
illustration, we deliberately chose a small number of fundamental
observables, the physics of which are well understood. These ob-
servables allowed us to display both the functioning and limitations
of our method. For future applications, the range of fundamental ob-
servables should clearly be extended, to include, for instance, time-
and frequency-dependent amplitudes or various array-like measure-
ments like interstation correlations.

4.2 The role of prior model covariance and parameter
scaling

The problem of interparameter trade-offs in regularized inversions
has two components—one related to our prior assumptions on model
covariance, and one related to the structural sensitivity of specific
observables. The interplay of both components becomes most ap-
parent in the generalized inverse, given in eq. (5) for the case of two
parameter classes.

Normalizing, for instance, parameter class m1 by a very small
prior standard variation σ 1, will scale the corresponding G1 to σ1G1,
meaning that the generalized inverse L effectively becomes

L ≈
(

I 0

0 [G
T

2 C−1
d G2 + I]

)−1(
G

T

1

G
T

2

)
C−1

d . (31)

The corresponding resolution matrix would be

R ≈
(

0 0

0 [G
T

2 C−1
d G2 + I]−1[G

T

2 C−1
d G2]

)
, (32)

meaning that the prior assumption on model covariance causes δm1

to be completely unresolved. This illustrates the effect of the prior
on perceived resolution in deterministic inversions; and there is no
generic solution other than probabilistic inversions that are, how-
ever, not feasible for high-dimensional model spaces.

Our development focuses on the second component of interpa-
rameter trade-offs that is related to the choice of observable. In-
dependent of any prior assumptions, we ask how much sensitivity
with respect to one parameter can be increased relative to sensitivity
with respect to another parameter by designing optimal observables.
The usefulness of these optimal observables in an actual regularized
deterministic inversion also depends on the choices of prior covari-
ances for the various parameter classes. Prior knowledge on the
variability of model parameters can be naturally incorporated into
our approach by scaling model parameters by their prior standard
deviations.

4.3 Iterative inversion for multiple parameter classes

To use optimally designed observables in a tomographic inversion,
we propose to proceed as follows: Again using the case of two

parameter classes for illustration, we first construct an optimal ob-
servable d1 for m1 and a second optimal observable d2 for m2. The
linearized relation between observations and model parameters then
takes the form(

δd1

δd2

)
=

(
G11 G12

G21 G22

)(
δm1

δm2

)
. (33)

In the ideal, but hardly achievable, scenario where d1 is insensitive
to m2 and d2 is insensitive to m1, the off-diagonal contributions
G12 and G21 in eq. (33) cancel, and the two parameter classes are
decoupled. Under more realistic circumstances, G12 and G21 will
be non-zero but by construction smaller than the diagonal elements
G11 and G22. To emphasize the dominance of the diagonal terms,
we rewrite (33) as

G11δm1 = δd1 − G12δm2,

G22δm2 = δd2 − G21δm1. (34)

Following (Kennett & Sambridge 1998), the first iteration consists
in solving a regularized version of

G11δm(1)
1 = δd1,

G22δm(1)
2 = δd2. (35)

As a result of the enforced diagonal dominance, the first iterates
δm(1)

1 and δm(1)
2 will already be useful approximations to δm1 and

δm2. Subsequently, the off-diagonal terms are incorporated itera-
tively by solving regularized versions of

G11δm(i+1)
1 = δd1 − G12δm(i)

2 ,

G22δm(i+1)
2 = δd2 − G21δm(i)

1 , (36)

with i = 1, . . . . During the inversion, only the right-hand side of the
equations changes, meaning that it can be solved efficiently once
generalized inverses of G11 and G22 are constructed.

4.4 The influence of different reference models and the
effects of non-linearity on the inversion process

As outlined in Section 2, the construction of optimal observables
depends critically on the Fréchet or sensitivity kernels for the fun-
damental observables. Since the sensitivity kernels depend on the
properties of the earth model, the weights used to construct opti-
mal observables depend on the earth model, too. This implies that
sensitivity kernels for fundamental observables, as well as optimal
weights, should in principle be re-computed in each iteration of an
iterative non-linear inversion.

While iterative re-computations would be required in order to
obtain exactly the optimal observables, a more relaxed approach
can be taken in regional- to global-scale tomographies where the
variations from a 1-D background model are usually small. As
shown by Zhou et al. (2011), the geometry and amplitudes of surface
wave sensitivity kernels are only insignificantly affected by plausible
lateral heterogeneities in global earth models. A similar result for
body waves was presented by Mercerat & Nolet (2012). The weak
dependence of sensitivity kernels on percent-level heterogeneities
justifies the use of a 1-D earth model in our examples, and it also
reduces the computational cost of the proposed optimization scheme
because a re-computation of optimal weights in each iteration is
unlikely to be necessary.

Nevertheless, the proposed optimization algorithm is also ap-
plicable to local studies where the successive introduction of 3-D
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1252 M. Bernauer, A. Fichtner and H. Igel

heterogeneities throughout the inversion may significantly affect the
characteristics of the sensitivity kernels of optimal observables.

4.5 Relation to the Backus–Gilbert method and
experimental design

The linear combination of data for optimal-design purposes, pro-
posed in eq. (8), is reminiscent of the Backus–Gilbert approach
for linear inverse problems with a single model parameter class
(Backus & Gilbert 1968). Backus and Gilbert suggested to combine
data as d = ∑n

i=1 wi di such that the composite sensitivity kernel
K (x) = ∑n

i=1 Ki (x) is close to δ(x − x0), thereby producing a direct
estimate of earth model properties via δd = ∫

K (x) δm(x) d3x ≈
δm(x0). The concept is therefore similar, but the design goal and
optimization scheme differ significantly.

As indicated already in Section 3.2, our method can be adapted
to mimic the Backus–Gilbert method. Defining parameter class 1 to
equal, for instance, S velocity at location x = x0, and parameter class
2 to equal S velocity at all other positions x �= x0, would produce an
optimal observable with an associated kernel that is as much δ-like
as allowed by the data. While theoretically appealing, this approach
would suffer from the same problems as the Backus–Gilbert method
itself: To compute a whole-earth model, the optimization procedure
needs to be repeated for all positions x; and the resulting earth
model may then not explain the data because the union of optimal
point estimates is not necessarily an optimal collective estimate.
This explains why applications of the Backus–Gilbert method are
relatively few in number (e.g. Chou & Booker 1979; Trampert &
van Heijst 2002).

As mentioned in the Introduction further links exist to experimen-
tal design frequently used to optimize the source–receiver geometry
in geophysical exploration (e.g. Curtis 1999b). Our method can be
used for a similar purpose by defining the fundamental observables
to be measurements for a collection of potential source–receiver
pairs. In the final experiment, only those source–receiver pairs with
a weight above a pre-defined threshold would then be used.

5 C O N C LU S I O N S

We developed a method for the construction of seismic observables
that have maximum sensitivity with respect to a target model pa-
rameter class, while having minimum sensitivity with respect to
all remaining parameter classes. This is achieved through the op-
timal linear combination of fundamental observables that can be
any scalar measurement extracted from seismic recordings. The
resulting optimal observables minimize interparameter trade-offs
that result from regularization in ill-posed multiparameter inverse
problems.

In a series of examples we have shown that surface wave trav-
eltime observations in different frequency bands can be combined
such that sensitivity to 3-D density structure increases substantially.
Simultaneously, sensitivity to S velocity (or shear modulus) is re-
duced, and sensitivity to P velocity (or bulk modulus) is practically
eliminated, thereby reducing a three-parameter problem into a sim-
pler two-parameter problem.

Using rotational ground motion measurements, allows us to con-
struct an observable with dominant sensitivity in the near-receiver
region, and zero sensitivity at more than a few wavelengths dis-
tance from the receiver. This observable is identical to the apparent
shear velocity βa (eq. 23), originally defined on the basis of purely
physical arguments (Fichtner & Igel 2009; Bernauer et al. 2012).

In the interest of reproducibility and clarity, our examples used a
small number of well-understood fundamental observables, few pa-
rameter classes and a radially symmetric earth model. The method
itself, however, does not impose such restrictions, and it can
easily be applied to large numbers of fundamental observables and
parameters classes, as well as to 3-D heterogeneous earth models.
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A P P E N D I X A : O P T I M A L E I G E N VA LU E

Given
∑n

i=1 w2
i = 1 and ∂L

∂wl
= 0 we have L(w, λ) = λ.

Proof:

L(w, λ) =
p∑

j=1

b j

∫
V

[
n∑

i=1

wi Ki j (x)

]2

d3x − λ
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n∑
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b j
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∫
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+ wnw1 Knj K1 j + · · · + wnwn Knj Knj ] d3x

= w1 M11w1 + · · · + w1 M1nwn +
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...

+ wn Mn1w1 + · · · + wn Mnnwn
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n∑
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A P P E N D I X B : S E N S I T I V I T Y K E R N E L S
F O R V E RT I C A L D E N S I T Y G R A D I E N T S

To derive expressions for sensitivity kernels with respect to vertical
density gradients, ∂ rρ, we start with the general first-order expres-
sion that relates a change in the data δd to a change in density,
δρ:

δd =
π∫

θ=0

2π∫
φ=0

R∫
r=0

Kρ(θ, φ, r ) δρ(θ, φ, z) dθ dφ dr, (B1)

where R denotes the radius of the Earth. In eq. (B1), we incor-
porated the term r2sin θ in the spherical volume element in the

definition of the density kernel Kρ , thereby leaving a simple inte-
gral of Kρδρ over colatitude θ , longitude φ and radius r. Substituting
the identity

Kρ(θ, φ, r ) = ∂r

r∫
r ′=0

Kρ(θ, φ, r ′) dr ′ (B2)

into eq. (B1), yields

δd =
π∫

θ=0

2π∫
φ=0

R∫
r=0

⎡
⎣∂r

r∫
r ′=0

Kρ(θ, φ, r ′) dr ′

⎤
⎦ δρ(θ, φ, z) dθ dφ dr.

(B3)

Integrating by parts with respect to r, transforms (B3) into

δd =
π∫

θ=0

2π∫
φ=0

⎡
⎣ r∫

r ′=0

Kρ(θ, φ, r ′) dr ′

⎤
⎦ δρ(θ, φ, z) dθ dφ

∣∣∣∣∣∣
R

r=0

−
π∫

θ=0

2π∫
φ=0

R∫
r=0

⎡
⎣ r∫

r ′=0

Kρ(θ, φ, r ′) dr ′

⎤
⎦ ∂rδρ(θ, φ, z) dθ dφ dr.

(B4)

Recognizing that the vertical integral over the density kernel Kρ in
α − β − ρ parametrization is nearly zero (e.g. Takeuchi & Saito
1972), the first term on the right-hand side of (B4) can be ignored.
Using the identity ∂ rδρ = ∂ r(ρ − ρ0) = ∂ rρ − ∂ rρ0 = δ∂ rρ, eq.
(B4) simplifies to

δd = −
π∫

θ=0

2π∫
φ=0

R∫
r=0

⎡
⎣ r∫

r ′=0

Kρ(θ, φ, r ′) dr ′

⎤
⎦ δ∂rρ(θ, φ, z) dθ dφ dr.

(B5)

From eq. (B5) we see that the sensitivity kernel with respect to the
vertical density gradient ∂ rρ is given by the negative integral of Kρ

with respect to r:

K∂r ρ(θ, φ, r ) = −
r∫

r ′=0

Kρ(θ, φ, r ′) dr ′ . (B6)

With K∂r ρ we retrieve the generic expression relating a change in
data to a change in model parameters:

δd =
π∫

θ=0

2π∫
φ=0

R∫
r=0

K∂r ρ(θ, φ, r ) δ∂rρ(θ, φ, z) dθ dφ dr . (B7)

Kernels for relative perturbations δln ∂ rρ are obtained from K∂r ρ

by multiplication with a reference value for ∂ rρ. In the case of
the 1-D reference earth model ak135 (Kennett et al. 1995), used in
the examples of Section 3, ∂ rρ takes the nearly constant value of
6.05 · 10−4 kg m−4 from 35 to 410 km depth.
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