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1 Introduction

The internal constitution of the Earth has been investigated systematically from the nineteenth
century on. With the advent of seismological instrumentation for the registration of tele-seismic
events, by the end of that century, the main tool for obtaining direct information about distribution
of the material properties controling seismic wave propagation became available. Before this, mainly
global properties could be determined from gravity and magnetic field observations, astronomical
data and indications about the heatflow from the Earth’s interior. As a result of the early seismolog-
ical investigations the main internal structure of the Earth was revealed within the first few decades
of the twentieth century with the discovery of the earth’s core in 1906 by Oldham and Gutenberg
(1912) and the solid inner core in 1936 by Lehmann.

From the radial distribution of the seismic velocity profile, obtained by processing the tables of
traveltime versus epicentral distance, Williamson and Adams (1923) made a first estimate of the
density profile for a compressible homogeneous mantle model, consistent with the total mass of the
Earth and obtained at the same time strong indication for a high density core, compositionally
distinct from the mantle.

Bullen (1975) further refined the analysis and showed the assumption of a homogeneous mantle
to be inconsistent with the known moment of inertia of the Earth. In the 1940s and 1950s he
introduced a global divison of the Earth in concentric shells, labelled A through G, ranging from
the Earth’s crust (A), bounded by the moho discontinuity, to the inner core (G). Region C between,
roughly 400km and 900km, characterized by rapid increase of the seismic velocities, was identified by
Bullen as a transition region between the upper mantle region B and a homogeneous lower mantle,
region D. The deduced inhomogeneity of the mantle was projected by Bullen in this C region. E
through G were used to label subdivisions of the core. Region E indicated the liquid, adiabatic
outer core, F a transition region between inner and outer core and G the solid inner core. Birch
(1952) published improved equations of state, based on finite-strain theory, thereby giving a more
firm physical basis to interpretation of available data in terms of a compressible medium.

In the second half of the twentieth century the resolution and accuracy of the models were fur-
ther improved using continuously improved seismological observations and a growing data set. It
also became possible to obtain independent information about the radial density distribution from
spectral analysis of radial eigen-vibrations of the Earth after very large earthquakes. This develop-
ment resulted in the publication of the Preliminary Reference Earth Model (PREM) (Dziewonski
and Anderson, 1981) which still serves as a global reference.

The improved seismologial models indicated that the continuous rapid velocity increase in the
transition zone (C) was actually a succesion of several abrupt changes, confirming radial inhomo-
geneity in mineral phase and possibly in chemical composition of the mantle.

From geological and cosmochemical arguments a probable composition of the Earth had been
derived consisting of a mantle with major element composition dominated by magnesium-iron sili-
cates and an iron-nickle core with a small amount of lighter elements mixed in, most likely including
mainly sulphur. In the 1960s this resulted in the definition of a so-called pyrolitic composition of
the mantle by Ringwood which could explain the main mantle petrological observations regarding
the complementary nature of basalts and ultra mafic mantle rocks found in ophiolites, kimberlites
and mantle perioditite bodies (Ringwood, 1975).

In experimental high-pressure and temperature work on the candidate mantle materials a series
of phase transitions were found at pressure and temperature values relevant for the Earth’s mantle
which could be related to the seismic discontinuities revealed by the seismological data. From
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these the most prominent at approximately 410 and 660 km depth were identified as the phase
transition of the olivine component (Mg,Fe)2SiO4 of the pyrolitic mantle to a denser wadsleyite
crystal structure and, at 660 km, a transition (dissociation) from a γ-spinel (known as ringwoodite)
structure to a two-phase assemblage, post-spinel, i.e. magnesium-iron perovskite, (Mg,Fe)SiO3 and
wüstite (Mg,Fe)O.

It was also found that the 660 km boundary corresponds to an endothermic phase transition
which would have implications for large scale circulation in the mantle, leading to long-standing spec-
ulations about the degree of layering in mantle convection (Christensen and Yuen, 1985, Albarede
and van der Hilst, 2002), http://www.mantleplumes.org.

A more recent development in this area is the discovery of a new phase transition of magnesium-
perovskite to a denser form for pressure temperature conditions, approximately 125 GPa 2500 K,
relevant for the D” layer close to the core-mantle boundary (Lay et al., 2005, van der Hilst et al.,
2007).

In the following sections the density distribution in the Earth’s interior is treated in relation to
the gravity field and internal pressure distribution of a self-gravitating compressible planet model
and the link is shown with results from theoretical mineral physics and high pressure-temperature
experimental data for mantle materials.
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2 Global internal structure and temperature of the Earth

To understand the Earth’s internal dynamics and evolution we need to know it’s internal structure
and material properties. What do we know about Earth’s global internal structure?

For a substance of given chemical composition, the material properties are determined by tem-
perature and pressure. A full understanding of the Earth’s internal dynamics therefore requires that
we know the internal distribution of composition, temperature and pressure. The internal pressure
distribution is directly linked with the Earth’s own internal gravity field and density distribution be-
cause the local pressure gradient equals the local gravity acceleration times the density (see problem
6). In section 2.3 density, gravity and pressure are treated together in a consistent way.

If the internal pressure distribution is known we can relate sharp transitions in the physical
parameters as shown in the PREM model, illustrated in Fig. 1, to phase transitions, solid-solid or
solid-liquid, in the Earth’s deep interior.

Phase transitions in ‘candidate’ materials for the Earth’s interior are investigated under high
pressure and temperature conditions in HPT laboratory experiments. 1 Using theoretical mineral
physics models the complete mineral phase diagram of mantle silicates can, in principle, be con-
structed from a limited set of experimental data (Stixrude and Lithgow-Bertelloni, 2005, Jacobs and
de Jong, 2007). To constrain the possible candidate materials we also need to know the internal dis-
tribution of the Earth’s chemical composition. Such composition models are derived from geological
evidence and cosmochemical considerations.

2.1 Early models of the Earth’s density

The total Earth mass M⊕ and average density 〈ρ〉 were not known before independent measurement
of Newton’s gravitational constant by Cavendish, (see section 2.3). When the average density had
been determined as approximately 5.5 ·103 kgm−3 it became clear, from the lower density of surface
rocks of around 2.7 · 103 kgm−3, that the Earth’s interior must consist of higher density material.

Besides the mass or average density the (average) moment of inertia I (defined in section 2.2)
provides a constraint on the radial distribution of density.

These two integral parameter values have been applied in several two-parameter models for the
radial density distribution of the Earth. At the end of the nineteenth century Wiechert assumed that
the compressibility of Earth materials would be negligable to first approximation and that Earth’s
high mean density was due to a dense, probably metallic, core. He assumed an iron core based on
astronomical evidence of high iron content of the sun’s outer layers (see also section 2.8).

Wiechert considered in particular layered spherically symmetric models consisting of two uniform
layers, core and mantle. Since the radius of the Earth’s core had not yet been determined by
seismology, Wiechert used the core radiusRc and density ρc as unknown parameters to be determined
from the known data. Wiechert assumed the density of the mantle to be ρm = 3.2 · 103kgm−3 and
using known values for M and I he derived for the radius of the core Rc/R = 0.779 corresponding to
a mantle depth of about 1400 km and a core density ρc = 8.2 ·103 kgm−3. This model is investigated
in problem 3.

Later, after Rc/R = 0.545 had been determined using seismic data, Jeffreys substituted the
known value of the core radius and derived for the mantle and core densities ρc = 12.6 · 103 kgm−3

and ρm = 4.14 · 103 kgm−3 (Bullen, 1975). This model is investigated in problem 4.

1Deep Earth pressure and temperature conditions can be produced in a Diamond Anvil Cell (DAC), see
http://en.wikipedia.org/wiki/Diamond anvil cell.
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Figure 1: Radial (depth)distribution of density ρ, seismic velocities vp and vs, gravity acceleration g and

pressure P in the PREM model (Dziewonski and Anderson, 1981).

2.2 The moment of inertia of a spherically symmetric density distribution

The moment of inertia I of a point mass of mass m, with respect to a given rotation axis is defined as
I = md2 where d is the distance from the point mass to the axis. This quantity relates the angular
velocity ω, about the rotation axis, to the angular momentum J , of the point mass, in J = Iω.
This is an analogous relation as the one between the linear momentum p and the linear velocity v,
p = mv. For an extended mass distribution in a volume V , a moment of inertia tensor, Iij , relating
the angular momentum vector J to the rotation vector Ω can be defined as Ji = IijΩj , where the
summation convention for repeated indices is implied. This tensor is described by a 3 × 3 matrix
defined by volume integration over point masses in the volume. Here we only consider spherically
symmetric mass distributions where the moment tensor is isotopric, Iij = Iδij , with scalar coefficient
I. 2 In simple terms, the moment of inertia is the same for any rotation axis through the centre of
the spherically symmetric body.

For a spherically symmetric body of finite volume, the scalar moment of inertia is defined as a
volume integral over point masses, I =

∫
V ρd

2dV 3 .

The moment of inertia of a spherically symmetric density distribution is often expressed in terms of
the total mass M , the outer radius R and a prefactor f as,

I = fMR2 (1)

We have seen that the planetary mass and surface density were used to constrain models for
the interior density distribution. These models are further constrained by the planets moment of

2δij is the Kronecker delta, i.e. δij = 1 for i = j and zero otherwise.
3The moment of inertia I can be determined from Earth’s global gravity field and the precession rate of the rotation

axis determined from astronomical data, see Bullen, The Earth’s density, 1975.
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inertia I that can be determined from (satelite) geodetic and astronomical observations. For Earth
the following values for the total mass and moment of inertia prefactor have been found,

M = 5.97 · 1024 kg, I = 0.3307MR2 (2)

where R = 6371 km is the mean radius. The observed moment of inertia prefactor f = 0.3307 is
smaller than the value 0.4 for a homogeneous sphere (see problem 2), another indication of mass
concentration towards the earth’s centre.

problem: 1 Derive the following expression for the moment of inertia of a spherically symmetric Earth
model with outer radius R,

I =
8π

3

∫ R

0

ρ(r)r4dr (3)

Hint: use the symmetry and compute I = 1
3 (Ix + Iy + Iz), where Ix is the moment of inertia with respect to

a rotation axis coiinciding with the x-axis.

problem: 2 Derive from (3) the value of the prefactor f of the moment of inertia for a uniform sphere.
answer: f = 2/5.

In general the moment of inertia prefactor f is an indicator of the degree of mass concentration towards the
centre of a spherically symmetric mass distribution. Endmembers of mass concentration are a) a concentrated
central point mass and b) all mass concentrated on a spherical surface of zero thickness.

Verify that the moment of inertia of the point mass endmember equals zero and that for the prefactor for

a spherical shell of vanishing thickness we have f = 2
3 .

Wiechert’s two-layer model with a distinct core is constrained by the moment of inertia prefactor
f , the mantle radius R and density ρm and the total mass M or, equivalently, the mean density 〈ρ〉.
Expressions for the core radius Rc and density ρc can be formulated for this model as specified in
the following exercise (Bullen, 1975).

problem: 3 Derive a 2-parameter model for the earth’s 1-D radial density distribution ρ(r) consisting of two
uniform layers (core and mantle) of radius Rc and R respectively and with contrasting uniform densities ρc
and ρm for core and mantle respectively. Assume ρm to be known, leaving ρc and Rc as unknown parameters
that can be determined from the known moment of inertia prefactor f and the average density 〈ρ〉.

Derive the following expressions for Rc and ρc,

Rc
R

=

(
5
2f
〈ρ〉
ρm
− 1

〈ρ〉
ρm
− 1

)1/2

, ρc = ρm

{
1 +

(
R

Rc

)3( 〈ρ〉
ρm
− 1

)}
(4)

Hint: First derive the following expressions,

〈ρ〉 =
3

R3

∫ R

0

ρr2dr , fR5 〈ρ〉 = 2

∫ R

0

ρr4dr (5)

In Bullen’s two-layer model the core radius is assumed to be known from seismology. For this
model the mantle and core densities can be expressed in the known parameters in the following
problem.
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problem: 4 Assume the core radius Rc to be a known parameter in the following. Derive a 2-parameter
model for the earth’s 1-D radial density distribution ρ(r) consisting of two uniform layers (core and mantle),
with a core and mantle radius Rc and R and different uniform densities ρm and ρc for mantle and core.
Express the parameters ρm and ρc in terms of the mass and moment of inertia.

Solution: in matrix-vector format,(
ρc
ρm

)
=

4π

3∆

(
2
5 (R5 −R5

c) −(R3 −R3
c)

− 2
5R

5
c R3

c

)(
M
I

)
(6)

where the determinant ∆ = 32π2

45

(
R3
c(R

5 −R5
c)−R5

c(R
3 −R3

c)
)
.

problem: 5 The numerical value of the interim expressions in (6) exceeds the magnitude of single precision
real type variables in computer programs, that are limitid to approximately 1.7 · 1038. A work around for this
problem may be to use double precision real variables that have a higher maximum magnitude of about 10308.

An alternative solution is to switch to using non-dimensional parameters, denoted by primes, in the
following way: define R

′

c = Rc/R, M = 4/3 · πR3 < ρ > and M
′

= 1. ρc =< ρ > ρ
′

c, ρm =< ρ > ρ
′

m and
express the moment of inertia in the mean density and outer radius as, I = fMR2 = 4/3 · πR5 < ρ > f .
With these definitions rewrite (6) into the non-dimensional form,(

ρ
′

c

ρ
′

m

)
=

16π2

9∆′

(
2
5 (1−R′5c ) −(1−R′3c )

− 2
5R
′5
c R

′3
c

)(
M
′

f

)
(7)

where the determinant ∆
′

= 32π2

45

(
R
′3
c (1−R′5c )−R′5c (1−R′3c )

)
.

2.3 Density, gravity and pressure in the Earth

In the Earth’s mantle major solid state phase transitions occur in the silicate material which consti-
tutes the planetary mantle outside the metallic iron/nickle core. These phase transitions are induced
by the increase in the static pressure from a 1 bar (105 Pa) atmospheric value at the Earth’s surface
to 136 · 109Pa at the core mantle boundary at a depth of approximately 2900 km. Phase transitions
in the Earth’s interior are associated with changes in the elastic wave velocities that can be deduced
from seismological observations. In high pressure experiments, phase transitions in candidate mantle
silicates can be studied and correlated with the seismological data to constrain the mineralogy and
pressure/temperature distribution in the mantle. Knowledge of the internal material constitution
of the Earth, such as the mineral phase, is a requirement for understanding the main geodynamical
processes that determine Earth’s evolution.

Density and pressure inside the Earth are linked with self-gravitation. This means that the
hydrostatic or lithostatic pressure is a direct result of the gravity field generated by the Earth’s own
mass distribution. The lithostatic pressure can be expressed as the weight of a column of unit cross-
sectional area extending from zero depth, at the Earth’s surface, to the depth z of the evaluation
point,

P (z) =

∫ z

0
ρ(z′)g(z′)dz′ (8)

where ρ is the mass density and g is the magnitude of the gravitational acceleration.
The gravity field defining g is generated by the Earth’s own density distribution. Weak periodic

gravity ‘perturbations’ are generated by celestial bodies, expressed in the external tides, both ocean
tides and solid earth tides. The main tides are generated by the Earth’s moon and by the Sun.

In the following section expressions for the gravity field in terms of the density distribution are
given, based on Newtons law of gravitation.



16/01 9

In the description of the density distribution we will first neglect the role of self-compression
and consider a number of one-dimensional (1-D), spherically symmetric, parameterized density dis-
tributions. Self-compression and compressibility are then treated in section 2.6. Self-compression
and finite compressibility result in a continuous increase of density with pressure in agreement with
several geophysical observations.

problem: 6 Derive the expression (8) (where the depth z is not to be confused with a cartesian coordinate)
for the lithostatic pressure in a spherically symmetric planet from the elastostatic equation for a static medium,

∂jσij + ρgi = 0 (9)

Hint: Assume hydrostatic conditions where the stress tensor can be written as σij = −Pδij, with δij the

Kronecker delta, and derive from equation (9) for the pressure gradient, ∇P = ρg.

2.4 Gravity field of a mass distribution

Newton formulated the attraction force acting on a point mass m0, located in a point with position
vector r = (x, y, z), with x, y, z the cartesian coordinates, from a second point mass m1 located at
r1 = (x1, y1, z1), illustrated in Fig. 2 as,

F(r) =
Gm0m1

|r1 − r|2
err1 (10)

Where err1 is the unit vector in r pointing towards r1 and F(r1) = −F(r). r, r1 are the position
vectors of the two point masses and |r1 − r| =

√
(x1 − x)2 + (y1 − y)2 + (z1 − z)2 is the distance

between the points r and r1. G is the gravitational constant G = 6.6732× 10−11 Nm2kg−2, m0,m1

the mass of the respective pointmasses.

Figure 2: Vector diagram of the gravitational forces acting on the two point masses m0, m1 in vector locations

r and r1 respectively. From the expression for the gravity field (10) it follows that the forces on both masses

are of equal magnitude and in opposite direction.

This gravitation effect is usually specified as a gravitation force per unit mass or acceleration
vector g,

g(r) =
Gm1

|r1 − r|2
err1 (11)
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It can be verified by inspection that the acceleration vector field can be written as the gradient of
a scalar potential field U(r) with g = −∇U = (−∂U

∂x ,−
∂U
∂y ,−

∂U
∂z ), (see problem 10),

U(r) = − Gm1

|r1 − r|
(12)

The gravity acceleration and corresponding potential field are additive such that the total force
or potential of a collection of point masses is obtained by summation over individual point contri-
butions,

g(r) =
∑
j

Gmj

|rj − r|2
errj , U(r) = −

∑
j

Gmj

|rj − r|
(13)

With this definition and sign convention the potential field of a point source in the origin is repre-
sented by a potential well (U(r) < 0). This is known as Coulomb’s law and the equivalent form for
a continuous mass distribution of density ρ (mass per unit volume) contained in a volume V is,

g(r) =

∫
V

Gρ(r
′
)

|r′ − r|2
err′ dV (r

′
), U(r) = −

∫
V

Gρ(r
′
)

|r′ − r|
dV (r

′
) (14)

Besides the integral expression for the gravity field defined in (14) there is also the differential form
using the second order partial differential equations of Laplace and Poisson. It can be shown by
verification that U in (14) satisfies Poisson’s equation,

∇2U = 4πGρ (15)

which reduces to Laplace’s equation ∇2U = 0 outside the mass distribution in V (where ρ = 0). 4

In Newtons time the numerical value of G had not been determined yet. As a result it was not
possible to determine the mass of the Earth M⊕ by measuring the gravitation force of the Earth
on a known ‘test mass’. This way only the value of GM⊕ could be determined. Only with the
experiment named after Cavendish (1798) 5 it became possible to measure G directly, in a torsion
balance experiment, by determining the gravitational attraction of two closely spaced test masses.

4To show that U in (14) satisfies Poisson’s equation integrate the normal component of the acceleration field over
an arbitrary closed surface S enclosing V and change the order of integration for the volume and surface integral.∫

S

∇U(r) · n dA(r) = −
∫
V

Gρ(r
′
)

{∫
S

∇
(

1

|r′ − r|

)
· n dA(r)

}
dV (r

′
) (16)

The surface integral on the right is independent of the choice of the surface S as long as it contains r
′
. We therefore

replace this surface by a sphere of radius R centered at r
′

and find for the surface integral the value −4π.
Next we apply the Gauss divergence theorem to the left hand surface integral to obtain,∫

V

∇2U dV =

∫
V

4πGρ dV (17)

Note that the surface has been contracted on the volume V to obtain (17). Since the surface and enclosed volume are
arbitrary we obtain the Poisson equation,

∇2U = 4πGρ (18)

5http://en.wikipedia.org/wiki/Cavendish experiment
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2.4.1 Problem section: spherically symmetric density distributions and corresponding
gravity fields

problem: 7 Verify that the familiar surface value of the Earth’s gravity acceleration g0 = 9.8 m/s2 cor-

responds to the value of a point mass at the Earth’s centre with the same mass as the Earth, (see Table

1).

problem: 8 Compute the Earth’s mass M⊕ from the given values of the gravity acceleration at the surface

g0, the gravitational constant G and the planet radius.

problem: 9 Fig. 1 suggests that the magnitude of the gravity aceleration is approximately constant through-

out the Earth’s mantle. Therefore assume an approximate uniform value of g in the Earth’s mantle, gm ∼
10m/s2 and use an approximate average mantle density ρm ∼ 4.5 · 103kg/m3 (see Fig. 1) to obtain from (8)

an approximation of the static pressure at the approximate depth of the core mantle boundary 3000 km.

problem: 10 Verify the consistency of the expression for the gravity acceleration and potential of a point
mass in (11) and (12), i.e. proof from these expressions by explicit calculation of the gradient vector from the
scalar potential field that g = −∇U .

Hint: specify the potential in cartesian coordinates and differentiate the result with respect to the coordi-

nates x, y, z.

problem: 11 Apply the Poisson equation (15) to obtain the gravity field of a point-mass distribution with
mass M , described by a Dirac delta function, ρ(r) = Mδ(r− r0). Where the following property holds for the
delta function,∫

V

δ(r− r0)dV =

{
1, r0 ∈ V
0, r0 3 V

or, more general

∫
V

f(r)δ(r− r0)dV =

{
f(r0), r0 ∈ V
0, r0 3 V

(19)

Hint: integrate (15) over a spherical volume, centered at r0 and apply the Gauss divergence theoreme: for
a vector field A = (A1, A2, A3) with divergence ∇ ·A = ∂A1

∂x + ∂A2

∂y + ∂A3

∂z∫
V

∇ ·AdV =

∫
∂V

A · ndS (20)

where ∂V is the closed boundary surface of V .

problem: 12 Check the dimensional units in (15) and verify that the gravitational potential has the dimen-

sion of energy per unit mass. This is in agreement with the identification of the gravity potential with the

potential (gravitational) energy of a unit mass in the gravity field. 6

6The local potential field value U(r1) equals the negative of the (gravitational) potential energy W (r1) of a unit
point mass positioned at r1. It can be shown that the change in potential energy ∆W that results from moving a unit
mass from r1 to r2 follows directly from the potential field values U(r1), U(r2) and is independent of the path taken
between r1 and r2. This property defines a so called conservative field U .

To derive this result we compute the potential energy difference as the path (line) integral of the work done by the
gravity force field on a unit mass and apply the gradient property g = −∇U . The work done by moving a unit point
mass from a location r1 to r2 is defined by the line integral,

∆W =

∫ r2

r1

F · dr =

∫ r2

r1

g · dr =

∫ r2

r1

−∇U · dr =

∫ U(r2)

U(r1)

−dU = − (U(r2)− U(r1)) = −∆U (21)

Here the following gradient property has been used, relating the gradient vector to the differential of the scalar potential
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The above can be applied in the determination of the escape velocity from the surface of a
planet. This is the minimum launch velocity to escape from the planet’s gravity field. For a
spherically symmetric planet the external gravity potential is given by (30). Moving an object from
the surface, the gravity potential changes by ∆U = U(r) − U(R) = GM(−1

r + 1
R). Applying an

energy conservation argument we require the change in total (potential plus kinetic) energy per unit
mass to be: ∆E = ∆U + ∆K = 0. With ∆K = −v2ex/2 we get vesc =

√
2GM/R.

problem: 13 Compute the surface escape velocities for different celestial bodies using the parameters given

in Table 1

Radius Mass Density
km kg kg/m3

Earth 6371 5.97 · 1024 5.515× 103

Moon 1738 7.34 · 1022 3.34× 103

Mars 3394 6.42 · 1023 3.93× 103

Jupiter 71492 1.9 · 1027 1.326× 103

Sun 6.96 · 105 1.99 · 1030 -

Table 1: Radius-mass parameters of Earth moon and planets.

problem: 14 The potential energy of a self-gravitating planet in its own gravity field is defined in terms of
the volume density ρU as,

E = −
∫
V

ρUdV (24)

Derive the following expression for the potential energy of a spherically symmetric, uniform density model,
using the expression for the internal gravity potential defined in (29)

E =
8π

5
Gρ0MR2 (25)

Compute the potential energy value E, assuming a density ρ0 = 5.5 · 103kg/m3 and planetary radius R =

6371km.

answer: 4.4 · 1032J

The gravitational energy considered above plays an important role in major compositional differen-
tiation processes that occurred in the early Earth and are still occuring today.

field,

dU =
∂U

∂x
dx+

∂U

∂y
dy +

∂U

∂z
dz = ∇U · dr (22)

The gravitational potential field can thus be defined in terms of the work done by the gravity field to move a unit
mass from infinity to the evaluation point.

W (r1) =

∫ r1

r∞

g · dr =

∫ r1

r∞

−∇U · dr =

∫ U(r1)

U(r∞)

−dU = −U(r1) + U(r∞) = −U(r1) (23)

Where U(r∞) = 0 has been used.
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• A so called ‘core catastrophe’ occured when the iron/nickle core of the Earth differentiated
from the silicate mantle in the first few million years after the formation of the Earth in the
early solar system. This event has probably freed enough potential energy to melt the mantle
completely, resulting in a global magma ocean.

• Crystallization of the solid inner core from the liquid outer core, as a result of core cooling, is
accompanied by compositional differentiation. The liquid outer core contains a lighter fraction,
possibly sulfur, which stays behind in the liquid during freezing of the inner core. The enriched
residual liquid near the inner core boundary is less dense than the average liquid of the outer
core and this results in a gravitationally unstable layering that induces ‘chemically driven’
convective flow in the outer core. The potential energy released in this chemical convection is
probably an important energy source in powering the geodynamo that generates the Earth’s
present day magnetic field.

2.5 The gravity and pressure field for parameterized density models with self-
gravitation

In the following problems a number of simple density distributions are investigated that will serve
as a reference for models more constrained by geophysical observations to be introduced in later
sections. The gravity field can be determined by solving the governing Poisson equation (15) using
suitable boundary conditions. For the special case of spherically symmetric mass distributions simple
1-D integral expressions can be used to derive the corresponding radial pressure distribution.

problem: 15 The internal and external gravity field for a simple model of a planet can by derived by solving
the Poisson equation (15), and applying appropriate boundary conditions to the general solution. Consider a
spherically symmetric planet of radius R and uniform density ρ0.

1. Derive expressions for the gravity potential field U and the gravity force field g = |g| inside and outside
the planet.

Hints: Solve Poisson’s equation in spherical coordinates for the interior (r ≤ R) and exterior domain
r ≥ R separately. The separate solutions for the interior Uint, gint and exterior Uext, gext domain
each contain two integration constants which can be determined by applying the following boundary
conditions,

lim
r→∞

Uext(r) = 0, lim
r→0

gint(r) <∞ (26)

Continuity of the gravity accelaration g at the surface r = R,

gint(R) = gext(R) (27)

Continuity of the gravity potential U at the surface r = R,

Uint(R) = Uext(R) (28)

Answers

gint =
4π

3
Gρ0r , Uint =

2π

3
Gρ0r

2 − 3

2

GM

R
(29)

where M = 4π
3 R

3ρ0 is the planet mass and G is the gravitational constant.

gext =
GM

r2
, Uext = −GM

r
(30)
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2. Verify that the external gravity force field is identical to the field of a concentrated point mass at r = 0.
Derive a corresponding relation between the internal gravity force field and a (different) concentrated
point mass, m(r) at the center (see also (31)).

3. Derive an expression for the radial distribution of the pressure in the planetary interior and compute
the central pressure for a case with ρ0 = 5.5 · 103kgm−3 and R = 6.371× 106m.

Solution: P (r) = 2π
3 ρ

2
0G
(
R2 − r2

)
The gravity field of a spherically symmetric density distribution is identical to the field of an equiv-
alent point-mass. 7 This can be formulated as follows,

g(r) =
Gm(r)

r2
, m(r) =

∫
V (r)

ρdV =

∫ r

0
ρ(r′)4πr′2dr′ (31)

Here m(r) is the mass inside a sphere of radius r and g(r) is the corresponding magnitude of
the gravity acceleration. For the corresponding gravity potential this implies, with

∫∞
r

dU
dr′dr

′ =
U(∞)− U(r) = −U(r),

U(r) = −
∫ ∞
r

dU

dr′
dr′ =

∫ ∞
r

gr(r
′)dr′ =

∫ ∞
r
−g(r′)dr′ = −

∫ ∞
r

Gm(r′)

r′2
dr′ (32)

where the radial vector component gr has been expressed in the vector length g as gr = g · er = −g.
To derive (31), the potential field at the radial coordinate r can be split in contributions origi-

nating from an internal- and external density distribution U(r) = Ui(r)+Ue(r). With corresponding
pairs, Ui ↔ ρi, and Ue ↔ ρe, where ρe(r

′) = 0, r′ ≤ r, and ρe(r
′) = ρ(r′), r′ > r. This follows from

the linearity of the governing Poisson equation.
The field generated by the internal mass distribution is obtained by integrating the corresponding

Poisson equation in spherical coordinates,

1

r′2
d

dr′
r′2
dUi
dr′

= 4πGρi (33)∫ r

0

d

dr′

(
r′2
dUi
dr′

)
dr′ =

∫ r

0
4πGρir

′2dr′ (34)

The radial component of the gravity acceleration becomes,

gr(r) = −dUi
dr

= − 1

r2

∫ r

0
4πGρir

′2dr′ = −Gm(r)

r2
(35)

Furthermore the acceleration field ge from the external mass distribution ρe for internal evaluation
points r′ < r is zero. The corresponding gravity potential Ue is uniform, which follows from the
relevant Poisson equation, in spherical coordinates for a spherically symmetric mass distribution,

1

r′2
d

dr′
r′2
dUe
dr′

= 4πGρe = 0 → r′2
dUe
dr

= A → ge(r
′) = −dUe

dr′
= − A

r′2
(36)

A non-singular field requires A = 0, ge(r
′) = 0, r′ ≤ 0 and,

dUe
dr′

= 0 → Ue(r
′) = B, r′ ≤ r (37)

7See problem 15 for the spacial case of a uniform density distribution.
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problem: 16 Verify that (31) and (32), applied to the special case of a homogeneous sphere of density ρ0,

lead to the same expression for the internal and external potential and acceleration field as given in problem

15.

For a two-parameter spherically symmetric planet model consisting of a uniform core and mantle
with radius Rc and Rm and contrasting densities ρc and ρm, the gravity field can also be determined
by solving the Poisson equation for the particular density distribution and determination of the
integration constants from the boundary conditions. However in this case the formula (31) are more
convenient to obtain expressions for the gravity field.

problem: 17 Derive expressions for the gravity acceleration and internal pressure distribution for the two-
parameter model

ρ(r) =

 ρc, r < Rc
ρm, Rc < r ≤ R

ρe = 0, r > R
, g(r) =

 gc, r < Rc
gm, Rc < r ≤ R
ge, r > R

, P (r) =

{
Pc, r < Rc
Pm, r ≥ Rc

(38)

using (31) and (8). See also (44).
Answer:

gc(r) =
4π

3
Gρcr, gm(r) =

G

r2

{
4π

3
ρm
(
r3 −R3

c

)
+Mc

}
, ge(r) =

G

r2
(Mm +Mc) (39)

Mc =
4π

3
R3
cρc , Mm =

4π

3
ρm
(
R3 −R3

c

)
(40)

Pc(r) = Pm(Rc) +
2π

3
Gρ2c

(
R2
c − r2

)
(41)

Pm(r) =
2π

3
Gρ2m

{
R2
m − r2 + 2

(
ρc
ρm
− 1

)
R3
c

(
1

r
− 1

Rm

)}
(42)



16/01 16

2.6 The pressure effect on density

2.6.1 Introduction

In the previous sections we considered the gravity field of a given mass distribution. For self-
gravitating planets of sufficient size the local density depends on the pressure, through selfcompres-
sion i.e. the compression of the material caused by the planets own gravity field. As we have seen in
previous sections the lithostatic pressure depends on the gravity field and the density distribution.
It follows that the determination of the density, gravity and pressure are coupled problems that
must be solved simultaneously and can not be solved separately. Here we will consider the solution
of such coupled problems.

From observations of the average density of surface rocks of some 2.7 · 103 kg/m3 and the known
mean density of the Earth 5.5 · 103 kg/m3, it follows that the surface density is less than halve the
mean Earth value. The difference between both density values suggests a density increase in the
interior which could be related either to different composition at depth, for example corresponding
to a dense metallic core, and/or the effect of selfcompression in an otherwise homogeneous planet.
Solid state phase transitions of mantle material due to increasing pressure can also explain part of
the high mean density value.

From the nineteenth century on, models of the internal density distribution of the earth have been
investigated. These models have in common that the radial density distribution is parameterized
in a simple way with a small number of parameters, typically two, which are then adjusted to the
known data such as the surface density and the Earth’s total mass or moment of inertia.

In the following the relation between density, gravity and pressure in a self-gravitating planet will
be investigated in a more self consistent way.

For a spherically symmetric density distribution the corresponding magnitude of the gravity accel-
eration vector is given by (35),

g(r) = |gr(r)| =
4πG

r2

∫ r

0
ρ(r

′
)r
′2dr

′
=
Gm(r)

r2
(43)

where m(r) is the mass of a sphere of radius r and ρ(r) is the corresponding radial density profile.

problem: 18 Use (43) to show that it is not possible to derive a unique radial mass distribution of a
spherically symmetric planet from the observed surface value of the gravity field alone. This can be verified
by showing that multiple density profiles exist that produce the same surface gravity. To illustrate this sketch
a schematic internal radial profile of the gravity acceleration in a comparison of two spherically symmetric
planets of identical mass M and radius R. The first one is a homogeneous planet with density ρ0 and the
second one is a differentiated planet with a uniform high density core ρc = ρ0 + δρ and less dense mantle
ρm = ρ0 − δρ. Verify that these assumptions correspond to this special case with volume fraction of the core
φc = 1/2.

The same external gravity field is obtained with a spherical shell of zero thickness and radius r, with a
uniform surface mass density σ(r) = M/(4πr2), (a uniform mass sheet) as a special case of (31). It can
be shown more generally that for the external gravity field of a non-spherically symmetric mass distribution,
equivalent non-uniform mass sheets can be defined generating the same external gravity field.

From the above results the lithostatic pressure distribution can be obtained by substitution for the
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gravity acceleration and integrating the pressure gradient dP/dr = −ρg. Assuming a zero pressure
value at the surface this results in,

P (r) =

∫ R

r
ρ(r

′
)g(r

′
)dr

′
= 4πG

∫ R

r
ρ(r

′
)

{
1

r′2

∫ r
′

0
ρ(r

′′
)r
′′2dr

′′

}
dr
′

(44)

The pressure in the Earth’s interior reaches values over 350 GPa as shown in Fig. 1. For such high
pressure values the effect of self-compression on the density is significant. In the following this effect
is further explored.

The incompressibility K, or bulkmodulus 8 , is defined as,

1

K
=

1

ρ

dρ

dP
(45)

By substitution of dP = −ρgdr in (45) we derive a differential equation for the density profile of a
compressible planet model,

1

K
=
−1

ρ2g

dρ

dr
⇒ dρ

dr
= −ρ

2g

K
(46)

2.6.2 Parameterization of the bulkmodulus

The radial density distribution for a selfcompressing planet can be obtained from (46) once the
bulkmodulus K is known. We will first consider simple cases where K is either a uniform constant
or it is parameterized in terms of the density.

problem: 19 Assume both K and g in (46) to be uniform in the mantle and derive the following density
profile, 9

ρ(z) =
ρ0

1− ρ0gz
K

(51)

where z = R− r is the depth coordinate and ρ0 = ρ(0) is the surface density value.

8An isotropic linear elastic solid can be described by two independent elasticity parameters, for instance the Lamé
parameters λ and µ. The bulkmodulus can be expressed in the Lamé parameters as, K = λ+ 2

3
µ. The bulkmodulus K

and the shearmodulus µ are the most commonly used parameters to specify the elastic parameters of Earth materials.
9Hint: First order ordinary differential equations like (46) are of so called separable form,

dy

dx
= P (y)Q(x) (47)

(see for instance, E.L. Ince, Integration of ordinary differential equations, Oliver and Boyd, 1956) in which case they
can be integrated in the following way,

dy

P (y)
= Q(x)dx→

∫
dy

P (y)
=

∫
Q(x)dx+ C → (48)

In cases where the lefthand integral is a known function, say f(y), the solution is obtained by the inverse function,

y(x) = f−1

(∫
Q(x)dx+ C

)
(49)

Example: dy/dx = −y2e−x , x ≥ 0,∫
−dy
y2

=

∫
e−xdx+ C → 1

y
= −e−x + C → y(x) =

1

C − e−x
(50)

The integration constant C can be expressed in an initial condition, C = 1 + 1/y(0).
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• Compute the depth z1 where the expression (51) becomes singular, i.e. ρ → ∞, suggesting infinite
compression of the material. To do this assume Earth(mantle)-like values of the incompressibility,
K = 400GPa (see Fig.3) and the surface density ρ0 = 3 · 103 kg/m3.

• Now consider a simplified model of a large rocky exoplanet of Earth-like composition with M = 8M⊕
and R = 1.5R⊕. Assume uniform gravity (adapted for the given M,R) and uniform incompressibility
K. Do you now find the singular depth z1 within the depth range of the planet? Comment on the
assumption of a uniform gravity field in view of the models presented in section 2.5.

problem: 20 The result of problem 19 gives the density depth distribution for the model with constant
properties. The resulting expression (51) also contains the uniform gravity acceleration. A more fundamental
relation between density and pressure, not including gravity, can be derived for this model with constant
material property K as an equation of state (EOS) for the density.

Derive from the definition of the bulkmodulus (45) the following logarithmic EOS for the density in terms
of the static pressure,

P = ln

((
ρ

ρ0

)K)
(52)

The EOS (52) can be inverted to obtain an explicit expression for density as a function of pressure,

ρ(P ) = ρ0 exp

(
P

K

)
(53)

The singular behavior in the density model of problem 19 is a result of the assumed uniform g and
K in (46). While g is reasonably constant with depth in the mantle, as illustrated in Fig. 1, K is
not. The incompressibility increases with increasing depth/pressure and as a result the compression
remains finite for earth-like conditions. The incompressibility can be expressed in the density and
the seismic wave velocities, vp =

√
(λ+ 2µ)/ρ, vs =

√
µ/ρ. With K = λ + 2

3µ this becomes
K = ρ(v2p − 4/3v2s). A radial profile K(P (r)) can therefore be derived, from the seismic velocities
determined from inversion of traveltime tables of longitudinal and shearwave seismic arrivals.

The K(P (r)) profile derived from the PREM model of Dziewonski and Anderson (1981) appears
to be roughly linear as shown in Fig.3.

A linear relation between bulkmodulus and pressure as suggested by Fig. 3, is also obtained using
the following power law parameterization for the bulkmodulus in terms of the density K(ρ).

K = Cρn ⇒ ln(K) = ln(C) + n ln(ρ) ⇒ n =
d ln(K)

d ln(ρ)
=
dK

dP
= K

′
0 (54)

where C is a constant. The constant pressure derivative in this model implies a linear pressure
relation K(P ) = K0 +K

′
0P . This appears to approximate the distribution of K in particular in the

lower mantle as determined from seismological data in the PREM model. K
′
0 ≈ 4 for the magnesium-

iron sillicates (Mg,Fe)SiO3 (perovskite) and dense oxides (Mg,Fe)O (wüstite), representative for the
earth’s deep mantle. 10

10An equation of state directly relating the density or specific volume, V = 1/ρ, to pressure can be derived from
such an ‘ansatz’ of a linear pressure dependence K = K0 +K′0P as shown in the following,

1

ρ

dρ

dP
=

1

K
→ 1

V

dV

dP
= − 1

K
→ dP = −(K0 +K′0P )

1

V
dV (55)
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Figure 3: Incompressibility profile derived from the PREM model.

problem: 21 Derive an explicit expression for the pressure dependent density from the Murnaghan equation
of state (58).
Answer:

ρ(P ) = ρ0

(
K
′

0P

K0
+ 1

)1/K
′
0

(59)

problem: 22 In problem 19 we have seen that a simple model with uniform incompressibility and gravity
K = K0 and g = g0 leads to physically impossible solutions. In a refined version of this model, applied to the
Earth’s mantle, g = g0 is maintained (compare Fig.1), and K is parameterized using the powerlaw relation
(54).
Derive the following density profile for the model corresponding to (54).

ρ(r) = ρ0

(
1 + (n− 1)

ρ0g0z

K0

) 1
n−1

(60)

where z = R− r is the depth coordinate and the 0 subscript refers to zero pressure conditions. Note that the

singularity for ρ0g0z/K0 = 1 in problem 19 is absent in this model.∫ P

0

dP ′

K0 +K′0P
′ = −

∫ V

V0

1

V ′
dV ′ =

∫ V0

V

1

V ′
dV ′ = ln

(
V0

V

)
(56)

Substitution in the integral over pressure of K0 +K′0P
′ = x, dx = K′0dP

′ gives,∫ xP=K0+K′0P

x0=K0

1

K′0

dx

x
=

1

K′0
ln

(
K0 +K′0P

K0

)
= ln

(
V0

V

)
(57)

1 +
K′0P

K0
=

(
V0

V

)K′0

→ P =
K0

K′0

((
V0

V

)K′0

− 1

)
(58)

This relation is known as the Murnaghan equation of state (EOS).
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A more widely used and more accurate EOS for a higher pressure range is the equation derived
by Birch (1952) from a consideration of elastic strain energy, known as the Birch-Murnaghan EOS
(Poirier, 2000).

In other cases than the special simplified cases discussed above, in particular in problems 19 and
22, the gravity acceleration varies also with depth. Also more accurate equations of state may be
necessary for very high pressure, encountered in the deep interior of large (exo)planets, that result
in large compression. Such models can be formulated in a more general way by the following coupled
set of equations for pressure, gravity and density.

dP

dr
= −ρg (61)

g(r) =
Gm(r)

r2
(62)

F (ρ, P, T ) = 0 (63)

where the radial mass distribution m(r) is defined as in (31). A model based on (61), (62), and (63)
can be constructed for the internal structure (density, gravity, pressure) of a planet of given mass M
and composition, i.e. with given parameters of the EOS (63) such as ρ0,K0,K

′
0 in the Murnaghan

EOS (58). Consider the application of such a model to a planet for which only the planet mass
M is known. 11 Assume a homogeneous terrestrial (rocky) planet without a distinct metallic core.
Assuming an earth-mantle like composition, representative values of the EOS parameters can be
used, to solve the coupled model equations in the following iterative scheme.

1. Define a grid along the radial coordinate ri, i = 1, . . . , N, r1 = 0. This grid defines a subdivi-
sion of the interior in N − 1 concentric layers and must be chosen large enough, i.e. rN > R.

2. Choose an initial estimate of the central pressure P (1)(0).

3. In a loop over the internal layers, starting upward from the centre, first compute the pressure
decrement over the layer from (61). This is then used to obtain the pressure at the next
grid point and corresponding density from the EOS (63). From the computed density the
corresponding mass distribution m(ri) and gravity g(ri) (62) follow.

4. The layer iteration in the previous item is stopped when a zero pressure value has been reached.
The radial level reached this way now defines the next approximation of the planetary radius
R(j) and M (j) = m(R(j)) is a new approximation of the planet mass M .

5. From the total mass defect ∆M (j) = M (j)−M a correction to the central pressure is computed
as ∆P (j), (problem 23). In the next iteration the radial integration is repeated from item 3
with an updated central pressure P (j+1)(0) = P (j)(0) + ∆P (j) and this iterative procedure is
repeated until convergence is reached, i.e. until |∆M (j)|/M drops below a specified tolerance
value.

11Such models can be applied to exoplanets that are recently being discovered
wikiMethods of detecting extrasolar planets. For some of these planets, detected from radial velocity variations of the
star, only the planet mass M is known.
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problem: 23 A correction for the central pressure in item 4 can be estimated by distributing the mass defect
∆M (j) over a spherical shell of thickness ∆R(j), positioned at the surface, and computing an approximate
pressure ∆P (j) at the bottom of this shell.

Derive the following expression for the thickness of this spherical shell,

∆R(j)

R(j)
=

(
∆M (j)

M∗(j)
+ 1

)1/3

− 1 (64)

Where M∗(j) = 4π
3 ρ(R(j))R(j)3.

The correction for the central pressure is then defined as, ∆P (j) = ρ(R(j))g(R(j))∆R(j).

2.6.3 Adiabatic density distribution

In the previous section density models were based on assumptions about the parameterization of
the bulkmodulus K. The density model of Williamson and Adams (1923), (Hemley, 2006) does not
depend on a parameterized K. Instead it is defined in terms of the seismic wave velocities vp and
vs that can be determined from inversion of seismological traveltime data as K/ρ = v2p − 4/3v2s .

The W-A model can be derived from thermodynamic principles for a homogeneous self-compressing
layer which is in an adiabatic state. The bulkmodulus applied in this model is expressed in the seis-
mic wave velocities which in turn depend on the elasticity parameters and the density. The elastic
deformation proces in seismic wave propagation occurs on a relatively short time scale (seconds-
minutes) compared to the characteristic time scale of conductive heat transport in solids (see 3.3).
Therefore (diffusive) heat exchange can be neglected and adiabatic conditions apply in seismic wave
propagation. This implies that the elasticity parameters determined from seismic data, including
the bulkmodulus K pertain to adiabatic conditions (see also Appendix A.3).

Other processes such as convective mantle flow that occur on a much longer time scale may take
place under more general (non-adiabatic) conditions.

In section 3 on the thermal state of the Earth it is shown that adiabatic conditions hold for
the interior of a fluid layer when heat transport is dominated by advection and heat diffusion by
conduction/radiation plays a minor role. Assuming the Earth’s mantle to be in a state of vigorous
thermal convection it also follows that the average temperature profile, the geotherm, corresponds
to an adiabatic distribution.

In general the density differential can be written as,

dρ =

(
∂ρ

∂P

)
S

dP +

(
∂ρ

∂S

)
P

dS (65)

where the differential of the entropy S is dropped in case of adiabatic conditions and the pressure
derivative is written in terms of the adiabatic bulkmodulus KS defined in (45), 1/Ks = (∂ρ/∂P )S /ρ.

problem: 24 Derive the Williamson-Adams equation for a homogeneous adiabatic layer from the density
differential (65) and assumption of isentropic (adiabatic) conditions with dS ≡ 0,

dρ

dr
= −ρ

2g

KS
(66)
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The density solution of the W-A equation can be expressed in terms of the seismic parameter
Φ = KS/ρ which in turn can be obtained from seismic velocity models: Φ = v2p − 4

3v
2
s for P and S

waves.
√

Φ =
√
KS/ρ is known as the bulkvelocity. For a given bulkvelocity profile, obtained from

seismic observations, the W-A density profile is derived from (66) as,

ln

(
ρ(r)

ρ(R)

)
=

∫ R

r
Φ−1(r

′
)g(r

′
)dr

′
(67)

problem: 25 Derive (67) by integration of the W-A equation (66).

In (67) the gravity acceleration g depends on the density distribution ρ(r) in the lefthand side.
Therefore the density profile can not be simply obtained from a seismologically determined Φ(r)
profile and a single evaluation of the integral in (67). The expression represents an integral equation
that can be solved iteratively as specified in problem 26.

problem: 26 Assume that a seismic parameter profile for the mantle Φ(r), obtained from seismic travel

times, is available. Investigate how (67) can be used to compute a sequence of mantle density profiles

ρ(j)(r), j = 1, 2, . . . in an iterative procedure, by succesive substitution. How would you define a starting

profile ρ(1)(r) for this iterative procedure?

Hint: Substitute the density profile for iteration number j in the gravity acceleration in the righthand side of

(67) for the computation of an updated profile j + 1. This is an example of a general solution strategy for

non-linear problems known as ‘succesive substitution’ or Picard iteration.

Williamson and Adams (1923) used the iterative scheme in problem 26 to test the hypothesis that
the mass concentration towards the Earth’s centre is completely explained by compression of a
homogeneous self-gravitating sphere. They showed that integrating (67) from a surface value of
3.3 · 103 kg/m3 results in unrealistically high density values for depths greater than the core-mantle
boundary. This way they concluded that an inhomogeneous earth with a dense, compositionally
distinct core, probably iron-nickle, was required by the observations. The necessary multiple inte-
grals in the evaluation of (67) had to be computed by means of graphical approximation methods
in 1923, several decades before the advent of electronic computers.

In a later analysis Bullen (1936) showed that the assumption of a homogeneous selfcompressing
mantle described by the W-A equation, and a chemically distinct dense core, leads to unrealistically
high values of the moment of inertia for the core Ic = fMcR

2
c , with a prefactor value f ∼ 0.57

greater than the value of a core with uniform density, 0.4. Since this would imply a density decrease
towards the centre Bullen concluded that the applicability of the W-A model for the whole mantle
can not be maintained and that instead a distinct mantle transition layer, labeled C-layer, must be
included between the upper and lower mantle proper, related to transitions in mineral phase and/or
composition (Bullen, 1975).

problem: 27

1. Derive the following equation for the temperature distribution of a W-A layer (see Appendix A.3),

dT

dr
= −αg

cP
T (68)
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where α and cP are the thermal expansion coefficient and the specific heat at constant pressure.
Hint: Use the differential for the entropy,

dS =

(
∂S

∂T

)
P

dT +

(
∂S

∂P

)
T

dP (69)

and the thermodynamic relations: (∂S/∂T )P = cP /T and (∂S/∂P )T = −α/ρ.

2. Derive the expression for the temperature profile for an adiabatic layer, sometimes referred to as the
‘adiabat’, by solving equation (68),

T (r) = T (R) exp

(∫ R

r

αg

cP
dr
′

)
(70)

The temperature extrapolated to the surface, TP = T (R) is known as the potential temperature of the
layer. The quantity HT = (αg/cP )−1 is known as the thermal scale height of the layer.

3. Derive an expression from (70) for the special case with a constant value of the scale height parameter.

The W-A equation for the density of an adiabatic layer can be generalized introducing the Bullen
parameter η which is used as a measure of the departure of the actual density/temperature profile
from an adiabat. This is done by writing,

η(r) = − Φ

ρg

dρ

dr
(71)

where η(r) has been substituted for the constant value (≡ 1) in the W-A equation.

2.7 Current density models

The concept of an adiabatic layer was essential when no independent determinations for the density
distribution were available and the W-A equation was used to compute ρ(r) for given values of the
seismic parameter Φ(r) determined from seismological observations (Bullen, 1975).

During the 1970s a radial density distribution has been obtained for the Earth from inversion of
seismological observations, incorporating spectral analysis of the Earth’s eigenvibrations, under the
constraints of the given values for M and I. This, together with seismic velocities determined from
bodywave traveltimes and surfacewave dispersion, has resulted in the Preliminary Reference Earth
Model (PREM), (Dziewonski and Anderson, 1981).

Since ρ(r) can be determined from analysis of the earth’s normal modes (radial eigenvibrations)
the ‘adiabaticity’ of the mantle is no longer assumed.

The degree of ‘adiabaticity’ is used in numerical modelling experiments as a diagnostic for the
dynamic state - where a high degree of adiabaticity indicates vigorous thermal convection and
predominantly convective heat transport (van den Berg and Yuen, 1998, Matyska and Yuen, 2000,
Bunge et al., 2001).

Usually the outcome of such experiments shows that the upper and lower mantle separately
are approximately adiabatic - away from boundary layers were conductive transport dominates. In
recent years models of the deep lower mantle have become popular were a compositionally distinct
dense layer occupies the bottom 30% (roughly) of the lower mantle (Kellog et al., 1999, Albarede
and van der Hilst, 2002).
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2.8 Earth’s chemical composition

For a complete description of the Earth’s interior we need to know it’s chemical composition, tem-
perature and pressure. In section 2.3 the pressure is expressed in the density distribution and the
related internal gravity field. Once the internal pressure distribution is known, sharp transitions
or discontinuities in the material properties, like the seismic velocities vp, vs and the density in the
PREM model, can be identified with mineral phase transitions and as such they can be related to
the mineral (P, T ) phase diagram of candidate mantle silicate materials in order to estimate the
temperature in the Earth’s interior. Such phase diagrams are determined from experimental (HPT)
and theoretical work in mineral physics.

What do we know about Earth’s bulk chemical composition? Candidate mantle materials have
been defined based on cosmochemical and petrological considerations. Models of the chemical com-
position of the Earth are commonly based on the hypothesis that the planet was formed in a multi-
stage accretion proces from material that condensated from the original solar nebula approximately
4.6 billion years ago at the time of formation of the solar system. The chemical composition of
chondritic meteorites, in particular the carbonaceous chondrites (CI type) (McBride and Gilmour,
2003) show a strong correlation with the composition of the outer layer of the sun (photosphere),
determined from spectral analysis of the solar light, as illustrated in Fig. 4 (Anders and Grevesse,
1989).

Figure 4: Left: Element abundance (normalized with Si = 106), of the solar shallow photosphere compared

to chondritic meteorites (Anders and Grevesse, 1989). Right: amounts of Earth’s major elements assuming

a chondritic composition (Brown and Musset, 1993).

The solar-chondritic data in the lefthand frame show that Mg, Fe and Si are by far the most
abundant (non-volatile) elements. According to the chondritic Earth hypothesis a similar abundance
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can be expected for the bulk-earth. This is illustrated in the righthand pie diagrams. Note the large
proportion of oxygen, bound in oxides. In most crust-mantle rocks S is less abundant than Al or Ca.
This is usually explained by assuming that S is relatively volatile and also ‘siderophile’, meaning
that a significant fraction may have ended up in the iron-nickle core during an early core-mantle
differentiation.

The chondritic meteorites are thought to be representive of the undifferentiated material con-
densated from the solar nebula.

Around 1960 a model chemical composition for the bulk of the Earth’s mantle, coined pyrolite,
was introduced by Ringwood (see (Ringwood, 1975) and original references therein). This is still
used as a reference model. The pyrolitic composition is associated with the main upper mantle rock
type peridotite that is brought to the Earth’s surface in small fragments included in volcanic rocks
(xenoliths) and also in larger, kilometer sized, fragments in so called peridotite bodies (Spengler et
al., 2006). The pyrolitic composition of the upper mantle rocks is also strongly correlated with the
composition of chondritic meteorites, in agreement with the hypothesis of a chondritic origin of the
Earth.

Mantle peridotites are found with different degrees of depletion (mass fraction lost) by partial
melting. More depleted material is denoted as harzburgite and the relatively undepleted peridotite is
known as lherzolite. During progressive partial melting the mineral composition of the residual rock
material, a mineral assemblage consisting of olivine, pyroxene and garnet, shifts towards the olivine
composition. The olivine enriched harzburgitic residue appears to be the chemical complement of
the basaltic melt product, with respect to the original lherzolitic mantle source rock. This depletion
relation, between oceanic and continental crust on the one hand and peridotitic mantle rock on the
other, is reflected in the element abundance of crust and mantle rocks, illustrated in Fig. 5.

Figure 5: Chemical abundance of crustal and mantle rocks, normalized with respect to CI chondritic values.

Data from (McBride and Gilmour, 2003).
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This figure shows abundance ratio’s relative to the CI-chondritic composition. The curve for
mantle rock appears to be relatively close to the chondritic composition, whereas the crustal material
is enriched with respect to the mantle in most elements shown.

A notable exception to this crustal enrichment is found for magnesium which appears to be
enriched in average mantle peridotite. This is in agreement with the previous observation that the
olivine/pyroxene content ratio of the residual increases with the degree of partial melting. Magne-
sium content increases with the olivine (forsterite Mg2SiO4)/pyroxene MgSiO3 ratio.

An other observation that can be made from Fig. 5 is the apparent depletion of the siderophile
elements Fe and Ni, both in crust and mantle material, with respect to the chondritic composition.
This is usually explained by the formation of a liquid Fe, Ni rich metal core of the Earth during
the first few million years of the accretion proces, in the early solar system. During this event the
molten liquid metal would have differentiated from the silicate mantle, leaving the mantle depleted
in siderophile (iron loving) elements.

Core formation is also sometimes used as an explanation of the apparent K (potasium) depletion
of both mantle and crust with respect to chondrites. In this explanation K is disolved in liquid iron
in significant quantity at high pressure and temperature (Rama Murthy et al., 2003). An alternative
explanation for the Earth’s K depletion is an escape of K due to significant volatilization during the
planetary accretion proces.

problem: 28 From Figure 5 it can be concluded that the Earth’s mantle and crust lost roughly 2/3 of its

original iron content corresponding to a chondritic composition. Verify how this iron-depletion of crust and

mantle could be explained by differentiation of the Earth’s mostly-iron core. Use the following data in your

argument: a) The mass fraction of the core Xc = Mc/M⊕ = 0.315. b) The Fe mass fraction XmFe ∼ 10% of

the pyrolitic mantle, c) The mass fraction of lighter elements in the core - (S, Si, O) amounts to about 20%.

d) The Fe mass fraction of the bulk Earth X⊕Fe ∼ 33% (Fig. 4)
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2.9 Phase transitions as anchor points of the geotherm

Major phase boundaries in the Earth’s mantle and core have been identified with sharp transitions
in the seismic wave velocities and the density distribution of the PREM model shown in Fig. 1.

The depth distribution of the mineral composition for a pyrolitic mantle model is shown in
Fig. 6. This figure clearly illustrates the different mineral composition of the upper and lower
mantle regions separated by the major phase boundary near 660 km depth (∼ 24 GPa), where the
ringwoodite polymorph of olivine, (Mg,Fe)2SiO4, transforms (dissociates) into a mineral assemblage
of perovskite, (Mg,Fe)SiO3 and magnesiowüstite, (Mg,Fe)O.

Figure 6: Pressure/depth distribution of mineral assemblage for a pyrolitic mantle model. Cpx: clinopyrox-

ene, Opx: orthopyroxene, Mj: majorite garnet, Ol: olivine, Wd: wadsleyite, Rw: ringwoodite, CaPv: CaSiO3

perovskite MgPv: MgSiO3-rich perovskite, MgPP: MgSiO3-rich post-perovskite, Mw: magnesiowüstite.

(From: (Hirose, 2007))

For a given mantle composition, for instance for a pyrolitic mantle, the pressure-temperature
mineral phase diagram can be determined for the relevant P, T range of the Earth’s mantle by
HPT experiments and mineral physics theory. A sharp transition at a pressure Pt in the PREM
model can then be located at the corresponding pressure in the phase diagram by the intersection
of the Pt isobar with the diagram phase boundaries. The (possibly multiple) intersection points
define the corresponding transition temperature Tt. The pressure-temperature point located in the
phase diagram defines an ‘anchor point’ that constrains the geotherm. In this procedure the phase
transition is used as a mantle/core thermometer.

This way several (P, T ) ‘anchor points’ of the geotherm have been determined, related to the
solid state phase transition near 660 km depth and the solid/liquid inner/outer core boundary at
1220 km from the Earth’s centre.

Fig. 7 from (Boehler, 1996) illustrates the determination of anchor points of the geotherm at
the phase boundary near 660 km depth (P660 = 24GPa, T660 = 1900± 100 K) and at the boundary
between the outer and inner core at 5150 km depth, (PICB = 330GPa, TICB = 4850 ± 200 K).
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Starting from these anchor points the temperature is then extrapolated from both sides to the
core mantle boundary at 2900 km depth. For this temperature extrapolation assumptions have to
be made about the dominant heat transport mechanism and in this case it is assumed that heat
transport operates mainly through thermal convection. This will be further investigated in later
sections dealing with heat transport in the Earth’s mantle.

Figure 7: Schematic radial temperature distribution in the mantle and core, constrained by major phase

transitions (Boehler, 1996), (UM-upper mantle, LM lower mantle, OC outer core, IC inner core). The

temperature of the upper/lower mantle boundary is constrained by the γ-spinel to postspinel phase transition

at 660 km depth. The temperature at the inner/outer core boundary at 5150 km depth (radius 1220 km) is

constrained by the melting temperature of the hypothetical core ‘Fe-O-S’ alloy. The right hand frame shows a

schematic core temperature distribution (geotherm) labeled ‘CORE ADIABAT’ in the liquid outer core versus

pressure and the melting curve (liquidus) of the core ‘Fe-O-S’ alloy. (CMB core-mantle boundary, ICB inner

core boundary). The ICB is determined by the intersection of the liquidus and the geotherm. During core

cooling the ICB moves outward as the inner core grows by crystallisation.

problem: 29 Estimate the temperature near the bottom of the mantle by adiabatic extrapolation of the
temperature T660 ∼ 1900K of the phase transition near 660 km depth, to the depth of the core mantle
boundary, using the general expression for the adiabat in a homogeneous layer.

Hints: apply the result of problem 27 and assume uniform values of the ‘scale height parameter’ HT =

(αg/cP )−1, with α = 2 · 10−5K−1, g = 10ms−2, cP = 1250Jkg−1K−1. Further: approximate the adiabat by

a linear depth function, in agreement with the schematic diagram of Fig. 7, to obtain a uniform adiabatic

temperature gradient.

The ‘head’ of the extrapolated outer core adiabat is at a temperature of approximately 4000 K
and the ‘foot’ of the lower mantle adiabat at approximately 2700 K. This result indicates a large
temperature contrast of about 1300 K across the CMB.

How can such a large contrast be explained physically? As we will see later, this can be explained
by interpreting the CMB as a boundary between two separately convecting fluid layers, each with
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a thermal boundary layer where the main heat transport mechanism shifts from convection in the
interior of the fluid layers, to conduction near the boundary interface, where vertical convective
transport vanishes with the flow velocity component normal to the boundary. Separately convecting
layers are in agreement with the large density contrast across the CMB where the density almost
doubles, as illustrated in Fig. 1. The resulting strong temperature contrast across the CMB is
consistent with a lower mantle in a state of vigorous thermal convection.

problem: 30 Explain why we can not turn this argument around and conclude from these indications for
a strong temperature contrast at CMB that the mantle convects vigorously.

Hint: Check Appendix A.3 for the assumptions made for an adiabatic geotherm in the lower mantle.

More recent developments, providing independent information, shed new light on the temper-
ature distribution in the bottom layer of the lower mantle. A previously unknown mantle phase
transition has been identified, in the main constituent magnesium-perovskite, to a (∼ 1.5%) denser
phase (post-perovskite) both in experimental HPT and theoretical (mineral physics) work at tem-
peratures and pressure conditions corresponding to a region in the lowermost mantle close to the
core-mantle boundary. This is illustrated in Fig. 8, showing experimental data points delineating
the phase boundary.

This phase transition has a high valued positive slope of the phase boundary (Clapeyron param-
eter) dPt/dT ∼ 10 MPaK−1. The intercept of the phase boundary with the core mantle boundary
at ∼ 136 GPa appears to be at a temperature several hundred Kelvin below the temperature of
the liquid metal outer core as illustrated in Fig. 8. As a consequence the geotherm may intersect
the phase boundary at multiple depth’s, depending on the local mantle temperature, a phenomenon
known as ‘double crossing’ (Hernlund et al., 2005). When a double crossing of the geotherm occurs,
a thin layer exists directly bordering the core, where perovskite is the stable phase while on top
of this bottom PV layer, a postperovskite layer exists with a variable thickness of up to several
hundred kilometers.

A further implication of the phase diagram illustrated in Fig. 8 is that the PPV layer will be
absent in hot regions where the geotherm is completely above the PV-PPV phase boundary. This
post-perovskite phase boundary has also been associated with the top of the D” layer at variable
height ∼ 100− 300 km above the CMB (Lay et al., 2005).

These seismological interpretations of the postperovskite phase boundary have been based on
limited resolution methods applying 1-D radial velocity models. In a more recent development,
techniques related to seismic wave migration methods, used in the oil and gas exploration industry,
are applied to delineate reflecting interfaces in 2-D and 3-D models in seismic stratigraphy of the
CMB region (van der Hilst et al., 2007). This way the spatial resolution has been brought down
to about 20 km, allowing mapping of detailed structures in the lowermost mantle. An important
target of these high resolution seismic methods is the bottom interface of a postperovskite layer,
associated with the ‘double crossing’, where mantle material transforms back from postperovskite
into perovskite due to the steep increase in temperature in the bottom thermal boundary layer,
illustrated in Fig 8, related to the temperature contrast across the CMB.

In a similar way as for the spinel-postspinel phase transition the temperature at the seismic
interfaces can then be estimated from the given depth(pressure) and the experimentally determined
parameters of the postperovskite phase transition. This way a mantle adiabatic geotherm and bound-
ary layer structure (error function) have been estimated with a CMB temperature Tcmb ∼ 4000 K
(van der Hilst et al., 2007). The ‘foot’ of the adiabatic mantle geotherm derived from this lies at
a temperature of approximately 2500 K. Both the estimated CMB temperature and the foot of the
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adiabat seem to confirm independent earlier findings based on adiabatic temperature extrapolation
over large depth ranges (Boehler, 1996).

Figure 8: Left: phase relations near the bottom of the mantle for pyrolitic material (Hirose, 2007). The solid-

and dashed line correspond to different pressure calibration of the HPT experiments. The Clapeyron slope of

the phase boundary is assumed 11.5 MPa/K. CaPv: CaSiO3 perovskite MgPv: MgSiO3-rich perovskite,

MgPP: MgSiO3-rich post-perovskite, Mw: magnesiowüstite. Right: schematic temperature profiles in the

lower mantle in relation to the perovskite (PV) to postperovskite (PPV) phase transition and the melting

curve for pyrolitic mantle material and subducted basaltic crust (MORB) (Hirose, 2007).

The temperature contrast of about 1500 K across the core-mantle boundary resulting from these
interpretations identify the bottom of the mantle as a thermal boundary layer, characteristic of a
vigorously convecting layer where the boundary interface has a fixed or slowly varying temperature,
as we will see in the section on heat transport in the mantle. As such these results from mineral
physics and seismology have produced new evidence for strong mantle convective flow near the
core-mantle boundary.
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3 Thermal state of the Earth

3.1 Introduction

Earth can be considered as a heat engine, where the flow of energy out of the system into the
environment, space, controls the internal dynamics of the system, this is manifested in the long term
existence of a magnetic field and in surface processes which are directly or indirectly observable in
the geological record. From the eighteenth century on, the thermal state of the Earth’s interior has
been the subject of investigation. In the nineteenth century, the discrepancy between the age of the
Earth estimated from simple physical, conductive cooling models and the time scales apparantly
involved in geological processes was a source of great controversy that lasted until the discovery
of natural radioactive decay and the realisation that this proces could be a significant source for
internal heating of the Earth. 12

In the twentieth century the role of solid-state (sub-solidus) thermal convection in the Earth’s
mantle became an issue, directly related to the concepts of continental drift described by Wegener.
This issue was settled in the 1960s when plate-tectonics became established, based on marine-
geophysical paleomagnetic observations. Thermal convection is much more effective in removing
heat from the interior of a hot planet than thermal conduction in representative mantle silicate
material. In current geophysical models for the thermal state of the Earth the global heat-output,
estimated at 44 · 1012W or 44 TW, consists for the larger part of the heat involved in cooling the
oceanic plates, continuously formed at ocean ridges.

The potential temperature 13 of the Earth’s upper mantle is an important parameter which
controls the proces of pressure release partial melting in hot upwelling mantle flows. This process is
essential in the creation of basaltic crust at oceanic spreading ridges, as part of the present day plate
tectonics. During Earth’s thermal evolution the uppermantle temperature has decreased and the
melting conditions in the hotter ‘young’ Earth may have been such that a much thicker lithospheric
layer of basaltic crust and underlying depleted (buoyant) peridotite was formed than today. As
a result the conditions for gravitational instabillity of the cooling oceanic crust/lithosphere would
have been quite different from today’s, resulting in a geodynamic regime different from today’s large
scale plate tectonics and characterized by a smaller scale more chaotic type of circulation (Vlaar
and van den Berg, 1991, Vlaar et al., 1994, van Thienen et al., 2004, van Hunen and van den Berg,
2008).

As shown in section 2.9 the present day temperature distribution in the Earth’s interior is
constrained by a number of phase transitions, illustrated schematically in Fig. 7. The solid-state
phase transition from the γ spinel (ringwoodite) polymorph of olivine (Mg,Fe)2SiO4 to the ‘post-
spinel’ assemblage of (Mg,Fe)SiO3 (perovskite) and (Mg,Fe)O (magnesio-wüstite) has been observed
experimentally at 23.9 GPa and 1900 ± 100 K (Boehler, 1996)

Similarly the melting point of iron at conditions for the inner/outer core boundary at 330 GPa has
been determined by Boehler at 4850± 200K for pure iron. The actual temperature may be slightly
lower due to the eutectic effect of lighter elements sulfur and oxygen in the liquid. Extrapolation of
the temperature from the inner core boundary along an outer core adiabat gives an estimate of the
temperature at the core-mantle boundary, slightly higher than 4000 K.

The thermal evolution and present state of the core is of direct importance for the geodynamo
proces which generates the Earth’s magnetic field through thermo-chemically driven convection in

12ref. section 1.3 History of ideas about the Earth in: (Brown and Musset, 1993) and (Holmes, 1915).
13See problem 27.
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the liquid outer core. Gravitational energy is released through chemical differentiation during inner
core crystallization. The residual liquid layer around the inner core is enriched in the lighter ele-
ments, most likely sulfur, oxygen, silicon. The resulting gravitational instability drives the chemical
convection. This is estimated to be a greater power source for the dynamo than the latent heat
release associated with the inner core crystallization, (Loper, 1978).

The history of the magnetic field is preserved in rock samples dating back to the archean era
(4-2.5 Gyr b.p.). These data suggest that the magnetic field existed at 3.5 Gyr b.p. On the other
hand, theoretical work and modelling studies suggest that the inner core started crystallizing at a
later time than 3.5 Gyr b.p. (Buffet, 2003). This implies that in the early Earth power sources
must have been available, other than the formation energy of the inner core, to drive the dynamo
by purely thermal convection only. Possibly radiogenic potassium 40K, with it’s relatively short half
life time could have played this role in the early Earth. Hypothetical 40K segregation into the core
during core mantle differentation, which occured in the first few million years in the early Earth,
would also provide a partial explanation, for the depletion from the mantle and crust with respect
to a chondritic (reference) composition by a factor of seven. This 40K enrichment of the core could
have happened in combination with loss of K due to volatilization, during the early accretion stages
of planet formation, (Rama Murthy et al., 2005).

In the following, contributions in the Earth’s heat budget are considered in more detail and put
in perspective with the Earth’s thermal evolution.

3.2 Earth’s heat output

An inventory of the Earth’s global heatflux is given in Table 2. The regional/local situation may
deviate from the global averages in the table in particular depending on the local tectonical regime
involving for instance age-dependence in oceanic plates or areas with regional volcanism.

Continent Qcont 2 · 108km2 × 65mW/m2 = 13 · 1012W
Ocean Qoc 3.2 · 108km2 × 101mW/m2 = 31.3 · 1012W

Global heatflow Q 44.2 · 1012W
Global heatflowdensity q 87mW/m2

Table 2: Inventory of global heatflow after Pollack et al., 1993.

The distribution of the surface heatflow density with major contribution from young oceanic
regions is illustrated in Fig. 9.
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Figure 9: Global distribution of surface heatflow density after (Pollack et al., 1993).
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3.3 The Earth’s energy budget and energy transport mechanisms

Several important factors which determine the Earth’s present thermal state and thermal evolution
are summarized in the following:

1. The initial temperature of the Earth’s thermal evolution
This was established during the accretionary phase of the Earth’s formation at the time of
formation of the solar system about 4.6 Gyr before present. Dissipation of kinetic energy from
impacts during the early bombardment period problably resulted in high internal tempera-
tures, leading to substantial melting and initiation of core/mantle differentiation.

Compaction due to increasing self-gravitation and resulting pressure build-up during accretion
results in dissipation of gravitational potential energy and a rise of internal temperature. 14

The differentiation of an iron/nickle core from an earlier homogeneous configuration probably
took place wihtin the first several tens of million years. As a result the gravitational potential
energy released during core segregation in such a relatively short period would have melted
most of the silicate mantle, creating a global magma ocean.

The formation of the moon by a giant collision of a ‘mars-sized’ body with the proto Earth,
in the same time window of the first few tens of million years of the Earth’s evolution, has
further increased the internal temperature, evaporating part of the mantle.

A direct record of these events is lacking because the oldest observed rocks are about 4 billion
years old. Mainly indirect evidence, for instance from geochemical trace element analysis, is
used to constrain the dating of these early events like core formation.

Because of the remaining uncertainties about the earliest ‘Hadean’ period of Earth’s history
(4.6-4 Gyr b.p.) the initial temperature is sometimes taken as an adjustable parameter in
models of thermal evolution of the Earth, starting from the early Archean period about 4
billion years b.p. This parameter is then adjusted such that the present day global heatflux
corresponds to the estimate of∼ 87mW/m2 based on available heatflow measurements (Pollack
et al., 1993).

2. Internal heat sources
The most important sources for internal heating are radiogenic heat production, discussed
in section 3.4.1, and release of gravitational energy, at present the main driving mechanism
of thermo-chemical convection in the outer core. To a lesser extent, latent heat from phase
transitions (mainly crystallization of the inner core), contributes to the heat source budget.

3. Effective heat transport processes
The thermal state depends strongly on the effective heat transport mechanisms. Thermal
conductivity of mantle silicates is quite low, k ∼ 4Wm−1K−1. 15 This corresponds to a
thermal diffusivity κ ∼ 10−6m2s−1 which means that the (diffusional) thermal relaxation
time, τ = h2/κ, of a silicate layer with the thickness of the Earth’s mantle (h) is several orders
of magnitude greater than the age of the Earth.

14In an ideal elastic medium the gravitational energy would be stored as mechanical (potential) energy that could
be recovered during (elastic) expansion. In practice there will be dissipation resulting from anelastic effects that leads
to internal heating.

15(wiki/List of thermal conductivities) Thermal conductivity in Wm−1K−1: air ∼ 0.025, diamond 2000 ∼ 2500,
granite 1.7 - 4.0, copper 353 - 386.
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Sub-solidus thermal convection by means of solid state creep flow is the main transport mech-
anism to remove the Earth’s internal heat on a geological time scale. In section 3.5 a number
of thermal evolution models are introduced were both transport processes have been included
and the relative efficiency of convective and conductive heat transport is investigated.

3.4 Internal heating by natural radioactive decay

3.4.1 Radiogenic heating in a chondritic earth

The ratio of the instantaneous global internal heat production rate and the global heatflux through
the Earths’ surface is known as the Urey ratio (Ur). Assuming a chondritic composition for the
Earth (Ringwood, 1975, Brown and Musset, 1993), in the 1950s it seemed that the estimated
surface heatflux could be completely accounted for by chondritic internal heating, (see section 3.4.2)
corresponding to a unit Urey ratio, (MacDonald, 1959). Since that time the total observed heatflux
through the Earth’s surface has been updated several times based on an increased number of heatflow
measurements and is nowadays estimated to be significantly greater than the chondritic internal
heating value.

In the following a rough estimate of the global heatbudget is given involving Ur < 1. To this
end we first consider a reference configuration with Ur = 1 where the global heatflux and chondritic
internal heating are exactly balanced. From the numbers in Table 2 we can then calculate the
corresponding heatproduction rate per unit mass as,

Aa =
Q

M⊕
=

44.2 · 1012W

6 · 1024kg
= 7.37 · 10−12W/kg (72)

This value of Aa is close to the characteristic value of (3− 5)× 10−12W/kg, reported for chondritic
meteorites. However this similarity is coincidental as we will see.

Since we wish to relate the surface heatflux Q to an average heatproductivity for the mantle AM ,
we have to correct the above calculation of the contributions for the crust and the core. As a first
approximation we assume the radiogenic heatproduction in the core to be negligable. In that case
we only need to correct for the mass of the core in the above estimate. Since Mcore/Mmantle ≈ 1/2
we obtain,

A(1)
m =

3

2
× 7.37 · 10−12W/kg (73)

In a further refinement we correct this number for the heat productivity of the crust only, the mass
of the crust can be neglected here. The heat produced in the oceanic crust can be neglected in
comparisson with the heat produced in the continental crust. A common assumption is that about
halve of the continental heatflow is generated in the crust. Since the Earth’s crust is about 2/5
continental it follows that 1/5 of the global heatflow originates from the continental crust. This
results in a heatproduction rate per unit mass, corrected for the core and crust,

A(2)
m =

4

5
× 3

2
× 7.37 · 10−12W/kg = 8.8 · 10−12W/kg (74)

This value is higher than the chondritic value. By assuming that the difference (about 40%) is
provided by secular cooling of the earth, (Ur = 0.6), the global heat flux can be rationalized with
the chondritic earth model.
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3.4.2 Heat production rates in representative rocks

The assumption of a core without radiogenic heat sources in the previous section is uncertain.
There is not much evidence of uranium U or thorium Th in the core but the possibility of significant
potassium K has been suggested as a possible explanation of the K depletion of both crust and
mantle rocks with respect to chondritic meteorites. This is expressed in the K/U ratio which is
around 7× 104 for the chondrites and 104 for crust/mantle rock.

Alternative explanations for the crust/mantle depletion of K are 1) the volatile character of K
which may have resulted in the escape of vaporized material in degassing events during Earth’s
hot early stages and 2) significant solubility of K in liquid iron which could have resulted in K
partly washing out of the mantle during segregation of the core. Recently it has been shown, using
improved experimental techniques (Rama Murthy et al., 2003), that contrary to earlier experimental
results, K can be put in solution in liquid iron in significant quantities at high temperature and
pressure. Therefore radiogenic K in the earth’s core could provide part of the power required by the
geodynamo, especially in the early stages of evolution before the solidification of the inner core had
started and the heat productivity of K, with it’s relatively short half-lifetime of 1.25 Gyr was much
more dominant in Earth’s radiogenic fuel-mix (compare Fig. 10).

An impression of the distribution of radiogenic heatproduction is obtained from xenolites. 16

Xenolites sample the mantle to depths of several hundred kilometer. Data for representative rock
types are given in Table 3. An average chondritic composition is included to put the data in
perspective with the chondritic earth model.

Rocktype U (ppm) Th (ppm) K (%) K/U

Chondritic meteorites 0.008 0.029 0.056 7 · 104

Peridotite - lherzolite 0.031 0.124 0.031 104

(undepleted reference mantle)
Peridotite - harzburgite 0.001 0.004 0.003 3 · 103

(depleted mantle)
Average continental crust 1.42 5.6 1.43 104

Shale 3.7 12 2.7
Granite 4.7 20 4.2
Tholeiitic basalt 0.07 0.19 0.088
(mid-ocean ridge basalt MORB)

Table 3: Isotope concentrations for several important rocktypes, after Turcotte and Schubert (2001).

To bring the data in Table 3 in line with the chondritic earth model one can assume that the
uppermantle (sampled by the xenolites) is enriched in U,Th and K with respect to the average mantle
and furthermore that the mantle is depleted in K with respect to the chondritic composition.

It is clear from these data that granite provides the highest heat productivity and that the
oceanic crust (tholeitic basalt) produces little radiogenic heat (3%, versus 97% from cooling). The
oceanic crust is enriched with respect to its source rock lherzolite, while the melt residu harzbugite
is depleted with respect to the source rock in agreement with the complementary character of both
rock types. These trends are in agreement with Fig. 5, illustrating the complementary nature of
crust and upper mantle with respect to chondritic meteorites.

16Solid rock fragments, typically centimeter sized, contained in magma flows from the mantle.
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Due to natural radioactive decay the concentration of the different radioactive isotopes in the
Earth’s interior is time dependent. Assuming the concentration at the present time C0, the concen-
tration at t time units back in the past is,

C(t) = C0 exp(λt) (75)

where the decay constant λ is related to the half-life τ1/2 as λ = ln(2)/τ1/2 = 0.69/τ1/2.

In natural rocks a ‘fuel-mix’ of, say N , different radiogenic isotopes is present, each with its
characteristic half-life time. The heat production rate per unit mass in this case is represented as
the cumulative effect of the individual N isotopes,

H(t) =
N∑
j=1

Hj(t) =
N∑
j=1

AjCj(t) =
N∑
j=1

AjC0j exp(λjt) (76)

where the Aj are the heat production rates per unit mass of the (pure) individual isotopes. A
time-varying ‘effective half-life time’ and corresponding decay constant λ can be derived for a given
fuel-mix from the above defined by,

dH

dt
= λH(t) (77)

The effective decay constant λ(t) is,

λ(t) =

∑N
j=1 λjAjC0j exp(λjt)∑N
j=1AjC0j exp(λjt)

=
N∑
j=1

λj

(
Hj(t)

H(t)

)
(78)

The effective λ increases (the corresponding τ1/2 decreases) with t (going back in time) in agree-
ment with the early predominance of short lived isotopes in the decaying fuel-mix.

The half-life times of the relevant isotopes are very different. For 238U and 232Th they are much
longer than for 235U and 40K as shown in Table 4.

Isotope j Aj (pure isotope) τ1/2j Cj Hj = CjAj
W/kg yr kg/kg 10−12W/kg

238U 9.46 · 10−5 4.47 · 109 30.8 · 10−9 2.91
235U 5.69 · 10−4 7.04 · 108 0.22 · 10−9 0.125
U 9.81 · 10−5 31.0 · 10−9 3.04
232Th 2.64 · 10−5 1.40 · 1010 124 · 10−9 3.27
40K 2.92 · 10−5 1.25 · 109 36.9 · 10−9 1.07
K 3.48 · 10−9 31.0 · 10−5 1.07

Table 4: Isotope parameters after Turcotte and Schubert (2001). The present day composition of
free uranium is 99.27 % 238U and 0.72 % 235U. Cj are estimated present day average mantle values,
corresponding to Table 3.

The heating rates per unit mass for the average mantle composition, (Hj), can be extrapolated
backwards in time from the present, using the isotope data in Table 4. The result of such an
extrapolation is shown in Fig. 10.
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Figure 10: History of internal heating rate per unit mass for an average mantle composition according
to Turcotte and Schubert (2001) (solid curve), decomposed in the individual isotope contributions,
(dashed curves).

Figure 10 shows that the internal heating rate from radioactive isotopes was substantially higher,
two to three times, during early periods of the Earth’s history like the Archean (4-2.5 Gyr b.p.)
and almost a factor of five if we extrapolate the data back to the earliest part of the Hadean period
(4.5-4Gyr b.p) the time of planetary formation. During the early history the ‘short lived’ isotopes
40K and 235U were the main heatproducing elements and also 26Al may have been important. This
in contrast to the present day situation where 232Th and 238U produce most of the radiogenic heat.

Combining Table 3 and 4 we get a table of present day heating rate numbers for the important
rock types listed in Table 5.

Table 5 illustrates the fact that the heat producing elements are ‘incompatible’, meaning that
these element are preferentially concentrated in the melt during partial melting of mantle rock.
This way the radiogenic elements concentrate in a liquid (melt) film in the interstitial pore space of
the (low porosity < 1 %) porous mantle rock, from where they are transported to the surface in a
melt segregation proces. As a result mantle rock, continously recycled in the mantle geodynamical
recycling proces, will get more depleted in radiogenic elements over time. The incompatible elements
accumulate in the continental crust which has a high concentration of radiogenic heat sources.

Table 5 shows that the continental crustal rocks have by far the highest internal heating rate.
Granitic rocks are representative for the upper continental crust.
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problem: 31 Determine the thickness of an equivalent granitic layer that could produce all of the
continental heatflow. Assume ρ = 2.7 · 103 kg/m3 for the rock density.
Answer: 23 km.

Apparantly the average thickness of the ‘granitic’ layer is thinner than the quoted 23 km and a
commonly used estimate for the continental lithospheric heatflow is that about 50% consists of heat
generated in the (upper) crust where the rest mainly consist of mantle heat entering the lithosphere
from the deeper mantle.

For oceanic lithosphere the situation is different. Although internal heating of the basaltic
crust is much lower than for the continental crust, the availabale heat from the cooling spreading
lithosphere results in a higher average surface heatflow density compared to the continental crust
as shown in Table 2 and illustrated in Fig. 9. Apart from the higher average value, the observed
oceanic heatflow density varies with the (thermal) lithospheric age, in agreement with conductive
cooling models for a column of lithosphere moving horizontally away from the spreading oceanic
ridge.

Rocktype Heat production rate
10−12Wkg−1

Chondrites 3.5
Granites 1135
Tholeitic basalt (MORB) 15
Peridotite - harzburgite (depleted) 0.3
Peridotite - lherzolite (undepleted) 7.4

Table 5: Heat production rates for several rocktypes.
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3.5 Thermal evolution models

From geological evidence it has been concluded that the Earth has cooled since the early archean,
4 Gyr b.p., by an uncertain amount, possibly upto several hundred centigrade. The occurence of
komatiites (magnesium rich meltproduct of peridotite), almost exlusively formed during the archean
period, provides indications about the temperature of the upper mantle in the early Earth. Extrusion
temperatures of upto 1650 centigrade have been derived, slightly higher than the zero pressure
melting temperature. The temperature in the source region of these melts at depths of at least 200
km is estimated at 1750 centigrade.

3.5.1 Parameterized evolution models

In the following a simple model is introduced for the volume average temperature of a cooling planet
in order to put the available thermal energy and present day global heat transport in perspective.

We assume a specific heat value for the Earth as a whole cP = 800 J/kg/K and average temper-
ature values and mass values for the mantle and core,

〈T 〉m = 2273 K, 〈T 〉c = 4273 K, (79)

Mm = 4 · 1024 kg, Mc = 2 · 1024 kg (80)

This amounts to a bulk thermal energy E ∼ McPT of 1.4 · 1031 J. The present day global surface
heatflow, listed in Table 2, is Q = 44.2 · 1012W. The ratio of these numbers is known as the Kelvin
time of the system τK = E/Q = 1.4 · 1031/44.2 · 1012 = 3.16 · 1017 sec = 10 Gyr. This represents
a first, rough estimate of the thermal relaxation time of the Earth, illustrating that the Earth is a
very slowly evolving thermal system.

The rough estimate in the above can be improved by applying a conservation law for thermal
energy to derive an evolution equation for the average temperature 〈T 〉. By volume integration
of the energy equation, see Appendix A.2, the following equation for the average temperature is
obtained, 17

C
d

dt
〈T (t)〉 = −Q(t) +H(t) (81)

In (81) the total heat capacity of the system is defined as,

C =

∫
V
ρcPdV (82)

and the averaged temperature, weighted by the local heat capacity, as

〈T (t)〉 =
1

C

∫
V
ρcPTdV (83)

The total internal heat production rate of the system is defined as,

H =

∫
V
HvdV (84)

where Hv is the local volumetric internal heating rate, defined as the product of the heating rate
per unit mass and the density ρHm.

17In contrast to the convention in the previous section, the time variable t increases with the model evolution in
(81).
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problem: 32 The simple model calculation leading to the estimated Kelvin time τK ∼ 10 Gyr can be

extended by taking the delaying effect of internal heating into account in a similar (simplified) way. To this

end apply (81) and substitute constant values for a) the Earth’s heatflux 44 ·1012 W and b) chondritic internal

heating rate 5 · 10−12Wkg−1. Derive the value of the constant cooling rate d 〈T 〉 /dt, in, Kelvin per 109 years,

predicted by this model and compare the outcome with the original model without internal heating. Answer:

284 K/Gyr and 90 K/Gyr.

The heatflux through the boundary surfaces - the earth’s surface and the core-mantle boundary (in
case of a model for the mantle only) is expressed as,

Q(t) =

∫
∂V

q · ndV (85)

where the heatflow density vector is expressed by Fouriers law for heat conduction q = −k∇T .
By assuming a parameterized relation between the surface heatflux and the volume average

temperature,

Q(t) = f(〈T 〉) (86)

(81) becomes an ordinary differential equation (ODE) that can be solved for a given internal heating
model H(t) and initial condition 〈T (0)〉.

In the above definition of the Kelvin time the surface heatflux is taken to be a constant (present
day) value, and the heating rate is assumed zero. This can be considered as a special (trivial) case
of (85) and (86) where f is a constant parameter and the thermal history follows as a linear function
of time.

An improved approximation is to assume the surface heatflux to be proportional to the contrast
between the internal temperature and surface temperature Ts,

Q(t) = α (〈T (t)〉 − Ts) (87)

with a constant coefficient α. This approximates the behavior of a simple physical model of a
hot fluid with approximately uniform temperature separated from the cooling outer surface by a
conductive boundary layer. Assuming a linear temperature profile in the boundary layer of thickness
l, the surface heatflow can be approximated as Q = Ak(〈T 〉 − Ts)/l. Where A is the surface area, k
is thermal conductivity.

Substitution of the parameterization (87) in (81) and assuming an initial temperature contrast
〈T (0)〉 − Ts = T0 the following solution can be derived for the thermal evolution, expressed in the
average temperature, 18

〈T (t)〉 − Ts = T0 exp(−t/τ) +
1

C

∫ t

0
exp((t′ − t)/τ)H(t′)dt′ (88)

where the exponential thermal relaxation time in (88) is defined by the constant,

τ =
C

α
≡ C 〈T (t)〉

Q(t)
=
E(t)

Q(t)
(89)

18The first term in the right hand side of (88) is a solution Th of the homogeneous differential equation that satisfies
the initial condition. The second term is a particular solution Tp(t), with Tp(0) = 0. Such particular solutions can be
found with the method of variation of parameters. To this end substitute Tp(t) = a(t)Th(t) in the ODE (81) to derive
a homogeneous ODE that can be solved for a(t).
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This definition of a relaxation time has a different interpretation than the one corresponding to the
Kelvin time defined for the model based on the constant surface heat flux assumption, although the
numerical values are the same, E/Q = 10Gyr. The first term in (88) represents the transient effect
of the initial temperature, the second term gives the contribution from decaying radiogenic heat
sources, integrated over the thermal history.

3.5.2 Convection models

Heat transport from the Earth’s interior to the surface appears to operate mainly through ther-
mal convection. For the Earth’s mantle, conduction contributes significantly only in the thermal
boundary layers near the core-mantle boundary and the Earth’s surface (lithosphere).

The relative inefficiency of thermal conduction in mantle rock material can be illustrated clearly
by the following thought experiment. Consider a purely conductive steady state model, i.e. ∂ ·/∂t =
0, of a spherically symmetric Earth of radiusR and uniform thermal conductivity k and with constant
and uniform internal heating with a chondritic value H = 5 · 10−12Wkg−1.

problem: 33 Apply the steady state assumption to (103) and derive the heat equation for an internally
heated sphere in spherical coordinates,

k

r2
d

dr
r2
d

dr
T (r) + ρH = 0 (90)

Solve this equation and express the radial temperature profile in terms of the surface temperature T (R) = TR
and the internal heating rate H as,

T (r) = TR +
ρH

6k
(R2 − r2) (91)

Draw a schematic graph of the temperature distribution. Assuming earthlike values for the parameters, taking

k ∼ 5 WK−1m−1, compute the temperature value in the centre and halfway between the centre and the surface

as an approximation of the core mantle boundary. What do you conclude from the outcome in view of the

estimations of the internal temperature of the Earth based on experimentally determined phase transitions

presented in section 2.9. What is the corresponding value of the surface heatflux and how does this compare

to the estimated present day heatflux of the Earth?

problem: 34 The internal temperature in the model described in problem 33 will be lower if the available
(chondritic) internal heating is not distributed uniformly but concentrated towards the outer surface. In a more
detailed steady state conductive model we assume that internal heating is confined to an outer shell, in line
with concentration of radiogenic isotopes in the outer regions of the Earth resulting from early differentiation
processes. Define R1 as the radius of the inner spherical volume without internal heating and H1 the internal
heating value of the outer region. Derive the following expression for the radial temperature distribution,

T (r) = TR

[
1 +

ρH1R
2

6kTR

{
1−

( r
R

)2
+ 2

(
R1

R

)3(
1− R

r

)}]
, r ≥ R1 (92)

In this model the maximum temperature T1 is reached for radius r = R1 and the inner region, r ≤ R1 is
isothermal with T = T1. Assuming the total amount of radiogenic isotopes corresponds to the chondritic value

of problem 33, show that H1 = H/
[
1− (R1/R)

3
]

and derive for the maximum temperature contrast with the

surface,

T1 − TR =
ρHR2

6k

1−
(
R1

R

)2
+ 2

(
R1

R

)3 (
1− R

R1

)
1−

(
R1

R

)3
 (93)
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Compare this result with the outcome of problem 33 and compute the maximum temperature for a ‘core/mantle’

case with R1 = Rc. Verify that T1 ← 0 for R1 → R.

More complete models also include heat transport by means of material transport, as in convective
flow processes, besides thermal conduction. In the following Rayleigh-Benard thermal convection
models are considered that can explain the Earth’s thermal state, including the observed surface
heatflux and an internal mantle temperature that is below the melting temperature of mantle peri-
dotite.

The Earth’s mantle can be described in a simple convective model set up as a highly viscous layer
cooled from above and heated both internally and from below. In such a model the earth’s surface
and the core-mantle boundary can be represented by impermeable boundaries. From the theory of
thermal convection in viscous fluids it is known that under certain conditions heat transport in such
model systems takes place predominantly by thermal convection in the interior of the fluid layer.
The convective heat transport increases when the viscosity of the fluid is decreased and also when
the temperature contrast between the cooler top surface and the hotter bottom surface is increased.

In this model heat is transported conductively through the thermal boundary layers that develop
at the top and bottom boundary. This proces, known as Rayleigh-Benard convection was investi-
gated theoretically by Rayleigh (1916), who showed in a linear stability analysis that two regimes
can exist depending on the value of the non-dimensional Rayleigh number,

Ra =
ρgα∆Th3

κη
(94)

where ρ is the fluid density, α the thermal expansivity, g the gravity acceleration, ∆T the temper-
ature contrast across the layer, h the layer depth, κ = k/ρcP the thermal diffusivity, expressed in
the thermal conductivity k and η is the viscosity of the fluid.

Rayleigh’s linear stability analysis (Turcotte and Schubert, 2001) shows that the fluid is at
rest for subcritical values of the Rayleigh number, Ra < Rac, and thermal convection sets in for
supercritical Rayleigh number values, Ra > Rac. The critical value Rac is a so called bifurcation
point of the heat transport model. For many configurations, layers, boxes, spherical shells, Rac is
of the order 1000 as illustrated in Fig. 11 for a 2D rectangular domain.

The efficiency of convective heat transport is expressed in the non-dimensional Nusselt number
defined as the ratio of the effective surface heatflux Q over the conductive heatflux of a corresponding
purely conductive layer,

Nu =
Q

Qcond
, Qcond = k∆T/h (95)

problem: 35 Derive the above conductive heatflux, for a plane layer of depth h with a temperature contrast

∆T between the top and bottom, without internal heating, from the one-dimensional steady state heat diffusion

equation.

Hint: consider the steady state case of the heat diffusion equation (103) for the special case of a homogeneous

layer with uniform top and bottom temperature T0 and T0 + ∆T respectively.

The critical phenomenon of the onset of thermal convection is illustrated in Fig. 11. Nusselt
number values of steady state Rayleigh-Benard convection, derived from numerical modelling cal-
culations, are plotted against the Rayleigh number. The Nusselt number is close to the unit value
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for Rayleigh numbers below the critical value, Rac ∈ [500, 800], indicating purely conductive heat
transport. For high Rayleigh numbers Ra ∼ 106 this figure suggests that convective heat transport
is more than an order of magnitude more effective than purely conductive heat transport.

Figure 11: Efficiency of convective heat transport measured by the Nusselt number as a function of the

Rayleigh number, for an isoviscous fluid and a 2-D square domain, with freeslip impermeable boundaries. A

powerlaw fit in the asymptotic regime for high Rayleigh number results in a powerlaw exponent of β = 0.35.

Internal temperature distributions of several steady state convection models, compiled in Fig.
11, with contrasting Rayleigh numbers from 104 to 106 are illustrated in Fig. 12, showing the spatial
distribution of the temperature T in the two-dimensional square domain and depth distribution of
the horizontally averaged temperature - corresponding to a geotherm.

The different plot frames illustrate a ‘single cell’ convection pattern. The 2-D temperature dis-
tribution in Fig. 12 shows a hot plume rising from the isothermal bottom boundary and a cold
downwelling limb of the convection cell sinking from the isothermal cold top boundary. Heat trans-
port through the horizontal boundaries is controled by thermal conduction, where the heatflow
density vector is defined by Fourier’s law as J = −k∇T (see Appendix A.1). It follows that the
conductive heat flow increases with the increasing temperature gradient, corresponding to a decreas-
ing thickness of the thermal boundary layers. This is also illustrated in the vertical profiles of the
horizontally averaged temperature and is in agreement with the increase (factor ∼ 5 of the heat
output between the cases with Ra is 104 and 106 respectively, indicated by Fig. 11.
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Figure 12: Numerical modelling results for 2-D steady state Rayleigh-Benard convection for different Rayleigh

numbers 104 (bottom) to 106 (top). The left hand column shows the temperature distribution. The right hand

column gives the vertical distribution of the horizontally averaged temperature. The temperature plots show an

approximately isothermal core region of the convecting cell and thermal boundary layers at the top and bottom

that become thinner for increasing Rayleigh number, explaining the trend in the Nusselt-Rayleigh number

relation illustrated in Fig. 11.
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problem: 36 Use the approximate uniform parameters below, to compute estimated values of Rayleigh
numbers of the following mantle configurations: (a) a whole mantle convection, (b) layered mantle convection
with separate convecting layers in the upper- and lower mantle.

ρ = 4.5 · 103 kg/m3, α = 2 · 10−5 K−1, k = 4 Wm−1K−1, cP = 1250 JK−1kg−1, η = 1022 Pa s,
∆Twhole = 2000K, ∆Tupper = 1000K.

Answer: Rawhole = 6 · 106, Raupper = 4 · 104.

The values estimated above for the Rayleigh numbers of representative mantle layers suggest
that the mantle is supercritical with respect to the onset of thermal convection. Combined with the
Nusselt number data shown in Fig. 11 this implies that convective heat transport should be taken
into account in thermal evolution considerations for planetary mantles.

Numerical experiments with thermal convection require the numerical solution of the time depen-
dent (coupled) heattransport equations introduced in the Appendix. Global three dimensional cases
of these so called full convection models on the scale of the mantle still represent a ‘computational
challenge’. The reason for this is that for the high Rayleigh number values involved (Ra > 106) the
resulting time-dependent temperature field is characterized by small scale variations which require
a high numerical resolution resulting in many degrees of freedom and long computation times.

For this reason thermal evolution models, taking into account convective heat transport have
traditionally been so called parameterized convection models. These models have in common that
the surface heat flux Q of the cooling body in (81) is parameterized. This is done by a param-
eterization of the heat transport characteristics of a convecting layer in terms of an asymptotic
Nusselt-Rayleigh number relation, appropriate for high values of the Rayleigh number illustrated in
Fig. 11 that can be derived from boundary layer theory (Turcotte and Schubert, 2001),

Nu =

(
Ra

Rac

)β
(96)

From the definition of the Nusselt number (95) it follows that the surface heatflow density q can be
written as,

q = Nu× qcond = k
∆T

h

(
Ra

Rac

)β
(97)

The surface heatflux Q follows by multiplication with the surface area, Q = q×
∫
∂V dA. The power

law exponent β can be determined from boundary layer analysis. For simple isoviscous layer cases
this results in a value of β ∼ 0.33. In these cases you also have 〈T 〉 = ∆T/2, such that the surface
heat flow density (97) can be written as,

q =
k

h
(2 〈T 〉)β+1

(
ραgh3

ηκRac

)β
(98)

Substitution of this expression for the surface heatflow density in (81) results in a differential equation
for the time dependent volume averaged temperature of the cooling mantle. 19 Since the temperature
of the early Earth is not well constrained, an often applied procedure is to integrate the equation
backward in time from an estimate of the present day mantle temperature, for which values greater
than 2000 K are used.

19This equation is non-linear and it is generally solved using a numerical integration method, for a given initial
temperature in the early history of the Earth.
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The formulation of parameterized convection models becomes more difficult for non-uniform
physical parameters. The boundary layer analysis has been extended to media with temperature
dependent viscosity where similar power law exponents of Nusselt-Rayleigh number relations are
found. Substitution of a parameterization of the viscosity as a function of temperature η(T ) can
then be applied to implement the feedback effect of increasing viscosity during cooling which has a
significant delaying effect on secular cooling of planetary mantles (Tozer, 1972).

Parameterizations of the temperature dependent viscosity based on the volume average temper-
ature are typically of the form (Schubert et al., 1980, Jackson and Polack, 1984),

〈η(T )〉 = η0 exp

(
A

〈T 〉

)
(99)

with parameter values, for the limiting (〈T 〉 → ∞) kinematic viscosity ν0 = η0/ρ = 2.2 · 107 m2/s
and the activation temperature A = 5.6 · 104 K.

For more general rheologies including also pressure and stress (τ) dependence, η(P, T, τ) there
are no such parameterizations available. In some of these cases parameterizations can be used based
on an empirically determined power law Nusselt-Rayleigh number relation. This can be done by
numerical experiments, solving the steady state heat transport equations numerically for a series
of Rayleigh numbers in the range of interest, as in the numerical experiments resulting in Fig. 11
and determining the power law exponent β from the results by a regression (curve fitting) operation
(van den Berg and Yuen, 1998).

Figure 13: Parameterized convection results (Pollack, 1997) for the thermal evolution of the mantle. Left:

evolution of the normalized internal heating rate for different choices of the Th,U,K fuel mix. Right: average

mantle temperatures corresponding to the different heating scenario’s.

A further limitation is related to the uniform thermal conductivity which underlies the parame-
terized models. In recent years it has been suggested that the mantle conductivity profile exhibits
a conductivity minimum at shallow depth in a low conductivity zone (LCZ) (Hofmeister, 1999, van
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den Berg et al., 2005). This is comparable to the low-viscosity zone of the mantle asthenosphere.
This LCZ results from the fact that the major contribution of crystal lattice vibrations to the ther-
mal conductivity decreases with increasing temperature and increases with increasing pressure, a
similar situation as with the effective viscosity of the mantle rock. The net effect of the LCZ is
an increase of the thermal resistance of the thermal boundary layer which results in a significant
delay in secular cooling of one to two billion years, compared to corresponding models with uniform
conductivity.

Fig. 13 illustrates the results of a typical example of a thermal evolution modelling experiment,
investigating the impact of different internal heating scenarios on the average mantle temperature
during the archean period (Pollack, 1997).
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3.5.3 The role of solid state phase transitions in convective heat transport

The heat transport of a single Rayleigh-Benard convection cell can be described with a simple power
law relation between the Nusselt and Rayleigh numbers. This is used in section 3.5.2 to parameterize
the surface heatflux in terms of the internal temperature in calculations of thermal evolution. In the
Earth’s mantle the simple Rayleigh-Benard convection cell is only a first approximation. One of the
complicating factors is the occurence of several solid state phase transitions in the mantle transition
zone between approximately 400 and 700 km depth. In particular the endothermic phase transition
near 24 GPa, 1900 K of the γ-spinel (ringwoodite) polymorph of the main mantle constituent
olivine (Mg,Fe)2SiO4 to the post-spinel assemblage perovskite (Mg,Fe)SiO3 and magnesiowuestite
(Mg,Fe)O is thought to have an influence on large scale mantle convective flow, which promotes
some form of layering in the circulation around a depth of 660 km (24 GPa pressure).

In contrast to this the other main phase boundary from α olivine to the β-spinel (wadsleyite)
polymorh of olivine at approximately 410 km depth is exothermic and has a de-stabilizing effect on
mantle circulation.

Figure 14: Schematic diagram illustrating the opposite dynamical effect of exothermic- (top row) and en-

dothermic phase transitions (bottom row) on large scale mantle circulation. The left hand column shows the

schematic phase diagrams for the two exothermic/endothermic cases with pressure and temperature increasing

in the upward and left to right direction respectively. The Clapeyron curves are shown of the two phase transi-

tions with three reference points corresponding to a reference background P, T position of the phase boundary

(A) and the P, T position (B) in a cold downwelling (lithospheric slab) or hot upwelling (C) (mantle plume).

The high pressure phase has a higher density ρ2 > ρ1. The other two columns illustrate laterally confined

vertical flows corresponding to either a cold downwelling or a hot upwelling. Due to the local temperature

perturbation associated with the vertical flow the phase boundary shifts vertically from its equilibrium position,

indicated by the dashed line.
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These effects are illustrated in the diagram in Fig. 14. In cold downwelling slabs crossing an
exothermic phase boundary with a positive Clapeyron slope, γ = dP/dT > 0, the cold perturbation
represented by the slab (δT < 0) causes the phase boundary to shift upwards, to lower pressure,
(δP < 0), thereby creating a positive density anomaly, δρ = ρ2 − ρ1 > 0, in the region enclosed by
the uplifted boundary. This increases the negative buoyancy of the downwelling flow and re-enforces
the circulation. A similar situation exists for an exothermic phase boundary and a hot upwelling
flow, such as in a hypothetical hot mantle plume. Here the phase boundary is shifted to a higher
pressure, creating a negative density anomaly, δρ = ρ1 − ρ2, and positive bouyancy which enforces
the upward flow.

For endothermic phase boundaries with a negative Clapeyron slope the situation is opposite and
both cold downwellings and hot upwellings experience resisting body forces related to a negative
density anomaly in a cold downwelling and a positive anomaly in a hot upwelling.

From this analysis it follows that an endothermic phase transition forms an obstacle for whole
mantle convection. It has been found that the tendency towards layered convection in the presence
of an endothermic phase transition increases with the Rayleigh number (Christensen and Yuen,
1984). The efficiency of convective heat transport decreases in case of layered convection and it
follows that in the early Earth when the effective Rayleigh number was higher the effect of the
endothermic phase boundary has been to slow down convective cooling of the mantle.

The effect of the endothermic phase boundary near 660 km depth is illustrated in Fig. 15, showing
results of a numerical modelling experiment. This figure shows a snapshot of the distribution of
mineral phase and temperature for a 2-D rectangular, time dependent convection model including
three different mineral phases.

The phases shown in the top frame are: blue olivine(spinel) green postspinel (perovskite plus
periclase) and red postperovskite plus periclase. The postperovskite structures near the bottom
coiincide with colder regions, interrupted by hot plumes rising from the core mantle boundary shown
in the bottom frame. The contour lines illustrate the instantaneous flow velocity. Note that the
topography of the 660 km phase boundary correlates with the local temperature in agreement with
the schematic phase diagram in Fig. 14. Apparently cold downwellings sometimes cross the 660 km
phase boundary directly in some regions, whereas in other locations deflection of slab like structures
can occur at the phase boundary, in agreement with images of seismic tomography (Albarede and
van der Hilst, 2002).
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Figure 15: Snapshot from a time dependent convection model showing mineral phase and temperature. The

phases shown in the top frame are: blue olivine(spinel) green postspinel (perovskite plus periclase) and red

postperovskite plus periclase. The white line marking the spinel to postspinel boundary defines the boundary

between the upper and lower mantle near 660 km depth. The irregular structures near the bottom are regions

occupied by the high pressure postperovskite phase.
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Appendix

A Concepts of thermal energy transport

In this appendix the energy transport equations, that are used in the thermal evolution models
introduced in the main text are summarized.

We consider the evolution of a temperature field controled by convection/diffusion processes in
a 3-D spatial configuration.

A.1 Transport equations

The temperature is described as a scalar field T (x, y, z, t) of the space (x = (x, y, z)) and time
(t) coordinates. The temperature gradient is defined as ∇T = (∂T/∂x, ∂T/∂y, ∂T/∂z). The main
transport mechanisms of thermal energy considered are:

1. Conductive transport

In a general formulation of diffusion processes by Fourier’s (Fick) law, a flux density vector J
is expressed in terms of the thermal gradient and the thermal conductivity,

J = −k∇T (100)

where in general, for an anisotropic medium, k is a conductivity tensor with Ji = −kij∂jT .
We will assume an isotropic medium here with kij = kδij , and scalar conductivity k.

The energy transport equation for a purely conductive case follows from an energy conservation
principle applied to a control volume V in a static (non-deformable) medium,

d

dt

∫
V
ρcPTdV = −

∫
A

J · ndA+

∫
V
HvdV (101)

ρ and cP are density and specific heat and Hv = ρH [Wm−3] is the (volumetric) density of
the internal heating rate.

Differentiating inside the first integral, assuming ρcP constant, substituting (100), and apply-
ing the Gauss divergence theoreme to the surface integral we get∫

V
ρcP

∂T

∂t
dV =

∫
V
∇ · k∇TdV +

∫
V
HvdV (102)

Since V is an arbitrary control volume we arrive at the time dependent diffusion equation,

ρcP
∂T

∂t
= ∇ · k∇T +Hv (103)

2. General convection/diffusion transport case

For thermal convection models convective energy transport, coupled to mass transport, can be
the dominant transport mechanism. In this case the energy flow density contains a convective
part

I = −k∇T + ρcpTu (104)
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where u is the flow velocity vector field. We assume the medium here to be incompressible,
implying a divergence free velocity field ∇ · u = 0.

We now apply the energy conservation principle to a static control volume with a permeable
closed boundary surface to get,∫

V
ρcP

∂T

∂t
dV = −

∫
A

(−k∇T + ρcPTu) · ndA+

∫
V
HvdV (105)

Applying Gauss theorem to the surface flux term, substituting the incompressibility condition,
∇ · u = 0, and assuming ∇(ρcP ) = 0, we get,

ρcP
∂T

∂t
= ∇ · k∇T − ρcP∇T · u +Hv (106)

Substitution of the material or Langrangian derivative D(·)
Dt = ∂(·)

∂t + u · ∇(·), we obtain the
convection/diffusion equation for heat transport in a flowing medium,

ρcP
DT

Dt
= ∇ · k∇T +H (107)

A.2 Thermal energy conservation applied to a cooling body

An approximation of the cooling behavior of a (planetary) body can be obtained from a conservation
principle for thermal energy by integrating over the volume V =

∫
V dV with surface ∂V enclosing

the cooling body with surface area A =
∫
∂V dA. Assuming the surface to be impermeable, with

u·n = 0, (u and n are the material flow velocity and outward pointing normal vector on the surface),
we have with (101),

d

dt

∫
V
ρcpTdV = −

∫
∂V
qdA+

∫
V
HvdV (108)

where q(x, t) = J · n is the surface heatflow density. Assuming uniform heat capacity C = ρcP and
introducing the volume average values 〈T 〉 , 〈H〉 and defining Q = 1

V

∫
A qdA we get,

C
d

dt
〈T 〉 = −Q(t) + 〈Hv(t)〉 (109)

(109) is an ordinary differential equation (ODE) for the time dependent volume averaged tempera-
ture of the cooling body.

In the literature on planetary thermal evolution the ratio of the instantaneous, global internal
heatproduction rate and the surface heatflux is defined as the non-dimensional Urey number,

Ur(t) =

∫
V Hv(t)dV∫
A q(t)dA

=
〈Hv〉
A
V 〈q〉

=
〈Hv(t)〉
Q(t)

(110)

In general q(x, t) and hence Q(t) are not known and assumptions concerning the relation between
surface heatflux and internal temperature have to be made in order to make (109) solvable. Several
alternative parameterzations of Q in terms of 〈T 〉 are discussed in section 3.5.
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A.3 The adiabatic temperature profile of a convecting layer

Often an adiabatic temperature profile is used as a reference for the temperature distribution in the
convecting mantle or outer core. The adiabatic nature of the horizontally averaged temperature in a
vigorously convecting layer follows from considering a more complete energy transport equation then
the approximate Boussinesq formulation (107) (Schubert, Olson and Turcotte, 2001). Derivation of
the full equation, including terms corresponding to adiabatic (de)compression and viscous dissipation
is outside the scope of this course. Such a derivation can be found (Malvern, 1969). We only give
the resulting equation here,

ρcP
dT

dt
− αT dP

dt
= ∂j (k∂iT ) + Φ + ρH (111)

Here the second term left represents the adiabatic (de)compression, the second term on the righthand
side represents the volume density of the power generated by viscous dissipation, Φ = τij∂iuj ,
expressed in the shear stress tensor and the strain rate tensor. ρH represents the volumetric heating
rate from other sources, such as radiogenic heating.

Using the thermodynamic expression for the entropy differential, and the Maxwel relation
(∂S/∂P )T = −(∂V/∂T )P , we obtain,

dS =

(
∂S

∂T

)
P

dT +

(
∂S

∂P

)
T

dP

=

(
∂S

∂T

)
P

dT −
(
∂V

∂T

)
P

dP =
cP
T
dT − α

ρ
dP (112)

it follows that,

ρcP
dT

dt
− αT dP

dt
= ρT

dS

dt
(113)

Combining (111) and (113) we arrive at a physical interpretation of heat and mass transport under
adiabatic conditions. The adiabatic assumption implies that dS/dt = 0. From (111) it follows
that this condition applies when thermal diffusion, viscous dissipation and internal heating are all
negligable. The only remaining transport proces is advection, implicit in the material derivative
d · /dt.

From (113) we derive an explicit form of the adiabatic temperature profile,

ρcP
dT

dt
− αT dP

dt
= 0 (114)

or equivalently,

1

T
dT =

α

ρcP
dP = −αg

cP
dr →

∫ T (r)

T (R)

dT

T
= ln

(
T (r)

T (R)

)
= −

∫ r

R

αg

cP
dr′ (115)

T (r) = T (R) exp

(
−
∫ r

R

αg

cP
dr′
)

(116)

In cases with a uniform thermal scale height HT defined by H−1T = αg/cP this becomes an expo-
nential temperature profile, T (r) = T (R) exp(H−1T (R− r)) = T (R) exp(z/HT ), where z is the depth
coordinate. 20

20See also section 2.6.3 and problem 27.


