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Prior * Likelihood = Posterior

Tarantola’s approach to Bayes:
Conjunction of states of
information



> Explicit modeling assumptions

> General framework for non-linear
problems

> Handles uncertainty in a natural manner
> Embodies Occam’s razor

> Given enough data, priors don’t matter

> Priors are objective (non-informative) or

subjective (informative) and sometimes
improper

The essence of Bayesian
inference



> Assume Gaussian distributions and
linearity = Explicit expressions

> Sampling the posterior directly
(Neighbourhood Algorithm,
Metropolis-Hastings)

> Sampling the prior and predict the
posterior (Neural Networks)

The technicalities
of Bayesian inference



> Subjective prior and sampling the
posterior (Neighbourhood
Algorithm, Metropolis-Hastings)

> Informative prior and sampling of
the prior only (Neural Networks)

Our pragmatic approach

to Bayesian inference

- The inference is relative:
knowledge gained from data
is added to prior



Explicit expressions using Gaussian statistics
(e.g. Tarantola 2005)

\YEiebini ¥/l C = (d — Gm)' C;'(d— Gm)+m'C_'m,

which gives a least-squares solution for the most
likely (mean) model together with the posterior
covariance

Anisotropic phase velocity maps
(Visser et al., 2008)
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Figure 6. Relative isotropic phase velocity maps with respect to PREM for Rayleigh (a) first higher mode at 148.56 s, (b) second higher mode at 40.028 s,
(c) third higher mode at 77.795 s, (d) fourth higher mode at 35.078 s, (e) fifth higher mode at 56.074 s and (f) sixth higher mode at 35.141s.

e) f)
0 45 90" 135 180" 225° 270" 315" 360° 0" 45 90" 135 180" 225 270" 315" 350°
90" t— R T—— g0 007 o=t~ 00"
45° 45° 45 45°
0 o 0 0
-45° 45" -45 -45°
-90° — ‘ : 90" -90 — 1 ‘ -90°
0 45 90" 135" 180" 225° 270" 315" 360° 0" 45 90" 135" 180" 225" 270" 315 350°

[
000 0.15 0.30 0.45 0.60 0.75 0.90 1.05 1.20 1.35 1.50
Percent

Figure 8. Azimuthally anisotropic 2¢s phase velocity maps for Rayleigh. The grey scale in the background corresponds to the peak-to-peak amplitude of
anisotropy expressed relative to the average phase velocity calculated from PREM. The black lines represent the fast directions which are also scaled to the
amplitude shown in the background. The plate boundaries and hotspots are indicated in white. Panels (a)(f) show the different modes and periods as indicated
in Fig. 6.




Perturbations are typically 100-250 m/s from PREM



Neighbourhood Algorithm (Sambridge, 1999)

Stage 1: Guided sampling using Voronoi cells.
For each sample the likelihood is evaluated.

Stage 2: Importance sampling (Gibbs) of the
posterior using the Voronoi approximation.

Seismic models from

probabilistic tomography
(Mosca et al., 2012)
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Figure 3. (left) Compressional wave speed, (middle) shear wave speed, and (right) density perturbation
maps at six depths, together with hot spots (green circles) and plate boundaries (green lines). Red (blue)
regions denote slower (faster) than average seismic wave speed and a decrease (increase) in density.
Measurements were calculated for even degrees 0, 2, 4 and 6. Perturbations are given in percent with
respect to PREM. We divided each layer into 264 nodes of 15° x 15° area and estimated the mean and
standard deviation in a grid node from the 1-D marginal pdf provided by the Neighborhood Algorithm.
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Figure 4. As Figure 3, but for the lateral distribution of the uncertainty of dInv,, dlnv; and dlnp.




Metropolis -Hastings

Using 100,000 thermochemical models sampling
variations of T (2300-4800K), Pv (60-100%), Fe
(0-20%), Al and Si (0-15%), together with Perplex
(Connolly, 2009), we match the seismic pdfs at
each point.

Thermo-chemical structure from
probabilistic tomography

(Mosca et al., 2012)
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Figure 9. Lateral variations of temperature, iron, silicates and post-perovskite at various depths of the
lower mantle. Temperature variations are expressed in Kelvin, while iron, perovskite and post-perovskite
perturbations are given in percent. Furthermore, variations are measured relative to thermochemical mod-
els which fit PREM to within 1%. Red regions denote negative chemical anomalies and a higher than aver-
age temperature, while blue regions are associated with positive chemical variations and a lower than
average temperature. Maps show hot spots (green circles) as well as plate boundaries (green lines).
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Figure 10. As Figure 9, but for the uncertainty of thermal and chemical anomalies.




Neural Networks
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Figure 2. A Mixture Density Network (MDN), as introduced by Bishop (1995). The output of an MDN approximates a parametric distribution p(t|x) for the

target t, conditioned on the input x. The parameters describing this distribution are given by the output z of a neural network, such as the MLP shown in Fig. 1.

A set is generated from the prior distributions to train
the neural network parameters. Once trained, the

network predicts the marginal conditional probability

of a chosen parameter given the real observation.
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Fig. 1. Radial earth models in the upper mantle. The parameter range spanned by the prior model space is represented by the grey shaded area, along with the 1-D reference
models PREM (black, solid), ak135f(red, dashed), STW105 (blue, dotted-dashed), QL6 (magenta, solid) and PREF (Cammarano et al., 2005, 99 models, green) for V{*#¥ and V}"#*
(top-left panel), p (top-right panel), Q,, (bottom-left panel) and Q,. (bottom-right panel). The horizontal scale for the bottom panels is logarithmic. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Ensemble of MDNs trained on the depth of the ICB. The left-hand panel shows the performance on the 5000 test set samples, represented by the correspondence
between the MAP estimate and the target value and quantified by the correlation coefficient R. The other panels show the 1-D marginal posterior pdf (blue line), the prior pdf
(red) and the target value (black, dashed) for a test set pattern (second panel from the left), PREM (third panel) and the observed data (right-hand panel). Note that the PREM
value in the right-hand panel is shown as a reference and does not represent a target for the observed data. The normalised pdfs for five individual networks in the ensemble
are shown in cyan. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Posterior statistics for the seven discontinuity depths in kilometres, in terms of the
MAP estimate # and asymmetric 2¢ model error bars, corresponding to 1/e? levels in
the unit normalised 1-D marginal posterior pdfs. The corresponding PREM and ak135
values are given for comparison. The last column shows the information gain Dy in
bits (C).

Discontinuity = PREM ak135 6—20 60+20 Dy |bits]

ICB 51495 51535 5154.7 5165.7 4.7
CMB 2891.0 28915 2886.5 2890.7 138
D’ (top) 2741.0 2740.0 27210 2761.0 0.0
“660" 670.0 660.0 650.3 676.2 2.5
“410" 400.0 410.0 370.0 4138 0.7
“220" 2200 — 200.0 2400 0.0
Moho 244 35.0 208 473 34

de Wit et al., 2014
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Figure 1: 1-D marginal posterior pdfs for the averages of the six seismic parameters in the six lower mantle layers
(Section S1). The bottom layer in each panel represents the D™ region. PREM (cyan line) is isotropic in the lower
mantle and is given as a reference. The velocities and density are expressed as percentage deviations from PREM.
The probability for each 1-D pdf is rescaled so that the maximum equals 1. Asymmetric 1o and 20 error bars
correspond to the 1/e'/2 (0.61) and 1/e2 (0.14) contours, respectively.
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