The effects of plumes on the dynamics of supercontinents in a self-consistent plate tectonics setting

ETHzürich Paper number: D143A-4352
Charitra Jain, Antoine Rozel, Paul Tackley

I. Introduction

- Higher core thermal conductivity ${ }^{[1,3]}$ requires a CMB heat flow of at least 12 TW (early estimates
- Higher core thermal conductivity
around $3-4 \mathrm{TW})^{[4]}$. What is the impact of basal heating on mantle dynamics with continents and self-consistent plate tectonics?
- How does the combination of basal and internal heating affect mantle convection?
- Do mantle plumes prefer to develop under continents? ${ }^{[577]}$
- Is there any correlation between continents and elevated temperatures in the subcontinental manile?

II. Numerical modeling using StagYY

etry using StagYY ${ }^{[9]}$

- Self-consistent plate tect geomtracked in time using the tracer ratio method. ${ }^{[11]}$ Continents differ from mantite ist terms of density contrast of $100 \mathrm{~kg} \mathrm{~m}^{3}$ (buoyancy ratio), viscosity contrast, and yield stress
410,660 and pPr boundares.
410,660 and pPv boundaries. Plastic yielding breaks stagnant-lid and gives plate-like be-

- Irrespective of variations in basal heating or continental size (except for very small continents), correlation between continents and elevated temperatures in the subcontinental mantle is observed. With increasing Ra, continents become very mobile and an episodicity can be seen between correlation-anticorrelation
- Anticorrelation is observed for cases with multi-layered convection. In most cases, plumes focus under continents
- With increase in CMB temperature, plumes form much quicker. They are short-lived and larger in number (higher degree)
- With internal heating, convection is more vigorous and continents move faster

V. Fułure directions

- Moving to compressible mantle convection models
- Run cases with different continental yield stress values
- Combine free surface boundary condition
- Self-consistent evolution of continents

References

dekothe e oll. (PNAS, 2012
2. Pozzo et ll. (Nature 2013)

Loy et ol. (Nature Geoscience, 200 'Heron and lownen (CRR1, 2010) Heron and towmon (κ K, 200)

O'Neill et ol. (Gondwenc Resserch, 2011) Ceron ond Lowmon (Tectonophysics, 2011)

Hermlund and Tockley (PEPI, 2008) Tockly (PEPI, 2008) Rockley and King (C3, 2003)
 Morese and Solomemov (GIl, 1998)
Tocklyy (CB3, 2000)

