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The Problem

Mantle convection simulations are a powerful tool for investigating many outstanding problems in geophysics.  
Models can be used to test many theories about the Earth, including how the planet formed and cooled, how
the geodynamo works, and how the mantle and crust affect one another.  Models are constrained by observations,
but for early Earth history we can only construct theories based on today’s observations and the geological record.  
Here we investigate what information the present state of mantle convection may contain about early Earth history. 

Why?
Convection simulations are problems where the same initial conditions with the same 
boundary conditions always produce the same final result.  But what are the initial 
conditions and boundary conditions needed to produce an Earth-like result?  
If we can constrain some parameters reliably, we can begin to understand large-scale
mantle convection and investigate more complex models and smaller-scale variations.

Uncertain & 
Unknown

Initial Conditions

Unknown
Boundary 
Conditions

+ =

Convection is also a non-linear problem.  Small changes to initial or boundary conditions 
may make a large difference to the final convection state (the “Butterfly Effect”).  Large 
changes in initial conditions may make almost no difference to final state.  Parameters 
may interact so that their effects cancel each other out.
  

To estimate the initial conditions for Earth, we need 
a method to identify which conditions influence the 
final convection state to a detectable extent and a 
method to invert final convection state for those initial
conditions. 
  

Our Solution
By running thousands of convection simulations with
widely varying initial conditions, we can train a 
neural network to identify subsequent patterns that 
depend on particular initial conditions and to 
approximate the inverse function between final 
convection state and initialisation conditions.

  

The model
We run the mantle convection simulation StagYY 3000 times.  Each run varies 12 initialisation parameters 
independently.  The models have a 2D spherical annulus geometry with resolution 64x512 cells and free-slip 
boundaries, are compressible, and form basaltic crust through melting of fertile mantle material.  Composition 
is tracked with 500,000 tracers.  Major element ratios of each rock type (basalt, harzburgite and primordial) 
also vary in each model, with mineral physics properties calculated usng the Perple_X package (Connolly, 2009).  

The temperature and density fields calculated by StagYY can then be used to train our network.

The neural network

Why neural networks?  
Neural networks can approximate complex non-linear functions.  They are also capable of interpolating 
through high-dimension parameter space, meaning high dimension problems, such as this, can be attempted 
with far fewer data points than would be require for other probabilistic approaches, such as Monte-Carlo 
methods.

Training Sets

We train our neural networks using three different data sets:  temperature, composition (fraction of basaltic
material in each cell), and thermal heterogeneity spectrum.  Each is calculated by StagYY starting from known 
initial conditions.   For temperature and composition, the field is transformed into the frequency domain.  We
then train an auto-encoding neural network (Valentine & Trampert, 2012) to compress the amplitude spectrum.

How do neural networks work?
A neural network consists of randomly initialised weights linking several layers of functions.  Our network is
a mixture density network, with a layer of input functions, a layer of 25 tanh functions and a layer of output 
Gaussian functions.  Each input element contributes to each tanh function and each tanh function contributes
to the mean and standard deviation of each Gaussian.  The Gaussians are then summed to form a probability
density function which is the network estimation of whatever we are trying to find for that input. 

To train the network, we have a training set of inputs each with a known target value.  The error between the
known target and the network estimate is calculated at each iteration.  The contribution of each of these 
weights to the error in the output is calculated, and updated to reduce the error.  We use the iRPROP+ algorithm 
of Igel & Huskens (2000) to update the network.    We use a committee of 40 networks, as this removes some of 
the effects of over-training.  Over-training occurs when the network tries to fit a function to the training data 
points too accurately, at the expense of the generalised performance.

Once it has been trained, the network can be shown new, unknown data for which it can calculate the 
likelihood of that new data being the result of any initial condition.
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We can train a network to find various rheological and composition parameters from
the resulting convection patterns.

  
Network Perfomance
We use two different measures of network performance: the correlation between the 
network predicted values;  and the Kullback-Leibler divergence.

Correlation ≈ Accuracy

Kullback-Leibler Divergence: Information gain 
≈ strength of signal 

Which conditions can we trace in StagYY outputs?
For 4.5 Gy
• Yield stress
• Basalt fraction
• Depth of primordial 
          material

For 2 Gy
• Initial CMB temperature
• Reference viscosity
• Viscosity activation volume

For 1 Gy
•  Initial mantle potential
         temperature

What happens with a tomography model?
Assuming that shear speed variations represent temperature variations to the first order, we take the tomographic model S40RTS (Ritsema et al. 2011) and calculate the 
amplitude spectrum as a function of depth.  This is then preprossesed in the same way as our synthetic StagYY temperature fields.  All scaling is removed, leaving just the 
degree 1-10 amplitude spectrum.  This means that we can use a network trained with temperature to make an estimate for Earth values.  

In an ideal case, the maximum likelihood of the
network output should perfectly match the target 
value for every element in the test set.  This is not 
possible because of noise, interference between 
model parameters, incomplete data space 
coverage or simply the lack of signal in the data.  
This scatter plot is for the true yield stress and the 
network prediction after 4.5 Gy, coloured 
according to information gain.

The entropy of a distribution is the degree of predictability of 
samples from that distribution.  A Gaussian with a low standard 
deviation has low entropy.   The relative entropy between two 
distributions gives a measure of the information gain.  The figure 
to the left has a high relative entropy between the prior (blue) and
posterior (red).   A K.L divergence of 1.16 bits corresponds to a 
halving of Gaussian standard deviation.

            KLdiv ( R || B) =      R log   (R / B ) 
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11Earth-like model

Temperature field 
from StagYY

Transformed into amplitude spectrum 
as a function of depth

Compressed to
22 values by 
autoencoder

De-encoded amplitude 
spectrum: encoding has

a smoothing effect

Network ability to map between StagYY ouptuts and starting conditions as
a function of time
          

Amplitude spectrum a a function of depth for S40RTS
          

Network estimate
for yield stress
from S40RTS.

This is the best 
constrained result.

K-L divergence 1.29

Network estimate for 
basalt fraction.

These have low 
information gain,
but five different
networks give
consistent results
around 0.28.

K-L divergence ~0.35

Network estimate
for initial mantle
temperature
from S40RTS.

These have low 
information gain,
but five different
networks give
consistent results
between 
1400-1500 K.

KL divergence
~0.35

Network estimate 
for reference 
viscosity.

These have low 
information gain.
Four different
networks give
similar results
around 10   .

K-L divergence 
~0.3

18

after 4.5 Gy

StagYY 2D Output
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processing

Neural Network Probability density function
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Our networks can find a mapping between various initialisation and intrinsic characteristics and the state of the mantle which results from 
these initialisation conditions.  The fraction of basalt (basalt frac.) in fertile mantle and initial thickness of layers of primordial material 
(depth prim.) maintain a strong signal in the composition field.  The yield stress maintains a strong signal in the temperature field for 
4.5 Ga, because high yield stress leads to stagnant-lid type planets, whilst low yield stresses produce more continents allowing the mantle to 
cool.   Signals from initial temperature (initial CMB temperature and mantle potential temperature) are lost after around 1 Gy and 2 Gy 
respectively as the heat fluxes stabilise.  A lack of signal may also be caused by too few training sets or low resolution and can be improved.

Models with low viscosity require more time-steps to reach 4.5 Gy.  We currently only have enough completed models runs to train 
networks up to 3 Gy.  However, we can provisionally extend our investigation until we have enough runs.  Using the composition field, we 
can train a network with output profiles from 2 Gy of run time, then show it patterns produced after 4.5 Gy of run time.  This works well for 
composition parameters, such as basalt fraction.  We can also remove scaling factors, such as 1D temperature profile, and train networks to 
recognise the pattern types (eg. 3rd vs. 4th order symmetery in the convection patterns) associated with each initial condition.  This is less 
successful, but does work for yield stress.  This method also allows us to apply our networks to tomographic models by assuming that 
variations observed are primarily due to lateral temperature variations.
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Model Characteristics & Initial Conditions

We investigate how 12 different mantle convection conditions (thermal, chemical and 
compositional), plus mineral physics parameters, affect mantle convection.   We vary all 
of the parameters at once, allowing us to investigate which parameters have a dominant 
effect and how different parameters interact.   

Each condition is drawn independently from a uniform distribution with ranges wider 
than those expected for the Earth.  Major element oxide components for each of basalt, 
harzburgite and primordial rock types are also varied.  Some combinations of conditions, 
particularly high core temperature + low viscosity, cause the models to crash because 
convection becomes too vigourous.
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Distribution of initial conditions through the 
model space.  Each grid is coloured according 
to the distribution of two parameters.  Areas of 
the model space with a higher number of samples 
are white.
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