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The results of mantle convection simulations are fully determined by the input parameters and boundary
conditions used. These input parameters can be for initialisation, such as initial mantle temperature, or
can be constant values, such as viscosity exponents. However, knowledge of Earth-like values for many
input parameters are very poorly constrained, introducing large uncertainties into the simulation of man-
tle flow. Convection is highly non-linear, therefore linearised inversion methods cannot be used to
recover past configurations over more than very short periods of time, which makes finding both initial
and constant simulation input parameters very difficult. In this paper, we demonstrate a new method for
making inferences about simulation input parameters from observations of the mantle temperature field
after billions of years of convection. The method is fully probabilistic. We use prior sampling to construct
probability density functions for convection simulation input parameters, which are represented using
neural networks. Assuming smoothness, we need relatively few samples to make inferences, making this
approach much more computationally tractable than other probabilistic inversion methods. As a proof of
concept, we show that our method can invert the amplitude spectra of temperature fields from 2D
convection simulations, to constrain yield stress, surface reference viscosity and the initial thickness of
primordial material at the CMB, for our synthetic test cases. The best constrained parameter is yield
stress. The reference viscosity and initial thickness of primordial material can also be inferred reasonably
well after several billion years of convection.

� 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Convection in the mantle is a major Earth process and plays a
crucial role in driving plate tectonics and the vertical motion of
the Earth’s surface, changing sea-level, erosion and sedimentation
rates, and therefore climate (Spasojevic and Gurnis, 2012), whilst
changes in insulation at the core mantle boundary affect the heat
flux (e.g. Nakagawa and Tackley, 2010), which in turn affects the
intensity, dipolarity and stability of the magnetic field (Aubert
et al., 2009). To understand these and many more Earth processes,
we must understand mantle convection throughout Earth’s
history.

In this paper we present a new probabilistic method for gaining
information on the governing parameters for mantle convection.
Mantle flow can be simulated by solving a coupled system of
conservation, momentum and energy equations, and many codes
exist with which to model mantle convection. These codes tend
to be very computationally expensive. The success with which
Earth-like convection is simulated depends on approximations in
the equations and the choice of values for parameters such as
viscosity and density structure, phase changes, initial temperature
and the distribution of continents. However, many of these param-
eters are very poorly constrained by geological, geochemical or
geophysical observations. Seismic tomography, for instance, pro-
vides maps of heterogeneities in wave speeds in the mantle, but
these have large uncertainties, and separating the contributions
of chemistry and temperature to these heterogeneities is challeng-
ing (e.g. Trampert et al., 2004; Schuberth et al., 2009). The locations
and amplitude of seismic discontinuities in the mantle give an
indication of phase changes and therefore mineralogy (e.g. Deuss,
2009), but are hampered by large uncertainties (e.g. Koroni and
Trampert, 2016). Viscosity structure can be found from glacial
rebound and geoid studies (e.g. Mitrovica and Forte, 2004;
Rudolph et al., 2015) and geodynamic modelling (e.g. Forte and
Mitrovica, 2001). These viscosity inferences rely on many
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assumptions and the resulting uncertainties are poorly under-
stood. Plate reconstructions provide a history of the surface motion
of the mantle, constraining flow evolution and viscosity (e.g. Bower
et al., 2013; Worthen et al., 2014). Detailed reconstructions are
available for about 150 Ma (Torsvik et al., 2010), before which
reconstructions must rely on inferences which contain much
greater uncertainty (e.g. Stampfli and Borel, 2002). Given the com-
putational expense of convection simulations, these uncertainties
present a great challenge to geodynamists. Finding new ways to
constrain parameters such as these is therefore valuable.

Because mantle convection can be simulated, we could in prin-
ciple apply inverse theory to try to find the input parameters nec-
essary for a mantle convection simulation to be Earth-like.
However, no general solution to the inverse flow equations exists
and the physics of mantle convection is not completely understood
meaning that many approximations are necessary. Furthermore,
mantle convection is a non-linear and chaotic process, therefore
even small changes in the initial distribution of thermochemical
anomalies between two simulations can lead to large differences
in the end-state of the simulation (Bello et al., 2014), making inver-
sion for simulation input parameters challenging. Nevertheless,
several attempts have been made to infer initial conditions and
physical parameters from geodynamic data.

One possible approach is to solve the time dependent flow
equations in reverse. This means that, starting with the present-
day state of the mantle, the convection can be forced to flow
backwards. Conrad and Gurnis (2003) found this method to be
successful for short timescales, but, because thermal diffusion is
time-irreversible and must thus be neglected and because of the
chaotic nature of convection, backwards simulations cannot be
used for more than about 75 Myr. Eventually backwards convection
produces a stable stratified configuration (Kaus and Podladchikov,
2001). Even without the limitations imposed by thermal diffusion,
the uncertainties and errors in the initial mantle state grow uncon-
trollably going back in time. Bello et al. (2014) showed that small
perturbations in the temperature structure of two otherwise iden-
tical mantle convection simulations caused them to diverge
unrecognisably after around 95 Myr of run time, which applies
equally to simulations run forward or backward in time. The adjoint
inversion method used by Bunge et al. (2003), Ismail-Zadeh et al.
(2004), and Liu and Gurnis (2008) addresses the effects of thermal
diffusion by linearising the relationship between initial model con-
ditions and the misfit between the final flow pattern and the obser-
vations. The method can be used to investigate both present-day
(e.g. Worthen et al., 2014; Ratnaswamy et al., 2015) and historical
mantle structure (e.g. Liu and Gurnis, 2008; Bocher et al., 2016).
However, this also suffers from the chaotic nature of convection,
with small differences or errors in the starting conditions in the
forward or the adjoint simulations potentially causing large
differences in the inversion result. By assimilating geological
observations, such as plate reconstructions (e.g. Bower et al.,
2013; Shephard et al., 2014), this time limit may be extended.
The timescale is then determined by the resolution of the data
coverage, both spatially and temporally, and is limited to periods
with reliable plate tectonic reconstructions (Bocher et al., 2016).
The assimilation of data adds further uncertainty into the process
and these uncertainties may not be well quantified in, for instance,
geological observations or seismic tomography.

The effects of varying convection simulation parameters are
generally investigated a few at a time by running multiple simula-
tions (e.g. Deschamps and Tackley, 2008; Lenardic and Crowley,
2012; Rolf et al., 2014). Conducted on a larger scale, this sampling
can be used for sampling-based inversion. Sampling based inver-
sions can be put into a probabilistic framework and include all of
the non-linearities in the simulation, allowing us to tackle inver-
sion of convection, potentially over any timescale. In this paper
we demonstrate that a sampling based inversion method using
pattern recognition, as described by Käufl et al. (2016), can be
applied successfully to mantle convection simulations.

Sampling based approaches require large numbers of forward
simulations to explore the relationship between the inputs for
the convection simulations and the end-state of the simulated
mantle. The inputs can be varied to cover a wide range of values
(which we refer to as prior sampling) or to preferentially produce
simulation results which resemble the observations (known as
posterior sampling). Monte Carlo methods use the latter approach
(e.g. Sambridge and Mosegaard, 2002). Before sampling begins, a
misfit function is defined between the end-state of the simulation
and an observation. The simulation inputs may then be varied to
preferentially find end-states with low misfit, by using algorithms
such as the neighbourhood algorithm of Sambridge (1999). The
resulting distribution of models approximates the probability dis-
tribution of simulation parameters being responsible for the obser-
vation. Monte Carlo methods are widely used in geophysics (e.g.
Forte et al., 2002; Cobden et al., 2012; Höink et al., 2013;
Austermann et al., 2014; Baumann et al., 2014).

While a posterior sampling Monte Carlo technique could in
principle be applied to our problem, the computational costs
involved make this impractical. Instead, we use a prior sampling
approach which has several benefits when compared with a tradi-
tional posterior approach. We assume that the probability distribu-
tions are smooth between sample simulations, allowing us to
interpolate between them. This means that we can work with far
fewer convection simulations, making the inverse approximation
tractable despite the computational expense of running convection
simulations. Secondly, our method is very flexible. The inputs to
the convection simulations are selected without aiming to repli-
cate any observation of Earth, and each simulation produces many
outputs, including temperature structure, seismic velocity, and
gravity, meaning they can be reused to investigate many different
observations without the need for further sampling.

Despite the rapid evolution of differences between models seen
in the experiments of Bello et al. (2014), certain statistics of con-
vection remain stable with respect to the input parameters, i.e.
although the exact positions of upwellings and downwellings
may rapidly diverge between simulations, statistical measures of
the convective pattern do not. In this paper, we show that the
amplitude spectra of the temperature fields resulting from two-
dimensional convection simulations contain sufficient information
on certain input parameters of the simulations that we can use
them to perform inversions for these parameters after several
billion years of convection.
2. Method

Inversion methods formally consist of finding a mapping
between a region in some data space and a region in a model space.
The model space contains each parameter which is necessary to
simulate the observations (which belong to the data space) given
some theoretical relationship described by a mathematical func-
tion. In our study, the model parameters are the input parameters
to the convection simulation code StagYY, both initial conditions
such as temperature profile and the distribution of chemical
heterogeneities, and constant convection parameters such as the
reference viscosity. The convection code implements the theoreti-
cal relationship between the model parameters and the observa-
tions in the data space, in this case the amplitude spectrum of
the temperature field of the mantle, according to a set of
assumptions.

Probabilistic inversion techniques use a posterior probability
density function (PDF) to capture the extent to which a particular



Fig. 1. Workflow to train a network to infer a convection model parameter.
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value of a model parameter is likely to be responsible for an obser-
vation. The PDF describes the probability that the model parameter
lies within any range of values. The conditional posterior PDF, the
most general way to express the solution to an inverse problem,
can be calculated using Bayes’ theorem:

PðmjdÞ ¼ PðmÞPðdjmÞ
PðdÞ ð1Þ

where d is an observation; in our case, the amplitude spectrum of
the mantle temperature field. We use the vector m to describe
the model parameter values which determine d. PðmÞ is the prior
probability density of each element of m, which contains all the
information that we know about each parameter before we con-
sider any observation. For our purposes, PðdÞ is a normalisation con-
stant. PðdjmÞ describes the extent to which observations are
compatible with a given set of model parameters, and is called
the likelihood of m. Technically this is not a PDF but a description
of how well a particular parameter explains the data. Most Monte
Carlo techniques directly evaluate the right-hand-side of Eq. (1)
(e.g. Mosegaard and Tarantola, 1995; Sambridge, 1999). This is
referred to as posterior sampling, because for each sample the like-
lihood is explicitly evaluated.

We use neural networks to directly represent the marginal PDF
of each input parameter to the convection simulations without
ever evaluating the right-hand-side of Eq. (1). Given a set of sam-
ples drawn from the prior model space, we calculate the corre-
sponding observations of the convective state at time t using a
convection simulation.

The neural network represents the marginal PDF for all possible
data corresponding to the prior model space, interpolating
between samples, and can evaluate the marginal PDF very quickly
for any new observation shown to the network. If we assume that
the variations in the joint data-model space are smooth with
respect to variations in the data, we needmany fewer samples than
in more traditional Monte Carlo techniques (Käufl et al., 2016).

The major advantage of using samples which are distributed
according to prior distributions is that they are not tuned to any
particular observation. They can therefore be reused repeatedly
to find an inference of the model parameters associated with any
observation. This is a particular strength for geophysical applica-
tions. For example, there are many seismic tomographic models
of the mantle, which vary in their details and amplitudes. We
can therefore reuse the same set of samples to invert different
tomographic models, or the temperature structures derived from
them, to compare how robust our inferences are with respect to
different tomographic models. We can also compare a priori the
expected resolution of each model parameter by comparing the
information contained in the posterior PDFs for the synthetic sam-
ples, given, for example, gravity maps versus seismic tomographic
images, allowing us to focus on the best Earth observation to use to
infer a particular parameter if we want to consider real data. This
can all be done with a single suite of convection simulations, pro-
vided that the prior ranges of the simulation input parameters are
appropriate.

In principle, prior sampling and posterior Monte Carlo sampling
methods should give identical results if an infinite number of sam-
ples are available. In practice, with a finite number of samples,
there is no guarantee that a specific implementation of a neural
network is performing optimally or returning the same results as
a traditional Monte Carlo method would. However, in our experi-
ence, we find that interpolation between samples from the prior
space produces a conservative estimate for the posterior PDF com-
pared to a Metropolis–Hastings inference (Käufl et al., 2016). By
this, we mean that the PDF obtained by a Metropolis–Hastings
inference will typically have a lower variance than that inferred
from prior samples and will thus provide a stronger constraint
on the solution. This is unsurprising, given the more targeted nat-
ure of Metropolis–Hastings sampling. However, the parameter
range indicated by Metropolis–Hastings sampling is usually a sub-
set of the range indicated by prior sampling, so the results from the
two approaches may be regarded as compatible.

The uncertainty indicated by the network decreases with higher
sampling density. If samples are too widely spaced, the networks
simply make an inference with very wide standard deviation,
and therefore great uncertainty. The sampling density and the
smoothness between samples varies in different regions of the
model space. We may therefore be able to make inferences in some
regions and not in others.

We initialise our networks to return the prior model parameter
distribution before training begins, and the networks should only
move away from the prior if there is positive information about
this parameter in the training set. If the network can find no rela-
tionship between the temperature structure and the model param-
eter, it will simply return the prior distribution for that model
parameter.

To describe our procedure in more detail, we follow the flow-
chart in Fig. 1. The model parameter vector m in our study has
29 dimensions, which are the inputs to the 2D mantle convection
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simulation code StagYY (Tackley, 2008; Hernlund and Tackley,
2008). Details of the simulation setups can be found in Appendix A.
Every dimension has an independent prior PDF, and the parame-
ters are sampled randomly from these PDFs. The prior PDFs are
chosen to cover a wide region of the model space and to include
values very different to those expected for Earth. Twelve of these
dimensions are direct input parameters, and include both initial
conditions and constant physical values, such as initial core tem-
perature, initial mantle potential temperature, yield stress and ref-
erence viscosity. The ranges of the PDFs from which each are
selected can be found in Table A.1 in Appendix A. The other 17
dimensions are the major element components of the three rock
types used in the model, which are given in Tables A.2 and A.3.
The resulting mineral physics properties are calculated using the
Perple_X package (Connolly, 2009), using the database of
Stixrude and Lithgow-Bertelloni (2011). The runtime of the simula-
tions varies massively with the input values, and some input val-
ues give rise to computational difficulties, particularly for high
initial core temperatures.

Our simulation setup produces observations at set time inter-
vals. We consider separately all of the simulations which have
run for 0.4, 1, 2 or 3 Gyr (see (Table B.4) for the exact number),
and train networks at each of these stages to retrieve the input
parameters. We currently only have enough completed simulation
runs to consider up to 3 Gyr of convection, due to limited compu-
tational resources, but it is straightforward to extend the study to
4.5 Gyr.

The outputs produced by StagYY include temperature, density
and viscosity, each stored as a grid with resolution 64 � 512 points
radially and horizontally, respectively. In this study, we consider
the temperature field only. We first post-process the temperature
field to condition it to be suitable for efficient network training.
We use the amplitude spectrum of the temperature field rather
than the original field, since removing the phase renders the
observables more stable with respect to the small random pertur-
bations used to initiate convection than observations in the spatial
domain. Fig. 2 demonstrates howmodels which differ in the spatial
domain are similar in the spectral domain. We take 64 1D Fourier
transforms of the temperature field, one at each depth slice. The
full set of amplitude spectra also has dimensions 64 � 512. To ease
network training, we reduce the dimensionality of this input vec-
tor. First we only consider the longest wavelength features and
retain degrees 0�10, reducing the dimensionality of the amplitude
spectrum to 64 � 11. The dimensionality is then further reduced by
using an auto-encoding neural network, developed by Valentine
and Trampert (2012), based on the work of Hinton and
Salakhutdinov (2006). The auto-encoder produces a lower dimen-
sional representation of the amplitude spectrum. The encoding
process reduces the 64 � 11 elements of the amplitude spectrum
to 28 discrete numbers in the encoded version. By trial and error
we find that reduction to 28 dimensions retains enough
information to preserve the original pattern, whilst being of
sufficiently low dimensionality for the inversion process to
succeed. The encoding is not loss-less, with the loss being in the
fine details of the amplitude spectrum, as can be seen in the exam-
ple in Fig. 3. The spectrum is smoothed, but the broad patterns are
retained.

The encoded amplitude spectrum can then be used to train the
mixture density network (MDN) (Bishop, 1995; MacKay, 2003).
Neural networks have been used for a variety of applications in
Earth sciences, including inversion. Examples from seismology
including finding the depth of the Moho discontinuity using sur-
face waves (Meier et al., 2007), determining radial structure of
the Earth from body-wave traveltimes (de Wit et al., 2013), earth-
quake source centroid moment tensor determination (Käufl et al.,
2014) and automated identification of seamounts from bathymet-
ric data (Valentine et al., 2013).

Visualising and interpreting a high dimensional PDF such as the
left-hand-side of Eq. (1) can be challenging. We therefore choose to
work with its marginalised form, so that only one parameter is
considered at a time. The marginal PDF is

PðmijdÞ ¼
Z

PðmjdÞ
Y

j–i
dmj ð2Þ

This PDF for parameter i depends on the variations of every
other parameter (j– i) and takes into account the covariance
between the included and excluded model parameters.

Each network is trained to find the marginal posterior PDF for
one model parameter from a given amplitude spectrum using a
training set of observations and target simulation input parame-
ters. Details of the network architecture are included in Appendix
B. For each training observation the true value of the model param-
eter of interest is known.

The posterior PDF is parameterised using a mixture of Gaus-
sians. The trained MDN outputs the mean, standard deviation
and a weighting factor for three to five of these Gaussian kernels,
which together give a PDF representing the marginal posterior
distribution. This PDF encapsulates our knowledge on a model
parameter given a particular observation and the choices made
during network training.
3. Proof of concept

We assess the performance of each committee of networks (see
Appendix B for details) after training by carrying out a series of
synthetic tests. We use a separate test set of convection simula-
tions, for which the simulation input parameters are known. These
have not been used to update any part of the network at any point
and are completely independent of training. Because they are inde-
pendent, we can be confident that any positive results we see are
derived from underlying physical relationships between observa-
tion and convection parameter, allowing us to test the generalised
performance of the network. The convection input model parame-
ters in the test set are all drawn independently and randomly from
the same prior distributions as those in the training set. The num-
ber of simulations in the training and test sets for each age group
are given in Table B.4 in Appendix B.

We use the Kullback–Leibler distance

DKL ¼
Z

PðmiÞlog2
PðmiÞ

Pðmijd;mj–iÞdmi ð3Þ

to measure the change in entropy in bits between the marginal pos-
terior probability distribution for the input parameter and the prior
distribution for that input parameter (Tarantola and Valette, 1982).
If the network has learned to find patterns that can be used to infer
the simulation input parameters, the network has gained informa-
tion on the relationship between observation and input parameter.
The more information the network has learned, the narrower the
posterior PDF is, and therefore the smaller its entropy relative to
the prior, giving a large DKL. Fig. 4 shows the Kullback–Leibler dis-
tance between a Gaussian mixture approximation to a uniform dis-
tribution (PðmiÞ in Eq. (3)) and Gaussian distributions with
decreasing standard deviation, Pðmijd;mj–iÞ. The networks are ini-
tialised to output a Gaussian mixture approximation to the prior
distribution, which is uniform for most parameters. The DKL

between a Gaussian distribution with standard deviation of 0.62
and a standardised uniform distribution is 0.5.

The posterior PDF, and therefore the DKL, include all the uncer-
tainties from imperfect sampling, the assumption of smoothness
between samples, the information content of the observation,



Fig. 2. The misfit between the full temperature field (red) and amplitude spectra (blue) when four simulations are started with identical model parameters, but initial 20 K
perturbations located in different places. Two different comparison sets are run with different model parameters. The misfit is calculated according to the method of Bello
et al. (2014), where the misfit ¼ 1=N

P jtij � trefij j, where tref is the reference simulation, shown in the top row of annuli. The annuli show the four simulations at various time
steps. In general, the misfit for the amplitude spectra are much lower than for the temperature in the spatial domain, indicating that the amplitude spectra are stable with
respect to input parameters despite the small initial differences. The large peak in the misfit for the upper set of simulations is because subduction begins last in the reference
case, as can be seen from the annuli. This causes the amplitude spectra to diverge, but they later converge again as convection stabilises. This difference in onset time
demonstrates the necessity of using a probabilistic approach – at this time step, the same input parameters can produce two very different observations. The relative error in
the amplitude spectra peaks at 1.4, which is a very significant difference.
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and the network training procedure, for every inversion performed.
The posterior PDF is dependent on the observation and all the
other varying model parameters, therefore the PDF and DKL are dif-
ferent for every simulation in the test set.

We calculate the DKL between the prior sample distribution of
parameter values in the training set and the network calculated
posterior distribution for each parameter at each time step. Fig. 5
shows the mean DKL across all the simulations in the test set. The
convection simulation input parameters with the highest informa-
tion gain is yield stress, the inference of which improves with time.
The information gain for reference viscosity and the initial thick-
ness of primordial material are also moderately high and stable
with respect to run time. The information gain for the initial core
mantle boundary and initial mantle temperature start high but
decrease markedly with time.

The networks may find less information after longer simulation
run times or not gain as much information on the other parameters
for a variety of reasons. It may be that there is no information to be
learnt on that input parameter from the observations shown to the
network. Alternatively, a signal may be present in the temperature



Fig. 3. Example of the effects of using an auto-encoding neural network to reduce dimensionality. (a) The original temperature field; (b) the original amplitude spectrum for
the temperature field for degree 0–10; (c) amplitude spectrum after encoding and decoding. Both spectra are on the same scale. The amplitude is scaled by the square root of
number of samples. The encoding network is trained to reduce the original amplitude spectra from 64 � 11 points to a 28 dimensional representation. The same network can
then decode the 28 dimensions back to a 64 � 11 spectrum, showing the possible loss of information in the encoding. The decoded amplitude spectrum is smoothed with
respect to the original spectrum but retains all of the large scale features of the amplitude spectrum. The bottom row of figures shows the root-mean-square amplitude as a
function of depth (d) and spectral degree (e), for the original and decoded spectra.
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field, but the training set may not contain enough simulation sam-
ples to allow the network to find a mapping between observation
and input parameter. It is impossible to distinguish these causes
and we have no way to estimate how many samples we will need
before training the network. We stress that although we do not
find these parameters in this study they are not necessarily
unknowable, and they may be recoverable with more training data
or different observations. A null result in this study therefore can
not be regarded as evidence that a particular parameter has no sig-
nature in present-day observables.

However this is not going to mislead our inferences as our neu-
ral network implementation produces a conservative estimate for
the posterior PDF when compared to results produced by directly
sampling from the posterior distribution by Monte Carlo methods.
When the data points produced by sampling the prior model
parameter space are not concentrated close to an observation that
we are trying to invert, the interpolation between samples is over
greater distances, increasing the uncertainty. With more samples
the DKL would increase as the uncertainties introduced by interpo-
lation decrease. In the case of too few samples, the inference sim-
ply returns the prior. More details on the comparison between
mixture density neural networks and Monte Carlo techniques can
be found in Käufl et al. (2016). We have fewer samples at greater
ages, therefore we would expect the DKL to decrease with age,
unless this is compensated by an increase of information in the
data.

There are other sources of uncertainty in the posterior probabil-
ity density function. The uncertainty in the value of simulation
input parameters is described by the prior and has a direct effect
on the posterior PDF via Bayes’ theorem. There are also uncertain-
ties in the forward simulation process and in the observations. In
this study, the training and test data are entirely synthetic, but to
apply this method to real data, we would have to take into account
the errors introduced by the assumptions implicit in StagYY, in
addition to shortcomings in our understanding of the physics of
mantle convection, and errors and noise in the real data. If we
can quantify these uncertainties, it is straightforward to include
them in our method. During network training, noise can be added
to the observations (Bishop, 1995; Käufl et al., 2014) encapsulating
modelling and data uncertainties. Adding noise to the training data
is similar to regularisation and has the effect of desensitising the
networks (Bishop, 1995). With greater noise, the network is forced
to find mappings using the features that vary the most between
training observations. With smaller noise levels, the network is
allowed to use smaller differences to distinguish between observa-
tions and is thus more sensitive to details in the data.

To investigate the influence of noise in the data, we train differ-
ent networks with standard deviations of noise levels of 10, 50 and
100 K. The noise level that produces the highest mean information
gain for the test set depends on the simulation input parameter of
interest. The noise is added to the mantle temperature field before
any dimensionality reduction takes place. For a given network, the
noise has the same standard deviation at all depths throughout the
mantle. If we were using real data, for instance seismic tomogra-
phy, the noise could be varied both laterally and with depth to
reflect different levels of knowledge in each region, as well as tak-
ing into account uncertainties in seismic tomographic modelling
and the conversion of these models into temperature, density or
composition. Fig. 6 shows the mean DKL and an error measure as
a function of different noise levels. There is very little difference
in DKL with noise level. The error measure is the mean difference
between the maximum of the network inferred posterior PDF



Fig. 4. DKL between a Gaussian mixture approximation to a uniform distribution
and Gaussian distributions with varying standard deviation. The inset distributions
show Gaussians with standard deviation of 0.75, 0.62 and 0.4 respectively (in red),
with the Gaussian mixture distribution plotted in blue behind each. The DKL is 0.24,
0.5 and 2.23 respectively. The colour in the background corresponds to those used
in Fig. 8. The PDF maximum is coloured black in each case and the width of the
transition from black to yellow shows the width of the PDF. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 5. Mean DKL between the prior distribution of parameter values in the training
set and the network calculated posterior distribution for the test set simulations.
Each point represents the outputs for one committee of networks, trained to find
the particular model parameter.
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and the true model parameter value of each simulation in the test
set in terms of the variance of the prior distribution. This measure
shows more variation with noise level. Whilst this measure gives
an indication of success, it cannot be treated as more than an indi-
cation because the true value may still fall within the region of
high likelihood, meaning the inference can be successful even if
the peak of the PDF does not lie exactly at the desired point. In this
paper all the presented results are for committees trained using
Gaussian noise with a standard deviation of 50 K.

Whilst Fig. 5 gives the mean DKL for all the simulations in the
test set, examining the individual PDFs for the each member of
the test set allows us to get more insight into the inversion, for
example to look at how performance varies in different regions
of the model space. Fig. 8 shows PDFs for the training sets for the
best resolved parameters and one badly resolved parameter. The
number of simulations in each test set are given in Table B.4. Each
vertical line is a marginal posterior PDF for the input parameter of
interest given the temperature amplitude spectra from one con-
vection simulation. The vertical line is coloured according to the
amplitude of the PDF. The y-axis is the value of the input parame-
ter of interest, and therefore the colour of each point along the col-
umn gives PðmijdÞ for mi ¼ y, normalised so that the maximum of
each PDF is black, as shown in Fig. 7. The vertical line for the PDF is
positioned along the x-axis according to the known value of this
input parameter for that particular simulation. Fig. 7 demonstrates
how the PDFs for six test simulations are placed into the grids in
Fig. 8. If the network effectively infers the value of the input
parameter for all the simulations in the test set, the diagram
should have a diagonal trend of high PDF amplitudes running
across it, as seen for instance in Fig. 8(c). We also need to know
how certain the networks are, therefore underneath each grid we
plot the DKL for each test set. The red line marks DKL equal to 0.5,
corresponding approximately to a posterior PDF with standard
deviation of 0.62 compared to a standardised uniform distribution,
as shown in Fig. 4. Cases with a DKL of 0.5 or over show a significant
improvement on the prior distribution. A DKL below 0.5 does not
mean that the network has learnt nothing, but simply that the
uncertainty of the prediction is higher. The PDFs for such cases
should be considered before rejection.

The values of the input parameters for the simulations which
make up the test set are also drawn randomly from the prior dis-
tributions. They are therefore not evenly distributed across the
prior space, leaving gaps in the diagrams. For some parameters
(e.g. initial CMB temperature), the prior is skewed because some
ranges of values cause the simulations to become computationally
unstable or run very slowly and therefore the outputs from simu-
lations occupying these regions of model space are missing.

Because all 29 parameters vary at once in all the test simula-
tions, the marginal PDF includes all the trade-offs between model
parameters in its width.

The most successful inference is for yield stress, particularly
at low values. The PDFs produced by the network, shown in
Fig. 8(a)–(d), are narrow and high with peaks that correspond to
the true value of yield stress used to run each simulation. Networks
inverting temperature patterns for reference viscosity also perform
reasonably well. In general, there are few under- or over-estimates
for either yield stress or viscosity, and the differences between the
maximum of the PDF and the true model parameter value are not
large and certainly within one standard deviation. For yield stress,
the majority of the simulations in the test sets are predicted with a
DKL over 0.5. The networks find yield stress with much lower
uncertainty for low yield stress simulations, which have a much
higher DKL. About half of the inferences for reference viscosity show
a DKL over 0.5. The appearance of bi-modality at high yield stresses
is probably an artefact resulting from the parameterisation of the
posterior using Gaussian kernels. This is generally how distribu-
tions which are close to uniform over a particular range appear
when parameterised in this way. Yield stress and viscosity deter-
mine whether tectonic plates form and the vigour of convection,
therefore it is not surprising that we can make inferences about
these parameters from the temperature field. We discuss this
further in Section 4.

The thickness of primordial material can be determined from
the temperature field after 0.4 Gyr (Fig. 8(i)). After 3 Gyr, the net-
work still manages to categorise, mostly correctly, whether models
have an initially thin, medium or thick layer, but the uncertainty is
greater (Fig. 8(l)).



Fig. 6. (a) Mean DKL with different levels of noise. (b) Mean difference between PDF maximum and true simulation parameter for each simulation with different noise levels
after 3 Gyr. The unit is the variance of the prior distribution of each parameter.
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The inversions for initial mantle temperature are not particu-
larly successful for any time step after 0.4 Gyr, but they demon-
strate what happens when the network learns nothing about a
parameter. For Fig. 8(p), the networks return an approximation
to the prior distribution using Gaussian kernels. The DKL is non-
zero here simply because the prior distribution of parameters in
the training set is not perfectly smooth, but the difference between
the prior and posterior distributions is very small.

4. Discussion

Modelling Earth-like convection relies on poorly constrained
estimates for many key input parameters, which include both ini-
tial conditions and constant physical parameters which appear in
the equations of mantle convection. In this work we present a
new method which allows us to invert the thermal structure of
mantle simulations at some time steps for convection parameters.
We find that we can invert for yield stress, reference viscosity
(both constant physical parameters) and initial thickness of pri-
mordial material. Whilst there are currently other methods to esti-
mate these values for the Earth, our method is novel in both its self
consistency and its use of a static observation of convection. Whilst
Fig. 7. Some randomly selected examples for posterior PDFs inferring yield stress after 3
output, coloured with the same colour scale as in the right-hand panel and Fig. 8. The
indicates the true target value of yield stress for each simulation. Ideally, the maximum of
the coloured representations of these PDFs along the x-axis of a grid such as on the right-h
set, there will be a diagonal stripe of high amplitude across the grid. (For interpretation
version of this article.)
we cannot adequately recover other parameters in this study, they
may be recoverable by using different observations or larger train-
ing sets.

Yield stress is the best constrained parameter when inverting
the amplitude spectrum of the temperature field, and is particu-
larly successful at low yield stresses, where the prediction is accu-
rate with low uncertainty. The yield stress parameter determines
how much stress the material can withstand before it begins to
undergo plastic or brittle deformation. If the lithosphere is weak
enough, relative to convective stresses it will yield, forming a
mobile-lid. The yield stress has been observed in many previous
studies to be the major factor in determining whether a planet
has a stagnant lid or evolves a mobile lid (e.g. Moresi and
Solomatov, 1998; Valencia et al., 2007; van Heck and Tackley,
2011; Lenardic and Crowley, 2012), and when continents are pre-
sent, the strength is a factor in determining the wave-length of
convective flow (e.g. Zhong et al., 2007; Rolf et al., 2014).

If we define a mobile lid to have a mean surface velocity of
> 1 cm/yr, as in Lourenço et al. (2016), approximately 50% of our
simulations are in a mobile lid regime at each time step. However,
we do not explicitly provide the networks with any information
about plate velocity, therefore they can only identify that the
Gyr, taken from the test set of simulations. The six PDFs to the left are the committee
colour scale is black at the maximum regardless of amplitude. The pale blue line
the PDF should correspond to the target value. The target value is then used to align
and side. If the PDF maximum is close to the target values for all the PDFs in the test
of the references to colour in this figure legend, the reader is referred to the web
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Fig. 8. PDFs for the test set of simulations at each age which provide an independent demonstration of network performance. In the coloured grids, each vertical column is
one posterior PDF for the relationship between the temperature structure of a single simulation and the model parameter given on the left. The column is positioned along the
x-axis according to the true value of the model parameter. The colour scale gives PðmijdÞ, where mi ¼ y for each value of the model parameter ranging along the y-axis. The
colour scale is set so that the maximum of each PDF is black. See Fig. 7 for a demonstration of how to interpret these figures. The DKL for each simulation is plotted below the
coloured grid on a log10 scale. PDFs with a DKL above 0.5 (red line) indicate that the network has learnt a significant amount of information on that model parameter, which
corresponds to a Gaussian distribution with standard deviation of approximately 0.62, as shown in Fig. 4. A lower DKL simply indicates greater uncertainty. The DKL values for
all the test simulations are plotted, but to improve clarity for the PDFs, the test simulations are binned according to input parameter value and one PDF from each bin is
chosen randomly. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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simulations are in a stagnant or mobile regime by finding the rel-
evant patterns in the temperature spectra. Similarly, the history of
the crust, whether it is stable or has changed regimes during its
evolution, is dependent on the input parameters. The temperature
structure is dependent on this history but since we provide the
networks with no explicit historic data, they must infer the history
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from information contained within a snap shot of a single time
step.

Fig. 9 shows thirty randomly selected simulations which have
run for 3 Gyr, grouped according to the yield stress, but with all
other parameters varying randomly. Whilst the sample is quite
small, there is a pattern from low to high yield stress (left to right).
Almost all of our simulations with very low yield stress (0–20 MPa)
have lower than average mid-mantle temperature, and the reverse
is true for very high yield stress simulations (79–99 MPa). The low
yield stress simulations also have larger lateral temperature
Fig. 9. Temperature structure for 30 simulations after 3 Gyr, grouped into columns accord
the simulation in red. The mean profile for the whole group of simulations is plotted in bl
mean is plotted on the right to highlight the convection patterns. The same colour scale is
legend, the reader is referred to the web version of this article.)
variations, with heterogeneity patterns which saturate the colour
map in Fig. 9, and narrower, more distinct upwellings extracting
heat more efficiently leading to the observed cooler mid-mantle.
The network is probably using these observations to classify the
simulations into low or high yield stress, and the large lateral
variations in the low yield stress simulations are why the
networks infer the yield stress with such low uncertainty at low
values. How they are separating the mid-range simulations is less
clear, but demonstrates how neural networks can pick out subtle
relationships.
ing to yield stress used. On the left for each simulation is the temperature profile for
ack to aid comparison, and is identical in each case. The lateral variation from the 1D
used for all simulations. (For interpretation of the references to colour in this figure
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The ability of the networks to find yield stress is probably also
enhanced by the low temperature dependence of viscosity used
in our simulations. This reduces the variations in viscous stress
that would be caused by the temperature variations resulting from
blanketing by the crust (e.g. Rolf et al., 2012; Heron and Lowman,
2014). The lithosphere has the same strength throughout our sim-
ulations. The evolution of the atmosphere, and therefore the addi-
tion of water to the crust may reduce yield stress (Valencia et al.,
2007). The way in which a planet’s lithosphere evolves to reach a
particular strength may also determine its tectonic state, as much
as the final strength (Lenardic and Crowley, 2012; Weller et al.,
2015), introducing further complications and trade-offs. However,
if we were to use more complex simulations in our training set, the
trade-offs would simply be represented in the width of the mar-
ginal PDFs.

Viscosity is another important factor controlling the patterns of
mantle convection. Viscosity is exponentially dependent on tem-
perature, so small lateral temperature variations can have large
effects on viscosity. The original estimate of 1021 Pa s by Haskell
(1935) is still considered valid as an approximate average mantle
value, although newer studies, (e.g. Whitehouse et al., 2012;
Argus et al., 2014) include much more complex lateral and radial
variations. There is expected to be a viscosity jump of at least an
order of magnitude around the transition zone, although the size
and location of the jump varies between studies. However, these
viscosity models inherit the uncertainties from climate history
and sea level models, and large uncertainties when converting
seismic velocities to temperature or density. In our convection
simulations, viscosity has a clearly identifiable and quantifiable
effect on the temperature variations within the mantle. Using our
approach, we can estimate the order of magnitude of the reference
viscosity directly from a single observation with a reasonable
degree of certainty. This method may therefore provide a more
direct method for inferring mantle viscosity in the future.

In this study, we only varied the viscosity prefactor and pres-
sure dependence. However, Yoshida (2008) found that the temper-
ature dependence of viscosity can determine the wavelength of
convection, although lithospheric yield strength was found to be
the dominant factor. High temperature dependence increases the
chance of a stagnant lid regime because a higher viscosity contrast
promotes decoupling in the upper mantle, while increasing pres-
sure dependent viscosity promotes mobile lids, because it
increases the convective stresses exerted by the mantle (Stein
et al., 2013). The magnitude of a mid-mantle viscosity jump also
affects the convection pattern (e.g. Davaille, 1999; Lowman et al.,
2011), which we neglect here. If we were to vary more viscosity
parameters in our training simulations, such as temperature
dependence, it is therefore possible given the presented results
that we may be able to invert for them using the patterns produced
by convection. However, more complex viscosity dependence may
equally well just introduce more trade-offs, increasing the width of
the posterior PDFs.

The presence of primordial material at the base of the mantle
has also been observed to affect convection patterns and even to
lead to stagnation (e.g. McNamara and Zhong, 2004; Nakagawa
and Tackley, 2008; Deschamps et al., 2011; Stamenković et al.,
2012; Trim et al., 2014). The community is currently divided about
the existence of dense material at the base of the mantle and esti-
mates of the lifespan, stability and origin of such material vary
wildly. Our networks only give an approximate estimate with large
uncertainties (Fig. 8(l)) for the initial thickness of primordial mate-
rial when the networks are trained on temperature patterns taken
from the mantle convection simulations after 3 Gyr of run time.
Even an estimate for an initially thin, medium or thick layer is a
significant improvement on current knowledge, especially if our
method also works for three dimensional cases over 4.5 Gyr. We
are currently testing this. It is also surprising that we can identify
a primordial layer using only the temperature field, since the con-
centration of heat producing elements in the primordial material is
not successfully found by the network. The dense material must
therefore affect the temperature distribution throughout the man-
tle since the networks are not simply identifying a hot, highly
radioactive layer at the base of the mantle.

The advantage of investigating primordial material properties
in this way is that no extra data are required because the simple
patterns contain the information. Whilst we invert temperature
structure here, which is imperfectly known for Earth, we could
use other more direct mantle observations such as seismic tomog-
raphy to train our networks to identify signs of primordial mate-
rial. Methods to investigate anomalous material at the base of
the mantle require either imperfect relationships between seismic
velocity and chemical properties, or time dependent data such as
the location of subduction zones which push dense material
around into the desired locations (e.g. McNamara and Zhong,
2005; Bull et al., 2009; Steinberger and Torsvik, 2012). Using the
spectra of thermal heterogeneities, as demonstrated here, or seis-
mic heterogeneities therefore simplifies the inversion and removes
some sources of uncertainty.

We mentioned the existence of possible trade-offs between
parameters. Whilst this is a problem in more classical approaches
where authors only vary a few parameters at a time, our results
implicitly contain all information on the trade-offs within our cho-
sen range for the input parameters. Our networks return marginal
probability density functions for a given parameter for a training
set where all other parameters have changed as well. The width
of the marginals therefore contain all the possible trade-offs. The
trade-offs can also mean that the inferences are a long way from
the true values. A particular example is in Fig. 8(i), where one sim-
ulation which was initialised with around 400 km of primordial
material is inferred to be most likely to have a very small amount
of primordial material after 0.4 Gyr. The recovered PDF still encom-
passes the true value, although it is given a low probability. Within
a probabilistic approach, this need not necessarily be regarded as a
failure: the true value is explicitly included in the range of possibil-
ities compatible with observations. However, the network regards
other explanations for the observation as more likely, given the
training information it has received. The 1-D marginal alone does
not inform us on the nature of the trade-offs, but this could easily
be investigated by using higher dimensional marginals as for
instance in de Wit et al. (2013).

There are several reasons why our networks may not be able to
constrain the other model parameters varying in Table A.1. We are
only using the encoded amplitude spectra for degrees 0–10 to train
the networks. This removes much of the fine scale variation in the
temperature field, and means that we discard all the phase infor-
mation, therefore losing all the details about how variations are
spaced relative to one another. Some parameters may have more
pronounced effects in these small wavelength variations in the
spectra. These unresolved parameters may also only have very
small effects which we could observe if we were to use much larger
networks and with many more training sets. The networks
may then be able to recognise the very small changes caused by
these parameters, which are currently below the noise level.
However, larger networks with more input dimensions are
harder to train and are less stable, given that we only have small
training sets.

We have also tried to train networks using only the radial mean
temperature structure (degree 0 of the amplitude spectrum). This
was significantly less successful for all parameters than using
degrees 0–10, implying that most of the signal of the parameters
is contained in finer details of the patterns of convection, rather
than mean temperature profile.
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We tried to train networks to identify the molar percentage of
iron oxide used in each constituent rock type but without success.
The oxide composition of MORB has previously been found to
affect compositional stratification in the transition zone and segre-
gation at the CMB (Nakagawa et al., 2010), and the iron oxide con-
centration in primordial material affects density and therefore the
shape and stability of primordial layers (e.g. Deschamps et al.,
2012). Our lack of success is probably because the temperature is
unlikely to be the best observation from which to identify mantle
chemical properties. Our investigations were also very preliminary
and we may have more success by using more subtle targets, such
as oxide ratios or the presence of particular mineral phases, rather
than bulk composition.

Here, we consider purely synthetic data sets and can therefore
use the temperature structure of the mantle. If we were to apply
this method to real data, we would have to rely on conversions
from seismic velocity anomalies to temperature. For real data, it
would be better to train our networks using the patterns of seismic
heterogeneities. We can easily calculate P- and S-wave velocities
for our convection simulations, because the mineral physics calcu-
lations include the elastic parameters, meaning that no approxima-
tion is necessary to go from temperature to velocity. This would
add additional uncertainties from mineral physics into our inver-
sions, but these can be accounted for during network training.
However, this study is a proof of concept, and other simplifications
remain, including that our synthetic data are two-dimensional
approximations to a three-dimensional Earth. We therefore cur-
rently use temperature observations as a first step to show that
the simple patterns produced by convection do indeed contain
information on these parameters.

For many parameters, the temperature structure is unlikely to
be the best mantle observation from which to make inferences,
even when inverting synthetic cases, because the temperature
structure is not directly dependent on composition. It is already
surprising that we can find the initial primordial layer thickness,
which is a purely compositional parameter, from the temperature
field. If we were to use an observation which is dependent on com-
position, such as density, seismic velocity, gravity, erupted basalt
composition observed at the crust, or even mantle composition
directly, we expect to be able to resolve the compositional param-
eters such as primordial thickness and basalt fraction much better.

In previous studies, (e.g. Davaille, 1999; McNamara and Zhong,
2004; Deschamps et al., 2011) the viscosity contrast of primordial
material relative to the over-lying mantle was seen to determine
the shape of any piles or ridges formed at the base of the mantle.
We therefore expect to be able to find the viscosity contrast if
we use a compositionally-dependent pattern to train our network.
Using composition and temperature together may allow us to
determine the relative variation of radiogenic element composition
between different materials. This is one advantage of our sampling
approach: in the future, we can use the same suite of forward
simulations to investigate whether these parameters leave signals in
other observables, without needing to run more forward simulations.

We experimented with various neural network architectures
and configurations, changing the number of Gaussian kernels, the
number of hidden layers and the number of networks in the
committee. Changing these made very little difference to the infer-
ences, although in generally larger networks tended to perform
less well. Since larger networks contain more free parameters that
must be determined during learning, this is unsurprising given the
limited amount of training data available to us.

5. Concluding remarks

We propose a new method to analyse a suite of convection sim-
ulations using pattern recognition techniques. We show that we
can make inferences about simulations input parameters from
simulation outputs over several billion years of convection. We
make several choices, such as neural network architecture and
the use of an auto-encoding neural network to reduce dimension-
ality which are guided by our previous experience rather than the
necessity of the method. Other pattern recognition techniques
could possibly perform equally well given an appropriate set of
inputs.

Our method shows that some convection model parameters
determine the convection pattern so significantly that the ampli-
tude spectrum of the temperature alone can be used to find the
values of those parameters, even after several billion years of con-
vection time. Whilst the convection models we use are only simple
two-dimensional cases with priors which are not realistic for the
Earth, we expect this still to be the case for more complex three-
dimensional models, although the relative importance of the
model parameters may change. Moving into 3-D will present
new challenges, both through the additional computational
expense of running 3-D training sets, and through the significantly
higher dimensionality of the observations. We hope that the signa-
tures of some of these parameters will be similar in both two and
three dimensions, allowing us to use 2-D approximations to invert
the 3-D Earth.

In either 2-D or 3-D, we hope that our approach will prove to be
a powerful way to constrain many unknown parameters necessary
for better understanding the Earth. This approach may also prove
to be particularly profitable for planetary science applications,
where real observations are even more sparse than for Earth and
vastly more expensive to obtain, particularly for exoplanets
(Dorn et al., 2015). Rapid inversion of different data sets can there-
fore be used to guide future studies to fill the gaps in our knowl-
edge, by providing rapid constraints on unknown characteristics,
and the best ways in which to look for them.
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Appendix A. StagYY

The forward models are run using the compressible mantle con-
vection code StagYY (Tackley, 2008). A two-dimensional spherical
annulus geometry is assumed, which does not require rescaling
of the core-mantle boundary and surface radii in order to balance
the ratio of bottom and internal heating, unlike 2D-cylindrical
geometry (Hernlund and Tackley, 2008). The physical model is
similar to that in Nakagawa et al. (2010), Nakagawa et al. (2009,
2012) with the addition of primordial material. Composition is
expressed as a mixture of three end-members: basalt, harzburgite
and primordial material; the relative proportions of which can vary
within the mantle. Initially the mantle is composed of pyrolite (20–
30% basalt and 70–80% harzburgite) except for a layer of primor-
dial material above the CMB. The relative proportions of basalt
and harzburgite vary between runs. Density, thermal expansivity,
and thermal diffusivity are calculated for each end-member



Table A.3
Primordial material major element composition ranges used to calculate properties in
Perple_X (Connolly, 2009). The model for primordial material is selected randomly,
then the composition is drawn from the ranges given.

Basalt + Chondritic (e.g. Tolstikhin and Hofmann, 2005)
10% of models

Molar %
Al2O3 8.16
CaO 10.59
FeO 11.28
MgO 20
Na2O 1:5
SiO2 48:47

Pyrolite + FeO + SiO2 (e.g. Lee et al., 2010)
35% of models
Al2O3 1.26–2.59
CaO 1.84–3.79
FeO 5.8–20
MgO 27.45–56.51
Na2O 0.15–0.32
SiO2 30.99–49.30

Basalt as in Table A.2
35% of models

No primordial
20% of models
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composition (basalt, harzburgite and primordial) as a function of
temperature and pressure using the Perple_X program (Connolly,
2009) according to the database of Stixrude and Lithgow-
Bertelloni (2011); the properties for each cell depend on those of
the end members, weighted according to the proportion of each.
Density changes due to solid state phase changes are thus supplied
by Perple_X and do not need to be imposed separately. The relative
proportions of the bulk oxide components (Na2O–CaO–FeO–MgO–
Al2O3–SiO2) vary between models. Harzburgite contains no Na2O
in our models. Compositional ranges are given in Table A.2. In
80% of the models, there is also an initial layer of primordial mate-
rial at the base of the mantle. The composition of the primordial
material is allowed to vary, and properties are also calculated using
Perple_X. When present, the initial thickness of the primordial
layer varies between models. The composition of the primordial
material is chosen randomly according to one of three models
(Table A.3). Twenty percent of models have no initial primordial
layer. The primordial material can mechanically mix with pyrolitic
material and is not confined to the base of the mantle.

Partial melting of the basaltic component occurs whenever the
local temperature exceeds the solidus at which point enough melt
is generated to bring the temperature back to the solidus, the func-
tion for which is based on results from Herzberg et al. (2000). Melt
that is shallower than the depth of neutral buoyancy (set to
300 km) is instantly removed to form crust which is 100% basalt,
leaving the cell more harzburgitic in composition.

Viscosity increases smoothly with depth to avoid imposing
jumps at depths that are inconsistent with phase change locations
Table A.1
Input parameter ranges to StagYY. All input parameters are drawn independently
from uniform distributions between these ranges.

Parameter

Initial mantle potential
temperature at surface 1400–1900 K
Initial mantle heating 4.5–27 pW kg�1

Basalt heating with HPE partition coefficient 10�5 � 1
Primordial heating by HPE enrichment Factor 1–500
Initial CMB temperature 3000–7000 K
Core heating by initial potassium concentration 0–800 ppm
Surface reference viscosity (g0 in Eq. (A.1)) 1018 � 1021 Pa s
Primordial viscosity contrast Factor 10�2 � 102

Viscosity activation volume (V_eta in Eq. (A.1)) 10�6 � 3� 10�6 m3 mol�1

Yield stress (s0 in Eq. (A.2)) 1–100 MPa
Basalt fraction 0.2–0.3
Initial primordial layer thickness 0–800 km

Table A.2
Basalt and harzburgite major element composition ranges used to calculate proper-
ties in Perple_X (Connolly, 2009). For basalt, NCFMA are drawn randomly, with the
remainder being SiO2. For harzburgite, CFAS are drawn randomly, brought to 100% by
MgO.

Molar %

Basalt
Al2O3 9–10.5
CaO 11–15
FeO 6–8.5
MgO 14.5–18.5
Na2O 0–2.5
SiO2 45-59.5

Harzburgite
Al2O3 0.2–0.8
CaO 0.05–1
FeO 4.5–6.5
MgO 53.7–61.25
SiO2 34–38
calculated in Perple_X. A simple Arrhenius viscosity law is used,
which is independent of composition and is continuous with
depth:

g ¼ g0 exp
Eg þ ð1� zÞVg

RT

� �
ðA:1Þ

where T is temperature, z is depth, Eg (=162 kJ mol�1) is activation

energy and Vg activation volume, varying between 10�6 and

3� 10�6 m3 mol�1, and g0 is the reference viscosity, which is varied

from 1018 � 1021 Pa s between runs. Viscosity values lower than
1018 Pa s are set to 1018 Pa s and values greater than 1025 Pa s are
set to 1025 Pa s The ductile yield stress is given by:

s ¼ s0 þ sdzz ðA:2Þ
We vary the reference yield stress, s0. The depth-dependent

yield stress, sdz is set to 0.005 Pa m�1.
The Rayleigh number is not a separate input parameter but its

value can be calculated from the various dimensional physical
properties. Using the reference viscosity, which represents an
asthenospheric value (i.e. at T = 1600 K and zero pressure) and
surface values of other physical properties, we obtain values
distributed uniformly on a logarithmic scale between 1:1� 108

and 1:2� 1011. The volume-averaged Ra (using volume-averaged
viscosity and other physical properties) is approximately 2–3
orders of magnitude lower, in line with common estimates.

The surface and core-mantle boundaries are free-slip and
isothermal, with the surface temperature set to 300 K, and CMB
temperature decreasing with time according to a parameterised
core heat balance based on Buffett et al. (1992) and taking into
account radioactive heating by 40K in the core, which has a half-
life of 1:25� 109 years. The initial CMB temperature and initial
concentration of 40K in the core varies between runs. The mantle
is also heated fromwithin by radioactive elements, which are aver-
aged into a single decay curve with a half-life of 2:43� 109 years
and an initial heating rate that varies between runs. Basaltic mate-
rial is enriched in heat-producing elements by partitioning which
occurs when basaltic partial melt is generated. The partition coef-
ficient is varied between runs. All input parameter ranges used in
this work are shown in Table (A.1).
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The initial condition for the temperature field is adiabatic with
the specified potential temperature, plus 30 km thick thermal
boundary layers at the top and bottom and small random perturba-
tions everywhere.

Velocity and pressure are solved for on an Eulerian staggered
grid (finite volume discretisation) with 512 cells in azimuth by
64 cells in radius, while composition (bulk composition of solid
and melt, and the concentration of heat-producing trace elements
in them) and melt fraction are tracked by Lagrangian tracer parti-
cles (also called markers; a standard approach as detailed in Gerya
(2010)), with approximately 15 tracer particles per cell, as is nec-
essary according to benchmarks (Tackley and King, 2003). For more
details of the solution method and equations see Tackley (2008)
and Hernlund and Tackley (2008).

Appendix B. Neural networks

We use a class of networks called mixture density networks
(MDN). For more information, see Bishop (1995) or MacKay
(2003). A neural network consists of layers of nodes connected
by weights, as illustrated in Fig. B.10. The first layer, di inputs the
observation to the network and has one input node for each ele-
ment of the encoded temperature amplitude spectrum. These are
connected to a layer of hidden nodes, nhid

j by a matrix of weights,
Bi
as

Bi
as

Fig. B.10. Mixture density network. The number of hidden units a

Table B.4
Number of convection simulations in each age suite. The monitoring set is used to
monitor the error of the network and to stop training, the committee assembly set to
weight each committee member and the test set is used to assess the performance of
the committee of networks. All results presented here are for inferences made given
observations of the test set.

Age (Gy) Training Monitoring Committee assembly Test Total

0.4 800 250 250 250 1550
1 553 200 200 200 1153
2 408 150 150 150 858
3 334 130 130 130 724
w1
ij , represented by lines in Fig. B.10. The hidden nodes are hyper-

bolic tangent functions activated by the product of the input nodes
and the weight matrix, the output from each hidden node being
nhid
j ¼ tanhðw1

ijdiÞ. The hidden layer then activates the output nodes

nout
k , according to a second layer of weights, w2

jk which give the
mean, standard deviation and a weighting factor for each of three
to five Gaussian kernels. The kernels combine to form the marginal
posterior probability density function:

Pðmijd;mj–iÞ ¼
XG
g¼1

agðdÞffiffiffiffiffiffiffi
2p

p
rgðdÞ

exp � jjmi � lgðdÞjj2
2r2

gðdÞ

( )
ðB:1Þ

where, for each input data vector d;mi is the target value of the
model parameter. The conditional PDF is parameterised using a
mixture of three to five Gaussian kernels, G, each with mean lg

and standard deviation rg . The number of kernels is selected ran-
domly. The contribution of each kernel to the conditional PDF is
determined by a weighting factor, ag . lg ; rg ;ag are functions of
the network weights w. The bias weights are initialised so that
before training the network output an approximation to the prior
distribution of the model parameter of interest using a k-means
clustering algorithm (McLachlan and Chang, 2004; de Wit et al.,
2013; Käufl et al., 2014).

At the start of network training, the weights between each layer
of nodes are initialised with values drawn randomly from a uni-
form distribution with range inversely proportional to the number
of nodes in the lower of the two layers, that the weights are con-
necting, where the bottom layer is the observational input and
the top layer are the Gaussian coefficients, as in Fig. B.10. At each
iteration, we calculate the error function

E ¼ � lnðPðtjdÞÞ ðB:2Þ
where t is the true value of the model parameter associated with
the observation. The Rprop gradient-descent back-propagation
algorithm of Igel and Hüsken (2000) is used to calculate the contri-
bution of each weight in the network to the error function. The
Input Nodes:  28 

Hidden Nodes:  10 - 30

Output Nodes:  9 - 15

Gaussian Kernels:  3 - 5

Network conditional 
probability density
function

nd Gaussian kernels are selected at random prior to training.
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weights are then updated accordingly until the error function for a
monitoring set of simulations reaches a minimum. After this point,
the network overtrains, and the error for the monitoring set
increases.

The weights in each network are initialised randomly before
training and therefore every network performs slightly differently.
A committee of networks generally performs better than a single
network because the random initialisation can mean that networks
are more effective at producing a reliable posterior PDF for a subset
of the observations. Considering the PDFs from multiple networks
therefore capitalises on the specialisms of each network. The more
networks there are in the committee, the better the result is. How-
ever, the rate of improvement decreases rapidly, and we find 20
networks is a good balance between performance and computation
time. To assemble the committee of networks we use a set of sim-
ulations that have not been used to update the weights during
training. The committee assembly set is used to quantifying the
difference in the value of the error function between the individual
member networks. We then weight each member of the commit-
tee according to its performance using the method of Käufl et al.
(2014).
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