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S U M M A R Y
Owing to the increasing availability of computational resources, in recent years the probabilistic
solution of non-linear, geophysical inverse problems by means of sampling methods has
become increasingly feasible. Nevertheless, we still face situations in which a Monte Carlo
approach is not practical. This is particularly true in cases where the evaluation of the forward
problem is computationally intensive or where inversions have to be carried out repeatedly or
in a timely manner, as in natural hazards monitoring tasks such as earthquake early warning.
Here, we present an alternative to Monte Carlo sampling, in which inferences are entirely based
on a set of prior samples—that is, samples that have been obtained independent of a particular
observed datum. This has the advantage that the computationally expensive sampling stage
becomes separated from the inversion stage, and the set of prior samples—once obtained—can
be reused for repeated evaluations of the inverse mapping without additional computational
effort. This property is useful if the problem is such that repeated inversions of independent data
have to be carried out. We formulate the inverse problem in a Bayesian framework and present
a practical way to make posterior inferences based on a set of prior samples. We compare the
prior sampling based approach to a Markov Chain Monte Carlo approach that samples from
the posterior probability distribution. We show results for both a toy example, and a realistic
seismological source parameter estimation problem. We find that the posterior uncertainty
estimates obtained based on prior sampling can be considered conservative estimates of the
uncertainties obtained by directly sampling from the posterior distribution.

Key words: Neural networks, fuzzy logic; Inverse theory; Probability distributions;
Earthquake source observations; Early warning.

1 I N T RO D U C T I O N

In geophysics, we are concerned with a wide variety of inverse
problems. Examples include imaging the Earth’s interior and deter-
mination of earthquake source parameters using observed seismic
waves; the determination of the Earth’s density structure from grav-
ity measurements; or the determination of magnetic susceptibility
from measurements of the Earth’s magnetic field. In all these prob-
lems, we are able to predict a set of observables exactly or approxi-
mately given a certain set of model parameters and parametrization,
which we call the ‘forward problem’. Given an observation, the
associated ‘inverse problem’ is to find parameter values compatible
with all information available on the problem. We thereby distin-
guish between prior information, which is available before a partic-
ular observation has been made, and posterior information, which
is the result of combining our prior knowledge with the information
provided by the observation (Tarantola 2005).

Due to the need to deal with observational uncertainties, uncer-
tainties attached to any approximations in the forward problem and
the inherent non-uniqueness of many inverse problems, a proba-
bilistic treatment is advantageous. In a probabilistic approach, all

information is represented by probability density functions (pdfs),
and the solution to the inverse problem is thus given by the poste-
rior pdf. However, owing to non-linearity and, often, the complica-
tion that the forward problem itself lacks a closed-form solution,
we cannot typically find closed-form expressions for the posterior
quantities of interest such as the maximum likelihood point and co-
variance matrix. In these cases, we have to resort to testing models
at random to capture the information about the relation between ob-
servable data and model parameters (often referred to as ‘sampling’
this relationship).

Broadly speaking, sampling can be approached from two direc-
tions. Techniques such as Markov Chain Monte Carlo (MCMC)
methods (Sambridge & Mosegaard 2002) rely on ‘posterior’ sam-
pling, whereby samples are targeted towards explaining some spe-
cific set of observations. These methods have been studied exten-
sively, and have found wide application throughout the physical
sciences. However, they are typically computationally expensive:
tens or hundreds of thousands of models may need to be tested to
obtain meaningful results. In practice, this also makes them time-
intensive: given that sampling cannot commence until observations
are available, posterior sampling is poorly adapted to applications
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such as earthquake early warning (EEW), where results must be
obtained in the shortest possible time.

Posterior sampling is also ill-suited to situations where a partic-
ular type of inverse problem must be solved repeatedly—typically,
where analysis must be conducted at different points in space and/or
time. This requirement is quite common in geophysics: examples
include routine determination of earthquake locations and source
mechanisms, or inversion for local crustal properties at many loca-
tions. In such circumstances, the physical processes linking model
and observables are common to all the inversions—but since pos-
terior sampling is tuned towards explaining one data set, it is not
generally possible to ‘recycle’ any information gained in one case
when analysing another. Thus, the computational costs for using
posterior sampling repeatedly can be immense.

These challenges motivate the development of the second ap-
proach to sampling—the subject of this paper—which we refer
to as ‘prior sampling’. In this framework, all samples are evaluated
prior to consideration of any particular set of observations, informed
by any prior knowledge that might be available; in time-sensitive
contexts, such as the example of EEW, sampling may be conducted
before an event has even occurred. Then, using this set of samples,
the probabilistic inverse problem may be solved extremely rapidly
once data are available, and the same set of samples can be effi-
ciently re-used in conjunction with numerous observations. This
repeatability may also be a useful property in exploratory studies,
making it straightforward to investigate which aspects of a data set
convey useful information: for example, a single set of samples may
be post-processed in a variety of different ways, and then applied to
inversion of synthetic data.

By design, all samples tested during posterior sampling con-
tribute directly to the solution of the inverse problem being con-
sidered. In contrast, prior sampling may entail evaluating many
samples that turn out to lie far from the observations made in any
particular case. Such samples are therefore ‘wasted’ from the per-
spective of any single inversion—and where only one data set needs
to be analysed, posterior approaches should generally be adopted
unless it is desirable to exploit particular properties of the prior
sampling framework. However, if a sufficient number of distinct
inversions are to be performed, all prior samples can be expected to
be ‘useful’ in some cases, and the approach represents an efficient
use of computational resources overall.

Viewing the same issue from another direction: if we have many
samples that lie close to a given observation, we are in a much
stronger position to make robust inferences than if we must ex-
trapolate from distant samples. The quality of results from prior
sampling is therefore intrinsically linked to the density of samples
used. As is well known, the number of samples required to main-
tain a given density grows exponentially as the dimension of the
model space (i.e. the number of free model parameters) increases
(e.g. Curtis & Lomax 2001; MacKay 2003). Given that there are
inevitable practical restrictions on the number of samples that can
be generated for a particular problem, this may limit the size of
problem for which a prior sampling approach is viable. The im-
plementation described in this paper is designed to return the prior
probability distribution in cases where no useful inference can be
made from the samples available. If insufficient samples are avail-
able for the complexity of the problem, the system may not provide
informative results. Equally, it should not yield actively misleading
outputs. However, we have yet to fully explore the practicalities
of applying prior sampling in high dimensions. As with any tech-
nique, it is incumbent upon potential users to satisfy themselves that
performance and accuracy are appropriate to the problem at hand.

Just as ‘posterior sampling’ encompasses a wide range of differ-
ent algorithms and techniques, many different detailed implemen-
tations of ‘prior sampling’ may be possible. As we will show in
this paper, inference using prior sampling is based upon probability
density estimation, and this can be tackled in a variety of ways.
Here, we adopt a non-linear, neural-network based tool, called a
Mixture Density Network (MDN; Bishop 1995). This exploits an
assumption that the underlying pdf is smooth and continuous to en-
able interpolation between samples. Once prior samples have been
obtained and the MDN has been constructed, the mapping from data
to posterior pdf can be evaluated within milliseconds on a standard
desktop computer. In particular, note that access to the large data set
constituting the ‘prior samples’ is only required during the network
construction phase: the MDNs assimilate this information, and can
then be run operationally on machines of modest specification.

This paper is organized as follows: after discussing a few theoreti-
cal considerations, we compare MDN estimates obtained from prior
samples to reference solutions obtained by a Metropolis–Hastings
(MH) MCMC sampling algorithm (Hastings 1970). First, we con-
sider a multimodal non-linear toy problem, for which an analytical
reference solution can be calculated. We then investigate the case
of a realistic, seismological point-source inversion problem, taken
from Käufl et al. (2014, 2015).

2 T W O RO U T E S T O P O S T E R I O R
I N F E R E N C E

In a (geophysical) inference problem, we are typically dealing with
three sets of variables. First, we make measurements, collectively
represented by the observed data vector d0 ∈ D. Second, we describe
the physical reality by means of a model, which is parametrized by
the model parameters m ∈ M. Third, we assume that we can make
predictions d ∈ D, by evaluating the forward operator g(m) for any
given model m. We assume that observations d0 ∈ D are subject
to noise and can be related to predictions d by an observational
noise process. Here, D and M are normed vector spaces, which are
referred to as the data and model space, respectively. The goal of
the inference process is then to identify a set of model parameter
vectors that can explain a given observation d0, perhaps subject to
additional assumptions, such as observational and modeling uncer-
tainty estimates. In the following, we treat the variables m, d and
d0 as random variables and express their relations and any prior
assumptions by pdfs.

First, we may have independent prior information on the model
parameters, represented by the pdf ρ(m|A), where the symbol A is
used to represent our assumptions about the model prior, such as the
shape and parameters of the pdf and the particular parametrization
of the physical model. Furthermore, we use ρ(d, d0|B) to denote
the joint prior distribution over predictions d and observations d0,
subject to some set of additional assumptions B, typically describing
the observational noise process. Finally, we describe the information
contained in the forward operator—that is, the correlation between
model parameters and predictions—by the joint pdf �(m, d|C),
where C denotes the assumptions made on the theoretical relation,
such as the choice of a particular forward operator g(m) and poten-
tial modeling uncertainties.

Therefore, the complete knowledge about the system is given by
the probabilistic conjunction of all individual pieces of information
(Tarantola 2005)

σ (m, d, d0|A, B, C) = k
ρ(m|A)ρ(d, d0|B)�(m, d|C)

μ(m)μ(d)μ(d0)
, (1)
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Figure 1. Two ways to express the posterior pdf σ (m|d0, A, B, C) of model parameters m given observation d0 and subject to the sets of assumptions A, B
and C, about the prior distribution of model parameters and parametrization, observational errors and the forward model, respectively. Figure after Tarantola
(2005). (a) The fact that we have observed d0 enters the inference process in the form of prior information described by the pdf ρ(d|d0, B) (left-hand panel).
Theoretical predictions are represented by �(m, d|C), taking into account any assumptions about the relation between data and model parameters (middle
panel). The posterior pdf is given by the marginal pdf

∫
D

σ (m, d|d0, A, B, C)dd (right-hand panel). (b) We assume that the observation d0 is available only at a
later time and is thus treated as an unknown variable with prior distribution μ(d0) (left-hand panel). The pdf �(m, d0|B, C) carries the combined assumptions
on theoretical modeling and observational uncertainties (middle panel). The posterior pdf is given by the conditional pdf σ (m|d0, A, B, C) (red solid line,
right-hand panel).

where k is a normalization constant and μ(m), μ(d) and μ(d0) are
the homogeneous distributions of the model and data space, respec-
tively, which are constant in the case of linear vector spaces. Given
a particular observation d0 ∈ D, the probabilistic solution to the in-
verse problem is given by the posterior distribution over the model
space σ (m|d0). In what follows, we will demonstrate that the pos-
terior pdf σ (m|d0) can be expressed in two different ways, which
are distinguished by the moment at which the information that we
have made a particular observation d0 enters the inference process,
that is,—in probabilistic terms—when the conditioning operation
on d0 is applied. In one case, the fact that we have made a particular
observation d0 enters the inference as prior information, whereas
in the other we treat the observation itself as a random variable.
Fig. 1 provides a visual comparison of the two approaches, where
(for illustrative purposes) we have assumed prior distributions, ob-
servational uncertainties and modeling errors to be described by
Gaussian distributions.

First, we focus on the case depicted in Fig. 1(a). Here we assume
that the observation d0 has been obtained before we start the infer-
ence process and we can therefore consider d0 as fixed, in which
case we can write for eq. (1)

σ (m, d|d0, A, B, C) = k̃
ρ(m|A)ρ(d|d0, B)�(m, d|C)

μ(m)μ(d)
, (2)

where k̃ is a normalization constant. Note that we have defined
ρ(d, d0) = ρ(d|d0)μ(d0), that is, we choose the homogeneous dis-
tribution as a marginal distribution for d0, since the prior distribution
over the data variables should not restrict the possible observations
d0 in any way.

The posterior pdf can now be obtained as the marginal distribution
over the predicted data variables, that is,

σ (m|d0, A, B, C) =
∫

D

σ (m, d|d0, A, B, C)dd. (3)

In the special case that the forward problem can be assumed to be
exact we have

�(m, d|C) = δ(d − g(m))μ(m), (4)

and eq. (3) can be written in the form

σ (m|d0, A, B, C) = ρ(m|A)L(m|d0, B, C)

σ (d0|A, B, C)
, (5)

where

L(m|d0, B, C) = ρ(g(m)|d0, B) (6)

is referred to as the likelihood function and where the normaliza-
tion constant σ (d0|A, B, C) = ∫

ρ(m|A)L(m|d0, B, C)dm is the
Bayesian evidence.
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Rapid probabilistic inversion with prior samples 1713

We now turn to the case depicted in Fig. 1(b). Here, we assume
that d0 will only become available at a later time during the inference
process. Therefore, we treat d0 as a random variable, whose value
is unknown, and do not perform the conditioning operation on d0

yet. Instead, we marginalize over the predicted data variables d first
and write using eq. (1)

σ (m, d0|A, B, C) =
∫

D

σ (m, d, d0|A, B, C)dd

= k
ρ(m|A)

μ(m)μ(d0)

∫
D

ρ(d, d0|B)�(m, d|C)

μ(d)
dd

= k
ρ(m|A)

μ(m)μ(d0)
�(m, d0|B, C), (7)

where we have defined

�(m, d0|B, C) =
∫

D

ρ(d, d0|B)�(m, d|C)

μ(d)
dd. (8)

Once a particular observation d0 becomes available, we condition
eq. (7) on d0 in order to find the posterior

σ (m|d0, A, B, C) = σ (m, d0|A, B, C)

σ (d0|A, B, C)
(9)

as before.
In particular, under the assumption of Gaussian observational and

modeling uncertainties with covariances Cd and Cg , respectively,
and with the spaces M and D being linear, we have

�(m, d0|CD) ∝ exp

{
−1

2
[d0 − g(m)]T C−1

D [d0 − g(m)]

}
,

(10)

with the combined observational and theoretical noise covariance
matrix CD = Cd + Cg (see Tarantola 2005, section 6.21).

In practise, due to non-Gaussian distributions and the non-
linearity of g(m), we often cannot obtain closed-form expressions
for eqs (3) or (9) and we have to resort to methods based on gener-
ating random samples. As we now discuss, practical ways for mak-
ing probabilistic inferences involve generating samples from either
eq. (2) or eq. (7). Note that we drop the explicit conditioning on the
assumptions A, B and C from now on.

2.1 Obtaining samples from the posterior pdf

If we can find a set of samples Dpost = {(m, d)i } distributed accord-
ing to the pdf σ (m, d|d0) (eq. 2), we can use this set to directly make
posterior inferences, for example, by plotting histograms (cf. Fig. 2,
left-hand panel) or evaluating sample estimates of other posterior
quantities of interest, such as means, standard deviations or covari-
ance matrices. Since the sampling distribution is conditioned on the
observation d0, we call the set Dpost a set of posterior samples.

Obtaining samples from the posterior is challenging in many
cases, since most of the posterior probability mass may be con-
tained in only small regions of the model space. Once the regions
of high posterior probability have been found, samples have to be
generated such that the sampling density follows the posterior pdf.
While there are a number of approaches (see e.g. MacKay 2003,
for an overview), generally MCMC methods have proven to be very
efficient for solving both problems, particularly if the dimension-
ality of the sampling space is high. MCMC algorithms are able
to directly produce samples of the posterior pdf by constructing a
Markov Chain that converges to the posterior pdf. In many imple-
mentations, this is done by performing a random walk in the model

Figure 2. Two approaches to sampling the relationship shown in Fig. 1.
A set of posterior samples Dpost (left), whose density follows the distribu-
tion σ (m, d|d0, A, B, C) and a set of prior samples Dprior (right) following
σ (m, d0|A, B, C).

space and accepting or rejecting proposed samples based on an ac-
ceptance criterion that depends on the likelihood of the proposed
sample. A disadvantage of that method is that samples are typically
strongly correlated. This correlation can be dealt with by thinning
the chains afterwards, that is, by only keeping every nth sample.

For comparisons presented in this paper, we adopt an MH algo-
rithm (Hastings 1970), which is described in detail in Appendix A.
This choice is mainly based on its simplicity and ease of implemen-
tation, and MH is sufficient for the comparisons we wish to perform.
Nevertheless, a wide variety of advanced algorithms are available to
the practitioner, with properties that are intended to be superior to
plain MH in particular cases. Notable recent developments include
trans-dimensional algorithms—which incorporate the problem of
model selection into the inversion process (e.g. Sambridge et al.
2006; Bodin et al. 2012)—and iterative algorithms, also referred
to as sequential Monte Carlo. These also aim to make probabilistic
inversions feasible in time-limited situations, by progressively up-
dating the posterior pdf as new data become available (e.g. Dettmer
et al. 2011).

2.2 Making inferences with prior samples using
probability density estimation

Generating samples from the posterior as in the previous section re-
quires the knowledge about the observation d0 to be available at the
time of sampling. However, it can be advantageous to perform the
sampling stage, which is often computationally expensive, before a
particular observation has been made. Furthermore, it is desirable
to reuse the obtained set of samples for the inversion of several
independent observations, which cannot generally be done if the set
of samples is targeted at one specific observation. For example, a
regional seismograph network may be used for the automatic char-
acterization of local earthquakes on a routine basis. Each time an
earthquake is observed, the inversion that is triggered is subject to
essentially the same prior information and the same physical laws
governing wave propagation. Although the observed data vector d0

changes every time an earthquake is observed, the Earth model used
for calculating the synthetic seismograms and the known areas of
regional seismicity are likely to stay the same between inversions.
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In such a case, it is preferable to be able to re-use the same set of
samples, and not have to re-generate them for each new earthquake.

Here, we aim to generate the set of samples Dprior distributed
according to the pdf σ (m, d0) (eq. 7) rather than σ (m, d|d0)
(eq. 2). Since no information on d0 has been used for the gen-
eration of the samples we call Dprior a set of prior samples. If we
choose the form of the distributions ρ(d, d0) and �(m, d) such that
their convolution �(m, d0) takes a well-defined form, it is straight-
forward to obtain Dprior by drawing a set of models from the prior
distribution ρ(m), solving the deterministic forward problem g(m)
for each and adding a noise component according to the combined
theoretical and observational noise distribution. For example, in the
case of Gaussian observational and modeling errors (eq. 10) with
covariances Cg and Cd , respectively, we have

Dprior = {
(m, g(m) + εD)i

}
(11)

where εD is drawn from a normal distribution with zero mean and
covariance Cg + Cd . Note that while it may be difficult to estimate
Cg and Cd , they do not have to be known independently under the
Gaussian assumption, since they only enter the inference via the
perturbation ε.

The different nature of the setsDpost andDprior is depicted in Fig. 2.
Note how the set Dpost can directly be used to make inferences by
plotting histograms, whereas by definition the distribution of the
samples in Dprior does not carry information on the observation d0.
Thus, in order to make probabilistic inferences based on the set
Dprior additional steps are required.

In order to be able to evaluate the posterior pdf σ (m|d0) re-
peatedly for new observations d0, we will find an (approximate)
representation of the conditional pdf (9) as a function of d0 based
on the set Dprior denoted by

p̃(m|d0; W ) ≈ σ (m|d0). (12)

The set of parameters W thereby controls the approximation and is
determined—or learned—from the set Dprior. This approach is of-
ten referred to as probability density estimation, and can be tackled
using a wide variety of strategies. Here, in order to be able to make
inferences repeatedly and efficiently for a potentially large num-
ber of independent observations, we adopt an approach based on
machine learning—the MDN (Bishop 1995). MDNs are a general
tool for conditional probability density estimation, and are based on
neural networks, which may be viewed as general non-linear func-
tion approximators (Hornik et al. 1989). The resulting approxima-
tion can be evaluated very quickly with light-to-moderate demands
on computational power and memory. Note, however, that most of
our arguments are in fact independent of the specific tool used for
estimating p̃(m|d0; W ) and are in principle also applicable to other
Bayesian machine-learning and regression methods.

An MDN forms a global parametric model of a conditional pdf
and is based on a feed-forward neural network. As such it is ca-
pable of representing multimodal conditional pdfs, which might
obey a highly non-linear relation between observations and model
parameters over a wide range. Since their introduction by Bishop
(1994), MDNs have been widely applied in many different areas,
such as non-linear control problems (Herzallah & Lowe 2004),
speech recognition (Richmond 2007), the reconstruction of spectral
reflection curves (Ribés & Schmitt 2003), finance (Schittenkopf &
Dorffner 2001), surf height prediction (Carney et al. 2005) and the
inversion of satellite scatterometer data (Cornford et al. 1999). In
particular, they have recently been used to efficiently solve seismo-
logical inverse problems such as the inversion of surface wave data
for elastic Earth structure (Meier et al. 2007a,b), the determina-

tion of petrophysical parameters from seismic data sets (Shahraeeni
& Curtis 2011; Shahraeeni et al. 2012), the determination of 1-D
seismic Earth structure from body-wave traveltimes (de Wit et al.
2013), the inversion of normal mode observations for the Earth’s
radial elastic and anelastic structure (de Wit et al. 2014) and rapid
probabilistic earthquake parameter estimation (Käufl et al. 2014,
2015). It is therefore of interest to understand how inferences made
using MDNs within a prior sampling framework compare to solu-
tions obtained by posterior sampling using MCMC algorithms.

If no further information on the shape of p̃(m|d0) is available, a
general approach is to describe p̃(m|d0) as a sum of a fixed number
of Gaussian kernels—a Gaussian Mixture Model (GMM). It can
be shown that with a sufficient number of Gaussian kernels, any
probability density can be approximated by a GMM to arbitrary
accuracy (McLachlan & Basford 1988).

Since M may be high dimensional and eq. (12) thus difficult to
present and interpret, as well as being difficult to estimate from the
finite set of samples, we focus on the marginal pdfs

p̃(mk |d0) =
∫

p̃(m|d0)dmi �=k, (13)

where dmi �=k = dm1. . . dmk−1dmk+1. . . dmc and c is the number of
model space dimensions. Note that it is possible to generalize the
method to higher dimensional pdfs as done in, for example, de Wit
et al. (2013), and Käufl et al. (2014), although we do not consider
this further in this paper. In particular, we have not investigated
whether the results presented here generalize to the higher dimen-
sional case. It is important to recognize that marginalization can
mask subtleties in the underlying probability distribution, such as
correlations or trade-offs between parameters. This must be borne
in mind when results are interpreted and used.

We denote the MDN approximation of the marginal posterior pdf
(13) by

pMDN(mk |d0, w) =
M∑

i=1

αi (d0; w)φi (mk |d0), (14)

where M is the number of kernels, αi (d0; w) are mixture coefficients
that sum to one, and

φi (mk |d0) = 1√
2πσi (d0; w)

exp

{
− [mk − μi (d0; w)]2

2σi (d0; w)2

}
(15)

are Gaussian kernels with mean μi (d0; w) and standard deviation
σi (d0; w). The parameters αi (d0; w), μi (d0; w) and σi (d0; w) are
functions of d0 and are parametrized by a feed-forward neural net-
work with parameters w (e.g. Bishop 1995). Typical values for M
might lie in the range 3–10, depending on problem complexity; as
we mention below, an extension to the method allows M to be treated
as a random variable that is then marginalized out.

The network parameters w are determined during a training stage
by maximizing the likelihood of a training set Dtr ⊂ Dprior. This is
done by iteratively minimizing the loss function

E[Dtr] = −
∑

n

ln p [(mk)n |dn, w] , (16)

where the sum runs over all members of Dtr. A typical training
set for a problem with a modest number of free parameters might
contain anything from 103 to 106 examples: obviously, larger train-
ing sets will generally allow for more detailed results, but be more
computationally expensive to obtain.

In the examples shown below, we minimize (16) by means of
the L-BFGS quasi-Newton method (Nocedal 1980), where the
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Rapid probabilistic inversion with prior samples 1715

partial derivatives of (16) are calculated efficiently using error back-
propagation (Rumelhart et al. 1986). In order to avoid overfitting
to the details in the particular training set—that is, details that
would not be present in all possible training sets obtained in the
same fashion—the error of a second independent validation set
Dval ⊂ Dprior, Dtr ∩ Dval = ∅ is monitored during training and the
optimal set of parameters is subsequently given by

w∗ = argmin
w

E[Dval], (17)

a procedure commonly referred to as early-stopping. However, it
has been shown (e.g. Hjorth & Nabney 2000) that such a maximum
likelihood approach can lead to biased results, particularly because
the optimization problem given by eq. (16) can be highly non-
linear and is in general non-convex, leading to multiple, possible
equally likely solutions for the weight vector w∗. A better approach
is therefore to remove the explicit dependence of eq. (14) on the
network parameters w by writing

pMDN(mk |d0) =
∫

p(mk |d0, w)p(w|Dtest)dw, (18)

where p(w|Dtest) is the posterior probability of the parameter vector
w given a third independent set of prior samples Dtest ⊂ Dprior with
Dtest ∩ Dtr = ∅, Dtest ∩ Dval = ∅. However, the integral in (18) is
hard to evaluate, since an expression for p(w|Dtest) cannot in general
be obtained and the weight space is typically very high-dimensional,
prohibiting numerical integration. While several solutions for this
problem have been suggested (for an overview, see e.g. MacKay
1996), here we adopt a pragmatic approach and approximate the
integral in (18) by the finite sum (Käufl et al. 2014)

pMDN(mk |d0) =
C∑

i=1

ωi∑
j ω j

p(mk |d0, w∗
i ), (19)

running over a number of C independently obtained MDNs, trained
using different random weight initializations and training sets as
described above, and w∗

i denotes the set of weights of the ith
MDN. Each individual contribution to such an ensemble of MDNs
is weighted by a factor of

ωi = exp

{
− E[Dtest, w∗

i ]

N

}
, (20)

where N = |Dtest|. Note that this approach could easily be extended
to averaging over members with different numbers of mixture com-
ponents M in order not to depend on a particular choice for M
which may be hard to justify. However, for simplicity, and given
that our experiments indicate our choice of M is not limiting in the
cases discussed here, we do not adopt such a strategy. Again, the
optimal number of committee members to use will be application-
dependent, and a higher value for C will generally improve results
(but at increased computational cost). As a very rough guide, we
suggest that a reasonable starting point for C may lie in the range
10–20.

3 A ‘ C U R S E D ’ T OY P RO B L E M

First, we demonstrate the framework and illuminate some of its
properties by means of a probability density estimation toy problem.
Suppose we wish to predict the location of a point in c-dimensional
space, given its distance from the origin. The model parameters m
are thus the coordinates of the point and the ‘observable’ datum d

is taken to be its distance from the origin, contaminated by random
noise. The ‘forward problem’ in this example is thus

g(m) = ||m||2, (21)

where || · ||2 refers to the L2-norm. For the model parameters, we
assume a uniform prior distribution in a c-dimensional cube, that
is m ∈ M = [−1, 1]c and ρ(m) = const. We assume the forward
theory to be exact and the observations subject to additive random
Gaussian noise. Given an ‘observed’ value for d0 ∈ R, we are now
interested in evaluating the posterior σ (m|d0). We can do this an-
alytically in the special case d0 = 0 and we obtain approximate
solutions by sampling directly from the posterior and by estimating
the conditional posterior pdf from a set of prior samples.

In the special case that d0 = 0, using eq. (5) with the Gaussian
likelihood L(m) = exp

[−(d0 − g(m))2/(2σ 2
d )

]
/(

√
2πσd ) and the

posterior becomes (see Appendix B)

σ (m|d0 = 0) = 1
(2πσ 2

d )c/2 exp
[
−

∑c
k=1 m2

k

2σ 2
d

]
, (22)

with marginal distributions

p(mk |d0 = 0) = 1√
2πσd

exp

[
− m2

k

2σ 2
d

]
. (23)

For d0 > 0, the distribution becomes non-Gaussian with multimodal
marginal distributions and we cannot easily derive a closed-form
solution. See Fig. 3 for the case c = 2, where we have obtained
p(mk|d0 = 0.7) by numerical integration.

We obtain a set of prior samples Dprior = {(mi , di )} by drawing
{mi } uniformly and assigning

di = ||mi ||2 + εi , (24)

where εi ∈ R is a random number drawn from the normal distribu-
tion N (0, σd ). Thus, the samples approximately lie on the subman-
ifold d = ||m||2 of the joint data-model space. Fig. 3 shows slices
through the space at d = 0 and d = 0.7 for c = 2 and σ d = 0.1,
where areas of higher sampling density are shaded in darker colours.
Note that the distribution of samples in the data space is far from
uniform despite the uniform prior distribution of model parameters,
due to the non-linearity of the forward problem. Therefore, in the
following, we evaluate the posterior at two different d0, correspond-
ing to areas of relatively low and high sampling density in the joint
data-model space.

We construct the approximation pMDN(mk|d0) from the set Dprior

using MDNs, as described in the previous section, for different
choices of c ≥ 2. Experiments indicated that it is sufficient to use
M = 3 mixture components for the individual MDNs, to accurately
capture the bimodal behaviour of the pdf: taking a higher value for
M does not lead to markedly different results, but does increase com-
putational costs. The influence of the parameter M on the predicted
pdfs is discussed in more detail below.

We subsequently evaluate the trained MDNs at d0 = 0 and d0 > 0,
respectively. In the case d0 = 0, we compare the results to the an-
alytical solution (23) and for d0 > 0 to an approximate solution
obtained by sampling directly from the posterior using a MH sam-
pling algorithm. See Appendix A for implementation details. The
analytical and MCMC solutions hereby serve as a benchmark for
the MDN estimate. We ran each chain for a fixed number of itera-
tions and while we did not employ any formal convergence criteria,
we verified by visual inspection that the posterior did not change
significantly if further iterations were performed.
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1716 P. Käufl et al.

Figure 3. Top row, left: posterior p(m|d0 = 0.7) for the case n = 2. Middle and right: marginals p(m1|d0 = 0.7) and p(m2|d0 = 0.7), respectively. Bottom
row: the same, but for d0 = 0.0. Darker colours correspond to higher probabilities.

3.1 Discussion

Fig. 4 shows the MDN estimates pMDN(m1|d0) for c ∈ {2, 5, 10}. In
the cases c ≤ 5, each MDN ensemble comprises 10 members and in
the case c = 10, 15 members that have been trained on sets of 5000
prior samples. The variation in the individual ensemble members
is caused by the different random initializations of the network
weights and the differing noise components εi, respectively, that are
re-drawn for the training of each member. Note that while two runs
of the MCMC sampler were required for each choice of c—one for
d0 = 0 and one for d0 = 0.7—only one MDN ensemble has been
trained and subsequently evaluated twice for different values of d0.

We see from Fig. 4 that the MDN approximation is good in regions
where there is plenty of training data available, but it deviates further
from the desired distribution, the more it has to extrapolate into
regions with little or no training data. It appears that the output
of an MDN ensemble gives a more conservative estimate of the
true posterior pdf—in the sense that it is broader than the desired
distribution—if insufficient training data are available. In general
terms, this follows intuitively from the less-targeted nature of prior
sampling. However, this is not a rigorously proven property; indeed,
the point-source inversion example below demonstrates that while
it holds in most cases, the test set also contains a small number of
counter examples.

The effect can be understood as follows: by making inferences
using a fixed set of samples D, rather than allowing m to vary
continuously, we are effectively replacing the exact forward problem
g(m) with the piecewise constant approximation

g̃(m) = g

(
argmin

mi∈D
||m − mi ||

)
. (25)

This replacement introduces the discretization error

εg(m) = g(m) − g̃(m). (26)

If we make the assumption that g(m) is sufficiently linear in the
vicinity of any given prior sample mi , we can express the proba-
bilistic correlation between model parameters m and predictions d
under the influence of the discretization error by

�̃(d|m) = (2π )−
k
2 |Cg(m)|− 1

2

× exp

{
−1

2
[d − g̃(m)]T Cg(m)−1 [d − g̃(m)]

}
(27)

where the covariance matrix Cg(m) represents the uncertainty in-
duced by the discretization error in the vicinity of the point m.
If observational errors are assumed to be Gaussian (as in this toy
problem) and if we replace the exact forward relation �(d|m) with
�̃(d|m) in eq. (8), then from eq. (10) we see that the combined
observational and theoretical error covariances simply sum up to
give the combined covariance matrix CD(m) = Cd + Cg(m), in the
vicinity of the point m. As a consequence, a training set generated
under the assumption of a perfect forward operator, but with an in-
sufficient sampling density (in the sense that the discretization error
will be larger than the observational errors) cannot be distinguished
from a training set where a theoretical Gaussian modeling error with
covariance Cg(m) is assumed, thus imposing a lower bound on the
posterior uncertainties.

When using a technique such as the MDN we are implicitly es-
timating the covariance CD(m) from the set of prior samples Dprior

during the training process. In practice, this is aided by several
measures. First, each ensemble member is initialized in such a way
that it will output the marginal prior distribution over the model
space, that is initially we have pMDN(mk |d0) = ρ(mk). During the
training procedure, the output distribution is then incrementally re-
fined to resemble the distribution of the training data. Second, by
evaluating the error of an independent validation set (see eq. 17)
we stop the training process if the performance on the validation
set would deteriorate by a further refinement of the pdf learnt thus
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Rapid probabilistic inversion with prior samples 1717

Figure 4. The left-hand panel in each row (a)–(c) shows the conditional pdf pMDN(m1|d0) (coloured contour lines) approximated by an ensemble of MDNs
and the density of the training data (shaded areas, darker colours refer to higher sampling density). The middle panel shows the MDN ensemble’s (solid blue)
and the individual ensemble members’ prediction (dashed blue), a set of samples from the posterior obtained using a Metropolis–Hastings sampler (green
histogram) and the analytical solution (solid red) for the distribution p(m1|d0 = 0). The right-hand panel shows the case p(m1|d0 = 0.7). The reference (red
line) in the right-hand panel of row (a) refers to a solution obtained using numerical integration, rather than an analytical solution. In higher dimensions c > 2
this is not feasible, however, and therefore no objective reference is available.

far. Thereby, we effectively avoid underestimating the covariance
CD(m). This is related to the well-known bias-variance trade-off in
regression problems (Bishop 1995). Finally, when moving into un-
dersampled regions of the joint data-model space, the answers given
by different ensemble members will typically show an increasing

variability, since the functional form of the mapping from data into
model space is less well constrained by the training set in those
regions. By averaging over several independently trained ensemble
members and within the bounds on flexibility imposed by factors
such as the neural network architecture and the number of network
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Figure 5. Same as Fig. 4(a), but each ensemble member uses five Gaussian kernels. The increased flexibility is used to follow the target distribution more
closely. Note that more ensemble members are required to stabilize the distribution, due to their increased variations.

parameters, we are approximately marginalizing over the space of
MDNs compatible with the training data (see eq. 19). In Fig. 4 (cen-
tral column), the increasing variability of the ensemble members
(dashed blue lines) becomes apparent, when the dimensionality c
is increased and therefore the sampling density in the vicinity of
d0 = 0 decreased. In the case of a sufficiently high sampling density
(Fig. 4 (a) central, and (a) to (c) right-hand panel), however, all
members provide essentially the same answer. It is clear, however,
that g(m) is required to be sufficiently smooth for this procedure to
work. A local roughness of the function g(m) would be unlikely to
be detected by either the training or the validation set, if g(m) varies
strongly on a length scale much shorter than the typical distance of
the samples.

Another factor influencing the quality of the MDN approxima-
tion to the posterior is the number of mixture components M. For the
generation of Fig. 5, we set M = 5. The target distribution is matched
more closely, while at the same time the variability of the ensemble
members increases due to the increased number of degrees of free-
dom. This can be counteracted by in turn increasing the number of
ensemble members. The parameter M thus acts as a regularization
parameter controlling the bias-variance trade-off of the individual
ensemble members. Alternatively, as already mentioned, we could
easily extend the approach to encompass members with a varying
number of mixture components, effectively marginalizing over dif-
ferent choices of M. Rather than fixing M to one particular value we
would then have to define a suitable prior distribution from which
to draw M.

Finally, a particular aspect of this toy problem, related to the well-
known ‘curse of dimensionality’ (e.g. Curtis & Lomax 2001)—a
problem from which most high-dimensional real world inverse prob-
lems suffer—is worth highlighting. When increasing the dimension-
ality of the model space, the bulk of the prior samples in the joint
data-model space get concentrated ‘far away’ from the location of
the target model (m0, d0) = (0, 0), despite it being at the centre of
the model space and therefore well covered by all marginal prior
distributions ρ(mk). Intuitively, we expect the MDN approximation
to become more accurate as more samples are being added to the
training set. However, the nature of this toy problem is such that
even a very large number of prior samples would not be likely to
improve the approximation near d0 = 0. This can be seen from the
expected value of the likelihood of the training set as a function of

the model space dimensionality c

E [L(m|d0 = 0)] =
∫

L(m|d0 = 0)ρ(m)dm

=
(

1

2

)c (
2πσ 2

d

) c−1
2 , (28)

which is plotted in Fig. 6 (light blue line). Also shown are averages
taken over a set of random samples of varying size. Note that while
the sample average of (28) over the training set will asymptotically
approach the theoretical relation as more samples are being added,
the average likelihood is bounded from above by eq. (28). This sug-
gests that the approximation cannot be improved upon significantly
by increasing the number of prior samples, since the majority of
samples will continue to fall into regions of low likelihood, which
will subsequently dominate the contribution to the error in the neu-
ral network training stage (see eq. 16). The effect is particularly
severe in the context of this toy example, which has been designed
so that the probability density σ (d0 = 0) rapidly decreases with
increasing c. However, many real world inverse problems suffer
from similar effects and we cannot in general expect that more sam-
ples will significantly improve the prediction accuracy of the MDN
approximation.

This reveals a fundamental difference between an approach based
on prior samples following σ (m, d0) and an approach that gener-
ates samples from the posterior σ (m|d0) = σ (m, d0)/σ (d0). When
basing our inference on prior samples we naturally do not take the
denominator σ (d0)—the probability of making the particular obser-
vation d0—into account (see also the right-hand panel in Fig. 1b).
This probability may be very small for a given d0 compared to other
possible outcomes and therefore the set of prior samples may be
very unlikely to contain any samples close to a given observation
d0, even if a large number of prior samples are being used. There-
fore, we expect that a prior sampling based estimate of a posterior
quantity deviates further from an estimate obtained by posterior
sampling, the smaller σ (d0) becomes. Factors that influence σ (d0)
are the non-linearity of the forward operator g(m), the choice of
prior model parameter distributions and the parametrization itself.
In the case of this toy example, we could easily improve upon the
situation either by requiring the model parameters to be correlated,
thereby reducing the intrinsic dimensionality of the problem or by
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Figure 6. Expectation value of the likelihood L(m|d0 = 0) plotted on a log scale as a function of the number of dimensions c for a uniform prior distribution
(light blue line). Sample average of the likelihood for three data sets drawn randomly from the prior consisting of 102 (dark blue), 104 (green) and 106 (red)
samples.

parametrizing the problem in terms of spherical coordinates cen-
tred at the origin. In this case, all the variation in the data could
be explained by a single degree of freedom. This suggests that the
choice of prior distribution and model parametrization plays a cru-
cial role, even more so than in approaches based on sampling from
the posterior.

3.2 Conclusions

From this toy problem, we have learned that an approach based on
estimating the conditional posterior probability density as a function
of the observation d0 from a set of prior samples can in principle
work, although we have to deal with several intrinsic limitations.
Nevertheless, there are many cases in which such an approach will
have advantages over traditional deterministic techniques or expen-
sive Monte Carlo sampling. This is mainly due to the fact that the set
Dprior can be re-used for repeated inversions of new observations,
allowing conservative uncertainty estimates can be obtained in a
computationally efficient manner. In the remainder of this paper,
we will apply the method to a realistic seismological point-source
parameter estimation problem and investigate whether the underly-
ing assumptions are satisfied and if the MDN approximation thus
forms a meaningful approximation to the posterior pdf.

4 A S E I S M O L O G I C A L
E X A M P L E — I N V E R S I O N O F C O S E I S M I C
D I S P L A C E M E N T O B S E RVAT I O N S F O R
P O I N T - S O U RC E PA R A M E T E R S

To first order an earthquake can be described by a moment-tensor
point source (Burridge & Knopoff 1964) and a typical non-linear
inverse problem in seismology is the joint determination of point-
source parameters such as epicentral location, hypocentre depth,
magnitude and source mechanism from observed seismic or geode-
tic data. Such inversions are carried out in an automated manner on
a routine basis after seismic events are detected using data from re-
gional and global seismograph networks (e.g. Ekström et al. 2012).
Often this inverse problem is solved using an iterative least-squares

approach (Dziewonski et al. 1981), sometimes under additional con-
straints to suppress spurious non-double-couple components (e.g.
Liu et al. 2004). The small number of parameters, in the order
of a few to tens of parameters, is suited to a Bayesian treatment
using sampling based methods (e.g. Stähler & Sigloch 2014). In
particular for EEW or disaster response, however, it is important
to rapidly determine source parameters after first observations have
been made—a situation in which repeated computation of the for-
ward problem, as required by MCMC sampling or iterative gradient-
based approaches, are prohibitive. This is especially true if the for-
ward problem is computationally expensive, for example, if realistic
3-D heterogeneous Earth models are to be used. Therefore, real-time
source estimates are typically either obtained using empirical atten-
uation relations to rapidly determine the magnitude (an overview is
given by Kanamori 2005) or by using a database of pre-computed
Green’s functions to which observations can subsequently be com-
pared in order to determine the source mechanism (e.g. Lee et al.
2010). The former approach requires large, high-quality databases
of observed earthquake records and corresponding source estimates,
which often lack a significant amount of large events, limiting their
applicability to large earthquakes. The latter approach is limited by
the requirement to keep a potentially very large waveform database
in the memory of a computer and to develop efficient algorithms to
compare them to the observed waveform data, which can often only
be done in big data centres using large-scale computing facilities.

It appears that MDN ensembles could nicely bridge the gap be-
tween empirical regression methods and approaches based on wave
propagation modeling, by incorporating MDN ensembles to inter-
polate between a set of pre-computed samples and quickly output a
probabilistic prediction on the source parameters of interest. Käufl
et al. (2014) investigate the feasibility of such an approach for the
rapid inversion of static coseismic displacement observations. Käufl
et al. (2015) extend the approach to the real-time inversion of wave-
form data. A neural network thereby forms a highly compact and
rapidly evaluable representation of a pre-computed Green’s func-
tion database. For comparison: a state-of-the-art regional real-time
moment-tensor monitoring system operational in Taiwan (Lee et al.
2013) uses a 1-D Green’s function database consisting of more than
60,000 Green’s functions, stored on a 32-CPU cluster, on which a
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Table 1. Point-source parametrization and prior distributions.

Parameter Prior distribution∗ Description

κ U(0, 2π ) Strike (periodic)
σ U(− π

2 , π
2 ) Rake

h U(0, 1) cos (dip)
Mw U(5.0, 8.0) Moment magnitude
lat U(32.0, 33.5) Centroid latitude [◦]
lon U(−117.0,−114.5) Centroid longitude [◦]
depth U(1.5, 20) Centroid depth [km]
∗ U(a, b) denotes a uniform distribution on the interval [a, b].

search is performed in parallel, in order to be able to perform an
inversion every 2 s. More detailed Earth models and the ability to
accurately model high-frequency data are likely to further increase
these requirements in the future. On the other hand, the trained
neural network ensembles used in Käufl et al. (2015) typically
comprise 104–106 parameters—for each source parameter to be
determined. The set of network ensembles required to perform real-
time inversions thus easily fits the memory of a standard desktop
computer.

We adopt the parametrization and setup introduced in Käufl et al.
(2014) to investigate to what extent the MDN predictions are com-
patible with a Monte Carlo solution. Earthquakes are thereby de-
scribed by a set of seven independent source parameters with uni-
form prior distributions as given in Table 1. The parameters κ , σ

and h govern the orientation, Mw the magnitude of the source. The
parameters lat, lon and depth determine the spatial location within
the Earth. For further details on the implementation (see Käufl et al.
2014, 2015).

4.1 Results

In the following, we compare two estimates of the marginal posterior
pdfs σ (mk |d0) for the probabilistic point-source estimation problem
by means of a synthetic test. We generate a test set Dtest = {(m, d)i }
by drawing 50 samples from the uniform prior distribution indepen-
dently. We calculate synthetic observations by solving the forward
problem d0 = g(m) + εd , where εd is a noise vector distributed
according to a normal distribution with covariance Cd and g(m)
is calculated using a deterministic code (O’Toole & Woodhouse
2011) which simulates wave propagation in a 1-D layered elas-
tic medium. We use the MCMC sampling procedure described
in Appendix A to obtain a reference solution for the 50 test set
examples.

Subsequently, we also present the noisy, synthetic data vectors
{di } to a set of MDN ensembles trained using an independent train-
ing set Dtr containing 100 000 samples. Throughout this section,
we denote the MDN approximation to the posterior according to
eq. (19) by pMDN(mk |d) and the reference solution obtained by
MCMC sampling as described above by pMH(mk |d).

We found that the MCMC sampler did not always converge within
a fixed 25 000 iterations, chosen to limit the computational cost. We
identify these cases by means of a goodness-of-fit test. As explained
in detail in Appendix A, for each test set example (m, d)i , we have
H (thinned and burn-in–corrected) Markov chains (mn)(i)

h of length
N. We denote by

(
χ 2

n

)(i)

h
=

[
di − g

(
m(i)

n,h

)]T
C−1

d

[
di − g

(
m(i)

n,h

)]
ν

(29)

the reduced misfit of the nth sample in the hth chain for test set
example i, where ν = D − M − 1 is the number of effective degrees
of freedom. Moreover, we calculate the average reduced misfit

(
χ 2

)(i)

h
=

N∑
n=1

(
χ 2

n

)(i)

h
. (30)

If a Markov chain has converged, the reduced misfit (29) follows a
χ 2 distribution with mean 1.0. We therefore discard test set example
i, if[ (

χ 2
)(i)

h
− 1.0

]
> 0.5 (31)

for all H chains. This criterion serves as a pragmatic way of exclud-
ing the examples for which the MCMC sampler did not produce
models with sufficiently high likelihood, while keeping chains that
are reasonably close to an optimal solution, even if they have not
yet reached convergence. We are not interested in the former, since
they do not provide a meaningful reference for comparison with
the MDN estimates. Based on this criterion, 9 of the 50 test set
examples were excluded. Potentially, more advanced search algo-
rithms could have provided faster convergence and more robust
results (e.g. Geyer 1991; Sambridge 1999; Skilling 2006; Dosso &
Dettmer 2011; Dettmer & Dosso 2012). However, such attempts are
outside of the scope of this paper.

We denote the probabilities assigned to the intervals [tk; tk + δk]
and [tk − δk; tk] left and right of the target value tk, respectively, by

P+ =
∫ tk+δk

tk

p(mk |d)dmk (32)

and by

P− =
∫ tk

tk−δk

p(mk |d)dmk, (33)

where δk is chosen to be 5 per cent of the prior range for the kth
parameter. The quantity

P(|tk − mk | ≤ δk) = P+ + P− (34)

gives the total probability assigned to a region of width 2δk around
the target value. Note that for parameter κ we let the integrals (32)
and (33) wrap around at the boundaries of the interval [0; 2π ] to
take into account the 2π -periodicity. We subsequently use (34) to
assess if the estimated pdf assigns probability to the ‘right’ region
in model space. If the posterior equals the prior—that is nothing
could be learned from the data—we have P(|tk − mk| ≤ δk) = 0.1.
The quantities P+ and P−, respectively, can be used to identify any
potential local bias—that is a case in which more probability is
assigned to either side of the target value—in the vicinity of the
target value.

Furthermore, we use the Kullback–Leibler divergence

DKL [p(mk |d)] =
∫

ln

(
p(mk |d)

ρ(mk)

)
p(mk |d)dmk, (35)

to estimate the relative change in uncertainty when moving from
the prior ρ(mk) to the posterior pdf p(mk |d). A higher DKL value
indicates that the posterior distribution is narrower relative to the
prior pdf, whereas a value of zero would indicate that the two
distributions are identical and nothing has been learned upon seeing
the data d. In order to compare MDN and MCMC estimates, we
calculate the information gain difference

�DKL = DKL [pMH(mk |d)] − DKL [pMDN(mk |d)] , (36)
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Figure 7. Comparison of 350 1-D marginal distributions obtained by MCMC sampling of the posterior, and by training MDNs on prior samples, respectively.
The red line corresponds to a Gaussian pdf located at the centre of the model space with decreasing standard deviation for reference. Dots marked in red
correspond to the 14 examples for which the MCMC sampling procedure did not produce samples with a sufficiently high likelihood. The corresponding test
set examples have therefore been excluded in the histograms in row two and three (see the main text). The ‘x’-symbols correspond to parameters governing
source orientation, ‘+’-symbols correspond to source location, depth and magnitude. Top: accuracy of the estimated 1-D pdfs. The horizontal axis shows
the total probability P(|t − mk| < δk) assigned to an interval of width 2δk around the target value. The vertical axis shows the information gain DKL with
respect to the uniform prior. Middle: estimation of the bias in the vicinity of the target value. Shown are histograms of the difference between the probability
P−(mk > (t − δ)) and P+(mk < (t + δ)). Bottom: distribution of the information gain difference �DKL between MDN and MCMC estimates.

which is a measure of the relative difference between the MDN
and the MCMC solutions. Again, in the case that the posterior
equals the prior, that is pMH = pMDN, �DKL = 0. Note that if �DKL

≥ 0 we can consider pMDN to be a conservative estimate of the
reference density pMH, in the sense that pMH is more informative than
pMDN, since it narrows down our prior belief to a larger extent than
pMDN.

For each of the seven source parameters mk, we obtain
pMDN (mk,i |di ) and pMH (mk,i |di ) for all test set examples. Note that
in order to obtain pMH (mk,i |di ), we have to run 5 Markov chains
of length 25 000 for each of the 50 examples, that is we need to
solve the forward problem a total of 6 250 000 times. In order to
obtain the MDN approximation, we only generate a total of 100 000
prior samples and subsequently train 7 MDN ensembles with 15
members each. Depending on the computational demands of the
forward problem and how accurate the MDN approximation has to

be, the total computational cost for generating the training set and
subsequently training the MDNs in order to perform 50 inversions
can be significantly lower.

We calculate PMH(|tk − mk| ≤ δk), pMDN(|tk − mk| ≤ δk),
DKL [pMH(m|d)|p(m)] and DKL [pMDN(m|d)|p(m)], respectively,
for the 7 marginal distributions in the 50 test cases and plot the
resulting 350 probabilities versus the corresponding DKL values in
Fig. 7 (top row). In the cases where DKL ≈ 0, we expect P(|tk − mk|
≤ δk) ≈ 0.1. Similarly, if DKL is large, indicating that there are re-
gions to which the posterior gives preference, we expect P(|tk − mk|
≤ δk) to also be large, indicating that the regions of high probability
are indeed assigned to the vicinity of the target value. For reference,
the behaviour of a Gaussian distribution with decreasing width, lo-
cated at the target value at the centre of the model space is plotted
as red line in Fig. 7 (top). The saturation P(|tk − mk| ≤ δk) for large
DKL values is due to the fact that eventually the entire posterior
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Figure 8. Examples of 1-D marginal pdfs (green curve) for different parameters estimated from posterior samples obtained by MCMC sampling (blue
histograms). The target value is shown as vertical blue line. The five examples correspond to outliers in Fig. 7 (top right), for which the ratio of DKL to
P(|t − mk| < δk) deviates from the value expected for a unimodal Gaussian centred around the target value (red line in Fig. 7). Causes for non-convergence are
multimodality, periodicity and missed out modes (see the main text).

probability mass will be assigned to the finite interval [tk − δk;
tk + δk]. Despite removal of the non-converging examples, we ob-
serve a number of outliers in Fig. 7 (top, right). We verified by visual
inspection that these are not problematic and give a few examples in
Fig. 8. Most of the outliers correspond to the parameters governing
the source orientation (x-symbols in Fig. 7), which typically show
strong multimodal behaviour due to symmetries in g(m). It appears
that the sampler occasionally gets stuck in one of the modes which
happens not to be the one corresponding to the target value, but
which still gives an acceptable data fit. This could potentially be
resolved by either running more chains or increasing the number of
MCMC iterations. Moreover, the mixing of the Markov chains in the
case of parameter κ could potentially be improved by allowing the
parameter to wrap around at the boundaries of the model space (cf.
Fig. 8, panels one, three and five). Fig. 7 (second row) also reveals
that neither the MCMC nor the MDN estimates show a significant
local bias, as indicated by the difference P+ − P−. A value of zero
indicates that the probability assigned to an interval of width δk left
of the target value equals the probability assigned to the according
interval right of the target value.

Finally, we plot a histogram of �DKL in Fig. 7 (third row). The
fact that �DKL � 0 in almost all cases confirms that pMDN is less
informative than pMH and leads to the conclusion that the MDN
approximation can be considered a conservative estimate of the
posterior probability density. A comparison between marginal pdfs
obtained by means of the two methods is given in Fig. 9 for three test
set examples. The example plotted in the first row of Fig. 9 corre-
sponds to a relatively small earthquake, which has a poor signal-to-
noise ratio at almost all receivers. Therefore, neither the reference
pdf pMH(mk |d) (green curve), nor the MDN estimate pMDN(mk |d)
(black curve) can constrain any of the parameters except magnitude
Mw . Note also that the difference between the two distributions,
as quantified by �DKL, is negligible. In the second case (second
row of Fig. 9), most parameters can be constrained rather well
by the MCMC estimate. To all seven parameters, the MDN esti-
mates assign a larger posterior uncertainty than the reference pdf
as expected. Finally, the third example (third row) shows the most
negative �DKL value (for parameter ‘lon’) observed across the test
set. Note, however, that this is a singular outlier as can be seen from
the histogram of �DKL values in Fig. 7.

5 D I S C U S S I O N

5.1 Applicability of the method to high-dimensional
problems

Throughout this paper, we have only considered relatively low-
dimensional problems, and it is reasonable to ask how performance
scales with the dimensionality of the sampling space. Since the
method is solely based on samples that are obtained before any mea-
surement was made, we cannot—as in MCMC methods—exploit a
random walk to explore the model space. Instead, our method bears
some resemblance to importance sampling, assuming the sampling
distribution is chosen to be the prior distribution. Therefore, we
expect the method to show similar scaling behaviour to importance
sampling—which, admittedly, is known to scale badly with the
number of model space dimensions (MacKay 2003). It is clear that
additional work is required to explore how prior sampling should
be implemented in high-dimensional problems; as with importance
sampling it is difficult to know in advance the number of samples
required in order for the algorithm to converge to the true poste-
rior pdf. However, within the framework proposed here, this can be
tested in any particular case, by monitoring the test set performance.

In addition, we have the advantage that the MDNs are initialized
so that they output a representation of the prior pdf regardless of
inputs. The training procedure is then designed so that they only
‘learn’ information from the training set, Dtr, if it also improves
the system’s ability to explain the independent data set, Dtest. This
helps to prevent the MDNs from focusing on learning the particular
characteristics of individual samples, and promotes generalization.
If insufficient samples are available for a given problem, MDN up-
dates computed from Dtr will not generally improve predictions for
Dtest, and hence the MDN will continue to output the prior pdf.
Applying the system to observations may not then yield informa-
tive results, but they should at least not be misleading. Note that
obtaining a ‘null’ result of this form does not necessarily imply that
a given observation contains no useful information: a larger training
set, or the use of a more targeted inversion technique, may allow
more confident inferences to be drawn.

Furthermore, even if prior sampling requires a significantly
larger number of samples than posterior approaches, its repeata-
bility may continue to count in its favour. Assume that a number

 at U
niversity L

ibrary U
trecht on M

ay 3, 2016
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


Rapid probabilistic inversion with prior samples 1723

F
ig

ur
e

9.
Po

st
er

io
r

pd
fs

ap
pr

ox
im

at
ed

by
se

ve
n

M
D

N
en

se
m

bl
es

(b
la

ck
cu

rv
es

)
an

d
es

ti
m

at
ed

us
in

g
po

st
er

io
r

sa
m

pl
es

ob
ta

in
ed

by
M

C
M

C
sa

m
pl

in
g

(g
re

en
cu

rv
es

)
fo

r
th

e
te

st
se

te
xa

m
pl

es
1

(t
op

),
6

(m
id

dl
e)

an
d

21
(b

ot
to

m
).

E
xa

m
pl

e
21

(l
on

)
sh

ow
s

th
e

m
os

tn
eg

at
iv

e
�

D
K

L
va

lu
e

of
al

lt
es

ts
et

ex
am

pl
es

an
d

is
al

so
vi

si
bl

e
as

an
ou

tl
ie

r
in

Fi
g.

7,
th

ir
d

ro
w

.

 at U
niversity L

ibrary U
trecht on M

ay 3, 2016
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


1724 P. Käufl et al.

of Nprior prior samples are required to achieve acceptable perfor-
mance on an independent test set. Now, suppose that n inversions
are to be performed independently (e.g. this could be the num-
ber of events that are expected to occur in a given magnitude
range over the lifetime of an earthquake monitoring system). If
we furthermore assume that the problem can be solved using a
posterior sampling method, which requires Npost evaluations of the
forward problem, then prior sampling becomes advantageous once
n > Nprior/Npost.

5.2 Model selection and noise estimation

A challenging aspect of any inverse problem is the choice of an ap-
propriate parametrization. In particular, it is hard to a priori know
to what detail a given data set can constrain the model. Trans-
dimensional approaches address this issue (Sambridge et al. 2006)
by treating the number of model parameters as an unknown of the
inversion that is determined along with the data. It is an interest-
ing question how a trans-dimensional scheme could be realized
using a technique based on prior sampling. In theory, a training
set need not be limited to contain only samples obtained using
one fixed parametrization and we could potentially treat, for ex-
ample, the number of layers in an Earth model, or the number of
slip patches of a finite-source inversion as a variable. This would
however increase the dimensionality of the sampling space and fur-
ther experimentation is required to assess the feasibility of such an
approach.

A related problem is that of data noise estimation. According to
eq. (24) generating the set Dprior requires a means to generate noise
vectors εi that follow the combined observational and modeling
noise distribution. Although we can often obtain a rather accurate
estimate of the observational noise distribution, describing noise
caused by systematic mismatch between observations and predic-
tions due to simplifications of the underlying theory is very diffi-
cult if not impossible in many cases. It may therefore be desirable
to treat both data and modeling noise estimates as unknowns and
marginalize over different noise levels. Again, this could potentially
be addressed by constructing the training set accordingly, but we
have not yet investigated this point in any detail.

6 C O N C LU S I O N S

We have shown how posterior inferences can be made using a set of
samples that were obtained before the observation to be inverted is
available. The approach separates the sampling from the inversion
stage, which has the advantage that no expensive calculations need
to be carried out at the time of inversion. The fact that we base our
inferences on a fixed set of prior samples introduces an additional
contribution to the posterior uncertainty, which we in turn estimate
by fitting a parametric pdf to the set of samples. Moreover, we have
seen that the presented probabilistic algorithm based on MDNs—
a flexible tool for conditional probability density estimation—can
provide an unbiased and conservative estimate of the marginal pos-
terior pdf σ (mk |d0) in the case of a realistic point-source parameter
estimation problem. From this and a toy problem, however, it has
also become clear that such an approach ultimately suffers from a
number of limitations that may be hard or even impossible to over-
come in practice. The fundamental difference between sampling
from σ (m, d0), rather than σ (m|d0) = σ (m,d0)

σ (d0) lies in the omission
of the normalization constant σ (d0)—the unconditional probability
of making a particular observation d0 or ‘marginal likelihood’. The

probability of observing a particular datum d0 compared to other
possible outcomes may be very small and therefore also the density
of the set of samples drawn from the joint distribution σ (m, d0)
will be low in the vicinity of d0. Even increasing the number of
prior samples by orders of magnitude cannot necessarily mitigate
this problem, as we have seen from the simple toy problem pre-
sented in Section 3. Methods based on posterior sampling naturally
take this into account, since the sampling distribution is implicitly
conditioned on the observation d0.

Nevertheless, the presented approach may enable us to find a
useful approximate probabilistic answer for problems which could
hitherto only be solved deterministically or not at all with given
computational resources in a timely manner. The approach is
therefore appealing in cases where an expensive inverse problem
has to be solved either repeatedly with new observations under
similar prior constraints and governing physics or subject to tight
temporal constraints. Moreover, although not discussed at length
in this paper, the approach enables us to reuse the same set of
samples to answer multiple questions, including those that may not
have been posed prior to sampling. In particular, it allows us to
flexibly define new parameters or observables based on the exist-
ing variables without the need for resampling. Instead, we merely
have to train a new set of neural network ensembles on the new
derived input and target variables. As an example, consider coordi-
nate changes, averages of multiple parameters or other linear and
non-linear transformations (see de Wit et al. (2014) for an exam-
ple). In contrast, with methods that obtain posterior samples in the
vicinity of a given observation and with a given parametrization,
such as MCMC, resampling is generally required if the definition
of the misfit functional is changed, or a different set of (derived)
parameters is to be determined.

Finally, pattern recognition approaches, in particular neural net-
works, have proven to be very robust with respect to noise and
unmodeled signal in the observations (e.g. Böse et al. 2012; Käufl
et al. 2014). This can be understood by recognizing that an ap-
proach based on prior sampling does not involve the minimization
of a misfit functional, which can easily lead to overfitting the model
to certain details in the particular observation if these have not
been taken into account by the forward relation or the noise model.
With the presented approach, on the other hand, the relative weight
of the individual measurements is determined solely based on the
training set, which—if designed carefully—does not contain any
unwanted bias. Therefore inversions are less prone to outliers, that
is, unmodeled noise and signal in the data—a property that may be
particularly useful for real-time monitoring tasks, such as EEW, in
which no manual data quality control can be performed.
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A P P E N D I X A : M A R KOV C H A I N M O N T E
C A R L O S A M P L I N G O F T H E P O S T E R I O R

Algorithm 1 Metropolis–Hastings algorithm used to generate sam-
ples from the posterior distribution (eq. 5).

Draw m(1) from the uniform prior distribution p(m)
for i = 1 to N do

m′ ← m(i)

for k = 1 to M do
Update m ′

k with a value drawn from qk

(
mk |m(i)

k

)
a ← p∗(m′)/p∗(m(i))
if u ∼ U(0, 1) ≤ a then

m(i) ← m′

end if
end for
m(i+1) ← m(i)

potentially tune parameters of qk

(
mk |m(i)

k

)
(see the main text).

end for

The overdetermined, but non-linear and possibly non-unique in-
verse problem of inferring the centroid location and moment tensor
of a source from observations in a layered medium cannot be solved
analytically. In order to obtain a reference solution for comparison
with the MDN approximations, we generate samples from the pos-
terior distribution (eq. 3) by MCMC sampling. We assume that
observational uncertainties are described by an additive Gaussian
noise process with covariance Cd and consider the forward oper-
ator to be exact, that is the posterior is given by eq. (5) with the
likelihood function

L(m|d0) = 1√
(2π )D|Cd |

× exp

[
−1

2
(d − g(m))T C−1

d (d − g(m))

]
, (A1)

where D is the dimensionality of the data space, which in the case
of the source inversion problem in this paper is given by D = 102.
The covariance matrix Cd is in this case chosen to be diagonal with
covariances resembling typical noise levels for static displacement
measurements ((0.004 m)2 for the horizontal, and (0.01 m)2 for the
vertical components; cf. Käufl et al. 2014). Moreover, throughout
this paper, we work with uniform prior distributions and have

ρ(m) = const. (A2)

Therefore, the term ρ(m)/σ (d0) in eq. (5) is independent of m and
obtaining samples from the posterior distribution is thus equivalent
to obtaining samples from (see e.g. MacKay 2003)

p∗(m) ∝ L(m|d0). (A3)

In the case of the source inversion problem, we use a Metropolis–
Hastings algorithm with normal proposal distributions qk(mk |m(i)

k )
for each component of m. That is, each component of m is updated
sequentially and updates are uncorrelated between parameters. Ini-
tial test runs indicated that chains are converging more quickly to
regions of high likelihood with this setup, instead of block-updating
all components of m at once at every iteration.1 The proposal dis-
tributions qk(mk |m(i)

k ) are Gaussian with mean m(i)
k and standard

1
Note that for the toy problem in Section 3 all parameters are updated at
once, instead.

deviation σ k, which is initially set to 0.1 for all parameters. Note
that all parameters are rescaled to the range [−1; 1]. Every 500th
iteration we update σ k based on the acceptance rate of the chain so
far. Updates become less frequent and of decreasing magnitude as
the chains converge.

Independent posterior samples are obtained from each chain by
removing the initial 5000 samples (‘burn-in period’), in which most
of the chains appear to be non-stationary. Furthermore, the samples
are decorrelated by taking into account only every 500th sample
(‘thinning’). These measures are common practice and the partic-
ular values are chosen based on visual inspection of a number of
test chains. See Fig. A1 for an example. We denote by Xh the set
of samples {(m, d)i } in the hth chain. We run H = 5 independent
chains starting from different random starting values for of m for
N = 25000 iterations each. We preferred multiple shorter chains
over one long chain, since we found that the posterior often exhibits
strong multimodal behaviour where a single chain often becomes
trapped in one of the modes for a very long time. The fact that
multiple independent chains do not converge to the same solution is
typically taken as an indication for the non-convergence of all chains
and that more iterations are required or the mixing of the chains has
to be improved. However, since we are dealing with purely syn-
thetic examples with known target values and noise properties, we
can easily identify chains that give misleading results. Synthetic
examples in which the sampler did not produce models with a suf-
ficiently high likelihood are later excluded from the interpretation.
The algorithm is summarized in listing 1.

In order to incorporate the information contained in all Markov
chains into the analysis and since we are only interested in marginal
posterior distributions, we generate—independently, for each di-
mension of M—a set of scalar posterior samples from all available
chains by resampling according to a piecewise constant approxima-
tion of the marginal likelihood

p∗(mk) =
∫

p(d|m) dmi �=k, (A4)

as follows. First, we collect the samples of all thinned chains in the
joint set

X =
H⋃

h=1

Xh . (A5)

Second, we calculate histograms of the samples and assign to the
lth bin in the kth dimension of m the weight

w
(k)
l =

∑
m∈Ml

p∗(m)/|Ml |, (A6)

where Ml = {m|mk ∈ [al , bl [}, al and bl are the bin boundaries and
|Ml| is the number of samples falling into the lth bin.

Subsequently, we generate a set of random numbers

Y (k)
l = {yi ∼ U(al , bl )}, (A7)

in such a way that |Y (k)
l | ∝ wl . The joint set of samples Y (k) = ⋃

l Yl

is now distributed according to a piecewise constant approximation
to the marginal likelihood p∗(mk).

Finally, for comparison with the MDN results, we fit one-
dimensional GMMs with six mixture components to the set of sam-
ples Y(k) for each dimension k individually using the expectation–
maximization (EM) algorithm (see Bishop 1995; Bilmes 1998). An
EM fit for the seven source parameters of a synthetic test set example
is shown in Fig. A2.
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A P P E N D I X B : D E R I VAT I O N O F
I N T E G R A L S

The posterior probability density

σ (m|d0 = 0) = L(m|d0 = 0)ρ(m)

σ (d0 = 0)
(B1)

for the toy problem in Section 3 can be derived as follows. With the
prior distribution

ρ(m) =
{(

1
2

)c
if − 1 ≤ c ≤ 1

0 else
, (B2)

and the likelihood

L(m|d0) = exp
[−(d0 − g(m))2/(2σ 2

d )
]

√
2πσd

, (B3)

where g(m) = ||m||2, we have

σ (d0 = 0) =
∫ ∞

−∞
L(m|d0 = 0)p(m)dm1 . . . dmc (B4)

=
(

1

2

)c 1√
2πσd

∫ 1

−1
exp

[
− 1

2σ 2
d

∑
k

m2
k

]
(B5)

≈
(

1

2

)c 1√
2πσd

∫ ∞

−∞
exp

[
− 1

2σ 2
d

∑
k

m2
k

]
(B6)

=
(

1

2

)c (
2πσ 2

d

) c−1
2 (B7)

and thus

σ (m|d0 = 0) = 1

(2πσ 2
d )c/2

exp

[
−

∑c
k=1 m2

k

2σ 2
d

]
. (B8)
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