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S U M M A R Y
Whenever a geophysical image is to be constructed, a variety of choices must be made.
Some, such as those governing data selection and processing, or model parametrization, are
somewhat arbitrary: there may be little reason to prefer one choice over another. Others, such
as defining the theoretical framework within which the data are to be explained, may be more
straightforward: typically, an ‘exact’ theory exists, but various approximations may need to be
adopted in order to make the imaging problem computationally tractable. Differences between
any two images of the same system can be explained in terms of differences between these
choices. Understanding the impact of each particular decision is essential if images are to be
interpreted properly—but little progress has been made towards a quantitative treatment of
this effect. In this paper, we consider a general linearized inverse problem, applicable to a
wide range of imaging situations. We write down an expression for the difference between
two images produced using similar inversion strategies, but where different choices have been
made. This provides a framework within which inversion algorithms may be analysed, and
allows us to consider how image effects may arise. In this paper, we take a general view,
and do not specialize our discussion to any specific imaging problem or setup (beyond the
restrictions implied by the use of linearized inversion techniques). In particular, we look at the
concept of ‘hybrid inversion’, in which highly accurate synthetic data (typically the result of
an expensive numerical simulation) is combined with an inverse operator constructed based
on theoretical approximations. It is generally supposed that this offers the benefits of using the
more complete theory, without the full computational costs. We argue that the inverse operator
is as important as the forward calculation in determining the accuracy of results. We illustrate
this using a simple example, based on imaging the density structure of a vibrating string.

Key words: Inverse theory; Numerical approximations and analysis; Tomography.

1 I N T RO D U C T I O N

Much research in the geosciences builds, to some degree, on infor-
mation gleaned from geophysical images—models for earth sys-
tems that have been constructed based on observed data. Invariably,
no two images of the same system agree (see e.g. the comparisons
presented in Schaeffer & Lebedev 2013, 2015): some of this dis-
crepancy may be attributable to the use of different data sets, but
much is due to differences in the inversion framework used (Boschi
& Dziewoński 1999). Each image is valid, in so far as each rep-
resents the model that best explains a given data set, within some
particular theoretical basis, and subject to some set of assumptions.
However, the extent to which these choices introduce biases or de-
ficiencies into models is difficult to assess, presenting a barrier to
robust interpretation.

Equally, this issue can be posed from the perspective of the re-
searcher setting out to perform imaging: how does one achieve ‘best’

results? Of particular interest at present is the question of how best
to use computationally expensive exact numerical approaches to
modeling geophysical phenomena: is this always worth the cost,
or could the computational resources be more effectively deployed
elsewhere?

Most geophysical imaging approaches fall into one of two broad
categories. The first, which will be the focus of this paper, encom-
passes algorithms built on linearized inverse theory: models are
iteratively refined to bring synthetic (predicted) data into agreement
with observations and the ‘image’ is a single model. The second cat-
egory constitutes ‘sampling-based approaches’: a large collection
of random models are tested against observations and the ‘image’ is
typically a probability distribution for model parameters. This has
the benefit that a fairly complete understanding of the relationship
between models and data can be obtained; however, large-scale ap-
plications can be challenging due to the computational cost of test-
ing each model. We will not discuss sampling approaches further;
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examples include Sambridge (1999), Bodin & Sambridge (2009),
Dosso et al. (2012), Käufl et al. (2014) and de Wit et al. (2014).

Within the framework of linear inverse theory, various approaches
have been developed to allow quantification of the accuracy or qual-
ity of any particular inversion. Measures of resolution quantify the
degree to which a hypothetical structural feature could be imaged
using a particular technique: either through direct inversion of syn-
thetic data (such as the ‘chequerboard test’, which remains popular
despite its limitations—see Lévêque et al. 1993), or through anal-
ysis of the resolution operator (e.g. Trampert et al. 2013). The de-
gree to which the imaging process constrains any particular model
parameter may be assessed by exploring the relationship between
model and synthetic in the region of the best-fitting model (e.g.
Meju & Hutton 1992; Valentine & Trampert 2012), by relying on
the assumptions underpinning linear inverse theory (e.g. Fichtner &
Trampert 2011b), or by framing the inversion in a Bayesian context
(e.g. Tarantola & Valette 1982). In principle, these techniques allow
uncertainties or systematic errors associated with data noise and
theoretical approximations to be taken into account. However, the
results are limited by the validity of the imaging approach used, and
the role of any assumptions underpinning this remain difficult to
test.

In this paper, we develop and analyse a general expression de-
scribing the relationship between images produced by any two dis-
tinct linearized inversion algorithms. We begin by setting out a
general formulation of linear inverse theory, and use this to obtain
an expression for the difference between models produced by any
pair of inversions. In particular, we consider the case where weakly
non-linear problems are tackled iteratively using a linear algorithm.
By analysing this expression, we can determine the various effects
that contribute to discrepancies between geophysical images, and
we can explore how certain common choices may affect images.
In particular, we consider the case of ‘hybrid’ inversion schemes,
whereby high-quality numerical forward calculations are combined
with approximate inverse operators, and demonstrate that this ap-
proach does not necessarily yield any significant improvement over
computing all quantities approximately. Our analysis may simi-
larly apply to inversions based on the adjoint technique, particularly
where smoothing or other post-processing is carried out. We also
briefly consider a common modification to the inversion algorithm
that takes the limited resolution of the imaging operator into ac-
count, and results in a non-linear inversion operator. We illustrate
this discussion using a toy problem—imaging the density structure
of a non-uniform vibrating string—which has a number of features
in common with geophysical inversions for earth structure.

2 L I N E A R I Z E D I N V E R S E T H E O RY

Solving an inverse problem requires us to find the model, m, for
which synthetic data, s(m), are in closest agreement with observa-
tions, d. For any points in model space, mi and mi+1 and linear
operator Smi , we can write the function s(m) in the form of a linear
term and a remainder

s(mi+1) = s(mi) + Smi (mi+1 − mi) + bS (mi, mi+1) (1)

where bS is defined by eq. (1), and encapsulates all functional
behaviour not described by Smi . If we can identify a region of
model space, Smi , such that

‖bS (mi, mi+1)‖ < ε ∀ mi+1 ∈ Smi (2)

for appropriately chosen ε, we regard Smi as a good linear approx-
imation to the behaviour of s(m) within that region. Motivated by

this, and identifying the predictions at s(mi+1) with the data we seek
to explain, we can express a general linear inversion algorithm in
the simple form

mi+1 = mi + S−g
mi

(d − s(mi)) (3)

where S−g represents some general inverse operator; we assume
that it, too, is a linear operator. The choice of notation here suggests
that S−g is somehow constructed from S. In most practical cases
this will be true, and the inverse is usually derived by minimization
of some specified ‘misfit function’, which quantifies the agreement
between observations and synthetic data, under the assumption that
eq. (1) is valid, and the bS term negligible. However, the discussion
in this paper does not require us to place any restrictions on the
relationship between forward and inverse operators. It will typically
be beneficial to apply eq. (3) iteratively, updating predictions and
linear operators to reflect the improved model.

Fundamentally, this paper centres on understanding how changes
to S−g and s are reflected in the image recovered at any given
iteration. In general, we are concerned with deliberate changes,
associated with choices made in establishing the inversion frame-
work. However, we draw readers’ attention to the existence of a
large body of work in the numerical analysis literature, focusing
on the stability of linear systems (e.g. van der Sluis 1975; Stewart
1977; Golub & van Loan 2012). In these papers, interest is typically
focused on ‘accidental’ changes in quantities, due to the limitations
of finite-precision arithmetic. Nevertheless, both results and anal-
ysis strategies may be of interest in the present case. In particular,
perturbations to the inverse operator are generally found to be more
pernicious than those in the forward calculation, especially when
the linear system is ill-conditioned (e.g. Grcar 2010).

For illustrative purposes, we remark that a natural choice for S is
an operator built using the partial derivatives of s(m) with respect
to the model parameters: in the simplest form,

Smi (x) = Ax (4a)

for any appropriately dimensioned vector x, and where Ai j =
∂si/∂m j

∣∣
m=mi

(sometimes referred to as the Jacobian or Fréchet
derivatives matrix). Typically, this does not have an exact inverse,
as A is not square, and may not be full rank. A variety of choices
for the inverse operator are therefore possible, but one common
choice is the ‘least-squares’ solution (e.g. Menke 1989), which can
be expressed

S−g
mi

(x) = (
ATA + D

)−1
ATx (4b)

where D is some regularization matrix; one common choice is to
employ ‘Tikhonov regularization’, in which case D = εI for some
appropriately chosen value of ε. We note that a more complete for-
mulation of least squares in the presence of Gaussian uncertainties
has been given by Tarantola & Valette (1982); however, this cannot
in general be expressed in the form of a linear operator. We will
return to this in Section 3.3; nevertheless, this paper is concerned
with the behaviour of eq. (3) in general, rather than on any specific
choices for the various quantities involved.

2.1 The null spaces

Any linear operator, L, which maps between two vector spaces,
can be represented as a matrix, L. In this paper, we are concerned
with mappings between an M-dimensional model space and an
N-dimensional data space; typically, N � M. If L is a forward map-
ping (i.e. it maps from models into data), then L will be an N × M
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matrix. Every matrix can be characterized by its four ‘fundamental
subspaces’. We suppose that L has L linearly independent columns
(L ≤ M; we will assume that M ≤ N), and—equivalently—L linearly
independent rows. These can be regarded as bases for L-dimensional
vector spaces, known as the ‘column space’ and the ‘row space’ of
L, respectively. For any model m, Lm must lie within the column
space of L; similarly, LTd will lie in the row space of L for any
d. The column space may also be referred to as the ‘image’ of the
operator L, while the row space is its ‘coimage’.

The left null space of L (or, equivalently, the cokernel of L), is
the (N − L)-dimensional space representing the portion of the data
space that cannot be accessed using L; if d lies in the left null space,
then LTd = 0. The right null space (or kernel of L) is the set of all
models that lie outside the row space of L, and consequently map to
zero: if m lies in the right null space, Lm = 0. Clearly, the right null
space has dimension (M − L). The singular value decomposition
(SVD) provides a mechanism for accessing these spaces: we can
write

L = (
U1 U0

) (
� 0

0 0

)(
VT

1

VT
0

)
(5)

where U = ( U1 U0 ) and V = ( V1 V0 ) are unitary matrices, whose
columns are referred to as the left and right singular vectors, respec-
tively, and where � = diag (σ1, σ2, . . . , σL ) with σ i ≥ σ i + 1. Then,
U1 consists of L unit vectors spanning the column space of L, while
U0 spans the left null space. Similarly, the L columns of V1 span
the row space of L and V0 defines the right null space. Various
algorithms exist for computing the SVD efficiently (see e.g. Golub
& van Loan 2012); note that in the case where L = M = N, the SVD
is closely related to matrix diagonalization.

Similarly, the inverse operator L−g has its own image, coimage,
kernel and cokernel. In many cases, the inverse will be constructed
so that its image is equivalent to, or a subset of, the coimage of
L. However, again, we need not make that assertion here. For sim-
plicity, in the remainder of this paper we shall largely avoid the
terms (co-)image and (co-)kernel, and instead refer to each opera-
tor as having two image and two null spaces, one each on the data
side and the model side. This may not appeal to mathematicians,
but in our experience is a common usage within the geophysics
community. We do not believe that any confusion should ensue.

2.2 The ‘resolution’ operator

We can consider the effect of applying eq. (3) to a synthetic data
set, corresponding to some known model, mtrue. Replacing d with
s(mtrue), and making use of eq. (1), a single model update starting
from mi will result in a recovered model

mrec = mi + S−g
mi

Smi (mtrue − mi) + S−g
mi

bS (mi, mtrue) . (6)

The compound operator RS
mi

= S−g
mi Smi is often referred to as the

‘resolution’ operator, as it provides information on how well a given
model can be recovered, or resolved. If mi and mtrue are sufficiently
close and the operator S provides a good approximation to the local
behaviour of s(m) in the sense of eq. (2), then the term involving
bS will be negligible. Then, it can be seen that mrec is a version
of mtrue subject to any distortions imposed by the imaging process.
Unless S−g is an exact inverse of S, a perfect recovery is not always
possible. In particular, we see that models can only be recovered
up to an additive null space component: any part of mtrue that lies
in the null space of Smi can never be resolved. It is important to
take this into account during interpretation and analysis of results

(e.g. de Wit et al. 2012). Of course, in practice it is impossible to
properly assess whether mi is sufficiently close to mtrue for the bS
term to be neglected, but an assumption that this is true underpins
any linearized approach.

If the iterative algorithm in eq. (3) has converged, we must have
mi = mi+1 = m∞. In this limit, we see that eq. (6) gives

RS
mi

(m∞ − mtrue) = S−g
mi

bS (m∞, mtrue) . (7)

In the case where bS is negligible, we see that convergence implies
that any difference between mtrue and m∞—that is, between reality
and the recovered image—lies in the null space of the resolution
operator. This implies that the model is ‘accurate’ in so far as it can
be resolved by the inversion algorithm. If bS is not negligible, some
part of the difference will lie within the image space of the resolution
operator, and the recovered model contains systematic error. Note
that the kernel of RS must contain the null space of S, but may
be larger; similarly, the image space of RS must be a subset of, or
equal to, the image space of S−g . In practice, inversion algorithms
may not be continued until complete convergence is obtained (i.e.
where the model ceases to change between successive iterations):
it is common to terminate the inversion procedure once a model
that is deemed ‘sufficiently good’ has been obtained. In such a case,
recovered models may deviate from the ‘true’ model outside the
null space of the resolution operator.

2.3 The relative evolution of two linearized inversions

For a given data set, we can compare the results obtained by perform-
ing imaging using two separate inversion algorithms. One relies on
a forward model s(m) and an inverse operator S−g , as in eq. (3);
the other has the same general form, but uses a different forward
model, f(p), and inverse operator F−g . We assume that in both
cases, the model space is parametrized in the same way. We place
no restrictions upon the manner in which the operators may differ,
but one might envisage comparing two alternative computational
implementations of the forward model, perhaps based on different
assumptions; or comparing different schemes for regularizing or
smoothing the inverse operator. More abstractly, one might wish
to compare idealized, ‘perfect’ forward and inverse operators with
those that can be obtained computationally, to explore how results
might be affected by approximations, discretization errors, numer-
ical effects and so forth. We discuss some of these possibilities in
Section 3.2, below.

However the algorithmic differences arise, we can write a com-
parison between the solutions at the (i + 1)th iteration as

�i+1 = �i + (
F−g

pi
− S−g

mi

)
d + S−g

mi
s(mi) − F−g

pi
f(pi) (8a)

where we have defined �i = pi − mi. Application of eq. (1), or its
counterpart for f(p), allows us to also express this in the alternate
forms

�i+1 = (
I − S−g

mi
Smi

)
�i + (

F−g
pi

− S−g
mi

)
d + S−g

mi
s(pi)

−F−g
pi

f(pi) − S−g
mi

bS (mi, pi) (8b)

and

�i+1 = (
I − F−g

pi
Fpi

)
�i + (

F−g
pi

− S−g
mi

)
d + S−g

mi
s(mi)

−F−g
pi

f(mi) + F−g
pi

bF (pi, mi) (8c)

where I is used to denote the identity operator, and where bF is
defined in analogy with bS . The bS and bF terms arise because in
general, the forward problem is known to be non-linear; neverthe-
less, the inversion algorithms themselves are linearized, as discussed
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above. Note that an iteration-by-iteration comparison may not al-
ways lend itself to meaningful interpretation: different algorithms
may follow very different paths through model space, yet converge
to similar points. In such cases, while eq. (8a) remains mathemati-
cally well defined, insights into image quality will likely come from
consideration of the position at convergence (see e.g. Section 3.1.4).
On the other hand, where differences between algorithms are more
subtle, the iteration-by-iteration comparison may prove instructive.

3 A NA LY S I S A N D D I S C U S S I O N

To gain some insight into where differences between two images
arise, we can identify a number of different effects contributing to,
for example, eq. (8b), which can be expressed in the form

�i+1 = �res
i+1 + �

path
i+1 + �fwd

i+1 + �inv
i+1 + �cross

i+1 . (9a)

The first term,

�res
i+1 = (

I − S−g
mi

Smi

)
�i − S−g

mi
bS (mi, pi) (9b)

arises from limitations in the resolution of the imaging process. A
comparison with eq. (6) reveals that this term represents the part of
�i that cannot be accessed by the imaging framework. The second
term,

�
path
i+1 = (

S−g
pi

− S−g
mi

) (
d − s(pi)

)
, (9c)

represents effects that arise because each inversion follows a differ-
ent path through model space. The third term depends solely on the
difference between the forward models,

�fwd
i+1 = S−g

pi

(
s(pi) − f(pi)

)
, (9d)

while the fourth depends solely on the difference between the inverse
operators,

�inv
i+1 = (

F−g
pi

− S−g
pi

) (
d − s(pi)

)
. (9e)

Finally,

�cross
i+1 = (

F−g
pi

− S−g
pi

) (
s(pi) − f(pi)

)
(9f)

represents the interaction between the differences in forward and
inverse operators. Clearly this could be absorbed into �fwd

i+1 or �inv
i+1,

but it may assist interpretation to maintain it as a separate term,
rather than choosing one or the other of these options.

3.1 Designing an inversion scheme

The effects of any choice made in setting up an inversion scheme
can be analysed through eq. (9). It is important to recognize that the
relative significance of the various terms in this equation depend on
their geometrical relationships, as well as on their magnitudes. By
the triangle inequality, we must have∥∥�fwd

i+1 + �inv
i+1 + �cross

i+1

∥∥ ≤ ∥∥�fwd
i+1

∥∥ + ∥∥�inv
i+1

∥∥ + ∥∥�cross
i+1

∥∥ (10)

and thus it need not be the case that two inversion algorithms which
rely on a common forward model—or a common inverse operator—
will necessarily yield results that are more similar than those of two
inversion algorithms which differ in both forward model and inverse
operator.

3.1.1 The forward calculation

If two inversion schemes are set up so that at any given point,
they use the same inverse operator, but use different forward mod-
els for calculating synthetic data, we have F−g = S−g , and thus

�inv
i+1 = �cross

i+1 = 0. This might entail comparing forward codes built
on different numerical integration schemes, or comparing numerical
integration with asymptotic methods (for seismological examples,
see Cormier 2007). Alternatively, the same forward code might be
used in both cases, but with different settings—perhaps to explore
the extent to which numerical discretization errors propagate into
solutions. If we assume that both inversions start from the same
initial model, so that p0 = m0, we see from eq. (9) that the driving
force for any difference in recovered images must come from �fwd

i+1.
Resolution and path-dependent effects then govern how these dif-
ferences accumulate over multiple iterations. Note that these terms
contain S and bS which arise from our use of eq. (1) to redefine the
point at which s is evaluated, and this may need to be accounted for
if s is assumed to have any specific form or properties.

From eq. (9d), we see that the differences between forward mod-
els are only relevant to the extent that they lie within the data image
space of the inverse operator, S−g

mi ; any differences that lie within
its data null space will be discarded. If we suppose that s and S−g

are obtained based on the same—approximate—physical theory,
we can ask how changing to a more accurate forward calculation,
represented by f, will affect results. We discuss this question in
more detail in Section 3.2.3, below, but where approximations are
physically motivated, it is quite possible that a significant part of
the ‘improvement’ from s to f lie in the null space of F−g . As a
trivial illustration, suppose that s and S−g are computed for vertical-
channel seismic data only, whereas f is more complete, and includes
horizontal motion. This additional information would not, however,
be accessible using F−g(= S−g). The same issue can be viewed
from the opposite perspective: if any part of s can be shown to lie
in the null space of S−g , then this can be omitted without affecting
results. In some circumstances, this could offer a route to acceler-
ating the forward calculation—and thus, the imaging process as a
whole—without degradation in image quality.

3.1.2 The inverse operator

If, instead, the forward models are identical (so that f = s) but the
inverse operators are allowed to differ, we have �fwd

i+1 = �cross
i+1 = 0.

Now, any differences between images must be driven by �inv
i+1. One

can envisage comparing a simple gradient-descent inversion scheme
with one that attempts to accelerate convergence by incorporating
second-order information, such as a (quasi-)Newton method (e.g.
Pratt et al. 1998). Similarly, the effects of changes to how data are
filtered and processed can also be explored by regarding these as
modifications to the inverse operator—see Section 3.2.2. Regardless
of how the differences arise, it is important to recognize that F−g

and S−g need not act in the same subspaces, and that—particularly
in high-dimensional settings—even small changes to the operators
can result in very different null spaces. Thus, the contribution from
�inv

i+1 may appear to scale unpredictably with the apparent ‘size’ of
the change in operator.

In the previous section, considering the forward calculation, we
have noted that knowledge of the geometric relationships between
quantities may enable computational efficiencies. However, this is
not generally possible for the inverse operator: �inv

i+1 depends upon
the data, which cannot usually be known to lie in any particular
subspace. Thus, any change in the operator has the potential to affect
results. Within our framework, the definition of the inverse operator
(see eq. 3) is quite broad, fully encapsulating the connection between
observed data and recovered model. Thus—for example—choices
regarding data selection and processing, or model parametrization,
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are most naturally considered in terms of transformations acting
upon this operator. We discuss this point in more detail in Sec-
tion 3.2, below.

3.1.3 The cross term

The final term, �cross
i+1 , has a somewhat counter-intuitive form, with

the inverse operator from one algorithm acting on the forward op-
erator from the other algorithm. However, interpretation is straight-
forward if one views eq. (9) as expressing differences in models
in terms of the differences in the operators used in their construc-
tion. Then, the cross term simply represents the interaction between
differences in inverse operators and differences in forward calcula-
tions. Plainly, it is only relevant in comparisons where both aspects
differ.

If this is the case, �cross
i+1 must be considered in conjunction with

the effects described in Sections 3.1.1 and 3.1.2. When all three
terms are considered together, some simplification is possible, such
that

�fwd
i+1 + �inv

i+1 + �cross
i+1 = F−g

pi

(
d − f(pi)

) − S−g
pi

(
d − s(pi)

)
, (11)

and this, in turn, will partially cancel with �
path
i+1 . In some cases,

combining terms in this manner will simplify the analysis. As has
already been observed, there is no reason to assume that the effect
of these terms combined will necessarily be less than either �fwd

i+1 or
�inv

i+1 individually. It is quite possible for an inversion scheme that
uses approximate methods for obtaining both synthetic data and the
inverse operator to give more accurate results than one that computes
one of these quantities exactly, and any argument to the contrary
must be based upon the specific details of the approximations made.

3.1.4 The position at convergence

Implicit in the use of an iterative algorithm, eq. (3), is the assumption
that if sufficient iterations are performed, the system will converge
to some particular model: we denote this by m∞, as in Section 2.2.
Within our comparison of two inversion algorithms, once both have
converged we must have �i = �i+1 = �∞. Thus, again considering
eq. (8b), we have

S−g
m∞Sm∞�∞ + S−g

m∞ bS (m∞, p∞)

= S−g
m∞

(
s(p∞) − f(p∞)

) − S−g
m∞

(
d − f(p∞)

)
, (12)

where we have made use of the condition that, at convergence,
F−g

p∞ (d − f(p∞)) = 0. The left-hand side of this expression will be
recognized as representing the part of �∞ that can be resolved
by the imaging setup—see Section 2.2. The right-hand side could
clearly be simplified, but expressing it as two terms assists our
interpretation.

The quantity d − f(p∞) represents the residuals obtained, at con-
vergence, from the inversion using f and F−g . By definition, these
lie in the data null space of F−g , and are typically assumed to cor-
respond to observational uncertainties, or ‘noise’—although this is
only true if the assumption that the forward problem encapsulates
all relevant physics is also true. If the (inverse) operator is repre-
sented as a matrix, the residuals will be orthogonal to every row
of that matrix. However, they need not be orthogonal to the matrix
representing S−g . In a high-dimensional data space, even small dif-
ferences between F−g and S−g can result in the S−g

m∞
(
d − f(p∞)

)
term in eq. (12) becoming significant, particularly where the resid-
uals are relatively large. Thus, even if two algorithms share similar
forward codes (so that s(p∞) − f(p∞) is small), different images
may result.

3.2 Practical applications: towards a better understanding
of geophysical images

Having described how the results of two imaging processes differ, it
is natural to ask which gives ‘better’ results. This is not a straightfor-
ward question to answer, not least because quantifying image quality
is challenging. We reiterate our comments in Valentine & Trampert
(2012): a distinction must be drawn between ‘predictively accurate’
images and ‘geologically accurate’ images. The model that faith-
fully describes the true state of a system need not be the model
that most accurately explains observations when a given method for
performing the forward calculation is used. If the forward method is
inaccurate or incomplete in any respect, model alterations may mit-
igate these deficiencies. For example, some of the effects of using
an inaccurate earth model when computing synthetic seismograms
can be accommodated by altering the location of the seismic source
(e.g. Dziewonski et al. 1981), and many surface wave studies rely on
‘crustal corrections’ to attempt to account for near-surface structure
(e.g. Bozdağ & Trampert 2008). Similarly, the model that gives best
results in conjunction with one method for performing the forward
calculation need not be optimal with another.

3.2.1 Model parametrization and ‘nuisance’ parameters

Any finite model parametrization is necessarily incomplete: certain
types of features or effects will not be representable. A typical to-
mographic model might specify S-wave velocity in a spherical har-
monic basis, complete to angular order L: in setting up the inverse
problem, we assume that there is no structural variation at scale
lengths shorter than that corresponding to L, and that other phys-
ical properties of the Earth—including P-wave velocity, density,
attenuation and anisotropy—are either known a priori, or correlate
directly with the S-wave velocity. Of course, these assumptions are
not truly valid and can introduce biases in results (see e.g. Trampert
& Snieder 1996; Valentine & Woodhouse 2010).

We are now in a position to discuss this effect in a very gen-
eral sense. Suppose we can divide our model parameters into two
independent classes, such that m = (m(1), m(2)). Within one inver-
sion scheme, both are allowed to vary; in the other, the second
subset take fixed values, so that p = (p(1), c). Thus, the first class
might correspond to those components with angular order l ≤ L1,
while the second class represents higher degree components, such
that L1 < l ≤ L2. One can then explore the effect of neglecting
the higher degree structure, by choosing c = 0. Regardless of the
comparison being made, we assume that the same forward cal-
culation is used in each case, and write s(mi) = s(m(1)

i , m(2)
i ) and

f(mi) = s(m(1)
i , c). The forward operator S can similarly be parti-

tioned, so that Smi = (S (1)
mi , S (2)

mi ), while its counterpart for f must
be Fpi = (S (1)

pi , 0). In practice, this might be achieved by using the
same computational implementation in each case: typically, codes
that rely on spherical harmonic model parametrizations allow the
user to specify the maximum angular order to be considered.

We assume that the inverse operator for F is constructed to
provide information only on those parameters that are allowed to

vary, so that F−g
pi = (S (1)

pi

−g
, 0). From eq. (8c), we therefore see

that(
�

(1)
i+1 , �

(2)
i+1

) = ((
I − S (1)

pi

−gS (1)
pi

)
�(1)

i + S (1)
pi

−g(
d − s

(
p(1)

i , c
))

+S (1)
pi

−g
bS

(
p(1)

i , c; m(1)
i , c

)
, �(2)

i

)
− (

S (1)
mi

, S (2)
mi

)−g(
d − s

(
m(1)

i , m(2)
i

))
(13a)
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The relative evolution of the two images therefore depends upon the
construction of (S (1)

mi , S (2)
mi )−g . If the inverse is constructed in such

a way that the distinction between the two sets of model parameters

is maintained, allowing us to write (S (1)
mi ,S

(2)
mi )−g = (S (1)

mi

−g
,S (2)

mi

−g
),

then eq. (13a) may be expressed

�
(1)
i+1 =

(
I − S (1)

pi

−gS (1)
pi

)
�(1)

i +
(
S (1)

pi

−g − S (1)
mi

−g
)

d

+S (1)
mi

−g
s
(
m(1)

i , m(2)
i

) − S (1)
pi

−g
s
(
p(1)

i , c
)

+S (1)
pi

−g
bS

(
p(1)

i , c; m(1)
i , c

)

�
(2)
i+1 = �(2)

i − S (2)
mi

−g (
d − s

(
m(1)

i , m(2)
i

))
. (13b)

If p(1)
i = m(1)

i , so that �(1)
i = 0, and the linear operator S is accurate,

in the sense that bS (mi, mi) = 0, then

�
(1)
i+1 = S (1)

mi

−g (
s
(
m(1)

i , m(2)
i

) − s
(
m(1)

i , c
))

= −S (1)
mi

−g (
S (2)

mi
�(2)

i + bS
(
m(1)

i , m(2)
i ; m(1)

i , c
))

�
(2)
i+1 = �(2)

i − S (2)
mi

−g (
d − s

(
m(1)

i , m(2)
i

))
(13c)

where we have made use of eq. (1). Thus, we see that for the two
inversion algorithms to agree over the first subset of parameters,
S (2)

mi �
(2)
i + bS (m(1)

i , m(2)
i ; m(1)

i , c) must lie in the data null space of

S (1)
mi

−g
. In general, this will arise if the separation between the two

sets of model parameters also corresponds to a separation in the data
space—that is, if the data image spaces of S (1) and S (2) do not over-
lap. Our requirement that the inverse is constructed from each sub-
space separately follows naturally from this condition. Thus, under
these circumstances, provided the two inversions share a common
starting point, they will never diverge for the first subset of param-
eters; obviously, they will disagree for the second subset. However,
a complete data-space separation is rare in non-trivial examples.

In the more common case, where the two subsets of model pa-
rameters give rise to effects that overlap in the data space, there will
generally be coupling between �(2)

i and �
(1)
i+1. Thus, fixing some

parameters to erroneous values will result in a bias appearing in the
remaining parameters, in order to compensate for this. The model
with fixed parameters will be predictively accurate (in the sense
defined at the start of Section 3.2) and may give better results than
a geologically accurate model used in conjunction with those fixed
parameters. Unfortunately, it is almost always infeasible to invert
for all possible physical parameters simultaneously and fixed pa-
rameters must be used (either explicitly, or implicitly). Thus, some
bias in results will usually be present, and this must be borne in
mind during interpretation.

3.2.2 Data-space transformations

Invariably, some form of pre-processing is carried out upon data
prior to imaging, and this can also be explored within our frame-
work, comparing results between processed and unprocessed data
sets. In many cases, these operations can best be represented as a
transformation of the imaging operator: typically the forward cal-
culation is not directly altered (albeit that some methods of compu-
tation may permit certain efficiencies—for example, normal-mode-
based calculations might omit frequencies that would be lost during
filtering). We therefore identify S and s with the unpreprocessed
data, while F−g = (PS)−gP for some processing operator P , and

f = s. Thus, �fwd
i+1 = �cross

i+1 = 0, and any differences in results arise
primarily from

�inv
i+1 = (

(PSmi )
−g P − S−g

mi

) (
d − s(mi)

)
. (14)

In general, if the two images are to be identical, we must have
(PS)−gP = S−g . This will trivially be the case if the transforma-
tion P acts only on data components that lie in the data null space of
S. More interestingly, we can consider partitioning the data space
into two parts, such that d = (

d(1), d(2)
)

and write S = S (1) + S (2),
where d(1) must lie in the image space of S (1) and d(2) in the image
space of S (2) (note that this partitioning is unrelated to that dis-
cussed in Section 3.2.1). Suppose, further, that the effect of P is
to discard any data-space components that lie in the second sub-
space, that is, Pd = (

d(1), 0
)
. In this case, PS = S (1), and therefore

F−g = S (1)−gP . Hence, we obtain

�inv
i+1 = (

S (1)
mi

)−g (
d(1) − s(1)(mi)

)
− (

S (1)
mi

+ S (2)
mi

)−g (
d − s(mi)

)
. (15a)

Again, if the inverse operator maintains the separation between

spaces, such that
(
S (1)

mi + S (2)
mi

)−g = S (1)
mi

−g + S (2)
mi

−g
, this expression

can be simplified, and we obtain

�inv
i+1 = (

S (2)
mi

)−g (
d(2) − s(2)(mi)

)
. (15b)

This essentially requires the two operators, S (1) and S (2), to have
distinct coimage spaces in addition to the distinct image spaces
(which arise by definition). In this case, the processing operation
will not affect our ability to image the model parameters in the
coimage space of S (1). This is essentially the same situation as
discussed in the previous section, but approached from the opposite
direction. Note that even where S (1) and S (2) act between non-
overlapping spaces, it is still possible to construct an inverse operator
that does not preserve this separation—for example, through the use
of a regularization scheme which does not treat the two operators
independently.

In certain cases, it may be possible to show that (PS)−g =
S−gP−g . This is always true if the inverse is exact, and may also
arise under other circumstances. If, additionally, the transformation
P satisfies P−gP = I, it will not affect the results of inversion.
Note that any transformation that discards information—such as a
filtering operation—cannot satisfy this requirement, and will there-
fore alter the recovered image. However, it is straightforward to
demonstrate that transformations such as rescaling of data need
not affect results (although in practice, these transformations may
have important consequences for the numerical stability of a given
computational implementation).

As a final remark in this section: note that in practice, solution
of an inverse problem according to eq. (3) requires us to compute s
and S−g . Certain techniques for computing the partial derivatives—
such as adjoint methods—are susceptible to numerical noise, and it
is normal to attempt to remove this through some form of filtering or
smoothing operation. Using S to denote the theoretical (noise-free)
linear operator, and writing F = P(S + N ) for noise N and filter
P , we again see that any errors that arise relative to the theoretical
image are driven by

�inv
i+1 = ((P(Smi + N ))−g − S−g

mi
)(d − s(mi)

)
. (16a)

To make more detailed comments, we must make assumptions about
the form of various quantities. For illustrative purposes, we consider
a simple gradient descent algorithm: if Smi is represented by the
matrix S, then S−g

mi = −αST, for some small α. Thus, assuming P
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is a linear operator and can be represented by a matrix P such that
PS = PS, we can write

�inv
i+1 = −αST

(
PT − I

)(
d − s(mi)

) − αNTPT
(
d − s(mi)

)
. (16b)

It is clear that there is a tradeoff between the elimination of noise,
on one hand, and the loss of useful information, on the other. This
cannot be avoided unless N can be shown to lie wholly in a different
data subspace from S.

3.2.3 ‘Hybrid’ schemes

For many geophysical systems, we have a fairly complete under-
standing of the physical processes that give rise to observable phe-
nomena. Thus, we have the ability to compute synthetic data in a
theoretically complete manner—for example, fully numerical tech-
niques (e.g. Komatitsch et al. 2002) allow simulation of seismic
wavefields with almost arbitrary accuracy. Similarly, exact partial
derivatives may be obtained, and it is clearly desirable to use the most
accurate techniques available when imaging a geophysical system.
However, these methods are invariably computationally demanding,
and in many situations, their use may not currently be feasible.

A natural question is therefore whether a ‘hybrid’ imaging
scheme may usefully be implemented, which combines certain cal-
culations performed using ‘fully accurate’ techniques with others
performed using an approximate—and therefore computationally
cheaper—method. In particular, the use of accurate synthetics in
conjunction with an inverse operator computed from approximate
partial derivatives has sometimes been proposed. Notable recent
implementations of this concept include the work of Lekić &
Romanowicz (2011) and French et al. (2013) (although these do
not rely on an inversion algorithm that is strictly linear; see Sec-
tion 3.3). We are now in a position to consider the effects of such an
approach, which may be seen from two perspectives: as an ‘improve-
ment’ in the forward model used, relative to a ‘fully approximate’
inversion; or as a degradation in the inverse operator relative to a
‘fully accurate’ approach.

Fundamentally, this form of hybrid approach involves using an
inverse operator that is not directly related to the forward calcu-
lation. Within the framework established in Section 2, this can be
approached from two directions. From one viewpoint, the forward
operator in eq. (1), Sm, may be regarded as remaining accurate (in
the sense that bS (m, m) = 0) but the inverse operator S−g

m is not
constructed as a direct relative of Sm. In the alternative view, S−g

m is
a ‘good’ inverse forSm, but the forward operator does not accurately
describe the behaviour of s(m) and bS (m, m) 
= 0.

We begin by comparing the results of a hybrid scheme to those
of fully approximate inversion. The clearest interpretation within
the framework of eq. (9) comes from associating m with the fully
approximate case, and p with the hybrid model. For clarity, we use
h to represent a hybrid model vector, and make the transformation
p → h. Similarly, we specify the fully approximate model by m →
a. We use t(m) to represent the exact (‘true’) forward calculation,
and thus transform f → t. We continue to use s and S to denote a
generic approximate method and its corresponding linear operator.
The non-zero terms from eq. (9) may then be expressed

�res
i+1 = (

I − S−g
ai

Sai

)
�i − S−g

ai
bS (ai, hi)

�
path
i+1 = (

S−g
hi

− S−g
ai

) (
d − s(hi)

)
�fwd

i+1 = S−g
hi

(
s(hi) − t(hi)

)
. (17)

Any gain that is associated with the switch to using the exact for-
ward code must come from the action of the operator S−g

hi
upon

(s(hi) − t(hi)).
We can also make the identification in the opposite sense, so

that m is associated with the hybrid case. In this case, m → h and
s → t. The linear operator that describes the behaviour of t is T ,
and we transform S → T , but as already discussed, we are using
an incorrect linear operator, so S−g is not transformed.

�res
i+1 = (

I − S−g
hi

Thi

)
�i − S−g

hi
bS (hi, ai)

�
path
i+1 = (

S−g
ai

− S−g
hi

) (
d − t(ai)

)
�fwd

i+1 = S−g
ai

(
t(ai) − s(ai)

)
. (18)

Note that since � = p − m, some signs must be changed for eq. (18)
to be equivalent to eq. (17). In any case, interpretation is complicated
by the fact that all three terms now depend explicitly upon both the
exact and the approximate theories.

The value of eq. (18) becomes apparent when we consider another
comparison: between hybrid and exact inversions. Now, we identify
m with the hybrid model, so that m → h and use p → e to denote
the exact model. Thus, F−g → T −g , while f → t and s → t. The
non-zero terms become

�res
i+1 = (

I − S−g
hi

Thi

)
�i − S−g

hi
bS (hi, ei)

�
path
i+1 = (

S−g
ei

− S−g
hi

) (
d − t(ei)

)
�inv

i+1 = (
T −g

ei
− S−g

ei

) (
d − t(ei)

)
(19)

Comparing this to eq. (18), we see that—apart from differing with
regard to the points at which the various quantities are evaluated—
�res

i+1 and �
path
i+1 are identical in form in the two cases. Absent any

argument founded upon the particular characteristics of a given
imaging problem, these terms must be assumed to make a similar
contribution to �i+1 in each case. Similarly, we do not see that any
general statements can be made about the relative magnitudes of
�fwd

i+1 and �inv
i+1—although we note that the latter depends upon the

noise content of the data, and is, in principle, unbounded. However,
assuming that data are subject to some degree of quality control, it
seems difficult to conclude that one term is always, or often, much
larger than the other. Thus, there would appear to be no general
reason to suppose that hybrid inversion schemes offer a significant
improvement over fully approximate inversion. In order to argue
that this is true in any specific case, it will be necessary to consider
the particular properties of the approximations used.

3.2.4 The Hessian operator

Finally, we briefly discuss the role of Hessian information, which
is sometimes discussed as a route toward improving geophysical
imaging, especially in the context of ‘full-waveform inversion’ of
seismic data (e.g. Virieux & Operto 2009; Fichtner & Trampert
2011a). Formally, a ‘Hessian’ is the N × N matrix H with com-
ponents Hij = ∂2f/∂xi∂xj, for any scalar function of N variables
f (x1, x2, . . . , xN). In a geophysical context, the term is invariably
used to denote the Hessian of some misfit function χ (m), which the
inversion procedure seeks to minimize. In particular, taking m∞ to
represent an optimal model—for which, by definition, ∂χ/∂xi = 0
for all xi—the Hessian characterizes the leading term in a Taylor
expansion of the misfit function,

χ (m) = χ (m∞) + 1

2
(m − m∞) Hm∞ (m − m∞)

+ higher order terms (20)
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where we have placed a subscript on H to indicate that the Hessian
must be evaluated at a particular point in model space. It is apparent
from eq. (20) that the Hessian provides, to a first approximation,
information about the degree to which this optimal solution can be
constrained (or, equivalently, on the uncertainties and tradeoffs as-
sociated with the solution). It is therefore often beneficial to make
use of information contained within this Hessian—or an approx-
imation thereto—when constructing the inverse operator S−g of
eq. (3). Thus, for example, the inverse of the Hessian can be used
as a pre-conditioner in gradient descent, improving performance
in terms of both convergence rate and quality of results (e.g. Op-
erto et al. 2013). However, this approach—commonly referred to as
Newton’s method—remains a linear algorithm for the computation
of each model update. It therefore continues to have the form given
in eq. (3), and all our analysis still applies.

In order to compute this Hessian, it will typically be necessary
to evaluate the second derivative of the synthetic observables with
respect to model parameters. Given this capability, it is natural
to ask whether it can be used to gain additional understanding of
the behaviour of imaging algorithms. Viewing eq. (1) as a Taylor
expansion to first order, it is clear that any information available from
second derivatives has been subsumed into bS in our analysis. In
eq. (9), we see that this appears only in the resolution term, �res. This
is, perhaps, unsurprising given the Hessian’s role in describing the
extent to which different parameters are coupled. However, it does
not appear that explicit incorporation of second-order information
would greatly enhance our ability to understand how differences
between images can arise.

3.3 Incorporating resolution information

Returning again to eq. (3), we may appreciate a subtlety. At any
given iteration, the model update must lie in the image space of
S−g

mi . Typically, this inverse will be constructed from Smi , and the
model image space of the inverse will be a subset of, or equal to,
that of the forward operator. This is a desirable construction, since
it implies that the model update lies wholly within the part of model
space which is known to affect synthetic data: no part of the update
will lie in the model null space. This is, essentially, the principle
of ‘Occam’s razor’: we should add nothing to the model that is not
positively required to explain observations.

However, there is no reason to suppose that the fundamental
subspaces of Smi will remain unchanged over multiple iterations.
An update that contained no component in the model null space
computed for the first iteration may be substantially in the null
space as computed at the final iteration. This is seen in eq. (9b),
where �res

i+1 allows any null space components to accumulate over
multiple iterations. There is no positive reason to retain these, which
depend entirely on the iteration-by-iteration history of the inversion,
and are likely to mislead during interpretation.

The solution is straightforward: discard any part of the existing
model that lies in the null space of the current inverse operator, prior
to performing the model update. We define some operator, VS

mi
, to

select only those model components that lie within the model image
space of Smi , and iterate according to

mi+1 = VS
mi

mi + S−g
mi

(
d − s(mi)

)
. (21)

We can compare images produced by two different implementations
of this framework, as before. The counterpart to eq. (8a) can be
expressed

�i+1 = VS
mi

�i + (
VF

pi
− VS

mi

)
pi + (

F−g
pi

− S−g
mi

)
d

+S−g
mi

s(mi) − F−g
pi

f(pi) , (22a)

where VF
pi

is the corresponding operator constructed for Fpi . Simi-
larly, eq. (8b) becomes

�i+1 = (
VS

mi
− S−g

mi
Smi

)
�i + (

VF
pi

− VS
mi

)
pi + (

F−g
pi

− S−g
mi

)
d

+S−g
mi

s(pi) − F−g
pi

f(pi) − S−g
mi

bS (mi, pi) . (22b)

Thus, the only change in eq. (9) is that eq. (9b) should now be
written

�res
i+1 = (

VS
mi

− S−g
mi

Smi

)
�i − S−g

mi
bS(mi, pi)

+ (
VF

pi
− VS

mi

)
pi . (23)

Provided that S−g is constructed to map solely into the model im-
age space of S, it is possible—and sensible—to choose VS

mi
=

S−g
mi Smi = RS

mi
. This choice arises naturally in the work of

Tarantola & Valette (1982), where a complete Bayesian treatment
of the least-squares problem is given for the case of Gaussian un-
certainties.

3.3.1 The position at convergence

As in Section 3.1.4, we can consider performing sufficient iterations
so that both inversion schemes converge. In this case, we can write
down a counterpart to eq. (12), based on eq. (22b)(
I −VS

m∞ +S−g
m∞Sm∞

)
�∞

= (
VF

p∞ −VS
m∞

)
p∞ −S−g

m∞ (d − f(p∞))

+S−g
m∞ (s(p∞) − f(p∞)) − S−g

m∞ bS (m∞, p∞). (24)

In the case where VS
mi

= S−g
mi Smi , the left-hand side reduces to �∞;

we have moved the term involving bS to the right-hand side for this
reason. As before, the orientation of residuals from one inversion
scheme relative to the inverse operator of the other remains impor-
tant, but there is an additional term to account for the fact that the
two imaging operators may map into different subspaces.

3.3.2 A caveat: ‘hybrid’ inversion schemes

When both forward and inverse operators share common image and
null spaces, constructing V is reasonably straightforward. However,
this is not necessarily the case for hybrid inversion schemes. Our
‘Occam’s razor’ argument indicates that the correct choice should
identify the model image space of the forward operator—that is, the
operator that accurately describes the local behaviour of the syn-
thetic calculation. However, the motivation for performing a hybrid
inversion is to avoid computing this operator, and thus the correct
subspace is not known. In consequence, it is necessary to construct
V based on the image space of the approximate forward operator,
instead. Thus, application of eq. (21) results in a model that may
contain features that are not necessary to allow the exact forward
theory to explain the data, and for which there is no positive evi-
dence. It is also possible for this to give rise to instabilities in the
inversion algorithm, since the model is continually ‘corrected’ in a
manner that does not conform to the behaviour of the forward code
used. In particular, there is no reason to suppose that partial deriva-
tives calculated using approximations ‘point towards’ the model
that minimizes misfit between accurate synthetics and data. Thus,
the algorithm can never converge. In order to compensate for this,
it is likely that stronger regularization would be required, and this
may undo some of the benefits associated with the hybrid approach.
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4 I L LU S T R AT I O N : D E T E R M I N I N G T H E
D E N S I T Y D I S T R I B U T I O N
I N A V I B R AT I N G S T R I N G

To illustrate the issues discussed in this paper, we consider a simple
synthetic imaging problem: determination of the density distribution
within a vibrating string. We assume the string to have unit length,
and to be under unit tension. At time t, the displacement of the string
is described by the function y(x, t), where x represents the position
along the string’s length (0 ≤ x ≤ 1). The string has non-uniform
density, described by ρ(x), and attenuates in some simple manner,
represented by a damping coefficient α. We therefore consider the
wave equation

∂2 y

∂x2
= ρ(x)

∂2 y

∂t2
+ α

∂y

∂t
, (25)

subject to the boundary conditions y(0, t) = y(1, t) = 0, and some
initial configuration, y(x, 0) = y0(x). We assume the string is initially
at rest, so that ẏ(x, 0) = 0, where we have adopted the Newtonian
‘dot’ notation to represent a time derivative.

4.1 Method of solution

For our purposes, it is helpful to adopt a ‘normal-mode’ approach
to solving this equation. Any solution that satisfies the boundary
conditions can be written in the form

y(x, t) =
∞∑

n=1

an(t) sin(nπx) . (26)

Substituting this into eq. (25) and making use of the orthogonality
properties of sinusoids, we find that the oscillation of the nth mode
is governed by

an(t) = −1

n2π 2

[
α

dan

dt
+ 2

∑
m

d2am

dt2

×
∫ 1

0
ρ(x) sin(mπx) sin(nπx) dx

]
. (27)

Thus, the evolution of one mode is linked to that of every other mode.
In the general case, this results in an infinite-dimensional system of
equations, and is intractable. To implement it computationally, it is
necessary to truncate the sum in eq. (26) after N terms. Then, the
coupling between different modes is described by the N-dimensional
matrix M, defined such that

Mnm =
∫ 1

0
ρ(x) sin(mπx) sin(nπx) dx . (28)

In the case of a uniform string, this integral will vanish unless n =
m, and so each mode behaves independently; however, if the density
structure is not homogenous, energy exchange between modes can
occur. This is exactly analogous to the manner in which material
heterogeneities lead to mode coupling in the Earth (e.g. Woodhouse
& Dahlen 1978). Defining K such that

Knm = δnm

n2π 2
(29)

where δnm represents a Kronecker delta, and representing the N
time-varying coefficients, an, as the vector a, we can write eq. (27)
in the form

d

dt

(
a

ȧ

)
=

(
−αK −2KM

I 0

)−1 (
a

ȧ

)
. (30a)

Here, I represents an identity matrix. Eq. (30a) is a system of coupled
ordinary differential equations, and can readily be solved numeri-
cally using standard techniques, subject to the initial conditions

an(0) = 2
∫ 1

0
y0(x) sin(nπx) dx

ȧn(0) = 0. (30b)

The resulting values of an can be used in conjunction with eq. (26)
to model the behaviour of the string over time.

4.1.1 Model parametrization and partial derivatives

Given observations of the vibrations of a string, we wish to set
up an inverse problem to determine its density structure. This
requires us to select some method for parametrizing the density
distribution, ρ(x), typically by reference to some set of L spatial
basis functions (ψ1(x), ψ2(x), . . . , ψL(x)). This allows us to spec-
ify a continuous density model in terms of L model parameters,
ρ = (ρ1, ρ2, . . . , ρL ), such that

ρ̃(x) =
L∑

l=1

ρlψl (x). (31)

We use the notation ρ̃(x) to denote a model for ρ(x), in order to
emphasize that the use of a finite set of basis functions imposes
restrictions upon the range of density structures which may be rep-
resented. Using the theory set out in eqs (26)–(30b), it is straight-
forward to compute ỹ(x, t, ρ), the string vibrations corresponding
to density model ρ. Further, we can obtain partial derivatives with
respect to individual model parameters, since

∂ ỹ

∂ρλ

=
N∑

n=1

∂ ãn

∂ρλ

sin(nπx) , (32)

and

∂ ãn

∂ρλ

= −1

n2π 2

[
α

d

dt

∂ ãn

∂ρλ

+ 2
∑
m,l

ρl
d2

dt2

∂ ãm

∂ρλ

×
∫ 1

0
ψl (x) sin(mπx) sin(nπx) dx + 2

∑
m

d2ãm

dt2

×
∫ 1

0
ψλ(x) sin(mπx) sin(nπx) dx

]
. (33)

Using � (λ) to denote the matrix with elements

 (λ)
mn =

∫ 1

0
ψλ(x) sin(mπx) sin(nπx) dx (34)

and noting that M̃ = ∑
l ρl�

(l), we can then write down another
coupled system of differential equations,

d

dt

⎛
⎜⎜⎜⎜⎝

ã
˙̃a

∂ ã/∂ρλ

∂ ˙̃a/∂ρλ

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−αK −2KM̃ 0 0

I 0 0 0

0 −2K� (λ) −αK −2KM̃

0 0 I 0

⎞
⎟⎟⎟⎠

−1

×

⎛
⎜⎜⎜⎜⎝

ã
˙̃a

∂ ã/∂ρλ

∂ ˙̃a/∂ρλ

⎞
⎟⎟⎟⎟⎠ . (35a)
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Again, this can readily be solved, subject to the boundary condi-
tions

ãn(0) = 2
∫ 1

0
y0(x) sin(nπx) dx

˙̃an(0) = 0

∂ ãn

∂ρλ

∣∣∣∣
t=0

= 0

∂ ˙̃an

∂ρλ

∣∣∣∣
t=0

= 0. (35b)

Thus, for any set of model parameters ρ, it is possible to compute
synthetic data and the derivatives of those synthetics with respect
to each model parameter. This makes it straightforward to set up a
linearized inverse problem to determine the density structure of any
string assumed to obey eq. (25).

4.2 Demonstration

We compute synthetic data for a string with density distribution

ρ(x) = 5 + 3x2 + cos(5πx) (36)

and damping coefficient α = 1/2. At t = 0, the string is at rest, with
initial configuration

y0(x) = e−8(5x−1)2
(37)

which represents a Gaussian wavepacket of width (cf. standard de-
viation) 0.05, centred on x = 0.2. We calculate the motion of the
point at x = 0.8 over 60 time units, resulting in the waveform shown
in Fig. 1. For these calculations, we truncate the summation in
eq. (26) (and elsewhere) at N = 100; we have verified that higher
terms are indeed negligible for present purposes. Note that the inte-
grals in eqs (28) and (30b) can be solved numerically, and no model
parametrization needs to be specified at this stage.

4.2.1 Recovery of density structure: least-squares inversion

Starting from this waveform, we wish to construct a model for the
string’s density structure. It is therefore necessary to decide upon a
particular model parametrization. We use a one-dimensional grid,
dividing the string into L equal-sized pieces, and assuming that each
can be described by a constant density. Thus, our basis functions
are defined

ψl (x) =
{

1 (l − 1)/L < x < l/L

0 otherwise
. (38)

Note that this may not be the optimal choice: basis functions with
global support are arguably more natural in conjunction with a
normal-modes approach. However, for the purposes of this paper,
the simplicity of a grid parametrization is desirable.

We choose L = 20, and assume that the overall mass of the string
is known. We use this to construct an homogeneous initial model

ρ0 = (ρ̄, ρ̄, . . . , ρ̄) (39)

where ρ̄ represents the mean value of the function ρ(x) (eq. 36). As
set out above, we can compute the synthetic data corresponding to
this model, and the partial derivatives with respect to each model
parameter. Thus, we can implement the least-squares algorithm, as
set out in eq. (4b). We use Tikhonov regularization, D = εI, with
ε = 0.1. Note that it would be straightforward to include a mass
constraint within the inversion (e.g. Menke 1989), although for the
purposes of this illustration, we do not do so.

We perform five iterative updates to the model, tracking the misfit

m2 = (d − s)T (d − s)

dTd
(40)

as the inversion proceeds. These are shown in Fig. 2, and demon-
strate that the recovered model explains the available data almost
perfectly. This model is also shown in Fig. 2, along with the ‘true’
density structure (eq. 36). We see that there is a good visual agree-
ment between the two, although they do not match exactly: this is
unsurprising, due to the limitations of a finite model parametriza-
tion. Nevertheless, it is evident that effective models of the string’s
density structure can be constructed using the data in Fig. 1.

4.3 An ‘approximate’ theory

The computation of the time-varying modal excitations an(t) is
complicated by the coupling between modes. However, inspection
of the matrix M indicates that it is diagonally dominant: while den-
sity heterogeneities introduce energy exchange between modes, the
strongest contribution comes from their effect on the individual
modes. Neglecting off-diagonal terms allows each excitation coef-
ficient to be determined independently (with corresponding deriva-
tives, if required, by ignoring off-diagonal terms in � (l)), greatly
simplifying the computational procedure; an analytic solution to
eq. (30) can readily be found. This is rather similar in conception to
the ‘self-coupling’ approximation often adopted in global seismol-
ogy, although there degeneracy effects are also present.

4.3.1 Symmetry considerations

In order to properly understand the effects of using this approxima-
tion within the inverse problem, it is necessary to briefly consider

Figure 1. The oscillations of a non-uniform string. Synthetic waveform representing motion of single point (x = 0.8) on a string of non-uniform density.
A full description of the properties of the string is given in Section 4.2. All quantities are measured in arbitrary units.
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Figure 2. Least-squares inversion for string density structure. Left: iteration-by-iteration misfit (defined as in eq. 40) during least-squares inversion for the
density variations along a vibrating string; after five iterations, almost perfect agreement is obtained between data and synthetics. Right: model recovered
after five iterations (red), superimposed upon ‘true’ structure (black, solid). The initial model, at ‘iteration 0’, is the homogeneous density structure shown by
the black dotted line. In this experiment, all quantities are computed in a theoretically complete manner, and no approximations are introduced except those
associated with the use of a finite set of basis functions. Density and position are specified in arbitrary units.

the role of symmetry in the mode coupling equations. Any func-
tion ρ(x) can be split into a purely symmetric part ρs, and a purely
antisymmetric part, ρa, relative to a symmetry axis x0

ρ(x) = ρs(x − x0) + ρa(x − x0) (41)

where symmetry and antisymmetry have their usual definitions

ρs(x) = ρs(−x)

ρa(x) = −ρa(−x) (42)

and taking x0 as the midpoint of our string, i.e. x0 = 1/2, eq. (28)
can be expressed

Mnm =
∫ 1

0
ρs

(
x − 1

2

)
sin(nπx) sin(mπx) dx

+
∫ 1

0
ρa

(
x − 1

2

)
sin(nπx) sin(mπx) dx (43)

The function sin (nπx) may be either purely symmetric or purely
antisymmetric about x = 1/2, depending on n, and in general the
same applies to the product sin (nπx)sin (mπx). However, in the case
where n = m, both sinusoids necessarily share the same symmetry
properties. Their product is always symmetric, and the second inte-
grand in eq. (43) is always antisymmetric about x = 1/2. Thus, this
second integral vanishes: Mnn depends only on the symmetric part
of the density structure.

We therefore see that by making the approximation that off-
diagonal terms in M and � (l) are negligible, we lose all sensitivity
to antisymmetric structure. A similar effect is seen when the self-
coupling approximation is used for computing seismograms: the
calculations only depend on the even-degree components in a spher-
ical harmonic expansion of Earth structure. Conversely, where earth
models are constructed based only on self-coupling approximations,
odd-degree structure cannot be imaged; coupling between modes
must be considered to access this (e.g. Resovsky & Ritzwoller 1995;
Laske & Widmer-Schnidrig 2007).

4.3.2 Fully approximate inversion

This effect can readily be seen if we repeat the inversion of the
data in Fig. 1, but instead use this ‘self-coupling’ approximation
when computing both synthetics and partial derivatives. The results
are shown in Fig. 3: a 70 per cent variance reduction is achieved
over five iterations, implying that the recovered model explains
aspects of the data, but it appears to bear little relationship to the
‘true’ density structure. It is also not an accurate depiction of the
symmetric part of ρ(x), as can be seen from Fig. 4, although there
are some similarities between the two: in particular, the range of
values spanned by the recovered model is similar to that of the
symmetric part of the true model. Of course, this cannot be taken
as a general rule. If this were a ‘real’ experiment, we suspect that
any physical interpretation derived from these results would be
substantially misled by the differences between recovered and true
models.

4.3.3 Hybrid inversion

Fig. 3 also shows results for inversion of the same data using a
‘hybrid’ approach, where partial derivatives are computed using the
‘self-coupling’ approximation, but synthetics are calculated exactly.
This leads to a very slight reduction in misfit compared to the fully
approximate case, and the recovered model is almost unchanged.
Although the theoretical framework used for computing synthetic
data is more complete, the theoretically incomplete partial deriva-
tives cannot make use of this information.

Since the starting model in Fig. 3 is symmetric, it might be
thought that this is a special case: this may be an example where
the difference between exact and approximate synthetics is limited.
We therefore repeat the experiment using an initial model derived
from the function ρ0 = 5 + 3x2, to match the gross behaviour of
eq. (36). Again, we compare fully approximate and hybrid inver-
sion schemes, with the results shown in Fig. 5. Unfortunately, the
benefits of the hybrid approach remain limited, although the misfit
values obtained using the hybrid scheme are significantly lower than
those of the fully approximate case. This presumably arises because
the exact synthetics used in hybrid inversion (and in computing
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Figure 3. Comparison between fully approximate and hybrid inversion; compare Fig. 2. Left: iteration-by-iteration misfit for fully approximate (red crosses)
and hybrid (blue circles) inversion of the data given in Fig. 1, adopting the ‘self-coupling’ approximation described in Section 4.3. Right: recovered models
after eight iterations of the fully approximate (red) and hybrid (blue) inversion schemes. The initial model is given by the black dotted line; the black solid line
represents the ‘true’ model used when generating the data. It is evident that the use of a more complete synthetic calculation does not significantly alter the
recovery.

Figure 4. Symmetric (red) and antisymmetric (blue) parts of ρ(x) (eq. 36). The symmetry axis is taken to be x = 1/2.

the corresponding misfit) incorporate the antisymmetric part of the
density structure, which is lost to the approximate synthetics. How-
ever, the approximate derivatives remain largely unable to access
this information.

4.4 An alternative approximation: neglecting attenuation

To explore whether these effects are specific to the case of ‘self-
coupling’, we consider making a different approximation, whereby
we neglect the effects of attenuation. Setting α = 0, we solve
eq. (35) allowing coupling between all modes, and attempt to deter-
mine the string’s density structure from the data in Fig. 1. Again,
we use the term ‘fully approximate’ inversion to imply that attenu-
ation is neglected for both synthetics and partial derivatives; hybrid
inversion uses the correct value of α in computing synthetics, but
α = 0 for partial derivatives. Results are shown in Fig. 6.

In this case, the results of hybrid inversion can probably be re-
garded as an improvement over those obtained in the fully approx-
imate setting. This assessment is not wholly objective: we do not
attempt to quantify the quality of recovered models, which is likely

to be application-specific. However, inspection of Fig. 6 shows that
the fully approximate algorithm significantly overestimates the am-
plitude of the minimum and maximum density anomalies. The effect
is still present in the hybrid case, but is much less pronounced. Else-
where, neither model perfectly represents the true structure, and it
is not obvious that one is consistently better than the other. Never-
theless, the misfit values obtained during hybrid inversion are much
improved over those when approximate synthetics are used.

4.4.1 Geometrical considerations

In order to illustrate one perspective on why a hybrid approach
brings greater benefits in conjunction with the ‘non-attenuating’
approximation than the ‘self-coupling’ approximation, we turn to
consider geometrical factors. In Section 3.1.1, we argued that any
change to the forward calculation can only impact inversion results
to the extent that it lies within the image space of the inverse opera-
tor. For the case of hybrid inversion, Section 3.2.3—and specifically,
eq. (17)—indicates that any benefits must be driven by the quantity
�fwd

i+1 = S−g
hi

(s(hi) − t(hi)), where S−g
hi

represents the approximate
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Figure 5. Comparison between fully approximate and hybrid inversions, non-uniform initial model. See also Figs 2 and 3. Left: misfit evolution for fully
approximate (red crosses) and hybrid (blue circles) inversion of the data in Fig. 1. Right: recovered models for fully approximate (red) and hybrid (blue)
schemes, after eight iterations; again, the ‘self-coupling’ approximation was used. Inversion began with a non-uniform model (black, dotted); the true model
is represented by the black solid line. The model obtained via hybrid inversion appears to give a much lower misfit than that in the fully approximate case, yet
there is little difference between results.

Figure 6. Comparison between hybrid and approximate inversions, attenuation neglected. Compare especially Fig. 3; note that vertical axes are considerably
extended relative to previous plots. Left: misfit evolution for fully approximate (red crosses) and hybrid (blue circles) inversion, where the ‘approximation’
involves ignoring the effects of attenuation (i.e. assuming α = 0, but otherwise solving eq. (30) exactly). Right: recovered models after eight iterations of fully
approximate (red) and hybrid (blue) inversion. Also shown are the true model (black, solid) and the initial model (iteration 0; black, dotted).

Figure 7. Geometrical relationships between approximate inverse operators and omitted forward physics. Sketch of relationship between the data-space singular
vectors of the (approximate) inverse operator (‘Operator’), and the difference between exact and approximate synthetics. Lines are constructed by computing
the angle between this difference and the ith singular vector (θ i, eq. 44), and scaling line length according to the corresponding singular value. Red denotes
‘self-coupling’ approximation (Section 4.3), while black denotes the ‘non-attenuating’ case (Section 4.4). See Section 4.4.1 for more detailed explanation.

inverse operator, s(hi) is the approximate synthetics and t(hi) the
exact synthetics. If the ‘improvement’ associated with exact syn-
thetics, (s(hi) − t(hi)), does not lie in the subspace accessible with
the imaging operator, S−g

hi
, it cannot influence inversion results.

Fig. 7 illustrates that this situation arises to a greater extent for

the ‘self-coupling’ approximation than for the ‘non-attenuating’
approximation.

We use As to denote the matrix of partial derivatives evaluated
for model hi using the ‘self-coupling’ approximation and An for
the ‘non-attenuating’ approximation. To simplify comparisons, we
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choose hi to be the uniform initial model, ρ0. The inverse opera-
tors, S−g

hi
, are constructed as in eq. (4), with regularization D = 0.1I

(as already described). Each inverse operator can be expressed us-
ing an SVD, as in eq. (5). In the present case, we have L = 20
model parameters, and thus at most L non-zero singular values. For
the ‘self-coupling’ case we denote these by {σ (s)

1 , σ
(s)
2 , . . . , σ

(s)
L },

with corresponding right-singular vectors {v(s)
1 , v(s)

2 , . . . , v(s)
L }. Note

that since we are constructing the SVD of the inverse operator,
these vectors lie in the data space. For the operator in the ‘non-
attenuating’ case, the equivalent (but non-identical) quantities are
denoted {σ (n)

1 , σ
(n)
2 , . . . , σ

(n)
L } and {v(n)

1 , v(n)
2 , . . . , v(n)

L }. For notational
brevity, we introduce e(s) = s(hi) − t(hi) to represent the difference
between exact and approximate synthetics when s is calculated us-
ing the ‘self-coupling’ approximation and e(n) for the equivalent
quantity in the ‘non-attenuating’ case.

With these quantities defined, it is straightforward to compute the
angle between any singular vector of the inverse operator and the
forward-modeling error eliminated by switching from approximate
to exact calculations,

θ
(s,n)
i = arccos

(
v(s,n)

i · e(s,n)

√
e(s,n) · e(s.n)

)
, (44)

where we have noted that the singular vectors are, by definition,
normalized. The closer these angles are to a right angle, the less the
influence on inversion results. Fig. 7 sketches these quantities in the
2-D plane for the two cases, with the ‘self-coupling’ approximation
in red; the length of each line is determined by the corresponding
singular value. It is evident that in the ‘self-coupling’ case, e(s) is al-
most orthogonal to the hyperplane defined by the imaging operator,
so that there is little difference in result between fully approximate
and hybrid inversions. When the ‘non-attenuating’ approximation
is used, e(n) is somewhat less orthogonal to the operator, and there
is greater benefit associated with a change to using exact synthet-
ics. Thus, our experimental observations of relative algorithmic
performance are in accordance with the theoretical considerations
described in Section 3.

5 C O N C LU D I N G R E M A R K S

In this paper, we have set out a fairly general statement of linearized
inverse theory, and described how differences between two iterative
inversion algorithms manifest themselves in the recovered images.
This can be used to assess how particular choices or assumptions—
such as on model parametrization, data processing, or the theoretical
basis for performing calculations—affect results. This may be used
to understand why two images that purport to describe the same
system are not identical, permitting a more principled approach to
interpretation. Alternatively, one can compare a specific imaging
framework to an idealized algorithm in which no approximations
or assumptions need be made. Again, this may assist interpretation,
by providing insight into any distortions or limitations in recovered
models. This knowledge, in turn, can enable the optimization of the
imaging process itself.

Our analysis identifies three factors that contribute to image dif-
ferences (as in eq. 9): differences between the forward and inverse
operators used; the fact that two iterative algorithms may follow
distinct paths through model space; and effects arising from the
(typically) imperfect resolution of the imaging operators. If one
chooses to compare two specific imaging algorithms, all operators
will be known, and the relative contributions of these terms can be
quantitatively assessed. However, any insights may not apply be-

yond the particular comparison performed. In the present work, we
have adopted a more abstract approach, and explored some general
properties of linearized inversion.

Taking such a general approach, the relative performance of two
imaging algorithms can be understood in terms of the different null
and image spaces of the various operators involved. In particular, it is
important to recognize that even ‘small’ changes to these operators
can nevertheless generate substantial changes to these subspaces—
especially where they are defined in high-dimensional spaces and
where the null space is large compared to the image space. Both of
these conditions are the norm in many geophysical inverse problems.
This can lead to counter-intuitive effects: an approximation that
seems ‘small’ in magnitude may nevertheless substantially alter the
geometric relationship between operators, and therefore generate
a larger effect on the recovered image than might otherwise be
supposed.

A case in point is the concept of ‘hybrid’ inversion, where an ac-
curate but expensive forward calculation is used in combination with
an inverse operator obtained more cheaply, using approximations.
It is typically assumed that the accuracy of the recovered image is
primarily influenced by the accuracy of the forward code, and thus
that hybrid inversion will yield a high-quality model. However, it
is clear that this is not—as a general statement—true. We see no
reason to suppose that approximations in the inverse operator are
necessarily less important than those in the forward operator, unless
this can be justified in a specific case by reference to the particu-
lar approximations envisaged. It is also noteworthy that physically
motivated approximations will often have strong geometrical ef-
fects upon the imaging operators, substantially altering their null
and image spaces. It is therefore quite possible for many of the
‘benefits’ of the accurate forward model to lie in the null space of
the approximate imaging operator, and to be lost. Such behaviour is
clearly seen in the example presented in Section 4, where use of a
hybrid approach does not lead to a markedly better model, despite
significant improvements in data fit. We emphasize that we are not
arguing that hybrid approaches should be entirely discredited: in
some circumstances they may lead to higher quality models. How-
ever, such a claim must be substantiated through analysis of the
specific approximations that are being made (or avoided).

In recent years, geophysicists have benefited immensely from
advances in data quality and quantity, and in the theoretical com-
pleteness of available computational codes. This has enabled the
production of models with increasingly high apparent resolution,
yet two representations of the same system rarely agree at a detailed
level. Some portion of these differences represent the inherent un-
certainties associated with attempting to represent a physical system
from noisy, incomplete measurements. The remainder arise from
subtle differences in how the ‘imaging problem’ has been posed in
each case. Understanding and quantifying these two effects is vital if
models are to be interpreted properly. Indeed, one might reasonably
question the value in producing ever-more-detailed models without
first reconciling or explaining such discrepancies; all experience
suggests that the problem will only become more pronounced as
detail increases. The framework presented here may offer one route
toward tackling these questions, although it is clear that much re-
mains to be done.

This paper has focused exclusively on linearized inverse theory,
whereby imaging algorithms are framed in terms of linear algebra,
and where each iterative improvement in the model is constructed by
assuming a linear relationship between observables and parameters
until a single optimal solution is found. This may not be appropriate
in all cases: non-linearities in the true forward problem may result
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in poor performance, and where large null spaces exist, the value
of a single image may be limited. In such circumstances, other
approaches to imaging—typically, those based on testing models
at random, to characterize the range of images compatible with
data—are required. Such techniques pose their own challenges, and
choices, assumptions and approximations continue to occur. How-
ever, in some ways, the ‘imaging operator’ for the non-linear case
is much simpler and readily understood than that for iterative, lin-
earized inversion. As computational resources grow and non-linear
approaches become increasingly feasible, the interpretational chal-
lenges associated with linearized inversion techniques may weigh
increasingly heavily in the balance.
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de Wit, R.W.L., Trampert, J. & van der Hilst, R.D., 2012. Toward quanti-
fying uncertainty in travel time tomography using the null-space shuttle,
J. geophys. Res., 117(B3), doi:10.1029/2011JB008754.
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